JP2010064920A - Method for producing 6h silicon carbide single crystal - Google Patents

Method for producing 6h silicon carbide single crystal Download PDF

Info

Publication number
JP2010064920A
JP2010064920A JP2008232629A JP2008232629A JP2010064920A JP 2010064920 A JP2010064920 A JP 2010064920A JP 2008232629 A JP2008232629 A JP 2008232629A JP 2008232629 A JP2008232629 A JP 2008232629A JP 2010064920 A JP2010064920 A JP 2010064920A
Authority
JP
Japan
Prior art keywords
silicon carbide
single crystal
pressure
carbide single
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008232629A
Other languages
Japanese (ja)
Inventor
Sho Kumagai
祥 熊谷
Takeshi Motoyama
剛 元山
Hidetoshi Ishihara
秀俊 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2008232629A priority Critical patent/JP2010064920A/en
Publication of JP2010064920A publication Critical patent/JP2010064920A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To produce a silicon carbide single crystal formed of 6H polytype only. <P>SOLUTION: A method for producing the 6H silicon carbide single crystal comprises: a step S1 of heating a crucible to a temperature T1 at which a sublimation raw material sublimes and subsequently reducing the pressure of inert atmosphere inside the crucible to a pressure P1 lower than the atmospheric pressure and maintaining the pressure P1 until a convex surface of the silicon carbide single crystal is formed on a seed crystal; a step S2 of increasing the pressure of inert atmosphere until it exceeds the pressure P1: and a step S3 of heating the crucible to a temperature T2 that is higher than the temperature T1 after the step S2 and subsequently reducing the pressure of inert atmosphere inside the crucible until sublimation of the sublimation raw material begins. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、単一の結晶多形で形成された炭化ケイ素単結晶を製造する炭化ケイ素単結晶の製造方法に関する。   The present invention relates to a method for producing a silicon carbide single crystal for producing a silicon carbide single crystal formed of a single crystal polymorph.

炭化ケイ素単結晶は、4H型、6H型、15R型などの結晶多形を有している。また、炭化ケイ素単結晶は、化学的に安定で、結晶多形によって特有の半導体特性を有する。そのため、炭化ケイ素単結晶は、用途に応じて、最適な結晶多形により形成される。   The silicon carbide single crystal has crystal polymorphs such as 4H type, 6H type, and 15R type. Silicon carbide single crystals are chemically stable and have unique semiconductor properties depending on the crystal polymorphism. Therefore, the silicon carbide single crystal is formed with an optimal crystal polymorph depending on the application.

例えば、4H型の炭化ケイ素単結晶を昇華再結晶法により製造する方法が開示されている(特許文献1参照)。具体的に、特許文献1の製造方法では、15R型の炭化ケイ素が種結晶として用いられる。所定の温度条件及び雰囲気圧力下で昇華された炭化ケイ素原料が15R型の種結晶上に再結晶され、4H型の炭化ケイ素単結晶が成長する。
特開平7−330493号公報(段落[0011]〜[0013])
For example, a method of manufacturing a 4H type silicon carbide single crystal by a sublimation recrystallization method is disclosed (see Patent Document 1). Specifically, in the manufacturing method of Patent Document 1, 15R type silicon carbide is used as a seed crystal. The silicon carbide raw material sublimated under a predetermined temperature condition and atmospheric pressure is recrystallized on a 15R type seed crystal to grow a 4H type silicon carbide single crystal.
JP 7-330493 A (paragraphs [0011] to [0013])

ところで、炭化ケイ素は、上述のように多くの結晶多形を有するため、結晶多形間の作り分けが困難である。特に、昇華再結晶法により、炭化ケイ素単結晶を製造する場合には、結晶の成長過程において結晶多形間の転移が生じやすい。   By the way, since silicon carbide has many crystal polymorphs as described above, it is difficult to make different crystal polymorphs. In particular, when a silicon carbide single crystal is produced by a sublimation recrystallization method, transition between crystal polymorphs tends to occur during the crystal growth process.

例えば、15R型の結晶成長条件は、6H型に近い。そのため、特許文献1の製造方法のように、種結晶の結晶多形を適宜選択しても、6H型の炭化ケイ素単結晶を製造する工程の成長初期段階において、15R型の炭化ケイ素単結晶が成長し易いという問題点があった。   For example, the 15R type crystal growth condition is close to the 6H type. Therefore, even if the crystal polymorph of the seed crystal is appropriately selected as in the manufacturing method of Patent Document 1, the 15R-type silicon carbide single crystal is formed in the initial stage of growth of the process of manufacturing the 6H-type silicon carbide single crystal. There was a problem that it was easy to grow.

炭化ケイ素単結晶に異なる結晶多形が存在する欠陥は、半導体デバイスとしての性能を低下させるため好ましくない。   Defects in which different crystal polymorphs exist in a silicon carbide single crystal are not preferable because they deteriorate the performance as a semiconductor device.

そこで、本発明は、6H型の結晶多形単一で形成される炭化ケイ素単結晶を製造する6H型炭化ケイ素単結晶の製造方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a 6H-type silicon carbide single crystal manufacturing method for manufacturing a silicon carbide single crystal formed of a single 6H-type crystal polymorph.

上述した課題を解決するため、本発明は、次のような特徴を有している。まず、本発明の第1の特徴は、炭化ケイ素を含む種結晶と、前記炭化ケイ素を含む昇華用原料とが坩堝に収容された状態で、不活性雰囲気下において前記昇華用原料が昇華され、前記昇華用原料が前記種結晶上に再結晶されることによって6H型の炭化ケイ素単結晶が製造される6H型炭化ケイ素単結晶の製造方法であって、前記昇華用原料が昇華する第1温度まで前記坩堝が加熱された後、前記坩堝内の前記不活性雰囲気の圧力が大気圧よりも低い第1圧力まで減圧され、前記種結晶上に炭化ケイ素単結晶の凸面が形成される第1工程と、前記不活性雰囲気の圧力が前記第1圧力よりも上昇させられる第2工程と、前記第2工程の後、前記第1温度よりも高い第2温度まで前記坩堝が加熱された後、前記昇華用原料の昇華が始まるまで前記坩堝内の前記不活性雰囲気の圧力が減圧される第3工程とを有することを要旨とする。   In order to solve the above-described problems, the present invention has the following features. First, the first feature of the present invention is that the sublimation raw material is sublimated under an inert atmosphere in a state where a seed crystal containing silicon carbide and a sublimation raw material containing silicon carbide are contained in a crucible. A method for producing a 6H type silicon carbide single crystal in which a 6H type silicon carbide single crystal is produced by recrystallizing the sublimation raw material on the seed crystal, wherein the first temperature at which the sublimation raw material is sublimated. After the crucible is heated to the first step, the pressure of the inert atmosphere in the crucible is reduced to a first pressure lower than atmospheric pressure, so that a convex surface of the silicon carbide single crystal is formed on the seed crystal. A second step in which the pressure of the inert atmosphere is increased above the first pressure, and after the second step, the crucible is heated to a second temperature higher than the first temperature, Until the sublimation of the sublimation raw material begins And summarized in that the pressure of the inert atmosphere 堝内 has a third step is reduced.

本発明の第1の特徴によれば、昇華用原料が昇華する第1温度及び第1圧力において、種結晶上に炭化ケイ素単結晶の凸面が形成された後、不活性雰囲気の圧力が第1圧力よりも上昇させられて、結晶の成長が一旦停止する。その後、第1温度よりも高い第2温度の下で、結晶の成長が再度開始される。   According to the first feature of the present invention, after the convex surface of the silicon carbide single crystal is formed on the seed crystal at the first temperature and the first pressure at which the sublimation material is sublimated, the pressure in the inert atmosphere is the first pressure. When the pressure is increased, the crystal growth is temporarily stopped. Thereafter, crystal growth is started again under a second temperature higher than the first temperature.

すなわち、第1工程において、第1温度及びの第1圧力の下で、種結晶の平面上に炭化ケイ素単結晶の凸面が形成されるまで、緩やかに炭化ケイ素単結晶を成長させられる。続いて、第2工程において、炭化ケイ素単結晶の成長を一旦停止させる。その後、第3工程の温度条件下において、炭化ケイ素単結晶を成長させるので、特に、種結晶の平面上に炭化ケイ素単結晶の凸面が形成されるまでの初期段階において、6H型の炭化ケイ素単結晶中に15R型の炭化ケイ素単結晶が生じる多形欠陥の発生が抑制される。   That is, in the first step, the silicon carbide single crystal is grown slowly under the first temperature and the first pressure until the convex surface of the silicon carbide single crystal is formed on the plane of the seed crystal. Subsequently, in the second step, the growth of the silicon carbide single crystal is temporarily stopped. Thereafter, since the silicon carbide single crystal is grown under the temperature condition of the third step, particularly in the initial stage until the convex surface of the silicon carbide single crystal is formed on the plane of the seed crystal, the 6H type silicon carbide single crystal is grown. Occurrence of polymorphic defects in which a 15R-type silicon carbide single crystal is generated in the crystal is suppressed.

従って、6H型の結晶多形単一の炭化ケイ素単結晶を製造することができる。   Therefore, it is possible to produce a silicon carbide single crystal of 6H type polymorphic single.

本発明の第2の特徴は、本発明の第1の特徴に係り、前記第1工程では、前記炭化ケイ素単結晶のステップフロー成長が可能になるまで前記第1圧力が維持されることを要旨とする。   The second feature of the present invention is related to the first feature of the present invention, wherein the first pressure is maintained in the first step until step flow growth of the silicon carbide single crystal becomes possible. And

本発明の第3の特徴は、本発明の第1の特徴に係り、前記第2工程では、前記炭化ケイ素単結晶の成長が停止するまで、前記不活性雰囲気の圧力が前記第1圧力よりも上昇させられることを要旨とする。   A third feature of the present invention relates to the first feature of the present invention. In the second step, the pressure of the inert atmosphere is higher than the first pressure until the growth of the silicon carbide single crystal stops. The gist is that it is raised.

本発明の第4の特徴は、本発明の第3の特徴に係り、前記第2工程では、前記不活性雰囲気の圧力が大気圧まで上昇させられることを要旨とする。   The fourth feature of the present invention relates to the third feature of the present invention, and is summarized in that the pressure of the inert atmosphere is increased to atmospheric pressure in the second step.

本発明の第5の特徴は、本発明の第1の特徴に係り、前記第1温度は、2000℃以上2100℃以下であることを要旨とする。   A fifth feature of the present invention relates to the first feature of the present invention, and is summarized in that the first temperature is 2000 ° C. or higher and 2100 ° C. or lower.

本発明の第6の特徴は、本発明の第1の特徴に係り、前記第2温度は、2200℃以上2400℃以下であることを要旨とする。   A sixth feature of the present invention relates to the first feature of the present invention, and is summarized in that the second temperature is 2200 ° C. or higher and 2400 ° C. or lower.

本発明によれば、6H型の結晶多形単一で形成される炭化ケイ素単結晶を製造する6H型炭化ケイ素単結晶の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the 6H-type silicon carbide single crystal which manufactures the silicon carbide single crystal formed by single 6H-type crystal polymorphism can be provided.

次に、本発明に係る6H型炭化ケイ素単結晶の製造方法の実施形態について、図面を参照して説明する。具体的には、(1)製造装置の構成、(2)6H型炭化ケイ素単結晶の製造方法、(3)実施例、(4)作用・効果、(5)その他の実施形態について説明する。   Next, an embodiment of a method for producing a 6H type silicon carbide single crystal according to the present invention will be described with reference to the drawings. Specifically, (1) Configuration of manufacturing apparatus, (2) Manufacturing method of 6H type silicon carbide single crystal, (3) Examples, (4) Actions and effects, (5) Other embodiments will be described.

(1)製造装置の構成
図1を用いて、本発明の実施形態として示す炭化ケイ素単結晶の製造装置1を説明する。図1に示すように、炭化ケイ素単結晶の製造装置1は、黒鉛製坩堝10と、黒鉛製坩堝10の少なくとも側面を覆う石英管20と、石英管20の外周に配置された誘電加熱コイル30とを有する。
(1) Structure of manufacturing apparatus The manufacturing apparatus 1 of the silicon carbide single crystal shown as embodiment of this invention is demonstrated using FIG. As shown in FIG. 1, the silicon carbide single crystal manufacturing apparatus 1 includes a graphite crucible 10, a quartz tube 20 covering at least a side surface of the graphite crucible 10, and a dielectric heating coil 30 disposed on the outer periphery of the quartz tube 20. And have.

黒鉛製坩堝10は、支持棒40により、石英管20の内部に固定される。黒鉛製坩堝10は、断熱材(不図示)で覆われている。黒鉛製坩堝10は、反応容器本体50と、蓋部60とを有する。反応容器本体50は、炭化ケイ素を含む種結晶70と、種結晶70の成長に用いられる昇華用原料80とを収容する。   The graphite crucible 10 is fixed inside the quartz tube 20 by a support rod 40. The graphite crucible 10 is covered with a heat insulating material (not shown). The graphite crucible 10 has a reaction vessel main body 50 and a lid 60. The reaction vessel main body 50 accommodates a seed crystal 70 containing silicon carbide and a sublimation raw material 80 used for growing the seed crystal 70.

反応容器本体50は、少なくとも内部が円筒状である。反応容器本体50の内側には、種結晶70が配設される。具体的に、種結晶70は、蓋部60の内側表面61に接着される。蓋部60は、反応容器本体50に螺合により着脱自在に設けられる。   The reaction vessel main body 50 is cylindrical at least inside. A seed crystal 70 is disposed inside the reaction vessel main body 50. Specifically, the seed crystal 70 is bonded to the inner surface 61 of the lid 60. The lid 60 is detachably provided on the reaction vessel main body 50 by screwing.

反応容器本体50の内部は、例えば、アルゴン等の不活性ガスが充填されて、不活性雰囲気になっている。反応容器本体50の内部の圧力及び温度は、変更可能である。   The inside of the reaction vessel main body 50 is filled with an inert gas such as argon to form an inert atmosphere. The pressure and temperature inside the reaction vessel main body 50 can be changed.

種結晶70は、4H型,6H型,15R型などの炭化ケイ素単結晶である。また、昇華用原料80は、炭化ケイ素を含む炭化ケイ素原料である。黒鉛製坩堝10の内部が所定の温度条件及び圧力条件になると、昇華用原料80は、昇華し、種結晶70上に再結晶し、炭化ケイ素単結晶100を形成する。   The seed crystal 70 is a silicon carbide single crystal such as 4H type, 6H type, or 15R type. The sublimation raw material 80 is a silicon carbide raw material containing silicon carbide. When the inside of the graphite crucible 10 reaches predetermined temperature conditions and pressure conditions, the sublimation raw material 80 sublimates and recrystallizes on the seed crystal 70 to form the silicon carbide single crystal 100.

炭化ケイ素単結晶100は、成長が進むにつれて、凸面100aを形成し、やがて、反応容器本体50の内部に従って成長し、円筒状の炭化ケイ素単結晶が形成される。   As the growth progresses, silicon carbide single crystal 100 forms convex surface 100a, and eventually grows along the inside of reaction vessel body 50 to form a cylindrical silicon carbide single crystal.

(2)6H型炭化ケイ素単結晶の製造方法
図2は、6H型炭化ケイ素単結晶の製造方法を示す説明図である。図2に示すように、6H型炭化ケイ素単結晶の製造方法は、工程S1と、工程S2と、工程S3とを有する。
(2) Method for Producing 6H Type Silicon Carbide Single Crystal FIG. 2 is an explanatory view showing a method for producing a 6H type silicon carbide single crystal. As shown in FIG. 2, the 6H-type silicon carbide single crystal manufacturing method includes a step S1, a step S2, and a step S3.

図3は、6H型炭化ケイ素単結晶の製造方法における温度条件と圧力条件の変化を説明する模式図である。各工程における温度条件と圧力条件とは、図3に基づく。図3において、Trは、室温を示し、P0は、大気圧を示す。   FIG. 3 is a schematic diagram for explaining changes in temperature conditions and pressure conditions in the method for producing a 6H-type silicon carbide single crystal. The temperature condition and pressure condition in each step are based on FIG. In FIG. 3, Tr represents room temperature and P0 represents atmospheric pressure.

工程S1では、室温T0から昇華用原料80が昇華する温度T1まで黒鉛製坩堝10が加熱される。その後、黒鉛製坩堝10内の不活性雰囲気の圧力が大気圧P0よりも低い圧力P1まで減圧される。ここで、温度T1は、2000℃以上2100℃以下であることが好ましい。   In step S1, graphite crucible 10 is heated from room temperature T0 to temperature T1 at which sublimation raw material 80 sublimes. Thereafter, the pressure of the inert atmosphere in the graphite crucible 10 is reduced to a pressure P1 lower than the atmospheric pressure P0. Here, the temperature T1 is preferably 2000 ° C. or higher and 2100 ° C. or lower.

圧力P1は、種結晶70上に炭化ケイ素単結晶の凸面100aが形成されるまで維持される。具体的には、工程S1では、種結晶70上において、炭化ケイ素単結晶のステップフロー成長が可能になるまで圧力P1が維持される。   The pressure P1 is maintained until the convex surface 100a of the silicon carbide single crystal is formed on the seed crystal 70. Specifically, in step S1, the pressure P1 is maintained on the seed crystal 70 until the silicon carbide single crystal can be step-flow grown.

工程S2では、黒鉛製坩堝10内の不活性雰囲気の圧力が圧力P1よりも上昇させられる。具体的に、工程S2では、炭化ケイ素単結晶の成長が停止するまで、不活性雰囲気の圧力が圧力P1よりも上昇させられる。工程S2では、黒鉛製坩堝10内の不活性雰囲気の圧力を大気圧まで上昇させてもよい。   In step S2, the pressure of the inert atmosphere in the graphite crucible 10 is raised above the pressure P1. Specifically, in step S2, the pressure of the inert atmosphere is raised above the pressure P1 until the growth of the silicon carbide single crystal is stopped. In step S2, the pressure of the inert atmosphere in the graphite crucible 10 may be increased to atmospheric pressure.

工程S3では、温度T1よりも高い温度T2まで黒鉛製坩堝10が加熱される。その後、再び昇華用原料80の昇華が始まるまで、黒鉛製坩堝10内の不活性雰囲気の圧力が減圧される。工程S3では、圧力P2まで減圧される。本実施形態において、温度T2は、第2温度を構成する。ここで、温度T2は、2200℃以上2400℃以下であることが好ましい。   In step S3, the graphite crucible 10 is heated to a temperature T2 higher than the temperature T1. Thereafter, the pressure of the inert atmosphere in the graphite crucible 10 is reduced until sublimation of the sublimation raw material 80 starts again. In step S3, the pressure is reduced to pressure P2. In the present embodiment, the temperature T2 constitutes the second temperature. Here, the temperature T2 is preferably 2200 ° C. or higher and 2400 ° C. or lower.

工程S3では、圧力P2まで減圧されることにより、炭化ケイ素単結晶100の成長が再開される。   In step S3, the growth of silicon carbide single crystal 100 is resumed by reducing the pressure to pressure P2.

以上説明したように、本実施形態の炭化ケイ素単結晶の製造方法によれば、昇華用原料80が昇華する温度T1及び圧力P1において、種結晶70上に炭化ケイ素単結晶100の凸面100aが形成された後、黒鉛製坩堝10内の不活性雰囲気の圧力が圧力P1よりも上昇させられるため、炭化ケイ素単結晶100の成長が一旦停止する。その後、温度T1よりも高い温度T2の下で昇華用原料80の昇華が始まり、炭化ケイ素単結晶100の成長が再開される。   As described above, according to the method for manufacturing a silicon carbide single crystal of the present embodiment, the convex surface 100a of the silicon carbide single crystal 100 is formed on the seed crystal 70 at the temperature T1 and the pressure P1 at which the sublimation raw material 80 is sublimated. Then, since the pressure of the inert atmosphere in the graphite crucible 10 is raised above the pressure P1, the growth of the silicon carbide single crystal 100 is temporarily stopped. Thereafter, sublimation of the sublimation raw material 80 starts at a temperature T2 higher than the temperature T1, and the growth of the silicon carbide single crystal 100 is resumed.

(3)実施例
上述した炭化ケイ素単結晶の製造方法に基づいて炭化ケイ素単結晶を製造した。製造に係る条件を変えて、炭化ケイ素単結晶を製造し、成長レートと結晶性とを比較した。製造に係る条件を以下に示す。
(3) Example A silicon carbide single crystal was manufactured based on the above-described method for manufacturing a silicon carbide single crystal. Silicon carbide single crystals were produced under different production conditions, and the growth rate and crystallinity were compared. Conditions relating to the production are shown below.

<実施例1>
工程S1:温度T1=2050℃、及び圧力P1=5kPaで20時間保持した。
工程S2:黒鉛製坩堝10内の不活性雰囲気の圧力=大気圧
工程S3:温度T2=2300℃、及び圧力P2=10kPaで50時間保持した。
<Example 1>
Step S1: The temperature was maintained at T1 = 2050 ° C. and the pressure P1 = 5 kPa for 20 hours.
Step S2: Pressure of inert atmosphere in graphite crucible 10 = atmospheric pressure Step S3: Temperature T2 = 2300 ° C. and pressure P2 = 10 kPa were maintained for 50 hours.

<比較例1>
黒鉛製坩堝10内の温度を2300℃とし、不活性雰囲気の圧力=10kPaで70時間保持した。
<Comparative Example 1>
The temperature in the graphite crucible 10 was 2300 ° C., and the pressure was kept at 70 ° C. under an inert atmosphere pressure = 10 kPa.

<比較例2>
黒鉛製坩堝10内の温度を2050℃とし、不活性雰囲気の圧力=5kPaで70時間保持した。
<Comparative example 2>
The temperature in the graphite crucible 10 was 2050 ° C., and the pressure was kept at 70 ° C. under an inert atmosphere pressure = 5 kPa.

上記条件において生成された炭化ケイ素単結晶に対して成長レートと結晶性を測定した。結果を表1に示す。なお、結晶性の評価には、X線回折による半価幅を用いた。半価幅は、値が小さいほど結晶性が良好であることを示す。

Figure 2010064920
The growth rate and crystallinity of the silicon carbide single crystal produced under the above conditions were measured. The results are shown in Table 1. In addition, the half value width by X-ray diffraction was used for evaluation of crystallinity. A half value width shows that crystallinity is so favorable that a value is small.
Figure 2010064920

表1に示されるように、実施例1の6H型炭化ケイ素単結晶の製造方法によれば、比較例と比べて、結晶性が良好であるとともに、成長レートも工業的な製造に適した値とすることができることがわかった。   As shown in Table 1, according to the method for producing the 6H-type silicon carbide single crystal of Example 1, the crystallinity is good and the growth rate is a value suitable for industrial production as compared with the comparative example. And found that it can be.

(4)作用・効果
本実施形態の6H型炭化ケイ素単結晶の製造方法によれば、昇華用原料80が昇華する温度T1及び圧力P1において、種結晶70上に炭化ケイ素単結晶の凸面100aが形成された後、黒鉛製坩堝10内の不活性雰囲気の圧力が圧力P1よりも上昇させられて、炭化ケイ素単結晶の成長が一旦停止する。その後、温度T1よりも高い温度T2の下で、炭化ケイ素単結晶の成長が再開する。
(4) Action / Effect According to the method for manufacturing a 6H-type silicon carbide single crystal of the present embodiment, the convex surface 100a of the silicon carbide single crystal is formed on the seed crystal 70 at the temperature T1 and the pressure P1 at which the sublimation raw material 80 is sublimated. After the formation, the pressure of the inert atmosphere in the graphite crucible 10 is raised above the pressure P1, and the growth of the silicon carbide single crystal is temporarily stopped. Thereafter, the growth of the silicon carbide single crystal resumes under a temperature T2 higher than the temperature T1.

すなわち、本実施形態の6H型炭化ケイ素単結晶の製造方法によれば、工程S1において、温度T1及び圧力P1の下で、種結晶70上に炭化ケイ素単結晶の凸面100aが形成されるまで、緩やかに炭化ケイ素単結晶が成長させられる。続いて、工程S2において、炭化ケイ素単結晶の成長を一旦停止させる。その後、工程S3の温度条件下において、炭化ケイ素単結晶を成長させるので、特に、種結晶70の平面上に炭化ケイ素単結晶の凸面100aが形成されるまでの間に、6H型の炭化ケイ素単結晶中に15R型の炭化ケイ素単結晶が生じる多形欠陥の発生が抑制される。   That is, according to the method for manufacturing the 6H-type silicon carbide single crystal of the present embodiment, until the convex surface 100a of the silicon carbide single crystal is formed on the seed crystal 70 under the temperature T1 and the pressure P1 in step S1. A silicon carbide single crystal is slowly grown. Subsequently, in step S2, the growth of the silicon carbide single crystal is temporarily stopped. Thereafter, since the silicon carbide single crystal is grown under the temperature condition of step S3, the 6H-type silicon carbide single crystal is grown especially until the convex surface 100a of the silicon carbide single crystal is formed on the plane of the seed crystal 70. Occurrence of polymorphic defects in which a 15R-type silicon carbide single crystal is generated in the crystal is suppressed.

従って、6H型の結晶多形単一の炭化ケイ素単結晶を製造することができる。   Therefore, it is possible to produce a silicon carbide single crystal of 6H type polymorphic single.

また、本実施形態の6H型炭化ケイ素単結晶の製造方法では、炭化ケイ素単結晶の結晶品質の乱れやすい成長初期において、結晶品質が向上しやすい温度条件、すなわち、2000℃以上2100℃以下で炭化ケイ素単結晶を成長させ、結晶品質の安定し易いステップフロー成長が可能な凸面100aが形成されたとき、2200℃以上2400℃以下で炭化ケイ素単結晶を成長させることにより、結晶品質の劣化防止と、成長レートの向上とを両立することができる。   Further, in the method for producing a 6H-type silicon carbide single crystal of the present embodiment, carbonization is performed at a temperature condition at which the crystal quality is easily improved, that is, 2000 ° C. or higher and 2100 ° C. or lower in the initial stage of growth of the crystal quality of the silicon carbide single crystal. When the silicon single crystal is grown and the convex surface 100a capable of step flow growth with which the crystal quality is easy to be stabilized is formed, the silicon carbide single crystal is grown at 2200 ° C. or higher and 2400 ° C. or lower, thereby preventing deterioration of the crystal quality. It is possible to achieve both improvement of the growth rate.

(5)その他の実施形態
本発明の一実施形態により本発明の内容を開示した。しかし、本発明は、上述した論述及び図面に限定されない。上述した論述及び図面を基に当業者にとって明らかになる様々な実施形態は、全て本発明に含まれる。
(5) Other Embodiments The content of the present invention has been disclosed according to an embodiment of the present invention. However, the present invention is not limited to the above discussion and drawings. Various embodiments that will be apparent to those skilled in the art based on the above discussion and drawings are all included in the present invention.

本実施形態の工程S1では、昇華用原料が昇華する温度T1まで坩堝が加熱された後、坩堝内の不活性雰囲気の圧力が大気圧よりも低い圧力P1まで減圧されるとした。しかし、坩堝内の不活性雰囲気の圧力が大気圧よりも低い圧力P1まで減圧された後、昇華用原料が昇華する温度T1まで坩堝が加熱されてもよい。加熱と減圧とが同時に行われてもよい。   In the step S1 of the present embodiment, the crucible is heated to a temperature T1 at which the sublimation raw material sublimates, and then the pressure of the inert atmosphere in the crucible is reduced to a pressure P1 lower than atmospheric pressure. However, after the pressure of the inert atmosphere in the crucible is reduced to a pressure P1 lower than atmospheric pressure, the crucible may be heated to a temperature T1 at which the sublimation raw material is sublimated. Heating and decompression may be performed simultaneously.

本実施形態では、工程S2の終了時における黒鉛製坩堝10内の不活性雰囲気の圧力は、大気圧P0よりも小さい値であるとして説明したが、大気圧P0であってもよい。また、圧力P2は、圧力P1より大きい値であると説明したが、工程S2の終了時において圧力P2は、圧力P1より小さい値であっても良い。   In the present embodiment, the pressure of the inert atmosphere in the graphite crucible 10 at the end of the step S2 has been described as being a value smaller than the atmospheric pressure P0, but may be the atmospheric pressure P0. Further, the pressure P2 has been described as a value larger than the pressure P1, but the pressure P2 may be smaller than the pressure P1 at the end of the step S2.

なお、本発明の技術的範囲は、上述の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められる。   The technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.

本発明の実施形態に係る炭化ケイ素単結晶の製造装置を説明する構成図である。It is a block diagram explaining the manufacturing apparatus of the silicon carbide single crystal which concerns on embodiment of this invention. 本発明の実施形態に係る6H型炭化ケイ素単結晶の製造方法を説明するフローチャートである。It is a flowchart explaining the manufacturing method of the 6H type silicon carbide single crystal which concerns on embodiment of this invention. 本願発明の実施形態に係る6H型炭化ケイ素単結晶の製造方法における温度条件と圧力条件の変化を説明する模式図である。It is a mimetic diagram explaining change of temperature conditions and pressure conditions in a manufacturing method of 6H type silicon carbide single crystal concerning an embodiment of the invention in this application.

符号の説明Explanation of symbols

1…炭化ケイ素単結晶の製造装置、10…黒鉛製坩堝、20…石英管、30…誘電加熱コイル、40…支持棒、50…反応容器本体、60…蓋部、61…内側表面、70…種結晶、80…昇華用原料、100…炭化ケイ素単結晶、100a…凸面、Tr…室温、P0…大気圧   DESCRIPTION OF SYMBOLS 1 ... Manufacturing apparatus of a silicon carbide single crystal, 10 ... Graphite crucible, 20 ... Quartz tube, 30 ... Dielectric heating coil, 40 ... Support rod, 50 ... Reaction vessel main body, 60 ... Cover part, 61 ... Inner surface, 70 ... Seed crystal, 80 ... raw material for sublimation, 100 ... silicon carbide single crystal, 100a ... convex surface, Tr ... room temperature, P0 ... atmospheric pressure

Claims (6)

炭化ケイ素を含む種結晶と、前記炭化ケイ素を含む昇華用原料とが坩堝に収容された状態で、不活性雰囲気下において前記昇華用原料が昇華され、前記昇華用原料が前記種結晶上に再結晶されることによって6H型の炭化ケイ素単結晶が製造される6H型炭化ケイ素単結晶の製造方法であって、
前記昇華用原料が昇華する第1温度まで前記坩堝が加熱された後、前記坩堝内の前記不活性雰囲気の圧力が大気圧よりも低い第1圧力まで減圧され、前記種結晶上に炭化ケイ素単結晶の凸面が形成される第1工程と、
前記不活性雰囲気の圧力が前記第1圧力よりも上昇させられる第2工程と、
前記第2工程の後、前記第1温度よりも高い第2温度まで前記坩堝が加熱された後、前記昇華用原料の昇華が始まるまで前記坩堝内の前記不活性雰囲気の圧力が減圧される第3工程と
を有する6H型炭化ケイ素単結晶の製造方法。
With the seed crystal containing silicon carbide and the sublimation raw material containing silicon carbide contained in a crucible, the sublimation raw material is sublimated in an inert atmosphere, and the sublimation raw material is re-applied on the seed crystal. A method for producing a 6H-type silicon carbide single crystal in which a 6H-type silicon carbide single crystal is produced by being crystallized.
After the crucible is heated to a first temperature at which the sublimation raw material is sublimated, the pressure of the inert atmosphere in the crucible is reduced to a first pressure lower than atmospheric pressure, and a silicon carbide single crystal is formed on the seed crystal. A first step in which a convex surface of the crystal is formed;
A second step in which the pressure of the inert atmosphere is increased above the first pressure;
After the second step, after the crucible is heated to a second temperature higher than the first temperature, the pressure of the inert atmosphere in the crucible is reduced until the sublimation raw material starts sublimation. A method for producing a 6H-type silicon carbide single crystal comprising three steps.
前記第1工程では、前記炭化ケイ素単結晶のステップフロー成長が可能になるまで前記第1圧力が維持される請求項1に記載の6H型炭化ケイ素単結晶の製造方法。   2. The method for producing a 6H-type silicon carbide single crystal according to claim 1, wherein in the first step, the first pressure is maintained until step flow growth of the silicon carbide single crystal becomes possible. 3. 前記第2工程では、前記炭化ケイ素単結晶の成長が停止するまで、前記不活性雰囲気の圧力が前記第1圧力よりも上昇させられる請求項1に記載の6H型炭化ケイ素単結晶の製造方法。   2. The method for producing a 6H-type silicon carbide single crystal according to claim 1, wherein in the second step, the pressure of the inert atmosphere is increased above the first pressure until the growth of the silicon carbide single crystal is stopped. 前記第2工程では、前記不活性雰囲気の圧力が大気圧まで上昇させられる請求項3に記載の6H型炭化ケイ素単結晶の製造方法。   The method for producing a 6H-type silicon carbide single crystal according to claim 3, wherein in the second step, the pressure of the inert atmosphere is increased to atmospheric pressure. 前記第1温度は、2000℃以上2100℃以下である請求項1に記載の6H型炭化ケイ素単結晶の製造方法。   2. The method for producing a 6H-type silicon carbide single crystal according to claim 1, wherein the first temperature is 2000 ° C. or higher and 2100 ° C. or lower. 前記第2温度は、2200℃以上2400℃以下である請求項1に記載の6H型炭化ケイ素単結晶の製造方法。   The method for producing a 6H-type silicon carbide single crystal according to claim 1, wherein the second temperature is 2200 ° C or higher and 2400 ° C or lower.
JP2008232629A 2008-09-10 2008-09-10 Method for producing 6h silicon carbide single crystal Pending JP2010064920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008232629A JP2010064920A (en) 2008-09-10 2008-09-10 Method for producing 6h silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008232629A JP2010064920A (en) 2008-09-10 2008-09-10 Method for producing 6h silicon carbide single crystal

Publications (1)

Publication Number Publication Date
JP2010064920A true JP2010064920A (en) 2010-03-25

Family

ID=42190833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008232629A Pending JP2010064920A (en) 2008-09-10 2008-09-10 Method for producing 6h silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JP2010064920A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031856A1 (en) * 2011-08-29 2013-03-07 新日鐵住金株式会社 Silicon carbide single crystal wafer and manufacturing method for same
CN110592672A (en) * 2018-12-14 2019-12-20 北京天科合达半导体股份有限公司 Low basal plane dislocation density silicon carbide crystal growth method
KR20200066490A (en) * 2018-11-30 2020-06-10 재단법인 포항산업과학연구원 Method of high quality silicon carbide crystal growth

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031856A1 (en) * 2011-08-29 2013-03-07 新日鐵住金株式会社 Silicon carbide single crystal wafer and manufacturing method for same
CN103620095A (en) * 2011-08-29 2014-03-05 新日铁住金株式会社 Silicon carbide single crystal wafer and manufacturing method for same
JP5506954B2 (en) * 2011-08-29 2014-05-28 新日鐵住金株式会社 Silicon carbide single crystal substrate
KR101530057B1 (en) * 2011-08-29 2015-06-18 신닛테츠스미킨 카부시키카이샤 Silicon carbide single crystal wafer and manufacturing method for same
US9234297B2 (en) 2011-08-29 2016-01-12 Nippon Steel & Sumitomo Metal Corporation Silicon carbide single crystal wafer and manufacturing method for same
CN103620095B (en) * 2011-08-29 2017-02-15 新日铁住金株式会社 Silicon carbide single crystal wafer and manufacturing method for same
KR20200066490A (en) * 2018-11-30 2020-06-10 재단법인 포항산업과학연구원 Method of high quality silicon carbide crystal growth
KR102647522B1 (en) 2018-11-30 2024-03-14 재단법인 포항산업과학연구원 Method of high quality silicon carbide crystal growth
CN110592672A (en) * 2018-12-14 2019-12-20 北京天科合达半导体股份有限公司 Low basal plane dislocation density silicon carbide crystal growth method

Similar Documents

Publication Publication Date Title
JP4225296B2 (en) Method for producing silicon carbide single crystal
JP4547031B2 (en) Crucible for producing silicon carbide single crystal, and apparatus and method for producing silicon carbide single crystal
US9945047B2 (en) Method for growing silicon carbide crystal
JP5682643B2 (en) Method for producing silicon carbide single crystal
WO2010044484A1 (en) Silicon carbide single crystal and silicon carbide single crystal wafer
JP4388538B2 (en) Silicon carbide single crystal manufacturing equipment
JP4585359B2 (en) Method for producing silicon carbide single crystal
JP5244007B2 (en) Method for producing 3C-SiC single crystal
JP2006321681A (en) Method for producing silicon carbide single crystal
JP2006131433A (en) Method of producing silicon carbide single crystal
JP5418385B2 (en) Method for producing silicon carbide single crystal ingot
JP6119453B2 (en) Method for producing silicon carbide single crystal
JP5069657B2 (en) Silicon carbide single crystal manufacturing apparatus and silicon carbide single crystal manufacturing method
JP2010064920A (en) Method for producing 6h silicon carbide single crystal
JP5167947B2 (en) Method for producing silicon carbide single crystal thin film
JP2010076990A (en) Manufacturing apparatus for silicon carbide single crystal and manufacturing method of silicon carbide single crystal
JP2012171812A (en) Method for producing 4h type silicon carbide single crystal
JP2018140903A (en) Method for manufacturing silicon carbide single crystal ingot
KR101537385B1 (en) method for growing SiC single crystal
JP2010275190A (en) Method for producing silicon carbide single crystal
CN107532328B (en) Method for producing SiC single crystal
JP5428706B2 (en) Method for producing SiC single crystal
JP2006096578A (en) Method for producing silicon carbide single crystal and ingot of silicon carbide single crystal
JP2009249207A (en) Method for manufacturing silicon carbide single crystal ingot
JP2006290685A (en) Method for producing silicon carbide single crystal