JP6119453B2 - Method for producing silicon carbide single crystal - Google Patents

Method for producing silicon carbide single crystal Download PDF

Info

Publication number
JP6119453B2
JP6119453B2 JP2013131501A JP2013131501A JP6119453B2 JP 6119453 B2 JP6119453 B2 JP 6119453B2 JP 2013131501 A JP2013131501 A JP 2013131501A JP 2013131501 A JP2013131501 A JP 2013131501A JP 6119453 B2 JP6119453 B2 JP 6119453B2
Authority
JP
Japan
Prior art keywords
crystal
nitrogen
growth
single crystal
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013131501A
Other languages
Japanese (ja)
Other versions
JP2015003850A (en
Inventor
佐藤 信也
信也 佐藤
藤本 辰雄
辰雄 藤本
弘志 柘植
弘志 柘植
勝野 正和
正和 勝野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2013131501A priority Critical patent/JP6119453B2/en
Publication of JP2015003850A publication Critical patent/JP2015003850A/en
Application granted granted Critical
Publication of JP6119453B2 publication Critical patent/JP6119453B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、積層欠陥が少なく、結晶品質の高い炭化珪素単結晶を製造する方法に関するものである。本発明により得られた炭化珪素単結晶から加工及び研磨工程を経て製造される炭化珪素単結晶ウェハは、主として各種の半導体電子デバイス、あるいはそれらの基板として用いられる。   The present invention relates to a method for producing a silicon carbide single crystal having few stacking faults and high crystal quality. A silicon carbide single crystal wafer manufactured from a silicon carbide single crystal obtained by the present invention through processing and polishing steps is mainly used as various semiconductor electronic devices or their substrates.

炭化珪素(SiC)は2.2〜3.3eVの広い禁制帯幅を有するワイドバンドギャップ半導体である。従来、SiCは、その優れた物理的、化学的特性から耐環境性半導体材料としての研究開発が行われてきたが、近年は青色から紫外にかけての短波長光デバイス、高周波電子デバイス、高耐圧・高出力電子デバイス向けの材料としてSiCが注目されており、活発に研究開発が行われている。しかし、これまで、SiCは良質な大口径単結晶の製造が難しいとされてきており、それがSiCデバイスの実用化を妨げてきた。   Silicon carbide (SiC) is a wide band gap semiconductor having a wide forbidden bandwidth of 2.2 to 3.3 eV. Conventionally, SiC has been researched and developed as an environmentally resistant semiconductor material because of its excellent physical and chemical properties, but in recent years, short wavelength optical devices from blue to ultraviolet, high frequency electronic devices, SiC is attracting attention as a material for high-power electronic devices, and research and development is actively underway. However, until now, SiC has been considered difficult to produce high-quality large-diameter single crystals, which has hindered the practical application of SiC devices.

従来、研究室程度の規模では、例えば、昇華再結晶法(レーリー法)で半導体素子の作製が可能なサイズのSiC単結晶を得ていた。しかしながら、この方法では得られる単結晶の面積が小さく、その寸法、形状、さらには結晶多形(ポリタイプ)や不純物キャリア濃度の制御も容易ではない。一方、化学気相成長(Chemical Vapor Deposition、CVD)を用いて珪素(Si)等の異種基板上にヘテロエピタキシャル成長させることにより、立方晶のSiC単結晶を成長させることも行われている。この方法では大面積の単結晶は得られるが、SiCとSiの格子不整合が約20%もあることなどにより、多くの欠陥(〜107/cm2)を含むSiC単結晶しか成長させることができず、高品質のSiC単結晶は得られていない。これらの問題点を解決するために、SiC単結晶ウェハを種結晶として用いて昇華再結晶を行う改良型のレーリー法が提案されている(特許文献1参照)。この改良レーリー法を用いれば、SiC単結晶のポリタイプ(6H型、4H型、15R型等)及び形状、キャリア型及び濃度を制御しながらSiC単結晶を成長させることができる。 Conventionally, on a laboratory scale scale, for example, a SiC single crystal having a size capable of producing a semiconductor element by a sublimation recrystallization method (Rayleigh method) has been obtained. However, in this method, the area of the obtained single crystal is small, and it is not easy to control the size, shape, crystal polymorph (polytype), and impurity carrier concentration. On the other hand, a cubic SiC single crystal is also grown by heteroepitaxial growth on a heterogeneous substrate such as silicon (Si) using chemical vapor deposition (CVD). With this method, large-area single crystals can be obtained, but only SiC single crystals containing many defects (up to 10 7 / cm 2 ) can be grown due to the lattice mismatch between SiC and Si of about 20%. High-quality SiC single crystals have not been obtained. In order to solve these problems, an improved Rayleigh method has been proposed in which sublimation recrystallization is performed using a SiC single crystal wafer as a seed crystal (see Patent Document 1). By using this improved Rayleigh method, it is possible to grow a SiC single crystal while controlling the polytype (6H type, 4H type, 15R type, etc.), shape, carrier type and concentration of the SiC single crystal.

現在、改良レーリー法で作製したSiC単結晶から、口径51mm(2インチ)から100mmのSiC単結晶ウェハが切り出され、電力エレクトロニクス分野のデバイス作製等に供されている。SiCには200種類以上のポリタイプがあるが、物性値及び結晶成長の安定性から、4Hポリタイプが電子デバイス用途として使用されることが多い。また、SiC単結晶中には、マイクロパイプと呼ばれる成長方向に貫通した中空ホール状欠陥、転位欠陥、積層欠陥等の結晶欠陥が存在している。これらの結晶欠陥はデバイス性能を低下させるために、これらの結晶欠陥の低減がSiCデバイス応用上の重要課題とされている。   Currently, SiC single crystal wafers with a diameter of 51 mm (2 inches) to 100 mm are cut out from SiC single crystals produced by the modified Rayleigh method and used for device production in the field of power electronics. There are over 200 polytypes of SiC, but the 4H polytype is often used for electronic devices because of its physical properties and stability of crystal growth. Further, in the SiC single crystal, there are crystal defects such as hollow hole-like defects penetrating in the growth direction called “micropipes”, dislocation defects, and stacking faults. Since these crystal defects deteriorate device performance, reduction of these crystal defects is regarded as an important issue in SiC device application.

このうち、昇華再結晶法によって作製されたSiC単結晶中の積層欠陥について、例えば、Sicheらは4Hポリタイプ中に15Rと6Hタイプの積層欠陥が発生することを報告している(非特許文献1参照)。また、Nakabayashiらは4Hポリタイプ中に6Hタイプの積層欠陥が存在することを報告している(非特許文献2参照)。他にも、3Cタイプ、8Hタイプの積層欠陥が知られており、これらは、特に窒素原子数密度が1×1020(/cm3)程度の窒素ハイドープ基板を1000〜1100℃でアニールした際に発生することが分かっている(非特許文献3参照)。逆に、積層欠陥は、窒素アンドープ結晶中には殆ど発生しないことが報告されている(非特許文献4参照)。 Among these, for stacking faults in SiC single crystals produced by the sublimation recrystallization method, for example, Siche et al. Reported that 15R and 6H type stacking faults occur in 4H polytypes (non-patent literature). 1). Nakabayashi et al. Have reported that 6H type stacking faults exist in 4H polytype (see Non-Patent Document 2). In addition, 3C type and 8H type stacking faults are known, especially when annealing nitrogen-doped substrates with a nitrogen atom number density of about 1 × 10 20 (/ cm 3 ) at 1000 to 1100 ° C. (See Non-Patent Document 3). Conversely, it has been reported that stacking faults hardly occur in nitrogen undoped crystals (see Non-Patent Document 4).

ちなみに、現在、市販されているSiC単結晶基板の抵抗率は、一般に0.012〜0.030(Ω/cm)であり、抵抗率と窒素原子数密度との関係からすると、上記のような抵抗率を有するSiC単結晶を得るにあたって必要な窒素原子数密度は5×1018〜1.1×1019(/cm3)程度である(非特許文献5参照)。 Incidentally, the resistivity of SiC single crystal substrates that are currently on the market is generally 0.012 to 0.030 (Ω / cm), and has the above-described resistivity from the relationship between the resistivity and the number density of nitrogen atoms. The number density of nitrogen atoms necessary for obtaining a SiC single crystal is about 5 × 10 18 to 1.1 × 10 19 (/ cm 3 ) (see Non-Patent Document 5).

特開平9-157091号公報Japanese Patent Laid-Open No. 9-157091

D. Siche, et al., Materials Science and Forum, vols. 483-485 (2005), pp.39-42D. Siche, et al., Materials Science and Forum, vols. 483-485 (2005), pp.39-42 M. Nakabayashi, et al., Materials Science and Forum, vols. 645-648 (2010), pp9-12M. Nakabayashi, et al., Materials Science and Forum, vols.645-648 (2010), pp9-12 Thomas A. Kuhr, et al., Journal of Applied Physics, vols. 92, (2002), pp.5863-5871Thomas A. Kuhr, et al., Journal of Applied Physics, vols. 92, (2002), pp. 5863-5871 Tomohisa. Kato, et al., Materials Science and Forum, vols. 556-557(2007), pp.239-242Tomohisa. Kato, et al., Materials Science and Forum, vols. 556-557 (2007), pp.239-242 R. C. Glass, et al., Phys. Stat. Sol. (b), 202, (1997), pp.149-162R. C. Glass, et al., Phys. Stat. Sol. (B), 202, (1997), pp.149-162

SiC単結晶中の積層欠陥は、デバイスの耐圧低下や電流リークパス等の原因となるため、高性能デバイスの作製には積層欠陥の低減化が必要である。上述した非特許文献4に記載されるように、窒素をアンドープにすることで積層欠陥は抑制されるが、窒素はSiC単結晶基板の抵抗率制御のために供給する必要があり、電子デバイス向けには抵抗率が0.030(Ω/cm)以下となるように、窒素原子数密度が5×1018(/cm3)以上の基板が求められている。 Since stacking faults in a SiC single crystal cause a decrease in the breakdown voltage of the device and a current leak path, it is necessary to reduce the stacking faults in manufacturing a high-performance device. As described in Non-Patent Document 4 described above, stacking faults are suppressed by undoped nitrogen, but it is necessary to supply nitrogen for controlling the resistivity of the SiC single crystal substrate. Therefore, a substrate having a nitrogen atom number density of 5 × 10 18 (/ cm 3 ) or more is required so that the resistivity is 0.030 (Ω / cm) or less.

本発明は、上記事情に鑑みてなされたものであり、所定の窒素原子数密度を有しながらも積層欠陥が少なくて結晶品質が高く、抵抗率が制御されたSiC単結晶を製造することができる方法を提供するものである。   The present invention has been made in view of the above circumstances, and it is possible to produce a SiC single crystal having a predetermined nitrogen atom number density but having few stacking faults, high crystal quality, and controlled resistivity. It provides a possible method.

すなわち、本発明は以下の構成より成るものである。
) 原料粉末と種結晶とが収容された坩堝に窒素ガスを供給して、設定密度D1の窒素原子数密度を有した炭化珪素単結晶を昇華再結晶法により成長させる炭化珪素単結晶の製造方法であって、
一定量の窒素ガスを外部から供給しながら坩堝内に予め存在して成長結晶中に取り込まれる窒素分を含めて炭化珪素単結晶を成長させる第2の事前成長試験を行い、外部からの窒素ガスの供給量を変えた複数の窒素供給条件に対して、それぞれ成長結晶中に取り込まれる窒素原子数密度を成長結晶の高さとの関係で求めておき、
該第2の事前成長試験において、結晶成長の途中までは窒素原子数密度が設定密度D1の範囲を満たし、以降は窒素原子数密度が設定密度D1の範囲を下回る窒素供給条件Aと、結晶成長の途中までは窒素原子数密度が設定密度D1の範囲を上回り、以降は窒素原子数密度が設定密度D1を満たす窒素供給条件Cとを選択して、
炭化珪素単結晶の窒素原子数密度が5×1018(/cm3)以上2.5×1019(/cm3)未満の設定密度D1となるように、結晶成長中に前記窒素供給条件Aから窒素供給条件Cへと窒素ガスの供給量を切り替えて結晶成長を行うことを特徴とする炭化珪素単結晶の製造方法。
前記第2の事前成長試験において、結晶成長の途中まで窒素原子数密度が設定密度D1の範囲を上回り、一旦は窒素原子数密度が設定密度D1の範囲を満たして、それ以降は窒素原子数密度が設定密度D1の範囲を下回る窒素供給条件Bを更に選択して、前記設定密度D1となるように、結晶成長中に前記窒素供給条件をA、B、Cと順次切り替えて結晶成長を行うことを特徴とする請求項()に記載の炭化珪素単結晶の製造方法。
) 前記窒素供給条件を切り替える際に、成長雰囲気中の窒素ガスが1時間あたり10vol%未満の変化量となるようにする()又は()に記載の炭化珪素単結晶の製造方法。
) 種結晶の直径を含むようにした炭化珪素単結晶の縦断面を見た場合に、成長方向における単位長さあたりに含まれる積層欠陥の数が10(/cm)以下である(1)〜()のいずれかに記載の炭化珪素単結晶の製造方法。
) 前記炭化珪素単結晶のポリタイプが4Hである(1)〜()のいずれかに記載の炭化珪素単結晶の製造方法。
) 前記積層欠陥が6H型である(1)〜()に記載の炭化珪素単結晶の製造方法。
) 前記炭化珪素単結晶の結晶口径が50mm以上300mm以下である(1)〜()のいずれかに記載の炭化珪素単結晶の製造方法。
That is, the present invention has the following configuration.
( 1 ) A silicon carbide single crystal in which nitrogen gas is supplied to a crucible containing raw material powder and seed crystal, and a silicon carbide single crystal having a nitrogen atom number density of a set density D 1 is grown by a sublimation recrystallization method A manufacturing method of
A second pre-growth test for growing a silicon carbide single crystal including nitrogen contained in the growth crystal in advance in a crucible while supplying a certain amount of nitrogen gas from the outside is performed. For each of a plurality of nitrogen supply conditions in which the supply amount is changed, the number density of nitrogen atoms taken into the grown crystal is determined in relation to the height of the grown crystal,
In the second pre-growth test, a nitrogen supply condition A in which the nitrogen atom number density satisfies the range of the set density D 1 until the middle of crystal growth, and thereafter the nitrogen atom number density falls below the set density D 1 range; Until the middle of crystal growth, the nitrogen atom number density exceeds the range of the set density D 1 , and thereafter, the nitrogen supply condition C that satisfies the set density D 1 is selected.
Nitrogen atom number density of silicon carbide single crystal 5 × 10 18 (/ cm 3 ) or more 2.5 × 10 19 (/ cm 3 ) so as to set the density D 1 of the below, the nitrogen supply conditions during the crystal growth A method for producing a silicon carbide single crystal, wherein crystal growth is performed by switching a supply amount of nitrogen gas from A to a nitrogen supply condition C.
( 2 ) In the second pre-growth test, the nitrogen atom number density exceeds the range of the set density D 1 until the middle of crystal growth, and once the nitrogen atom number density satisfies the range of the set density D 1 , and thereafter Furthermore by selecting the nitrogen supply condition B to the nitrogen atoms density is below the range of the set density D 1, so that the set density D 1, sequentially the nitrogen supply conditions during the crystal growth a, B, and C method for producing a silicon carbide single crystal according to claim (1), characterized in that the crystal growth is performed by switching.
( 3 ) The method for producing a silicon carbide single crystal according to ( 1 ) or ( 2 ), wherein the nitrogen gas in the growth atmosphere has a change amount of less than 10 vol% per hour when the nitrogen supply condition is switched. .
( 4 ) When the vertical section of the silicon carbide single crystal including the diameter of the seed crystal is viewed, the number of stacking faults included per unit length in the growth direction is 10 (/ cm) or less (1 )-( 3 ) The manufacturing method of the silicon carbide single crystal in any one of.
( 5 ) The method for producing a silicon carbide single crystal according to any one of (1) to ( 4 ), wherein the polytype of the silicon carbide single crystal is 4H.
( 6 ) The method for producing a silicon carbide single crystal according to any one of (1) to ( 5 ), wherein the stacking fault is a 6H type.
( 7 ) The method for producing a silicon carbide single crystal according to any one of (1) to ( 6 ), wherein a crystal diameter of the silicon carbide single crystal is 50 mm or greater and 300 mm or less.

本発明の方法により得られたSiC単結晶は、所定の窒素原子数密度を有しながらも積層欠陥が少なく、結晶品質に優れたものである。そして、このSiC単結晶から加工されたウェハ(SiC単結晶基板)は高品質でありながら抵抗率が制御されているため、電子デバイス向けの基板として高い性能を発揮する。   The SiC single crystal obtained by the method of the present invention has a predetermined nitrogen atom number density but has few stacking faults and is excellent in crystal quality. And since the wafer processed from this SiC single crystal (SiC single crystal substrate) is high quality and the resistivity is controlled, it exhibits high performance as a substrate for electronic devices.

本発明の結晶を製造するのに用いた単結晶製造装置の一例を示す構成図。The block diagram which shows an example of the single-crystal manufacturing apparatus used in manufacturing the crystal | crystallization of this invention. 炭化珪素単結晶に含まれる積層欠陥の様子を説明するための説明図。Explanatory drawing for demonstrating the mode of the stacking fault contained in a silicon carbide single crystal. 第1の発明に係る事前成長試験で得られた成長結晶中の窒素原子数密度(基礎密度D0)と成長結晶の高さとの関係を示すグラフ。Graph showing the relationship between the height of the growing crystal and the nitrogen atom number density of growing crystals obtained in advance growth test according to the first invention (basic density D 0). 第2の発明に係る事前成長試験で得られた成長結晶中の窒素原子数密度と成長結晶の高さとの関係を示すグラフ。The graph which shows the relationship between the nitrogen atom number density in the growth crystal obtained by the prior growth test which concerns on 2nd invention, and the height of the growth crystal. 第2の発明に係る事前成長試験で得られた成長結晶中の窒素原子数密度と成長結晶の高さとの関係を示すグラフ。The graph which shows the relationship between the nitrogen atom number density in the growth crystal obtained by the prior growth test which concerns on 2nd invention, and the height of the growth crystal.

本発明においては、下記で説明するとおり、SiC単結晶中の窒素原子数密度を5×1018(/cm3)以上2.5×1019(/cm3)未満、好ましくは5×1018(/cm3)以上1.5×1019(/cm3)以下の設定密度D1にすることによって、積層欠陥が少なく、高い結晶品質を有するSiC単結晶の製造が可能となる。 In the present invention, as described below, the number density of nitrogen atoms in the SiC single crystal is 5 × 10 18 (/ cm 3 ) or more and less than 2.5 × 10 19 (/ cm 3 ), preferably 5 × 10 18 (/ By making the set density D 1 not less than cm 3 ) and not more than 1.5 × 10 19 (/ cm 3 ), it becomes possible to produce a SiC single crystal having few stacking faults and high crystal quality.

積層欠陥を低減できるメカニズムについて以下に述べる。
積層欠陥の発生要因として、非特許文献2では、SiC結晶成長中の(0001)面テラスでの6Hポリタイプの2次元核形成が提案されている。これは、成長表面の(0001)面のテラス幅が広くなることによって、6Hポリタイプの2次元核が形成され、結晶中に取り込まれることで、6Hポリタイプ積層欠陥が発生するというものである。成長中にテラス幅が広くなる要因の一つとして、添加元素の過供給によるステップバンチングが考えられる。そこで、本発明者らは、添加元素の供給量を適切に制御することによって、ステップバンチングを抑え、積層欠陥の低減が可能と考えた。
The mechanism that can reduce stacking faults is described below.
As a cause of stacking faults, Non-Patent Document 2 proposes 6H polytype two-dimensional nucleation on a (0001) plane terrace during SiC crystal growth. This is because 6H polytype two-dimensional nuclei are formed and taken into the crystal by increasing the terrace width of the (0001) plane of the growth surface, and 6H polytype stacking faults are generated. . One of the factors that increase the terrace width during growth is considered to be step bunching due to excessive supply of additive elements. Therefore, the present inventors thought that step bunching can be suppressed and stacking faults can be reduced by appropriately controlling the supply amount of the additive element.

SiC単結晶を得る上での添加元素として、例えば、窒素(N)、ホウ素(B)、アルミニウム(Al)、バナジウム(V)が一般的である。中でも、窒素は、ガスソース(N2)を用いることができるので、供給量の制御が容易であるため、添加元素として窒素が利用されることが多い。 As additive elements for obtaining a SiC single crystal, for example, nitrogen (N), boron (B), aluminum (Al), and vanadium (V) are generally used. Among these, nitrogen can be used as an additive element because a gas source (N 2 ) can be used and the supply amount can be easily controlled.

本発明者らは、結晶中の窒素量(窒素原子数密度)と積層欠陥発生の関係を調査したところ、結晶中の窒素原子数密度が2.5×1019(/cm3)未満になるように窒素供給量を制御することによって、積層欠陥が殆ど発生しないことを発見した。詳細は解明されてはいないが、添加元素量を制限したことによって、結晶成長中のステップバンチングが抑制されたために、積層欠陥の発生が抑制されたものと考えられる。 The present inventors investigated the relationship between the amount of nitrogen in the crystal (nitrogen atom number density) and the occurrence of stacking faults, and found that the nitrogen atom number density in the crystal was less than 2.5 × 10 19 (/ cm 3 ). It was discovered that stacking faults hardly occur by controlling the nitrogen supply amount. Although the details have not been elucidated, it is considered that the generation of stacking faults was suppressed because the step bunching during crystal growth was suppressed by limiting the amount of additive elements.

ここで、SiC単結晶中の積層欠陥数について、本発明では、種結晶に対して垂直な(1-100)面における成長方向での単位長さ当たりの積層欠陥の数を定義した。すなわち、積層欠陥はSiC単結晶(SiC単結晶インゴット)中を成長方向に対してほぼ平行方向に伸展する面欠陥であるため、成長方向に対して平行な(1-100)面試料で多くの積層欠陥を観察することができる。そこで、本発明では、図2に示したように、種結晶の直径を含むようにしたインゴットの縦断面(すなわちインゴット中心部を含むようにした縦断面)である(1-100)面において、その成長方向の単位長さあたりに含まれる積層欠陥の数で評価するようにした。この(1-100)面中の積層欠陥数が10本/cmを超えると、同じ結晶から切り出される(0001)面ウェハ中の積層欠陥を含む領域が広くなるため、電子デバイスを作製する際の歩留りが低下する。従って、積層欠陥数は10本/cm以下、更には5本/cm以下であることが望ましい。   Here, regarding the number of stacking faults in the SiC single crystal, in the present invention, the number of stacking faults per unit length in the growth direction on the (1-100) plane perpendicular to the seed crystal is defined. In other words, stacking faults are surface defects that extend in a SiC single crystal (SiC single crystal ingot) in a direction substantially parallel to the growth direction, so many (1-100) plane samples parallel to the growth direction Stacking faults can be observed. Therefore, in the present invention, as shown in FIG. 2, in the (1-100) plane, which is a longitudinal section of an ingot that includes the diameter of the seed crystal (that is, a longitudinal section that includes the central portion of the ingot), The number of stacking faults included per unit length in the growth direction was evaluated. When the number of stacking faults in this (1-100) plane exceeds 10 / cm, the area containing stacking faults in the (0001) plane wafer cut out from the same crystal becomes wider. Yield decreases. Accordingly, the number of stacking faults is desirably 10 / cm or less, and more desirably 5 / cm or less.

ところで、SiC単結晶中の窒素原子数密度は、成長雰囲気中の窒素量に依存する。成長雰囲気中の窒素分としては、図1に示したようなSiC単結晶成長装置における高純度ガス配管9から供給される窒素ガス又は窒素を含む混合ガスの他に、結晶成長空間を構成する黒鉛坩堝3やSiC原料粉末(昇華原料)2から放出される窒素が挙げられる。これは、結晶成長前に大気中又は二重石英管内に存在した窒素が黒鉛坩堝3やSiC原料粉末2に付着して、結晶成長中の高温環境下において離脱することで、成長雰囲気中に放出されるものなどが考えられる。このSiC単結晶成長装置の構成要素から放出される窒素量は、結晶成長中の温度と圧力によって変化するため、SiC単結晶中にどの程度取り込まれるのか予測することは難しく、得られるSiC単結晶の窒素原子数密度を精緻に制御するのは困難である。   Incidentally, the number density of nitrogen atoms in the SiC single crystal depends on the amount of nitrogen in the growth atmosphere. As the nitrogen content in the growth atmosphere, in addition to nitrogen gas or a mixed gas containing nitrogen supplied from the high-purity gas pipe 9 in the SiC single crystal growth apparatus as shown in FIG. 1, graphite constituting the crystal growth space Examples include nitrogen released from the crucible 3 or the SiC raw material powder (sublimation raw material) 2. This is because nitrogen existing in the atmosphere or in the double quartz tube before crystal growth adheres to the graphite crucible 3 or SiC raw material powder 2 and is released into the growth atmosphere by detaching in a high temperature environment during crystal growth. What can be considered. Since the amount of nitrogen released from the components of this SiC single crystal growth device varies depending on the temperature and pressure during crystal growth, it is difficult to predict how much it will be incorporated into the SiC single crystal, and the resulting SiC single crystal It is difficult to precisely control the nitrogen atom number density.

そこで、本発明では、所定の抵抗率を備えながらSiC単結晶に含まれる積層欠陥の数を減らすために、以下で述べるような第1及び第2の発明に係る製造方法によって、得られるSiC単結晶中の窒素原子数密度を正確に制御するようにする。
先ず、第1の発明においては、外部から窒素ガスを供給せずにSiC単結晶を成長させる第1の事前成長試験を行い、坩堝内に予め存在する窒素分に由来して成長結晶中に取り込まれる基礎密度D0を成長結晶の高さとの関係で求めておき、SiC単結晶の窒素原子数密度が設定密度D1となるように、基礎密度D0との差分に相当する窒素ガスを結晶成長中に外部から供給してSiC単結晶を製造する。
Therefore, in the present invention, in order to reduce the number of stacking faults included in the SiC single crystal while having a predetermined resistivity, the SiC single crystals obtained by the manufacturing methods according to the first and second inventions as described below are used. The number density of nitrogen atoms in the crystal is controlled accurately.
First, in the first invention, a first pre-growth test is performed in which a SiC single crystal is grown without supplying nitrogen gas from the outside, and is taken into the grown crystal based on the nitrogen content previously present in the crucible. The basic density D 0 obtained is determined in relation to the height of the grown crystal, and nitrogen gas corresponding to the difference from the basic density D 0 is crystallized so that the number density of nitrogen atoms of the SiC single crystal becomes the set density D 1. SiC single crystal is manufactured by supplying from outside during growth.

すなわち、この第1の発明では、意図的に外部から供給する窒素ガス量が0(mL/min)の条件で結晶成長を行い、得られたSiC単結晶中の窒素量を2次イオン質量分析(SIMS)等によって計測することで、SiC単結晶成長装置の構成要素から放出される窒素分が結晶中に取り込まれる窒素量を事前に調査しておく。詳しくは、図3に示したように、坩堝内に予め存在する窒素分に由来して成長結晶中に取り込まれる基礎密度D0を成長結晶の高さの関数で表すようにする。その際、外部から窒素ガスを供給しない点を除いて、実製造でSiC単結晶を成長させる条件(温度、圧力)と同様にすればよい。このようにして求めた基礎密度D0の関数を基に、高純度ガス配管9から供給する窒素ガス又は窒素を含む混合ガスをマスフローコントローラ10によって調整して、成長雰囲気中の窒素量を制御することで、結晶中の窒素原子数密度を5×1018(/cm3)以上、2.5×1019(/cm3)未満とすることができ、結果的に積層欠陥の抑制が可能となる。 That is, in the first invention, crystal growth is performed under the condition that the amount of nitrogen gas supplied from the outside is 0 (mL / min) intentionally, and the amount of nitrogen in the obtained SiC single crystal is subjected to secondary ion mass spectrometry. By measuring with (SIMS) or the like, the amount of nitrogen taken into the crystal by nitrogen released from the constituent elements of the SiC single crystal growth apparatus is investigated in advance. Specifically, as shown in FIG. 3, the basic density D 0 derived from the nitrogen content preliminarily present in the crucible and taken into the growth crystal is expressed as a function of the height of the growth crystal. At this time, except that nitrogen gas is not supplied from the outside, the conditions (temperature, pressure) for growing the SiC single crystal in actual production may be used. Based on the function of the basic density D 0 thus obtained, the nitrogen gas supplied from the high-purity gas pipe 9 or a mixed gas containing nitrogen is adjusted by the mass flow controller 10 to control the amount of nitrogen in the growth atmosphere. Thus, the number density of nitrogen atoms in the crystal can be made 5 × 10 18 (/ cm 3 ) or more and less than 2.5 × 10 19 (/ cm 3 ), and as a result, stacking faults can be suppressed.

また、第2の発明においては、一定量の窒素ガスを外部から供給しながら坩堝内に予め存在して成長結晶中に取り込まれる窒素分を含めてSiC単結晶を成長させる第2の事前成長試験を行うようにする。その際、外部からの窒素ガスの供給量を変えた複数の窒素供給条件でこのような事前成長試験を実施し、それぞれ成長結晶中に取り込まれる窒素原子数密度を成長結晶の高さとの関係で求めておく。そして、図4に示したように、この第2の事前成長試験において、結晶成長の途中までは窒素原子数密度が設定密度D1の範囲を満たし、以降は窒素原子数密度が設定密度D1の範囲を下回る(設定密度D1の下限を下回る)窒素供給条件Aと、結晶成長の途中までは窒素原子数密度が設定密度D1の範囲を上回り(設定密度D1の上限を上回り)、以降は窒素原子数密度が設定密度D1の範囲を満たす窒素供給条件Cとを選択した上で、SiC単結晶の窒素原子数密度が設定密度D1となるように、結晶成長中に前記窒素供給条件Aから窒素供給条件Cへと窒素ガスの供給量を切り替えて結晶成長を行ってSiC単結晶を製造する。 Further, in the second invention, a second pre-growth test for growing a SiC single crystal including nitrogen contained in advance in a crucible while supplying a constant amount of nitrogen gas from the outside. To do. At that time, such a pre-growth test was conducted under a plurality of nitrogen supply conditions in which the amount of nitrogen gas supplied from the outside was changed, and the number density of nitrogen atoms incorporated into the grown crystal was related to the height of the grown crystal. I ask for it. Then, as shown in FIG. 4, in the second pre-growth test, the nitrogen atom number density satisfies the set density D 1 until the middle of the crystal growth, and thereafter the nitrogen atom number density becomes the set density D 1. Nitrogen supply condition A (below the lower limit of the set density D 1 ), and the number density of nitrogen atoms exceeds the range of the set density D 1 until the middle of crystal growth (above the upper limit of the set density D 1 ), Thereafter, after selecting the nitrogen supply condition C in which the nitrogen atom number density satisfies the range of the set density D 1 , the nitrogen atom density is increased during crystal growth so that the nitrogen atom number density of the SiC single crystal becomes the set density D 1. The SiC single crystal is manufactured by performing crystal growth by switching the supply amount of nitrogen gas from the supply condition A to the nitrogen supply condition C.

すなわち、この第2の発明では、外部から供給する窒素ガス量の異なる条件で結晶成長を行い、SiC単結晶成長装置の構成要素から放出される窒素分を含めた状態で結晶中の窒素量を上述のような手法で計測し、それぞれ、成長結晶中に取り込まれる窒素原子数密度を成長結晶の高さの関数で表すようにする。その際、外部からの窒素ガスの供給を除いて、実製造でSiC単結晶を成長させる条件(温度、圧力)と同様にすればよい。そして、少なくとも上記のような窒素供給条件A及びCを基にして、成長開始から成長終了までの間の結晶中の窒素原子数密度が5×1018(/cm3)以上、2.5×1019(/cm3)未満となるように、外部から供給する窒素ガス量を切り替えることで、積層欠陥を抑制することができる。 That is, in the second invention, the crystal growth is performed under different conditions of the amount of nitrogen gas supplied from the outside, and the amount of nitrogen in the crystal is adjusted in a state including the nitrogen content released from the components of the SiC single crystal growth apparatus. Measurement is performed by the method as described above, and the number density of nitrogen atoms taken into the grown crystal is expressed as a function of the height of the grown crystal. At this time, except for the supply of nitrogen gas from the outside, the conditions (temperature, pressure) for growing the SiC single crystal in actual production may be used. Based on at least the nitrogen supply conditions A and C as described above, the number density of nitrogen atoms in the crystal from the start to the end of the growth is 5 × 10 18 (/ cm 3 ) or more and 2.5 × 10 19. By switching the amount of nitrogen gas supplied from the outside so as to be less than (/ cm 3 ), stacking faults can be suppressed.

この第2の発明では、事前成長試験の結果から、結晶成長の途中まで窒素原子数密度が設定密度D1の範囲を上回り、一旦は窒素原子数密度が設定密度D1の範囲を満たして、それ以降は窒素原子数密度が設定密度D1の範囲を下回る窒素供給条件Bを更に選択して、結晶成長を行うようにしてもよい。すなわち、図5に示したように、成長開始から成長終了までの間の結晶中の窒素原子数密度が設定密度D1内となるように、結晶成長中に窒素供給条件をA→B→Cと順次切り替えて結晶成長を行うことで、積層欠陥の抑制されたSiC単結晶を得るようにしてもよい。また、第2の発明において、窒素供給条件をA→C(又はA→B→C)に切り替える際には、好ましくは、成長雰囲気中の窒素ガスが1時間あたり10vol%未満の変化量となるようにするのがよい。成長途中で窒素ガスが急激に変化すると、結晶中の窒素原子数密度の違いにより格子不整合性が生じて、転位欠陥が発生するおそれがあるため、上記のような変化量で窒素供給条件を切り替えるようにするのがよい。 In the second invention, from the result of the pre-growth test, the nitrogen atom number density exceeds the range of the set density D 1 until the middle of the crystal growth, and once the nitrogen atom number density satisfies the range of the set density D 1 , Thereafter, the crystal growth may be performed by further selecting the nitrogen supply condition B in which the nitrogen atom number density falls below the range of the set density D 1 . That is, as shown in FIG. 5, the nitrogen supply conditions are changed from A → B → C so that the number density of nitrogen atoms in the crystal from the start to the end of growth is within the set density D 1 . It is also possible to obtain a SiC single crystal in which stacking faults are suppressed by sequentially switching the crystal growth. In the second invention, when the nitrogen supply condition is switched from A → C (or A → B → C), the amount of nitrogen gas in the growth atmosphere is preferably less than 10 vol% per hour. It is better to do so. If the nitrogen gas changes suddenly during growth, lattice mismatch may occur due to the difference in the number density of nitrogen atoms in the crystal, and dislocation defects may occur. It is better to switch.

本発明によって得られるSiC単結晶は積層欠陥が少ないことから、電子デバイスを作製した際、積層欠陥起因の耐圧低下及びリーク電流の発生を抑えることができる。一般に、電子デバイス向けに要求されている結晶中の窒素量は5×1018〜1.1×1019(/cm3)であることから、本発明の製造方法によって得られるSiC単結晶は電子デバイス用途として好適に使用することができる。 Since the SiC single crystal obtained by the present invention has few stacking faults, when an electronic device is manufactured, it is possible to suppress a decrease in breakdown voltage due to stacking faults and generation of leakage current. In general, the amount of nitrogen in crystals required for electronic devices is 5 × 10 18 to 1.1 × 10 19 (/ cm 3 ), so the SiC single crystal obtained by the production method of the present invention is used for electronic devices. Can be suitably used.

また、本発明に係る製造方法を適用する炭化珪素単結晶のポリタイプに関しては、電子移動度が大きく、高性能デバイスの作製が可能である4Hポリタイプが好ましい。   Further, regarding the polytype of the silicon carbide single crystal to which the production method according to the present invention is applied, the 4H polytype that has a high electron mobility and is capable of producing a high-performance device is preferable.

更に、本発明においては、透過型電子顕微鏡(TEM)を用いた格子像観察による積層欠陥タイプの同定によって、窒素量が2.5×1019(/cm3)を超える場合に発生する積層欠陥の多くは、6Hタイプであることが分かった。従って、本発明の製造方法によって6Hタイプの積層欠陥を抑制することができる。 Furthermore, in the present invention, many of the stacking faults that occur when the nitrogen content exceeds 2.5 × 10 19 (/ cm 3 ) by identifying the stacking fault type by observing the lattice image using a transmission electron microscope (TEM). Was found to be 6H type. Therefore, 6H type stacking faults can be suppressed by the manufacturing method of the present invention.

本発明における積層欠陥の抑制は、窒素供給量の制御によって行われるため、適用範囲に結晶口径の制限は無く、例えば、口径50mm以上、300mm以下の結晶成長プロセスへの適用が可能である。   The suppression of stacking faults in the present invention is performed by controlling the amount of nitrogen supply, so there is no limitation on the crystal diameter in the application range, and for example, it can be applied to a crystal growth process with a diameter of 50 mm or more and 300 mm or less.

以下、本発明を実施例に基づき具体的に説明する。   Hereinafter, the present invention will be specifically described based on examples.

図1は、本発明の実施例に係るSiC単結晶を製造するために用いた改良型レーリー法によるSiC単結晶成長装置である。結晶成長は、蓋体4を備えた黒鉛坩堝3に収容された昇華原料2を誘導加熱により昇華させ、種結晶1上に再結晶させることにより行われる。種結晶1は黒鉛製の蓋体4の内面に取り付けられており、昇華原料2は黒鉛坩堝3の内部に充填される。この黒鉛坩堝3は、蓋体4と共に熱シールドのために黒鉛製フェルト7で被覆され、二重石英管5内部の黒鉛支持棒6の上に設置される。石英管5の内部を真空排気装置11によって真空排気した後、高純度Arガス及び窒素ガスを、配管9を介してマスフローコントローラ10で制御しながら流入させ、結晶成長中の石英管内圧力を1.3kPaに保ちながらワークコイル8に高周波電流を流し、黒鉛坩堝3を加熱することで結晶成長を行った。黒鉛坩堝3の温度は、坩堝上部を覆う断熱材の中央部に直径6mmの光路を設け、坩堝上部の輝度から二色温度計によって測定した。SiC結晶中に取り込まれる窒素量は雰囲気ガス中に供給する窒素量を変化させることで調整した。   FIG. 1 shows a SiC single crystal growth apparatus by an improved Rayleigh method used for manufacturing a SiC single crystal according to an embodiment of the present invention. Crystal growth is performed by sublimating the sublimation raw material 2 accommodated in the graphite crucible 3 provided with the lid 4 by induction heating and recrystallizing the seed crystal 1. The seed crystal 1 is attached to the inner surface of the graphite lid 4, and the sublimation raw material 2 is filled in the graphite crucible 3. The graphite crucible 3 is covered with a felt made of graphite 7 for heat shielding together with the lid 4 and is placed on a graphite support rod 6 inside the double quartz tube 5. After the inside of the quartz tube 5 is evacuated by the evacuation device 11, high purity Ar gas and nitrogen gas are allowed to flow through the pipe 9 while being controlled by the mass flow controller 10, and the pressure inside the quartz tube during crystal growth is 1.3 kPa. Crystal growth was carried out by applying a high-frequency current to the work coil 8 while heating the graphite crucible 3. The temperature of the graphite crucible 3 was measured with a two-color thermometer from the brightness of the upper part of the crucible by providing an optical path with a diameter of 6 mm at the center of the heat insulating material covering the upper part of the crucible. The amount of nitrogen incorporated into the SiC crystal was adjusted by changing the amount of nitrogen supplied to the atmospheric gas.

(実施例1)
まず、予め成長しておいたSiC単結晶インゴットから、口径50mmの (0001)面を主面とした4H型のSiC単結晶基板を切り出し、研磨後、種結晶とした。二重石英管5の内部を真空排気した後、雰囲気ガスとして高純度Arガスを流入させ、石英管内圧力を80kPaにした。この圧力下において、ワークコイル16に電流を流して温度を上げ、種結晶1の温度が2200℃になるまで上昇させた。その後、30分かけて成長雰囲気圧力を1.3kPaに減圧して、種結晶1の(000−1)面を結晶成長面とする60時間の結晶成長を行った。この間の窒素供給量は0(mL/min)である。
(Example 1)
First, from a previously grown SiC single crystal ingot, a 4H type SiC single crystal substrate having a (0001) plane with a diameter of 50 mm as a main surface was cut out, polished, and used as a seed crystal. After the inside of the double quartz tube 5 was evacuated, high-purity Ar gas was introduced as an atmospheric gas, and the pressure in the quartz tube was set to 80 kPa. Under this pressure, a current was passed through the work coil 16 to increase the temperature, and the temperature of the seed crystal 1 was increased to 2200 ° C. Thereafter, the growth atmosphere pressure was reduced to 1.3 kPa over 30 minutes, and crystal growth was performed for 60 hours using the (000-1) plane of the seed crystal 1 as the crystal growth plane. The nitrogen supply during this period is 0 (mL / min).

得られた結晶の結晶口径は約50mmであり、結晶高さは約10mmであった。得られたSiC単結晶について、SIMSによる窒素量の計測結果は、種結晶から2mmの高さの位置の窒素量は1×1019(/cm3)、種結晶から6mmの高さの位置の窒素量は1×1017(/cm3)、種結晶から10mmの高さの位置の窒素量は1×1017(/cm3)であった。この成長条件下(第1の事前成長試験)において種結晶から6mmまでの、種結晶からの高さt1と窒素量N1の関係は「N1=-0.2475×1019×t1+1.495×1019」と導出できる。結晶成長中の窒素供給量が0(mL/min)にも関わらず、結晶中に窒素が存在しているのは、黒鉛坩堝やSiC原料粉末に付着した窒素が成長雰囲気中へ放出され、結晶中に取り込まれたためである。種結晶から6mmと10mmで窒素量が同じであったのは、成長開始から結晶高さが6mmに到達するまでに、黒鉛坩堝やSiC原料粉末に付着した窒素が全て放出され、ほぼ窒素量が存在しない環境下での成長が行われたことを示唆している。 The crystal diameter of the obtained crystal was about 50 mm, and the crystal height was about 10 mm. Regarding the obtained SiC single crystal, the measurement result of the nitrogen amount by SIMS is that the nitrogen amount at a height of 2 mm from the seed crystal is 1 × 10 19 (/ cm 3 ), and the position at a height of 6 mm from the seed crystal. The amount of nitrogen was 1 × 10 17 (/ cm 3 ), and the amount of nitrogen at a height of 10 mm from the seed crystal was 1 × 10 17 (/ cm 3 ). Under this growth condition (first pre-growth test), the relationship between the height t1 from the seed crystal and the nitrogen amount N1 from the seed crystal to 6 mm is “N1 = −0.2475 × 10 19 × t1 + 1.495 × 10 19 ” Can be derived. Despite the fact that the nitrogen supply during crystal growth is 0 (mL / min), nitrogen is present in the crystal because the nitrogen attached to the graphite crucible and SiC raw material powder is released into the growth atmosphere. It was because it was taken in. The amount of nitrogen was the same at 6 mm and 10 mm from the seed crystal because all the nitrogen adhering to the graphite crucible and the SiC raw material powder was released from the start of growth until the crystal height reached 6 mm. This suggests that growth has occurred in a non-existent environment.

続いて、供給ガス中の窒素が6.7体積%含まれる条件で60時間の結晶成長を行った。供給する窒素量以外は上記と同じ条件である。得られた結晶の結晶口径は約50mmであり、結晶高さは約10mmであった。SIMSによる窒素量の計測結果は、種結晶から2mmの位置の窒素量は2.5×1019(/cm3)、種結晶から6mmの位置の窒素量は1.5×1019(/cm3)、種結晶から10mmの位置の窒素量は1.5×1019(/cm3)であった。この成長条件下での種結晶からの高さt2(0≦t2≦6)と窒素量N2の関係は「N2=-0.25×1019×t1+3.0×1019」と導出できる。 Subsequently, crystal growth was performed for 60 hours under the condition that 6.7% by volume of nitrogen in the supply gas was contained. The conditions are the same as above except for the amount of nitrogen to be supplied. The crystal diameter of the obtained crystal was about 50 mm, and the crystal height was about 10 mm. The measurement result of nitrogen amount by SIMS is that the amount of nitrogen at 2 mm from the seed crystal is 2.5 × 10 19 (/ cm 3 ), the amount of nitrogen at 6 mm from the seed crystal is 1.5 × 10 19 (/ cm 3 ), The amount of nitrogen at 10 mm from the crystal was 1.5 × 10 19 (/ cm 3 ). The relationship between the height t2 (0 ≦ t2 ≦ 6) from the seed crystal under this growth condition and the nitrogen amount N2 can be derived as “N2 = −0.25 × 10 19 × t1 + 3.0 × 10 19 ”.

上記の事前に計測した結果に基づき、設定密度D1を5×1018(/cm3)以上2.5×1019(/cm3)未満とするために、成長開始直後は窒素供給量を0(mL/min)とし、36時間(結晶が6mm成長するために掛かる時間)かけて窒素供給量を6.7体積%に変化させ、60時間の結晶成長を行った。供給する窒素量以外は上記と同じ条件である。得られた結晶の結晶口径は約50mmで結晶高さは約10mmであった。SIMSによる窒素量の計測結果は、種結晶から0mmの位置の窒素量は1.5×1019(/cm3)、2mmの位置の窒素量は1.5×1019(/cm3)、種結晶から6mmの位置の窒素量は1.5×1019(/cm3)、種結晶から10mmの位置の窒素量は1.5×1019(/cm3)であった。種結晶の直径を含むようにした縦断面を含む(1-100)面ウェハを切り出し、鏡面研磨の後に、フォトルミネセンス顕微鏡及び溶融KOHエッチングによって成長方向の単位長さあたりに含まれる積層欠陥の数(積層欠陥密度)を計測した。その結果、種結晶から0、2、6、10mmのいずれの位置においても積層欠陥密度は0本(本/cm)であった。 Based on the results measured in advance, the nitrogen supply rate is 0 (mL) immediately after the start of growth in order to set the set density D1 to 5 × 10 18 (/ cm 3 ) or more and less than 2.5 × 10 19 (/ cm 3 ). / min), the nitrogen supply amount was changed to 6.7% by volume over 36 hours (the time required for the crystal to grow 6 mm), and crystal growth was performed for 60 hours. The conditions are the same as above except for the amount of nitrogen to be supplied. The crystal diameter of the obtained crystal was about 50 mm and the crystal height was about 10 mm. Nitrogen content of the measurement result of the SIMS, the nitrogen content is 1.5 × 10 19 (/ cm 3 ) of 0mm position from the seed crystal, the nitrogen in position of 2mm is 1.5 × 10 19 (/ cm 3 ), 6mm from the seed crystal The nitrogen amount at the position of 1.5 × 10 19 (/ cm 3 ) was 1.5 × 10 19 (/ cm 3 ) at the position 10 mm from the seed crystal. A (1-100) plane wafer containing a longitudinal section including the diameter of the seed crystal was cut out, and after mirror polishing, the stacking faults included per unit length in the growth direction were measured by a photoluminescence microscope and molten KOH etching. The number (stacking fault density) was measured. As a result, the stacking fault density was 0 (lines / cm) at any position of 0, 2, 6, and 10 mm from the seed crystal.

同じ結晶から(0001)面で基板を切り出し、ポリタイプ及び転位密度を調査した。呈色の目視観察から4Hシングルポリタイプであることが分かった。転位密度を溶融KOHエッチング後の光学顕微鏡観察から計測したところ、転位密度は8.0×103(/cm2)であった。この値は市販品と同等の値であり、高品質基板であると言える。 Substrates were cut from the same crystal in the (0001) plane, and the polytype and dislocation density were investigated. Visual observation of coloration revealed that it was a 4H single polytype. When the dislocation density was measured from observation with an optical microscope after the molten KOH etching, the dislocation density was 8.0 × 10 3 (/ cm 2 ). This value is equivalent to a commercially available product and can be said to be a high-quality substrate.

(実施例2)
まず、予め成長しておいたSiC単結晶インゴットから、口径50mmの(0001)面を主面とした4H型のSiC単結晶基板を切り出し、研磨後、種結晶とした。次に、外部から供給する窒素供給ガス中に窒素が3.4体積%含まれる条件で60時間の結晶成長を行った。窒素量以外の条件は実施例1と同様である。得られた結晶の結晶口径は約50mmで結晶高さは約10mmであった。得られたSiC単結晶について、SIMSによる窒素量の計測結果は、種結晶から0mmの高さの位置の窒素量は2.0×1019(/cm3)、種結晶から2mmの高さの位置の窒素量は1.5×1019(/cm3)、種結晶から6mmの高さの位置の窒素量は4×1018(/cm3)、種結晶から10mmの高さの位置の窒素量は4×1018(/cm3)であった。
(Example 2)
First, a 4H type SiC single crystal substrate having a (0001) plane of 50 mm in diameter as a main surface was cut out from a previously grown SiC single crystal ingot and polished to obtain a seed crystal. Next, crystal growth was carried out for 60 hours under the condition that 3.4% by volume of nitrogen was included in the nitrogen supply gas supplied from the outside. Conditions other than the amount of nitrogen are the same as in Example 1. The crystal diameter of the obtained crystal was about 50 mm and the crystal height was about 10 mm. Regarding the obtained SiC single crystal, the measurement result of the nitrogen amount by SIMS is that the amount of nitrogen at a height of 0 mm from the seed crystal is 2.0 × 10 19 (/ cm 3 ), and the position of the height of 2 mm from the seed crystal is The amount of nitrogen is 1.5 × 10 19 (/ cm 3 ), the amount of nitrogen at a height of 6 mm from the seed crystal is 4 × 10 18 (/ cm 3 ), the amount of nitrogen at a height of 10 mm from the seed crystal is 4 × 10 18 (/ cm 3 ).

続いて、外部から供給する窒素供給ガス中に窒素が6.7体積%含まれる条件で60時間の結晶成長を行った。窒素量以外の条件は実施例1と同様である。得られた結晶の結晶口径は約50mmで結晶高さは約10mmであった。得られたSiC単結晶について、SIMSによる窒素量の計測結果は、種結晶から0mmの高さの位置の窒素量は3.0×1019(/cm3)、種結晶から2mmの高さの位置の窒素量は2.5×1019(/cm3)、種結晶から6mmの高さの位置の窒素量は1.5×1019(/cm3)、種結晶から10mmの高さの位置の窒素量は1.5×1019(/cm3)であった。 Subsequently, crystal growth was performed for 60 hours under the condition that 6.7% by volume of nitrogen was included in the nitrogen supply gas supplied from the outside. Conditions other than the amount of nitrogen are the same as in Example 1. The crystal diameter of the obtained crystal was about 50 mm and the crystal height was about 10 mm. Regarding the obtained SiC single crystal, the measurement result of the nitrogen amount by SIMS is that the nitrogen amount at the height of 0 mm from the seed crystal is 3.0 × 10 19 (/ cm 3 ), the nitrogen amount at the position of 2 mm from the seed crystal. The amount of nitrogen is 2.5 × 10 19 (/ cm 3 ), the amount of nitrogen at a height of 6 mm from the seed crystal is 1.5 × 10 19 (/ cm 3 ), the amount of nitrogen at a height of 10 mm from the seed crystal is 1.5 × 10 19 (/ cm 3 ).

上記の結果に基づき、設定密度D1を5×1018(/cm3)以上2.5×1019(/cm3)未満とするために、まず、外部から供給する窒素供給ガス中に窒素が3.4体積%(供給条件A)含まれる条件で12時間の結晶成長を行い、その後、20分かけて供給ガス中の窒素を6.7体積%(供給条件C)に変更し、更に48時間の結晶成長を行った。得られた結晶の結晶口径は約50mmで結晶高さは約10mmであった。得られたSiC単結晶について、SIMSによる窒素量の計測結果は、種結晶から0mmの高さの位置の窒素量は2.0×1019(/cm3)種結晶から2mmの位置の窒素量は1.5×1019(/cm3)、種結晶から6mmの位置の窒素量は1.5×1019(/cm3)、種結晶から10mmの高さの位置の窒素量は1.5×1019(/cm3)であった。
Based on the above results, in order to set the set density D1 to 5 × 10 18 (/ cm 3 ) or more and less than 2.5 × 10 19 (/ cm 3 ), first, 3.4 volumes of nitrogen is supplied into the nitrogen supply gas supplied from the outside. % (Supply condition A) for 12 hours of crystal growth, then change the nitrogen in the supply gas to 6.7% by volume (supply condition C) over 20 minutes, and further crystal growth for 48 hours It was. The crystal diameter of the obtained crystal was about 50 mm and the crystal height was about 10 mm. Regarding the obtained SiC single crystal, the measurement result of the nitrogen amount by SIMS is that the amount of nitrogen at the height of 0 mm from the seed crystal is 2.0 × 10 19 (/ cm 3 ) , and the amount of nitrogen at the position of 2 mm from the seed crystal is 1.5 × 10 19 (/ cm 3 ), the amount of nitrogen at 6 mm from the seed crystal is 1.5 × 10 19 (/ cm 3 ), the amount of nitrogen at a height of 10 mm from the seed crystal is 1.5 × 10 19 (/ cm 3 ).

更に、得られたSiC単結晶について、種結晶の直径を含むようにした縦断面を含む(1-100)面ウェハを切り出し、鏡面研磨の後に、フォトルミネセンス顕微鏡及び溶融KOHエッチングによって成長方向の単位長さあたりに含まれる積層欠陥の数(積層欠陥密度)を計測した。その結果、種結晶から0mmの位置では積層欠陥密度は5(本/cm)、種結晶から2mmの位置では積層欠陥密度は0(本/cm)、種結晶から6mmの位置では積層欠陥密度は0(本/cm)、種結晶から10mmの位置では積層欠陥密度は0(本/cm)であった。また、同じ結晶から(0001)面で基板を切り出し、ポリタイプ及び転位密度を調査した。呈色の目視観察から4Hシングルポリタイプであることが分かった。転位密度を溶融KOHエッチング後の光学顕微鏡観察から計測したところ、転位密度は9.0×103(/cm2)であった。この値は市販品と同等の値であり、高品質基板であると言える。 Further, for the obtained SiC single crystal, a (1-100) plane wafer including a longitudinal section including the diameter of the seed crystal was cut out, and after mirror polishing, the growth direction was measured by a photoluminescence microscope and molten KOH etching. The number of stacking faults included per unit length (stacking fault density) was measured. As a result, the stacking fault density is 5 (lines / cm) at the position of 0 mm from the seed crystal, the stacking fault density is 0 (lines / cm) at the position of 2 mm from the seed crystal, and the stacking fault density is 6 mm from the seed crystal. The stacking fault density was 0 (lines / cm) at a position of 0 (lines / cm) and 10 mm from the seed crystal. In addition, a substrate was cut out from the same crystal in the (0001) plane, and the polytype and dislocation density were investigated. Visual observation of coloration revealed that it was a 4H single polytype. When the dislocation density was measured from observation with an optical microscope after the molten KOH etching, the dislocation density was 9.0 × 10 3 (/ cm 2 ). This value is equivalent to a commercially available product and can be said to be a high-quality substrate.

(実施例3)
先ず、外部から供給する窒素量0(mL/min)の60時間の結晶成長を行った。窒素量以外の条件は実施例1と同様である。得られた結晶の結晶口径は約50mmで結晶高さは約10mmであった。得られたSiC単結晶について、SIMSによる窒素量の計測結果は、種結晶から0mmの高さの位置の窒素量は1.5×1019(/cm3)、種結晶から2mmの高さの位置の窒素量は1×1019(/cm3)、種結晶から6mmの高さの位置の窒素量は1×1017(/cm3)、種結晶から10mmの位置の窒素量は1×1017(/cm3)であった。
(Example 3)
First, crystal growth was performed for 60 hours with an externally supplied nitrogen amount of 0 (mL / min). Conditions other than the amount of nitrogen are the same as in Example 1. The crystal diameter of the obtained crystal was about 50 mm and the crystal height was about 10 mm. Regarding the obtained SiC single crystal, the measurement result of the nitrogen amount by SIMS shows that the nitrogen amount at the height of 0 mm from the seed crystal is 1.5 × 10 19 (/ cm 3 ), and the position at the height of 2 mm from the seed crystal. The amount of nitrogen is 1 × 10 19 (/ cm 3 ), the amount of nitrogen at a height of 6 mm from the seed crystal is 1 × 10 17 (/ cm 3 ), and the amount of nitrogen at the position of 10 mm from the seed crystal is 1 × 10 17 (/ cm 3 ).

次に、外部から供給する窒素供給ガス中に窒素が3.4体積%含まれた条件で60時間の結晶成長を行った。窒素量以外の条件は実施例1と同様である。得られた結晶の結晶口径は約50mmで結晶高さは約10mmであった。得られたSiC単結晶について、SIMSによる窒素量の計測結果は、種結晶から0mmの高さの位置の窒素量は2.0×1019(/cm3)、種結晶から2mmの高さの位置の窒素量は1.5×1019(/cm3)、種結晶から6mmの高さの位置の窒素量は4×1018(/cm3)、種結晶から10mmの高さの位置の窒素量は4×1018(/cm3)であった。 Next, crystal growth was performed for 60 hours under the condition that 3.4% by volume of nitrogen was included in the nitrogen supply gas supplied from the outside. Conditions other than the amount of nitrogen are the same as in Example 1. The crystal diameter of the obtained crystal was about 50 mm and the crystal height was about 10 mm. Regarding the obtained SiC single crystal, the measurement result of the nitrogen amount by SIMS is that the amount of nitrogen at a height of 0 mm from the seed crystal is 2.0 × 10 19 (/ cm 3 ), and the position of the height of 2 mm from the seed crystal is The amount of nitrogen is 1.5 × 10 19 (/ cm 3 ), the amount of nitrogen at a height of 6 mm from the seed crystal is 4 × 10 18 (/ cm 3 ), the amount of nitrogen at a height of 10 mm from the seed crystal is 4 × 10 18 (/ cm 3 ).

続いて、外部から供給する窒素供給ガス中に窒素が6.7体積%含まれた条件で60時間の結晶成長を行った。窒素量以外の条件は実施例1と同様である。得られた結晶の結晶口径は約50mmで結晶高さは約10mmであった。得られたSiC単結晶について、SIMSによる窒素量の計測結果は、種結晶から0mmの高さの位置の窒素量は3.0×1019(/cm3)、種結晶から2mmの高さの位置の窒素量は2.5×1019(/cm3)、種結晶から6mmの高さの位置の窒素量は1.5×1019(/cm3)、種結晶から10mmの高さの位置の窒素量は1.5×1019(/cm3)であった。 Subsequently, crystal growth was performed for 60 hours under the condition that 6.7% by volume of nitrogen was included in the nitrogen supply gas supplied from the outside. Conditions other than the amount of nitrogen are the same as in Example 1. The crystal diameter of the obtained crystal was about 50 mm and the crystal height was about 10 mm. Regarding the obtained SiC single crystal, the measurement result of the nitrogen amount by SIMS is that the nitrogen amount at the height of 0 mm from the seed crystal is 3.0 × 10 19 (/ cm 3 ), the nitrogen amount at the position of 2 mm from the seed crystal. The amount of nitrogen is 2.5 × 10 19 (/ cm 3 ), the amount of nitrogen at a height of 6 mm from the seed crystal is 1.5 × 10 19 (/ cm 3 ), the amount of nitrogen at a height of 10 mm from the seed crystal is 1.5 × 10 19 (/ cm 3 ).

上記の結果に基づき、設定密度D1を5×1018(/cm3)以上1.5×1019(/cm3)以下とするために、まず、外部から供給する窒素量0(mL/min)の条件(窒素供給条件A)で12時間(結晶が2mm成長するのにかかる時間)の結晶成長を行い、その後20分かけて供給ガス中の窒素を3.4体積%(窒素供給条件B)に変更し、24時間(結晶が4mm成長するのにかかる時間)の結晶成長を行い、さらにその後に20分かけて供給ガス中の窒素を6.7体積%(窒素供給条件C)に変更し、24時間(結晶が4mm成長するのにかかる時間)の結晶成長を行った。得られた結晶の結晶口径は約50mmで結晶高さは約10mmであった。 Based on the above result, in order to set the set density D1 to 5 × 10 18 (/ cm 3 ) or more and 1.5 × 10 19 (/ cm 3 ) or less, first, the amount of nitrogen supplied from the outside is 0 (mL / min). Crystal growth was performed for 12 hours (the time required for the crystal to grow 2 mm) under the conditions (nitrogen supply condition A), and then the nitrogen in the supply gas was changed to 3.4% by volume (nitrogen supply condition B) over 20 minutes. , 24 hours (the time it takes for the crystal to grow 4mm), and then change the nitrogen in the supply gas to 6.7% by volume (nitrogen supply condition C) over 20 minutes, then 24 hours (crystal The crystal growth of 4 mm is required. The crystal diameter of the obtained crystal was about 50 mm and the crystal height was about 10 mm.

得られたSiC単結晶について、SIMSによる窒素量の計測結果は、種結晶から0mmの高さの位置の窒素量は1.5×1019(/cm3)、種結晶から2mmの高さの位置の窒素量は1.5×1019(/cm3)、種結晶から6mmの高さの位置の窒素量は1.5×1019(/cm3)、種結晶から10mmの高さの位置の窒素量は1.5×1019(/cm3)であった。 Regarding the obtained SiC single crystal, the measurement result of the nitrogen amount by SIMS shows that the nitrogen amount at the height of 0 mm from the seed crystal is 1.5 × 10 19 (/ cm 3 ), and the position at the height of 2 mm from the seed crystal. The amount of nitrogen is 1.5 × 10 19 (/ cm 3 ), the amount of nitrogen at a height of 6 mm from the seed crystal is 1.5 × 10 19 (/ cm 3 ), the amount of nitrogen at a height of 10 mm from the seed crystal Was 1.5 × 10 19 (/ cm 3 ).

更に、得られたSiC単結晶について、種結晶の直径を含むようにした縦断面を含む(1-100)面ウェハを切り出し、鏡面研磨の後に、フォトルミネセンス顕微鏡及び溶融KOHエッチングによって成長方向の単位長さあたりに含まれる積層欠陥の数(積層欠陥密度)を計測した。その結果、種結晶から0mm、2mm、6mm、10mmのいずれの位置においても積層欠陥密度は0(本/cm)であった。同じ結晶から(0001)面で基板を切り出し、ポリタイプ及び転位密度を調査した。呈色の目視観察から4Hシングルポリタイプであることが分かった。転位密度を溶融KOHエッチング後の光学顕微鏡観察から計測したところ、転位密度は8.0×103(/cm2)であった。この値は市販品と同等の値であり、高品質基板であると言える。 Further, for the obtained SiC single crystal, a (1-100) plane wafer including a longitudinal section including the diameter of the seed crystal was cut out, and after mirror polishing, the growth direction was measured by a photoluminescence microscope and molten KOH etching. The number of stacking faults included per unit length (stacking fault density) was measured. As a result, the stacking fault density was 0 (lines / cm) at any position of 0 mm, 2 mm, 6 mm, and 10 mm from the seed crystal. Substrates were cut from the same crystal in the (0001) plane, and the polytype and dislocation density were investigated. Visual observation of coloration revealed that it was a 4H single polytype. When the dislocation density was measured from observation with an optical microscope after the molten KOH etching, the dislocation density was 8.0 × 10 3 (/ cm 2 ). This value is equivalent to a commercially available product and can be said to be a high-quality substrate.

(比較例1)
事前に雰囲気中に放出される窒素量を計測することなく、マスフローコントローラで供給ガス中に窒素が6.7体積%含まれるように調整して、60時間の結晶成長を行った。他の成長条件は実施例1と同様である。得られた結晶の口径は52mmで、高さは約10mmであった。
(Comparative Example 1)
Without measuring the amount of nitrogen released into the atmosphere in advance, the mass flow controller was adjusted so that the supply gas contained 6.7% by volume of nitrogen, and crystal growth was performed for 60 hours. Other growth conditions are the same as in Example 1. The diameter of the obtained crystal was 52 mm and the height was about 10 mm.

得られたSiC単結晶から実施例1と同様に(1-100)面ウェハを切り出し、鏡面研磨の後に、フォトルミネセンス顕微鏡及び溶融KOHエッチングによって積層欠陥密度を計測した。その結果、種結晶から2mmの位置では積層欠陥密度は60(本/cm)であった。また、種結晶から6mmの位置では積層欠陥密度は0(本/cm)であった。   A (1-100) plane wafer was cut out from the obtained SiC single crystal in the same manner as in Example 1, and after mirror polishing, the stacking fault density was measured by a photoluminescence microscope and molten KOH etching. As a result, the stacking fault density at the position 2 mm from the seed crystal was 60 (lines / cm). The stacking fault density was 0 (lines / cm) at a position of 6 mm from the seed crystal.

また、得られたSiC単結晶について、SIMSによる窒素量の計測結果は、種結晶から2mmの高さの位置の窒素量は2.5×1019(/cm3)、種結晶から6mmの高さの位置の窒素量は1.4×1019(/cm3)であった。結晶成長中の供給ガス中の窒素は6.7体積%一定であったにも関わらず結晶中の窒素量が異なっているのは、黒鉛坩堝やSiC原料粉末に付着した窒素が成長雰囲気中へ放出されたことで成長雰囲気中の窒素量が増加し、それに伴い結晶中に取り込まれる窒素量が増加したためである。 In addition, for the obtained SiC single crystal, the measurement result of the nitrogen amount by SIMS is that the nitrogen amount at a height of 2 mm from the seed crystal is 2.5 × 10 19 (/ cm 3 ), and the height of 6 mm from the seed crystal is The nitrogen content at the position was 1.4 × 10 19 (/ cm 3 ). Despite the fact that the nitrogen in the supply gas during crystal growth was constant at 6.7% by volume, the amount of nitrogen in the crystal was different because the nitrogen adhering to the graphite crucible and SiC raw material powder was released into the growth atmosphere. This is because the amount of nitrogen in the growth atmosphere is increased, and the amount of nitrogen taken into the crystal is increased accordingly.

透過型電子顕微鏡(TEM)による格子像観察によって積層欠陥タイプの同定を試みたところ、6Hタイプの積層欠陥であることが分かった。6Hタイプの積層欠陥が基板中に存在すると、デバイスの耐圧低下やリーク電流パスの原因となる。従って、積層欠陥が多数発生した種結晶から6mmの高さの位置までの領域から切り出した基板を用いて高性能デバイスの作製に供することはできないため、高品質な基板の歩留まりが悪いことが判明した。   When we tried to identify the stacking fault type by observing the lattice image with a transmission electron microscope (TEM), it was found to be a 6H type stacking fault. If 6H type stacking faults are present in the substrate, it will cause a reduction in device breakdown voltage and a leakage current path. Therefore, it was found that the yield of high-quality substrates is poor because it cannot be used for the production of high-performance devices using a substrate cut out from a region from a seed crystal where a large number of stacking faults occurred to a height of 6 mm. did.

1 種結晶(SiC単結晶)
2 昇華原料
3 黒鉛坩堝
4 蓋体
5 二重石英管
6 支持棒
7 黒鉛製フェルト
8 ワークコイル
9 高純度ガス配管
10 高純度ガス用マスフローコントローラ
11 真空排気装置
1 Seed crystal (SiC single crystal)
2 Sublimation raw material 3 Graphite crucible 4 Lid 5 Double quartz tube 6 Support rod 7 Graphite felt 8 Work coil 9 High purity gas piping
10 Mass flow controller for high purity gas
11 Vacuum exhaust system

Claims (7)

原料粉末と種結晶とが収容された坩堝に窒素ガスを供給して、設定密度D1の窒素原子数密度を有した炭化珪素単結晶を昇華再結晶法により成長させる炭化珪素単結晶の製造方法であって、
一定量の窒素ガスを外部から供給しながら坩堝内に予め存在して成長結晶中に取り込まれる窒素分を含めて炭化珪素単結晶を成長させる第2の事前成長試験を行い、外部からの窒素ガスの供給量を変えた複数の窒素供給条件に対して、それぞれ成長結晶中に取り込まれる窒素原子数密度を成長結晶の高さとの関係で求めておき、
該第2の事前成長試験において、結晶成長の途中までは窒素原子数密度が設定密度D1の範囲を満たし、以降は窒素原子数密度が設定密度D1の範囲を下回る窒素供給条件Aと、結晶成長の途中までは窒素原子数密度が設定密度D1の範囲を上回り、以降は窒素原子数密度が設定密度D1を満たす窒素供給条件Cとを選択して、
炭化珪素単結晶の窒素原子数密度が5×1018(/cm3)以上2.5×1019(/cm3)未満の設定密度D1となるように、結晶成長中に前記窒素供給条件Aから窒素供給条件Cへと窒素ガスの供給量を切り替えて結晶成長を行うことを特徴とする炭化珪素単結晶の製造方法。
A method for producing a silicon carbide single crystal in which nitrogen gas is supplied to a crucible containing raw material powder and seed crystal, and a silicon carbide single crystal having a nitrogen atom number density of a set density D 1 is grown by a sublimation recrystallization method Because
A second pre-growth test for growing a silicon carbide single crystal including nitrogen contained in the growth crystal in advance in a crucible while supplying a certain amount of nitrogen gas from the outside is performed. For each of a plurality of nitrogen supply conditions in which the supply amount is changed, the number density of nitrogen atoms taken into the grown crystal is determined in relation to the height of the grown crystal,
In the second pre-growth test, a nitrogen supply condition A in which the nitrogen atom number density satisfies the range of the set density D 1 until the middle of crystal growth, and thereafter the nitrogen atom number density falls below the set density D 1 range; Until the middle of crystal growth, the nitrogen atom number density exceeds the range of the set density D 1 , and thereafter, the nitrogen supply condition C that satisfies the set density D 1 is selected.
Nitrogen atom number density of silicon carbide single crystal 5 × 10 18 (/ cm 3 ) or more 2.5 × 10 19 (/ cm 3 ) so as to set the density D 1 of the below, the nitrogen supply conditions during the crystal growth A method for producing a silicon carbide single crystal, wherein crystal growth is performed by switching a supply amount of nitrogen gas from A to a nitrogen supply condition C.
前記第2の事前成長試験において、結晶成長の途中まで窒素原子数密度が設定密度D1の範囲を上回り、一旦は窒素原子数密度が設定密度D1の範囲を満たして、それ以降は窒素原子数密度が設定密度D1の範囲を下回る窒素供給条件Bを更に選択して、前記設定密度D1となるように、結晶成長中に前記窒素供給条件をA、B、Cと順次切り替えて結晶成長を行うことを特徴とする請求項に記載の炭化珪素単結晶の製造方法。 In the second pre-growth test, the nitrogen atom number density exceeds the range of the set density D 1 until the middle of the crystal growth, once the nitrogen atom number density satisfies the range of the set density D 1 , and thereafter the nitrogen atom number A nitrogen supply condition B whose number density falls below the range of the set density D 1 is further selected, and the nitrogen supply condition is sequentially switched to A, B, and C during crystal growth so that the set density D 1 is obtained. The method for producing a silicon carbide single crystal according to claim 1 , wherein the growth is performed. 前記窒素供給条件を切り替える際に、成長雰囲気中の窒素ガスが1時間あたり10vol%未満の変化量となるようにする請求項1又は2に記載の炭化珪素単結晶の製造方法。 The method for producing a silicon carbide single crystal according to claim 1 or 2 , wherein the nitrogen gas in the growth atmosphere has a change amount of less than 10 vol% per hour when the nitrogen supply condition is switched. 種結晶の直径を含むようにした炭化珪素単結晶の縦断面を見た場合に、成長方向における単位長さあたりに含まれる積層欠陥の数が10(/cm)以下である請求項1〜のいずれかに記載の炭化珪素単結晶の製造方法。 When viewed a longitudinal section of a silicon carbide single crystal to include the diameter of the seed crystal, according to claim 1 to 3 the number of stacking faults contained per unit length in the growth direction is 10 (/ cm) or less The manufacturing method of the silicon carbide single crystal in any one of these. 前記炭化珪素単結晶のポリタイプが4Hである請求項1〜のいずれかに記載の炭化珪素単結晶の製造方法。 Method for producing a silicon carbide single crystal according to any one of claims 1-4 polytype of the silicon carbide single crystal is 4H. 前記積層欠陥が6H型である請求項1〜に記載の炭化珪素単結晶の製造方法。 Method for producing a silicon carbide single crystal according to claim 1-5 wherein the stacking fault is a 6H-type. 前記炭化珪素単結晶の結晶口径が50mm以上300mm以下である請求項1〜のいずれかに記載の炭化珪素単結晶の製造方法。 Method for producing a silicon carbide single crystal according to any one of claims 1 to 6 crystal diameter of the silicon carbide single crystal is 50mm or more 300mm or less.
JP2013131501A 2013-06-24 2013-06-24 Method for producing silicon carbide single crystal Active JP6119453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013131501A JP6119453B2 (en) 2013-06-24 2013-06-24 Method for producing silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013131501A JP6119453B2 (en) 2013-06-24 2013-06-24 Method for producing silicon carbide single crystal

Publications (2)

Publication Number Publication Date
JP2015003850A JP2015003850A (en) 2015-01-08
JP6119453B2 true JP6119453B2 (en) 2017-04-26

Family

ID=52300053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013131501A Active JP6119453B2 (en) 2013-06-24 2013-06-24 Method for producing silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JP6119453B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6678437B2 (en) * 2015-11-26 2020-04-08 昭和電工株式会社 Method for producing SiC single crystal ingot, SiC single crystal ingot, and SiC single crystal wafer
CN109576784A (en) * 2017-09-29 2019-04-05 上海新昇半导体科技有限公司 A kind of preparation method and device of SiC epitaxial layer
CN109722711A (en) * 2017-10-27 2019-05-07 上海新昇半导体科技有限公司 A kind of the SiC growing method and device of regulation doping concentration
JP7422479B2 (en) * 2017-12-22 2024-01-26 株式会社レゾナック SiC ingot and method for producing SiC ingot
CN112466929B (en) * 2020-11-26 2023-04-28 山东天岳先进科技股份有限公司 Silicon carbide substrate, ingot and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009023846A (en) * 2007-06-19 2009-02-05 Bridgestone Corp Method for producing silicon carbide single crystal and apparatus for producing the same
US8872189B2 (en) * 2011-08-05 2014-10-28 Sumitomo Electric Industries, Ltd. Substrate, semiconductor device, and method of manufacturing the same
JP2014205593A (en) * 2013-04-12 2014-10-30 住友電気工業株式会社 Silicon carbide single crystal and manufacturing method of the same

Also Published As

Publication number Publication date
JP2015003850A (en) 2015-01-08

Similar Documents

Publication Publication Date Title
JP4585359B2 (en) Method for producing silicon carbide single crystal
KR101379941B1 (en) Silicon carbide single crystal and silicon carbide single crystal wafer
JP6584428B2 (en) Method for producing silicon carbide single crystal and silicon carbide single crystal substrate
JP4388538B2 (en) Silicon carbide single crystal manufacturing equipment
JP4818754B2 (en) Method for producing silicon carbide single crystal ingot
JP5068423B2 (en) Silicon carbide single crystal ingot, silicon carbide single crystal wafer, and manufacturing method thereof
WO2011024931A1 (en) Sic single crystal wafer and process for production thereof
JP4603386B2 (en) Method for producing silicon carbide single crystal
JP6119453B2 (en) Method for producing silicon carbide single crystal
JP2008290898A (en) Low-resistivity silicon carbide single crystal substrate
JP5678721B2 (en) Seed crystal for growing silicon carbide single crystal and method for producing silicon carbide single crystal
JP2004099340A (en) Seed crystal for silicon carbide single crystal growth, silicon carbide single crystal ingot and method of manufacturing the same
JP5031651B2 (en) Method for producing silicon carbide single crystal ingot
JP2010228939A (en) METHOD FOR PRODUCING 3C-SiC SINGLE CRYSTAL
JP5418385B2 (en) Method for producing silicon carbide single crystal ingot
JP2008110907A (en) Method for producing silicon carbide single crystal ingot, and silicon carbide single crystal ingot
JP4690906B2 (en) Seed crystal for growing silicon carbide single crystal, method for producing the same, and method for producing silicon carbide single crystal
JP5614387B2 (en) Silicon carbide single crystal manufacturing method and silicon carbide single crystal ingot
JP4408247B2 (en) Seed crystal for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same
JP2005041710A (en) Silicon carbide single crystal, silicon carbide single crystal wafer, and method for manufacturing silicon carbide single crystal
JP5131262B2 (en) Silicon carbide single crystal and method for producing the same
JP2018168052A (en) Method of manufacturing silicon carbide single crystal ingot
JP4157326B2 (en) 4H type silicon carbide single crystal ingot and wafer
JP5370025B2 (en) Silicon carbide single crystal ingot
JP2002121099A (en) Seed crystal for growing silicon carbide single crystal, silicon carbide single crystal ingot, silicon carbide single crystal wafer, and method for producing silicon carbide single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170313

R151 Written notification of patent or utility model registration

Ref document number: 6119453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350