JP2010064490A - Multilayered structure - Google Patents

Multilayered structure Download PDF

Info

Publication number
JP2010064490A
JP2010064490A JP2009254619A JP2009254619A JP2010064490A JP 2010064490 A JP2010064490 A JP 2010064490A JP 2009254619 A JP2009254619 A JP 2009254619A JP 2009254619 A JP2009254619 A JP 2009254619A JP 2010064490 A JP2010064490 A JP 2010064490A
Authority
JP
Japan
Prior art keywords
resin
multilayer structure
functional resin
functional
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009254619A
Other languages
Japanese (ja)
Other versions
JP5286504B2 (en
Inventor
Makoto Eto
誠 江藤
Hiroaki Goto
弘明 後藤
Atsushi Kikuchi
淳 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2009254619A priority Critical patent/JP5286504B2/en
Publication of JP2010064490A publication Critical patent/JP2010064490A/en
Application granted granted Critical
Publication of JP5286504B2 publication Critical patent/JP5286504B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Closures For Containers (AREA)
  • Laminated Bodies (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multilayered structure wherein a layer including a functional resin is formed at a position capable of sufficiently developing the function of that layer. <P>SOLUTION: The multilayered structure has a base material resin layer including a thermoplastic resin and a functional resin layer including the functional resin. The functional resin layer is obtained by covering a core layer which includes a base material resin or a second functional resin with a shell layer including a first functional resin. In the multilayered structure, the base material resin layer includes the functional resin layer, and the structure is molded by compression molding. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、熱可塑性樹脂から成る基材樹脂層及び機能性樹脂から成る機能性樹脂層を有する多層構造体に関し、より詳細には、バリア性や酸素吸収性等の機能性樹脂が効率よくその機能を発揮し得る層構造が形成されている多層構造体に関する。   The present invention relates to a multilayer structure having a base resin layer made of a thermoplastic resin and a functional resin layer made of a functional resin, and more specifically, a functional resin such as a barrier property and oxygen absorbing property is efficiently used. The present invention relates to a multilayer structure in which a layer structure capable of exhibiting a function is formed.

包装容器の分野では、耐熱性、バリア性、酸素吸収性等の機能を発現し得る種々の樹脂又は樹脂組成物が使用されており、これらの機能性樹脂は主に構造物の成形性等を確保するための基材樹脂と組み合わせで用いられている。
このような機能性樹脂としては、エチレンビニルアルコール共重合体等のガスバリア性樹脂や、エチレンビニルアルコール共重合体、ナイロン系樹脂及びオレフィン系樹脂から成る群より選ばれた樹脂基材に該樹脂基材よりも大きい酸素吸収速度を有する酸化性重合体と酸化触媒乃至酸化開始剤とを配合して成る酸素吸収性樹脂組成物等が知られている(特許文献1等)。
In the field of packaging containers, various resins or resin compositions capable of expressing functions such as heat resistance, barrier properties, and oxygen absorption are used, and these functional resins mainly have moldability of structures. It is used in combination with a base resin for securing.
Examples of such a functional resin include a gas barrier resin such as an ethylene vinyl alcohol copolymer, and a resin base selected from the group consisting of an ethylene vinyl alcohol copolymer, a nylon resin, and an olefin resin. An oxygen-absorbing resin composition comprising an oxidizing polymer having an oxygen absorption rate larger than that of the material and an oxidation catalyst or an initiator is known (Patent Document 1, etc.).

このような機能性樹脂を容器や容器蓋に用いることも知られており、例えば、特許文献2には、相互に異なった合成樹脂から成形された第一の合成樹脂層と第二の合成樹脂層とを具備し、該第一の合成樹脂層が該第二の合成樹脂層の実質上全体を囲繞している多層構造圧縮成形物及びその製造方法が記載されており、第2の合成樹脂層としてガスバリア性樹脂が記載されている。   It is also known that such a functional resin is used for a container or a container lid. For example, Patent Document 2 discloses that a first synthetic resin layer and a second synthetic resin molded from different synthetic resins. A multilayer structure compression-molded product in which the first synthetic resin layer surrounds substantially the whole of the second synthetic resin layer, and a method for producing the same. A gas barrier resin is described as the layer.

特開2001−39475号公報JP 2001-39475 A 特公平2−60499号公報Japanese Patent Publication No. 2-60499

しかしながら、機能性樹脂と基材樹脂等の他の樹脂との多層構造を有する容器蓋、容器等の多層構造体においては、機能性樹脂が有する優れた機能を充分に発揮し得る位置に機能性樹脂から成る層を位置させることが困難であった。
すなわち、前述した特許文献2等に示されるように、一般に食品用途に用いられる容器蓋等に機能性樹脂を用いる場合には、例えばエチレンビニルアルコール共重合体等のガスバリア性樹脂の場合では水分の影響を回避するため、或いは酸素吸収剤を含有する場合では食品に直接接触する箇所は回避するため等の理由から、機能性樹脂は構造壁の中心部に位置するように形成されているが、機能性樹脂が酸素吸収性樹脂等の場合には、厚肉の基材樹脂でその表面を覆われてしまうと、吸収すべき酸素が酸素吸収性樹脂から成る層に効率よく到達できず、効率よく酸素吸収性を発現することが困難になるという問題を生じる。
その一方、構造体の表面付近にまで機能性樹脂を存在させるために機能性樹脂の量を多くすれば、コストの点で問題になり、或いは機械的強度や成形加工性等が低下するおそれがある。
また、機能性樹脂から成る複数の層を組み合わせることによりその効果を高めることも行われているが、圧縮成形によりこれらの層を効率よく形成することは困難であった。
However, in a container lid having a multilayer structure of a functional resin and another resin such as a base resin, a multilayer structure such as a container has functionality at a position where the excellent function of the functional resin can be sufficiently exhibited. It was difficult to locate the layer made of resin.
That is, as shown in Patent Document 2 and the like described above, when a functional resin is used for a container lid or the like generally used for food, for example, in the case of a gas barrier resin such as an ethylene vinyl alcohol copolymer, moisture The functional resin is formed so as to be located at the center of the structural wall for the purpose of avoiding the influence, or in order to avoid the point of direct contact with food in the case of containing an oxygen absorbent, When the functional resin is an oxygen-absorbing resin, etc., if the surface is covered with a thick base resin, the oxygen to be absorbed cannot reach the layer made of the oxygen-absorbing resin efficiently, and the efficiency This often causes a problem that it is difficult to develop oxygen absorption.
On the other hand, if the amount of the functional resin is increased in order to make the functional resin exist up to the vicinity of the surface of the structure, there is a possibility that it becomes a problem in terms of cost, or mechanical strength, molding processability, etc. are lowered. is there.
Moreover, although the effect is also heightened by combining several layers which consist of functional resin, it was difficult to form these layers efficiently by compression molding.

従って、本発明の目的は、機能性樹脂から成る層がその機能を充分に発揮し得る位置に形成された多層構造体を提供することである。
本発明の他の目的は、機能性樹脂から成る層がその機能を充分に発揮し得る位置に形成された多層構造体を圧縮成形により効率よく形成し得る製造方法を提供することである。
本発明の更に他の目的は、複数の機能を有する多層構造体を圧縮成形により効率よく成形可能な製造方法を提供することである。
Accordingly, an object of the present invention is to provide a multilayer structure in which a layer made of a functional resin is formed at a position where the function can be sufficiently exerted.
Another object of the present invention is to provide a production method capable of efficiently forming a multilayer structure formed at a position where a layer made of a functional resin can sufficiently exhibit its function by compression molding.
Still another object of the present invention is to provide a production method capable of efficiently forming a multilayer structure having a plurality of functions by compression molding.

本発明によれば、熱可塑性樹脂から成る基材樹脂層及び機能性樹脂から成る機能性樹脂層を有する多層構造体において、前記機能性樹脂層が第一の機能性樹脂から成るシェル層で基材樹脂又は第二の機能性樹脂から成るコア層を被覆して成り、前記基材樹脂層が機能性樹脂層を内包する多層構造を有することを特徴とする多層構造体が提供される。
本発明の多層構造体においては、
1.多層構造体が頂板部及び頂板部の周縁から垂下するスカート部とから成る容器蓋であって、少なくとも頂板部において前記多層構造が形成されていること、特に頂板部内面に容器蓋に用いた機能性樹脂とは異なる機能性樹脂から成る層を有する密封材が形成されていること、
2.多層構造体が口部、胴部及び底部から成るプリフォームであって、少なくとも胴部及び底部において、前記多層構造が形成されていること、
3.機能性樹脂が、ガスバリア性樹脂、酸素吸収性樹脂、環状オレフィン系樹脂、液晶ポリマーの何れかであること、
が好適である。
According to the present invention, in the multilayer structure having the base resin layer made of thermoplastic resin and the functional resin layer made of functional resin, the functional resin layer is based on the shell layer made of the first functional resin. There is provided a multilayer structure comprising a core layer made of a material resin or a second functional resin, wherein the base resin layer has a multilayer structure including the functional resin layer.
In the multilayer structure of the present invention,
1. The multi-layer structure is a container lid composed of a top plate portion and a skirt portion depending from the periphery of the top plate portion, and the multilayer structure is formed at least on the top plate portion, and in particular, the function used for the container lid on the inner surface of the top plate portion A sealing material having a layer made of a functional resin different from the functional resin is formed;
2. The multilayer structure is a preform comprising a mouth portion, a trunk portion and a bottom portion, and the multilayer structure is formed at least on the trunk portion and the bottom portion;
3. The functional resin is any of a gas barrier resin, an oxygen-absorbing resin, a cyclic olefin resin, and a liquid crystal polymer,
Is preferred.

本発明によれば、機能性樹脂から成る層がその機能を充分に発揮し得る位置に形成されていると共に、複数の機能を有する多層構造体を提供することが可能になる。
また、本発明によれば、機能性樹脂から成る層がその機能を充分に発揮し得る位置に形成されていると共に、複数の機能を有する多層構造体を圧縮成形により効率よく形成し得る製造方法を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the multilayer structure which has the layer which consists of a functional resin in the position which can fully exhibit the function, and has a some function.
In addition, according to the present invention, the layer made of the functional resin is formed at a position where the function can be sufficiently exerted, and the manufacturing method capable of efficiently forming a multilayer structure having a plurality of functions by compression molding Can be provided.

従来の多層構造体の一例である容器蓋を簡略化して示す側断面図。The sectional side view which simplifies and shows the container lid which is an example of the conventional multilayer structure. 本発明の多層構造体の一例である容器蓋を簡略化して示す側断面図。The sectional side view which simplifies and shows the container lid which is an example of the multilayer structure of this invention. 本発明の多層構造体の製造方法に用いられる溶融樹脂塊の断面構造を示す図。The figure which shows the cross-section of the molten resin lump used for the manufacturing method of the multilayer structure of this invention. 図3に示した溶融樹脂塊の製造工程を説明するための図。The figure for demonstrating the manufacturing process of the molten resin lump shown in FIG. 図3に示した溶融樹脂塊を用いて、図2に示す容器蓋を成形する工程を簡略化して示す図。The figure which simplifies and shows the process of shape | molding the container cover shown in FIG. 2 using the molten resin lump shown in FIG. 図5に示した成形工程で成形された容器蓋の頂板部内面に密封材を成形する工程を簡略化して示す図。The figure which simplifies and shows the process of shape | molding a sealing material in the top-plate part inner surface of the container lid shape | molded by the formation process shown in FIG.

本発明は、熱可塑性樹脂から成る基材樹脂層及び機能性樹脂から成る機能性樹脂層を有する多層構造体において、前記機能性樹脂層が第一の機能性樹脂から成るシェル層で基材樹脂又は第二の機能性樹脂から成るコア層を被覆して成り、前記基材樹脂層が機能性樹脂層を内包する多層構造を有していることが重要な特徴である。
このように、機能性樹脂層が、第一の機能性樹脂から成るシェル層と、基材樹脂或いは第二の機能性樹脂から成るコア層からなり、シェル層がコア層を被覆する構造になっていると共に、基材樹脂層がこの機能性樹脂層を内包するように存在していることにより、構造体の表面付近に存在させることが可能となり、多層構造体に機能性樹脂が有する機能を有効に発現することが可能となるのである。
The present invention relates to a multilayer structure having a base resin layer made of a thermoplastic resin and a functional resin layer made of a functional resin, wherein the functional resin layer is a shell layer made of a first functional resin. Alternatively, it is an important feature that it is formed by covering a core layer made of the second functional resin, and the base resin layer has a multilayer structure including the functional resin layer.
Thus, the functional resin layer is composed of a shell layer made of the first functional resin and a core layer made of the base resin or the second functional resin, and the shell layer covers the core layer. In addition, since the base resin layer is present so as to enclose the functional resin layer, it can be present near the surface of the structure, and the function that the functional resin has in the multilayer structure can be provided. It becomes possible to express effectively.

また、本発明においては、機能性樹脂層のコア層として、シェル層を構成する第一の機能性樹脂とは異なる第二の機能性樹脂を用いることにより、多層構造体に多機能を付与することが可能となるのである。例えば、後述するように、第一の基材樹脂として酸素吸収性樹脂、第二の機能性樹脂としてガスバリア性樹脂を用いることにより、効率よく容器内部の残存酸素を吸収できると共に、容器蓋を通しての透過酸素を遮断することが可能となり、内容物の酸素による影響を極めて少なくすることが可能となるのである。
また、本発明においては、機能性樹脂層のコア層に基材樹脂を用いることもでき、この場合には、少量の機能性樹脂を効率的に多層構造体の表面付近に存在させることが可能となるのである。
Moreover, in this invention, a multifunctional property is provided to a multilayer structure by using the 2nd functional resin different from the 1st functional resin which comprises a shell layer as a core layer of a functional resin layer. It becomes possible. For example, as will be described later, by using an oxygen-absorbing resin as the first base resin and a gas barrier resin as the second functional resin, it is possible to efficiently absorb the residual oxygen inside the container and to pass through the container lid. Permeated oxygen can be blocked, and the influence of oxygen on the contents can be extremely reduced.
In the present invention, a base resin can also be used for the core layer of the functional resin layer. In this case, a small amount of the functional resin can be efficiently present near the surface of the multilayer structure. It becomes.

図1及び図2は、多層構造体の一例である容器蓋を簡略化して示す側断面図であり、容器蓋1は、頂板部2及びスカート部3から成っている。図1は従来の容器蓋、図2は本発明の容器蓋をそれぞれ示すものである。図1及び図2の容器蓋1においては、何れも頂板部2のほぼ全域及びスカート部3の一部に機能性樹脂から成る層4が基材樹脂5に内包された状態で存在しているが、図1に示す従来の基材樹脂と機能性樹脂から成る容器蓋においては、機能性樹脂から成る層4が頂板部2の中心部に位置しているのに対して、図2に示す本発明の容器蓋は、機能性樹脂が基材樹脂から成るコア層6を被覆するシェル層4として存在し、この機能性樹脂のシェル層4が基材樹脂層5に内包された状態に存在しているため、図1に示す従来の容器蓋よりも器壁の表面側に機能性樹脂から成る層4が位置していることが明らかである。   FIG. 1 and FIG. 2 are side cross-sectional views showing a container lid that is an example of a multilayer structure in a simplified manner. The container lid 1 includes a top plate portion 2 and a skirt portion 3. FIG. 1 shows a conventional container lid, and FIG. 2 shows the container lid of the present invention. In the container lid 1 shown in FIGS. 1 and 2, the layer 4 made of a functional resin is included in the base resin 5 in almost the entire area of the top plate portion 2 and part of the skirt portion 3. However, in the container lid made of the conventional base resin and the functional resin shown in FIG. 1, the layer 4 made of the functional resin is located at the center of the top plate portion 2, whereas it is shown in FIG. The container lid of the present invention exists as a shell layer 4 that covers a core layer 6 made of a base resin made of a functional resin, and the functional resin shell layer 4 is included in the base resin layer 5. Therefore, it is clear that the layer 4 made of functional resin is located on the surface side of the vessel wall with respect to the conventional container lid shown in FIG.

上述した多層構造を有する本発明の多層構造体は、圧縮成形により成形することが好適であり、この際圧縮成形に供される溶融樹脂塊として、第一の機能性樹脂から成るシェル層で基材樹脂又は第二の機能性樹脂から成るコアを被覆して成る機能性樹脂塊を内部に有する溶融樹脂塊を用いることが重要である。このような構造を有する溶融樹脂塊を用いて圧縮成形することにより、かかる多層構造を維持した構造体を効率よく成形することが可能となるのである。   The multilayer structure of the present invention having the multilayer structure described above is preferably molded by compression molding. At this time, the molten resin mass used for compression molding is based on a shell layer made of the first functional resin. It is important to use a molten resin lump having a functional resin lump formed by coating a core made of a material resin or a second functional resin. By compression molding using a molten resin lump having such a structure, it is possible to efficiently mold a structure maintaining such a multilayer structure.

図3は、本発明の多層構造体の製造方法に用いられる溶融樹脂塊10の断面構造を示す図であり、第一の機能性樹脂から成るシェル層11で、基材樹脂又は第二の機能性樹脂から成るコア層12を被覆し、この機能性樹脂層を基材樹脂13で内包した構造を有している。
また、本発明の多層構造体は、上述した第一の機能性樹脂から成るシェル層、基材樹脂又は第二の機能性樹脂から成るコア層、基材樹脂層のそれぞれの層間に、或いは任意の層間に接着層を形成することが、基材樹脂層と機能性樹脂層間の剥離を抑制する点で好ましい。
FIG. 3 is a diagram showing a cross-sectional structure of the molten resin mass 10 used in the method for producing a multilayer structure according to the present invention. The shell layer 11 made of the first functional resin is used as a base resin or a second function. The core layer 12 made of a functional resin is covered, and the functional resin layer is included in the base resin 13.
In addition, the multilayer structure of the present invention may be provided between the shell layer made of the first functional resin, the core layer made of the base resin or the second functional resin, the base resin layer, or arbitrarily. It is preferable to form an adhesive layer between these layers from the viewpoint of suppressing peeling between the base resin layer and the functional resin layer.

図4は、図3に示す溶融樹脂塊の製造を説明するための図であり、圧縮成形装置における溶融樹脂のフィーダー部分20には、基材樹脂を供給する供給管21、第一の機能性樹脂を供給する供給管22、第二の機能性樹脂を供給する供給管23が形成されており、第一の機能性樹脂の供給管22及び第二の機能性樹脂の供給管23はピン24により溶融樹脂の流出口が開閉可能に形成されている。   FIG. 4 is a diagram for explaining the production of the molten resin mass shown in FIG. 3. In the molten resin feeder portion 20 in the compression molding apparatus, the supply pipe 21 for supplying the base resin, the first functionality is shown. A supply pipe 22 for supplying a resin and a supply pipe 23 for supplying a second functional resin are formed. The first functional resin supply pipe 22 and the second functional resin supply pipe 23 are provided with pins 24. Thus, the outlet of the molten resin is formed to be openable and closable.

図4(A)〜(E)から判るように、溶融状態にある基材樹脂13は供給管21から連続的に供給されており、次いで、ピン24が矢印の方向に上昇することにより、第一の機能性樹脂の供給管22の流出口が開いて、基材樹脂13の内部に第一の機能性樹脂11が流入する(図4(B))。ピン24が更に矢印の方向に上昇することにより、第二の機能性樹脂12の供給管23の流出口が開き、第二の機能性樹脂12が、先に供給された第一の機能性樹脂11の内部に流入する。この際第二の機能性樹脂の流出により、第一の機能性樹脂の供給管22からの流出は停止した状態にある(図4(C))。   As can be seen from FIGS. 4A to 4E, the base resin 13 in the molten state is continuously supplied from the supply pipe 21, and then the pin 24 is raised in the direction of the arrow, The outlet of the one functional resin supply pipe 22 is opened, and the first functional resin 11 flows into the base resin 13 (FIG. 4B). When the pin 24 further rises in the direction of the arrow, the outlet of the supply pipe 23 of the second functional resin 12 opens, and the second functional resin 12 is supplied to the first functional resin previously supplied. 11 flows into the interior. At this time, the outflow of the first functional resin from the supply pipe 22 is stopped by the outflow of the second functional resin (FIG. 4C).

次いで、ピン24が矢印の方向に下降することにより、第二の機能性樹脂の供給管23の流出口は閉じ、第一の機能性樹脂が再び流入する(図4(D))。更に、ピン24が矢印の方向に下降することにより、第一の機能性樹脂の供給管22の流出口も閉じられ、基材樹脂のみが供給されて、基材樹脂中に、第一の機能性樹脂から成るシェル層及び第二の機能性樹脂から成るコア層が形成された溶融樹脂流が形成される(図4(E))。この溶融樹脂流の基材樹脂だけが存在する部分をカッター等の切断手段で切断することにより、図3に示す構造の溶融樹脂塊が形成され、連続的に圧縮成形金型に供給することが可能となる。
尚、上述した第一の機能性樹脂から成るシェル層、基材樹脂又は第二の機能性樹脂から成るコア層、基材樹脂層のそれぞれの層間に、或いは上記層の任意の層間に接着層を形成する際は、図示しないが、接着層を構成する材料を供給する接着材供給管を、上記シェル層、コア層、基材樹脂層、或いは任意の層の樹脂供給管の間に設け、上記接着材供給管の流入口を、上述したピン24と同様のピン動作により開閉させて上記接着材を供給する。
Next, when the pin 24 descends in the direction of the arrow, the outlet of the second functional resin supply pipe 23 is closed, and the first functional resin flows again (FIG. 4D). Furthermore, when the pin 24 descends in the direction of the arrow, the outlet port of the first functional resin supply pipe 22 is also closed, and only the base resin is supplied. A molten resin flow in which a shell layer made of a functional resin and a core layer made of a second functional resin are formed is formed (FIG. 4E). By cutting the portion of the molten resin flow where only the base resin exists with a cutting means such as a cutter, a molten resin lump having the structure shown in FIG. 3 is formed and continuously supplied to the compression mold. It becomes possible.
The above-mentioned shell layer made of the first functional resin, the core layer made of the base resin or the second functional resin, the adhesive layer between the respective layers of the base resin layer, or between any of the above layers Although not shown, an adhesive supply pipe that supplies a material constituting the adhesive layer is provided between the shell layer, the core layer, the base resin layer, or an arbitrary layer of the resin supply pipe. The adhesive material is supplied by opening and closing the inlet of the adhesive material supply pipe by a pin operation similar to the pin 24 described above.

図5は、図3に示した溶融樹脂塊を用いて、図2に示す容器蓋を成形する工程を簡略化して示す図であり、図4に示す工程により製造された溶融樹脂塊10は、圧縮成形金型30内に溶融樹脂塊供給装置により供給され(図5(A))、次いで、雄型31が下降し、金型30と協働して、溶融樹脂塊10を容器蓋形状に圧縮した(図5(B))後、雄型31が上昇して金型30から離れ、容器蓋33が成形される(図5(C))。   FIG. 5 is a diagram showing a simplified process of molding the container lid shown in FIG. 2 using the molten resin lump shown in FIG. 3, and the molten resin lump 10 manufactured by the process shown in FIG. The molten resin lump is supplied into the compression mold 30 by the molten resin lump supply device (FIG. 5A), and then the male mold 31 is lowered and cooperates with the mold 30 to form the molten resin lump 10 into a container lid shape. After compression (FIG. 5 (B)), the male mold 31 rises and leaves the mold 30 to form the container lid 33 (FIG. 5 (C)).

本発明においては、上記方法により成形された容器蓋の頂板部内面に、容器蓋を成形する溶融樹脂塊で用いた機能性樹脂とは異なる機能性樹脂を内部に有する溶融樹脂塊を供給して圧縮成形することにより、容器蓋内面に密封材を一体的に成形することができ、容器蓋に用いた機能性樹脂とは異なる機能性樹脂を用いることにより、容器蓋に多機能を付与することができるという利点がある。
図6は、図5に示した成形工程で成形された容器蓋の頂板部内面に、密封材を成形する工程を簡略化して示す図であり、図4に示す工程により製造された溶融樹脂塊40は、圧縮成形金型30内に位置する容器蓋33の頂板部41に供給され(図6(A))、次いで、密封材成形のための雄型42が下降し、金型30及び容器蓋33と協働して、溶融樹脂塊40を密封材形状に圧縮した図6(B))後、雄型42が上昇して金型30及び容器蓋33から離れて、密封材43が形成された容器蓋33が成形される(図6(C))。
In the present invention, a molten resin lump having a functional resin inside which is different from the functional resin used in the molten resin lump forming the container lid is supplied to the inner surface of the top plate portion of the container lid formed by the above method. By compression molding, the sealing material can be integrally formed on the inner surface of the container lid, and by using a functional resin different from the functional resin used for the container lid, it is possible to give the container lid multiple functions. There is an advantage that can be.
FIG. 6 is a diagram showing a simplified process of molding a sealing material on the inner surface of the top plate portion of the container lid molded in the molding process shown in FIG. 5, and the molten resin mass produced by the process shown in FIG. 40 is supplied to the top plate portion 41 of the container lid 33 located in the compression mold 30 (FIG. 6A), and then the male mold 42 for molding the sealing material descends, and the mold 30 and the container After the molten resin mass 40 is compressed into a sealing material shape in cooperation with the lid 33, the male mold 42 is lifted away from the mold 30 and the container lid 33 to form the sealing material 43. The container lid 33 thus formed is formed (FIG. 6C).

(層構成)
本発明の多層構造体においては、第一の機能性樹脂からなるシェル層、第二の機能性樹脂或いは基材樹脂から成るコア層から成る機能性樹脂層を基材樹脂が内包した層構造を有していることが重要な特徴である。
また、上述したように接着層を形成してもよい。
前記シェル層及びコア層の組み合わせとしては、これに限定されないが、次の組み合わせ(シェル/コア)、酸素吸収性樹脂/基材樹脂、酸素吸収性樹脂/ガスバリア性樹脂、酸素吸収性樹脂/環状オレフィン系樹脂、酸素吸収性樹脂/液晶ポリマー、ガスバリア性樹脂/基材樹脂、ガスバリア性樹脂/環状オレフィン系樹脂、ガスバリア性樹脂/液晶ポリマー、ガスバリア性樹脂/酸素吸収性樹脂、環状オレフィン系樹脂/基材樹脂、液晶ポリマー/基材樹脂等を例示することができる。
このような層構造を形成するために基材樹脂、第一の機能性樹脂、第二の機能性樹脂の割合は、多層構造体に付与する機能や、多層構造体の用途によって異なり、一概に規定できないが、図1に示したような容器蓋を作成する場合には、溶融樹脂塊の状態で、基材樹脂と機能性樹脂の重量比率が99:1乃至70:30の範囲にあることが好ましい。
(Layer structure)
The multilayer structure of the present invention has a layer structure in which a base resin encapsulates a functional resin layer consisting of a shell layer made of the first functional resin, a core layer made of the second functional resin or the base resin. Having it is an important feature.
Further, as described above, an adhesive layer may be formed.
The combination of the shell layer and the core layer is not limited to this, but the following combination (shell / core), oxygen-absorbing resin / base resin, oxygen-absorbing resin / gas barrier resin, oxygen-absorbing resin / cyclic Olefin resin, oxygen-absorbing resin / liquid crystal polymer, gas barrier resin / base resin, gas barrier resin / cyclic olefin resin, gas barrier resin / liquid crystal polymer, gas barrier resin / oxygen-absorbing resin, cyclic olefin resin / Examples thereof include base resin, liquid crystal polymer / base resin, and the like.
In order to form such a layer structure, the ratio of the base resin, the first functional resin, and the second functional resin varies depending on the function imparted to the multilayer structure and the use of the multilayer structure. Although not specified, when creating a container lid as shown in FIG. 1, the weight ratio of the base resin to the functional resin is in the range of 99: 1 to 70:30 in a molten resin mass. Is preferred.

また、上述した製法により成形された密封材を有する容器蓋の場合においては、勿論これに限定されるものではないが、容器蓋に用いる機能性樹脂を、ガスバリア性樹脂、液晶ポリマー、環状オレフィン系樹脂の何れか或いはこれらの組み合わせとし、密封材には密封材を構成する基材樹脂の内部に酸素吸収性樹脂を含有させることが好適である。
すなわち、容器蓋においては、ガスバリア性樹脂を用いることにより外部からの透過酸素等を遮断でき、液晶ポリマーを用いることにより機械的強度が向上され、或いは環状オレフィン系樹脂を用いることにより外部からの水蒸気透過等を遮断することが可能となり、一方、密封材においては、酸素吸収性樹脂を用いることにより容器内部の残存酸素を有効に捕捉することが可能となるのであり、容器蓋及び密封材が有する機能が相俟って優れた特性を有する密封材付容器蓋を提供することが可能となるのである。
密封材を形成する溶融樹脂塊は、上述した溶融樹脂塊のような多層構造を形成してもよいが、機能性樹脂が基材樹脂内部に多分散された構造を形成したものでもよい。
In the case of a container lid having a sealing material formed by the above-described manufacturing method, of course, the functional resin used for the container lid is a gas barrier resin, a liquid crystal polymer, a cyclic olefin-based resin. It is preferable that any one of these resins or a combination thereof is used, and the sealing material preferably contains an oxygen-absorbing resin inside the base resin constituting the sealing material.
That is, in the container lid, the permeated oxygen from the outside can be blocked by using a gas barrier resin, the mechanical strength is improved by using a liquid crystal polymer, or the water vapor from the outside by using a cyclic olefin resin. On the other hand, in the sealing material, it is possible to effectively capture residual oxygen inside the container by using an oxygen-absorbing resin, and the container lid and the sealing material have This makes it possible to provide a container lid with a sealing material that has excellent characteristics in combination with functions.
The molten resin lump forming the sealing material may form a multilayer structure like the above-described molten resin lump, but may also have a structure in which the functional resin is polydispersed inside the base resin.

(基材樹脂)
本発明に用いることができる基材樹脂は、容器、容器蓋、ライナー等の密封材等に従来用いられていた全ての熱可塑性樹脂を用いることができる。
具体的には、溶融成形が可能であり且つ結晶化が可能なものであればよく、ポリオレフィン樹脂、熱可塑性ポリエステル樹脂、ポリカーボネート樹脂、ポリアクリロニトリル樹脂等の各種樹脂を挙げることができるが、特に、容器蓋及び密封材の形成に用いる場合にはポリオレフィン樹脂、プリフォームの形成に用いる場合には、熱可塑性ポリエステル樹脂を好適に使用できる。
(Base resin)
As the base resin that can be used in the present invention, all thermoplastic resins conventionally used for sealing materials such as containers, container lids, and liners can be used.
Specifically, any resin that can be melt-molded and crystallized may be used, and examples thereof include polyolefin resins, thermoplastic polyester resins, polycarbonate resins, and polyacrylonitrile resins. When used for forming a container lid and a sealing material, a polyolefin resin can be suitably used, and when used for forming a preform, a thermoplastic polyester resin can be suitably used.

ポリオレフィン樹脂としては、低密度ポリエチレン(LDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)、線状低密度ポリエチレン(LLDPE)、線状超低密度ポリエチレン(LVLDPE)等のポリエチレン(PE)、ポリプロピレン(PP)、エチレン−プロピレン共重合体、ポリブテン−1、エチレン−ブテン−1共重合体、プロピレン−ブテン−1共重合体、エチレン−プロピレン−ブテン−1共重合体、エチレン−酢酸ビニル共重合体、イオン架橋オレフィン共重合体(アイオノマー)或いはこれらのブレンド物等が挙げられる。
ポリオレフィン樹脂は、メルトフローレート(MFR)が0.1乃至25g/10分の範囲にあることが押出性の点から好ましい。
Polyolefin resins such as low density polyethylene (LDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), linear low density polyethylene (LLDPE), linear ultra low density polyethylene (LVLDPE), etc. , Polypropylene (PP), ethylene-propylene copolymer, polybutene-1, ethylene-butene-1 copolymer, propylene-butene-1 copolymer, ethylene-propylene-butene-1 copolymer, ethylene-vinyl acetate Examples thereof include copolymers, ion-crosslinked olefin copolymers (ionomers), and blends thereof.
The polyolefin resin preferably has a melt flow rate (MFR) in the range of 0.1 to 25 g / 10 min from the viewpoint of extrudability.

熱可塑性ポリエステル樹脂としては、例えばポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等の熱可塑性ポリエステルや、これらのポリエステルとポリカーボネートやアリレート樹脂等のブレンド物を用いることができる。本発明においては、エステル反復単位の大部分(一般に80モル%以上、特に80モル%以上)がエチレンテレフタレート単位であり、ガラス転移点(Tg)が50乃至90℃、特に55乃至80℃であり、且つ融点(Tm)が200乃至275℃、特に220乃至270℃のポリエチレンテレフタレート(PET)系ポリエステルが好適である。   Examples of the thermoplastic polyester resin include thermoplastic polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, and blends of these polyesters with polycarbonate and arylate resin. In the present invention, most of the ester repeating units (generally 80 mol% or more, particularly 80 mol% or more) are ethylene terephthalate units, and the glass transition point (Tg) is 50 to 90 ° C., particularly 55 to 80 ° C. Polyethylene terephthalate (PET) polyester having a melting point (Tm) of 200 to 275 ° C., particularly 220 to 270 ° C. is preferred.

また、PET系ポリエステルとしては、ホモポリエチレンテレフタレートが最適であるが、エチレンテレフタレート単位の含有量が上記範囲内にある共重合ポリエステルも好適に使用することができる。
かかる共重合ポリエステルにおいて、テレフタル酸以外の二塩基酸としては、イソフタル酸、フタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸;シクロヘキサンジカルボン酸等の脂環族ジカルボン酸;コハク酸、アジピン酸、セバチン酸、ドデカンジオン酸等の脂肪族ジカルボン酸;等の1種又は2種以上の組み合わせを例示することができ、エチレングリコール以外のジオール成分としては、プロピレングリコール、1,4−ブタンジオール、ジエチレングリコール、1,6−ヘキシレングリコール、シクロヘキサンジメタノール、ビスフェノールAのエチレンオキサイド付加物等の1種又は2種以上が挙げられる。
Further, homopolyethylene terephthalate is optimal as the PET-based polyester, but a copolyester having an ethylene terephthalate unit content within the above range can also be suitably used.
In such a copolyester, dibasic acids other than terephthalic acid include aromatic dicarboxylic acids such as isophthalic acid, phthalic acid and naphthalenedicarboxylic acid; alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid; succinic acid, adipic acid, and sebatin. Examples of the diol component other than ethylene glycol include propylene glycol, 1,4-butanediol, diethylene glycol, aliphatic dicarboxylic acid such as acid, dodecanedioic acid, and the like. One or two or more of 1,6-hexylene glycol, cyclohexanedimethanol, ethylene oxide adduct of bisphenol A and the like can be mentioned.

(機能性樹脂)
本発明に用いる機能性樹脂は、本発明の多層構造体に何らかの性能を付与するために用いられる上述した基材樹脂とは異なる樹脂を意味するものであり、具体的には、ガスバリア性樹脂、酸素吸収性樹脂、環状オレフィン系樹脂のような水蒸気バリア性に優れた樹脂、液晶ポリマーのように剛性、耐熱性等に優れた樹脂等を意味している。
(Functional resin)
The functional resin used in the present invention means a resin different from the above-described base resin used for imparting some performance to the multilayer structure of the present invention, specifically, a gas barrier resin, It means a resin excellent in water vapor barrier properties such as an oxygen-absorbing resin and a cyclic olefin resin, and a resin excellent in rigidity and heat resistance such as a liquid crystal polymer.

[ガスバリア性樹脂]
ガスバリア性樹脂の代表的なものとしては、エチレン−ビニルアルコール共重合体を挙げることができ、例えば、エチレン含有量が20乃至60モル%、特に25乃至50モル%のエチレン−酢酸ビニル共重合体を、ケン化度が96%以上、特に99モル%以上となるようにケン化して得られる共重合体ケン化物が好適である。このエチレン−ビニルアルコール共重合体(エチレン−酢酸ビニル共重合体ケン化物)は、フィルムを形成し得るに足る分子量を有するべきであり、一般に、[フェノール/水]の重量比が85/15の混合溶媒中、30℃で測定して0.01dl/g以上、特に0.05dl/g以上の固有粘度を有することが望ましい。
[Gas barrier resin]
Typical examples of the gas barrier resin include an ethylene-vinyl alcohol copolymer. For example, an ethylene-vinyl acetate copolymer having an ethylene content of 20 to 60 mol%, particularly 25 to 50 mol%. A saponified copolymer obtained by saponifying the saponification degree so as to have a saponification degree of 96% or more, particularly 99 mol% or more is preferred. The ethylene-vinyl alcohol copolymer (saponified ethylene-vinyl acetate copolymer) should have a molecular weight sufficient to form a film, and generally has a [phenol / water] weight ratio of 85/15. It is desirable to have an intrinsic viscosity of 0.01 dl / g or more, particularly 0.05 dl / g or more, measured at 30 ° C. in a mixed solvent.

また、エチレン−ビニルアルコール共重合体以外のガスバリア性樹脂の例としては、例えば、ナイロン6、ナイロン6・6、ナイロン6/6・6共重合体、メタキシリレンジアジパミド(MXD6)、ナイロン6・10、ナイロン11、ナイロン12、ナイロン13等のポリアミドを挙げることができる。これらのポリアミドの中でも、炭素数100個当りのアミド基の数が5乃至50個、特に6乃至20個の範囲にあるものが好適である。
これらのポリアミドもフィルムを形成するに足る分子量を有するべきであり、例えば、濃硫酸(濃度1.0g/dl)中、30℃で測定した相対粘度が1.1以上、特に1.5以上であることが望ましい。
Examples of the gas barrier resin other than the ethylene-vinyl alcohol copolymer include, for example, nylon 6, nylon 6/6, nylon 6/6/6 copolymer, metaxylylene adipamide (MXD6), nylon Polyamides such as 6.10, nylon 11, nylon 12, and nylon 13 can be mentioned. Among these polyamides, those having the number of amide groups per 100 carbon atoms in the range of 5 to 50, particularly 6 to 20 are preferable.
These polyamides should also have a molecular weight sufficient to form a film. For example, in concentrated sulfuric acid (concentration 1.0 g / dl), the relative viscosity measured at 30 ° C. is 1.1 or more, particularly 1.5 or more. It is desirable to be.

これらのポリアミドもフィルムを形成するに足る分子量を有するべきであり、例えば、濃硫酸(濃度1.0g/dl)中、30℃で測定した相対粘度が1.1以上、特に1.5以上であることが望ましい。
また、後述するように酸素吸収性樹脂組成物に、ポリアミドを使用する場合、末端アミノ基濃度が40eq/10g以上のポリアミド樹脂が、酸素吸収時の酸化劣化がないため望ましい。
These polyamides should also have a molecular weight sufficient to form a film. For example, the relative viscosity measured in concentrated sulfuric acid (concentration 1.0 g / dl) at 30 ° C. is 1.1 or more, particularly 1.5 or more. It is desirable to be.
Further, as will be described later, when polyamide is used for the oxygen-absorbing resin composition, a polyamide resin having a terminal amino group concentration of 40 eq / 10 6 g or more is desirable because there is no oxidative deterioration during oxygen absorption.

[酸素吸収性樹脂]
酸素吸収性樹脂としては、少なくとも酸化性有機成分及び遷移金属触媒(酸化触媒)から成る樹脂組成物を例示することができる。
酸化性有機成分及び遷移金属触媒を有する樹脂組成物は、酸化性有機成分及び遷移金属触媒のみから成るものであってもよいが、これら以外の樹脂を含むものであっても勿論よい。
酸化性有機成分及び遷移金属触媒と組み合わせで使用し得る樹脂としては、上述したオレフィン系樹脂やガスバリア性樹脂を挙げることができるが、特に、エチレンビニルアルコール共重合体やポリアミド樹脂(特に末端アミノ基濃度が40eq/10g以上のキシリレン基含有ポリアミド樹脂)を用いることが好適である。
[Oxygen absorbing resin]
Examples of the oxygen-absorbing resin include a resin composition comprising at least an oxidizing organic component and a transition metal catalyst (oxidation catalyst).
The resin composition having an oxidizing organic component and a transition metal catalyst may be composed only of the oxidizing organic component and the transition metal catalyst, but may of course contain other resins.
Examples of the resin that can be used in combination with the oxidizing organic component and the transition metal catalyst include the above-mentioned olefin resins and gas barrier resins, and in particular, ethylene vinyl alcohol copolymers and polyamide resins (especially terminal amino groups). It is preferable to use a xylylene group-containing polyamide resin having a concentration of 40 eq / 10 6 g or more.

(i)酸化性有機成分
酸化性有機成分としては、エチレン系不飽和基含有重合体を挙げることができる。この重合体は、炭素−炭素二重結合を有しており、この二重結合部分や特に二重結合部に隣接したαメチレンが酸素により容易に酸化され、これにより酸素の捕捉が行われる。
このようなエチレン系不飽和基含有重合体は、例えば、ポリエンを単量体として誘導され、ポリエンの単独重合体、或いは上記ポリエンを2種以上組み合わせ若しくは他の単量体と組み合わせてのランダム共重合体、ブロック共重合体等を酸化性重合体として用いることができる。
ポリエンから誘導される重合体の中でも、ポリブタジエン(BR)、ポリイソプレン(IR)、天然ゴム、ニトリル−ブタジエンゴム(NBR)、スチレン−ブタジエンゴム(SBR)、クロロプレンゴム、エチレン−プロピレン−ジエンゴム(EPDM)等が好適であるが、勿論、これらに限定されない。
(I) Oxidizing organic component Examples of the oxidizing organic component include an ethylenically unsaturated group-containing polymer. This polymer has a carbon-carbon double bond, and this methylene bond adjacent to the double bond portion and particularly the double bond portion is easily oxidized by oxygen, whereby oxygen is trapped.
Such an ethylenically unsaturated group-containing polymer is derived from, for example, polyene as a monomer, and is a random copolymer of a polyene homopolymer or a combination of two or more of the above polyenes or other monomers. A polymer, a block copolymer, etc. can be used as an oxidizing polymer.
Among polymers derived from polyene, polybutadiene (BR), polyisoprene (IR), natural rubber, nitrile-butadiene rubber (NBR), styrene-butadiene rubber (SBR), chloroprene rubber, ethylene-propylene-diene rubber (EPDM) ) And the like are preferred, but of course not limited thereto.

また、上述したエチレン系不飽和基含有重合体以外にも、それ自体酸化されやすい重合体、例えばポリプロピレン、エチレン・プロピレン共重合体、或いは末端アミノ基濃度が40eq/10g未満のポリメタキシリレンジアジパミド等も酸化性有機成分として使用することができる。
尚、成形性等の見地から、上述した酸化性重合体やその共重合体の40℃での粘度は1乃至200Pa・sの範囲にあることが好適である。
これらのポリエン系重合体は、カルボン酸基、カルボン酸無水物基、水酸基が導入された酸変性ポリエン重合体であることが好ましい。
これらの酸化性重合体、或いはその共重合体からなる酸化性有機成分は、酸素吸収性樹脂中で0.01乃至10重量%の割合で含有されることが好ましい。
In addition to the above-mentioned ethylenically unsaturated group-containing polymer, a polymer that is easily oxidized, such as polypropylene, an ethylene / propylene copolymer, or a polymetaxylylene having a terminal amino group concentration of less than 40 eq / 10 6 g. Range adipamide and the like can also be used as the oxidizing organic component.
From the standpoint of moldability and the like, it is preferable that the above-mentioned oxidizing polymer or copolymer thereof has a viscosity at 40 ° C. in the range of 1 to 200 Pa · s.
These polyene polymers are preferably acid-modified polyene polymers into which a carboxylic acid group, a carboxylic anhydride group, or a hydroxyl group has been introduced.
The oxidizing organic component comprising these oxidizing polymers or copolymers thereof is preferably contained in the oxygen-absorbing resin in a proportion of 0.01 to 10% by weight.

(ii)遷移金属系触媒
遷移金属系触媒としては、鉄、コバルト、ニッケル等の周期律表第VIII族金属が好適であるが、他に銅、銀等の第I族金属、錫、チタン、ジルコニウム等の第IV族金属、バナジウム等の第V族金属、クロム等の第VI族金属、マンガン等の第VII族金属等であってもよい。
遷移金属触媒は、一般に、上記遷移金属の低価数の無機塩、有機塩或いは錯塩の形で使用される。無機塩としては、塩化物等のハライド、硫酸塩等のイオウのオキシ塩、硝酸塩等の窒素のオキシ酸塩、リン酸塩等のリンオキシ塩、ケイ酸塩等を挙げることができる。有機塩としては、カルボン酸塩、スルホン酸塩、ホスホン酸塩等を挙げることができる。また、遷移金属の錯体としては、β−ジケトンまたはβ−ケト酸エステルとの錯体が挙げられる。
遷移金属系触媒は酸素吸収性樹脂中で、遷移金属原子の濃度(重量濃度基準)として100乃至3000ppmの範囲であることが好ましい。
(Ii) Transition metal-based catalyst As the transition metal-based catalyst, Group VIII metals of the periodic table such as iron, cobalt, nickel and the like are suitable, but also Group I metals such as copper and silver, tin, titanium, It may be a Group IV metal such as zirconium, a Group V metal such as vanadium, a Group VI metal such as chromium, a Group VII metal such as manganese, or the like.
The transition metal catalyst is generally used in the form of a low-valent inorganic salt, organic salt or complex salt of the transition metal. Examples of inorganic salts include halides such as chlorides, sulfur oxysalts such as sulfates, nitrogen oxysalts such as nitrates, phosphorus oxysalts such as phosphates, and silicates. Examples of the organic salt include carboxylate, sulfonate, phosphonate and the like. Examples of the transition metal complex include complexes with β-diketone or β-keto acid ester.
The transition metal catalyst is preferably in the range of 100 to 3000 ppm as the transition metal atom concentration (weight concentration basis) in the oxygen-absorbing resin.

[その他の機能性樹脂]
本発明に好適に用いることができる機能性樹脂としては、上記ガスバリア性樹脂、酸素吸収性樹脂の他に、環状オレフィン系樹脂や液晶ポリマー等を挙げることができる。
環状オレフィン系樹脂は、一般に耐熱性、耐湿性、水蒸気バリア性等の諸特性が汎用熱可塑性樹脂に比して優れており、かかる環状オレフィン系樹脂を用いることにより、多層構造体に優れた特性を付与することが可能となる。
環状オレフィンとしては、従来より包装容器等に用いられていた従来公知の環状オレフィンを用いることができ、一般には、エチレン系不飽和結合とビシクロ環とを有する脂環族炭化水素化合物、いわゆるノルボルネン系モノマーを、公知の開環重合法により重合し、水素添加して得られる飽和重合体を挙げることができる。
また、環状オレフィン系樹脂としては、環状オレフィンの単独重合体の他、オレフィンと環状オレフィン との共重合体を用いることができる。オレフィンと環状オレフィン との非晶質乃至低結晶性共重合体(COC)が誘導されるオレフィンとしては、エチレンが好適であるが、他にプロピレン、1−ブテン、1−ペンテン、1ーヘキセン、1−オクテン、3ーメチル1−ペンテン、1−デセン等の炭素数3乃至20のα−オレフィンが、単独或いはエチレンとの組み合わせで使用し得る。
好適な環状オレフィンとしては、三井石油化学株式会社から、APELの商品名で入手しうる。
[Other functional resins]
Examples of the functional resin that can be suitably used in the present invention include cyclic olefin resins and liquid crystal polymers in addition to the gas barrier resin and the oxygen-absorbing resin.
Cyclic olefin resins are generally superior in properties such as heat resistance, moisture resistance, and water vapor barrier properties to general-purpose thermoplastic resins, and by using such cyclic olefin resins, properties superior in multilayer structures Can be given.
As the cyclic olefin, a conventionally known cyclic olefin that has been conventionally used for packaging containers and the like can be used, and in general, an alicyclic hydrocarbon compound having an ethylenically unsaturated bond and a bicyclo ring, so-called norbornene type The saturated polymer obtained by superposing | polymerizing a monomer by a well-known ring-opening polymerization method and hydrogenating can be mentioned.
As the cyclic olefin-based resin, a copolymer of olefin and cyclic olefin can be used in addition to a homopolymer of cyclic olefin. As the olefin from which an amorphous or low crystalline copolymer (COC) of olefin and cyclic olefin is derived, ethylene is suitable, but propylene, 1-butene, 1-pentene, 1-hexene, 1 An α-olefin having 3 to 20 carbon atoms such as octene, 3-methyl 1-pentene, 1-decene, etc. can be used alone or in combination with ethylene.
A suitable cyclic olefin is available from Mitsui Petrochemical Co., Ltd. under the trade name APEL.

液晶ポリマーは、一般に剛性、耐熱性、バリア性等の諸特性が汎用熱可塑性樹脂に比して優れており、かかる液晶ポリマーを用いることにより多層構造体に優れた特性を付与することが可能となる。
液晶ポリマーとしては、従来公知のリオトロピック液晶ポリマーやサーモトロピック液晶ポリマー等の溶液或いは溶融状態で液晶性を示す高分子を用いることができる。
具体的には、(イ)芳香族ジカルボン酸と芳香族ジオールと芳香族ヒドロキシカルボン酸とを反応させて得られたもの、(ロ)異種の芳香族ヒドロキシカルボン酸同士を反応させて得られたもの、(ハ)芳香族ジカルボン酸と芳香族ジオールとを反応させて得られたもの、(ニ)ポリエチレンテレフタレート等のポリエステルに芳香族ヒドロキシカルボン酸を反応させて得られたもの、等を挙げることができるが、勿論これに限定されない。
Liquid crystal polymers are generally superior in properties such as rigidity, heat resistance, and barrier properties compared to general-purpose thermoplastic resins, and by using such liquid crystal polymers, it is possible to impart excellent properties to multilayer structures. Become.
As the liquid crystal polymer, a conventionally known lyotropic liquid crystal polymer, thermotropic liquid crystal polymer, or the like, or a polymer exhibiting liquid crystallinity in a molten state can be used.
Specifically, (b) obtained by reacting aromatic dicarboxylic acid, aromatic diol and aromatic hydroxycarboxylic acid, (b) obtained by reacting different aromatic hydroxycarboxylic acids with each other. (C) those obtained by reacting an aromatic dicarboxylic acid and an aromatic diol, (iv) those obtained by reacting an aromatic hydroxycarboxylic acid with a polyester such as polyethylene terephthalate, etc. Of course, it is not limited to this.

[接着層樹脂]
接着層としては、例えば酸変性ポリプロピレン、酸変性高密度ポリエチレン、酸変性低密度ポリエチレン、或いは酸変性エチレン−酢酸ビニル共重合体等の酸変性ポリオレフィンが挙げることができるが、勿論これに限定されない。
[Adhesive layer resin]
Examples of the adhesive layer include acid-modified polyolefins such as acid-modified polypropylene, acid-modified high-density polyethylene, acid-modified low-density polyethylene, and acid-modified ethylene-vinyl acetate copolymer, but are not limited thereto.

(多層構造体)
本発明の多層構造体は、上述した容器蓋の他、容器、プリフォーム、密封材(ライナー材)等種々の形態をとることができる。
容器としては、前述した溶融樹脂塊を圧縮成形することにより直接成形することができ、カップ、トレイ等種々の形状のものに成形でき、少なくとも胴部及び底部において、前述した多層構造が形成されていればよい。
また、プリフォームとしては、容器口部、胴部及び底部から成るプリフォームであって、少なくとも胴部及び底部において、前述した多層構造が形成されていればよく、必要により口部を熱結晶化した後、二軸延伸ブロー成形等の延伸成形に付され、ボトル、カップ等に成形される。
更に、密封材としては、別途形成されたキャップシェルに適用可能な平板状等の形状のもの等を成形することができる。
(Multilayer structure)
The multilayer structure of the present invention can take various forms such as a container, a preform, and a sealing material (liner material) in addition to the container lid described above.
The container can be directly molded by compression molding the above-mentioned molten resin mass, and can be molded into various shapes such as cups and trays, and the aforementioned multilayer structure is formed at least at the trunk and bottom. Just do it.
Further, the preform is a preform composed of a container mouth portion, a trunk portion, and a bottom portion, and it is sufficient that the multilayer structure described above is formed at least at the trunk portion and the bottom portion. If necessary, the mouth portion is thermally crystallized. After that, it is subjected to stretch molding such as biaxial stretch blow molding, and formed into a bottle, a cup or the like.
Furthermore, as a sealing material, the thing of shapes, such as flat form applicable to the cap shell formed separately, etc. can be shape | molded.

(成形条件)
本発明の多層構造体は、前述した多層構造を有する溶融樹脂塊を圧縮成形機に供給して圧縮成形する以外は、従来公知の圧縮成形法により成形することができる。
溶融樹脂の押出温度(ダイヘッドの温度)は、使用する樹脂の種類によっても相違するが、一般に基材樹脂の融点(Tm)を基準として、Tm+20℃乃至Tm+60℃の範囲にあるのが好ましい。上記範囲よりも低い温度では、剪断速度が大きくなりすぎで一様な溶融押出物を形成することが困難になる場合があり、一方上記範囲よりも高温では、樹脂の熱劣化の程度が大きくなると共に、ドローダウンが大きくなりすぎる傾向があるので好ましくない。
圧縮成形型の表面温度は溶融樹脂の固化が生じる温度であればよく、一般に10乃至50℃の温度範囲が適当である。
(Molding condition)
The multilayer structure of the present invention can be molded by a conventionally known compression molding method except that the molten resin mass having the multilayer structure described above is supplied to a compression molding machine and compression molded.
Although the extrusion temperature of the molten resin (die head temperature) varies depending on the type of resin used, it is generally preferably in the range of Tm + 20 ° C. to Tm + 60 ° C. based on the melting point (Tm) of the base resin. If the temperature is lower than the above range, the shear rate may become too high to form a uniform melt extrudate, whereas if the temperature is higher than the above range, the degree of thermal degradation of the resin increases. At the same time, the drawdown tends to be too large, which is not preferable.
The surface temperature of the compression mold may be a temperature at which the molten resin is solidified, and a temperature range of 10 to 50 ° C. is generally appropriate.

[評価方法]
1.酸素透過量
内容量200ccのガラス容器の口頸部のネジ部に、窒素ガス雰囲気中でキャップを装着し、装着直後の容器内の酸素濃度をガスクロメーター[GC−3BT島津製作所(株)製]で測定した。
次いで、このキャップを装着した容器を、温度30℃、湿度80%の大気中に10日間放置後、同様に容器内の酸素濃度を測定し、この酸素濃度から10日間の酸素透過量を算出し、1日当たりの平均酸素透過量(cc/cap/day)を求めた。
[Evaluation methods]
1. Oxygen transmission amount A cap is attached to the screw part of the mouth and neck of a glass container with an internal volume of 200 cc in a nitrogen gas atmosphere, and the oxygen concentration in the container immediately after installation is measured with a gas chromatograph [GC-3BT Shimadzu Corporation]. Measured with
Next, the container equipped with this cap is left in the atmosphere at a temperature of 30 ° C. and a humidity of 80% for 10 days. Similarly, the oxygen concentration in the container is measured, and the oxygen permeation amount for 10 days is calculated from the oxygen concentration. The average oxygen permeation amount (cc / cap / day) per day was determined.

(実施例1)
キャップを形成する基材樹脂としてポリプロピレン樹脂(PP)、シェル層の第一の機能性樹脂としてエチレン−ビニルアルコール共重合体(EVOH)、コア層として基材樹脂のポリプロピレン樹脂を用い、これらの樹脂を押出機により可塑化する共に図4に示す多層ダイシステムに供給し、基材樹脂と機能樹脂の重量比率が97:3の断面形状が図3に示す重量3gの多層溶融樹脂塊を形成した。
この多層溶融樹脂塊を、図5に示す金型キャビティ内に配置し、雄型で圧縮成形、冷却を行い、以下の寸法の図2に示すキャップを作成し、評価した。
高さ:20mm、口径:28mm、頂板部の平均厚み:2mm
シェル層の平均厚み:0.07mm、コア層の平均厚み:0.66mm
Example 1
Polypropylene resin (PP) is used as the base resin for forming the cap, ethylene-vinyl alcohol copolymer (EVOH) is used as the first functional resin in the shell layer, and polypropylene resin as the base resin is used as the core layer. 4 is supplied to the multilayer die system shown in FIG. 4 to form a multilayer molten resin mass having a weight ratio of 97: 3 between the base resin and the functional resin and a weight of 3 g shown in FIG. .
This multilayer molten resin lump was placed in the mold cavity shown in FIG. 5, compression molded and cooled with a male mold, and a cap shown in FIG. 2 having the following dimensions was prepared and evaluated.
Height: 20 mm, aperture: 28 mm, top plate average thickness: 2 mm
Average thickness of shell layer: 0.07 mm, average thickness of core layer: 0.66 mm

(実施例2)
コア層の第二の機能性樹脂として環状オレフィンを用いた以外は、実施例1と同様のキャップを作成し、評価した。
(Example 2)
A cap similar to Example 1 was prepared and evaluated except that a cyclic olefin was used as the second functional resin of the core layer.

(比較例1)
コア層を形成せず、平均厚み0.14mmのエチレン−ビニルアルコール共重合体(EVOH)から成る機能性樹脂層を、頂板部の厚みの中心部に形成した図1に示す多層構造のキャップとした以外は、実施例1と同様にキャップを作成し、評価した。
(Comparative Example 1)
A multi-layered cap shown in FIG. 1 in which a functional resin layer made of an ethylene-vinyl alcohol copolymer (EVOH) having an average thickness of 0.14 mm without forming a core layer is formed at the center of the thickness of the top plate portion; A cap was prepared and evaluated in the same manner as in Example 1 except that.

(比較例2)
平均厚み0.14mmのエチレン−ビニルアルコール共重合体(EVOH)から成る機能性樹脂層、平均厚み0.2mmの中間基材樹脂層、及び平均厚み0.3mmの環状オレフィンから成る機能性樹脂層を順次、上方から頂板部の厚みの中心部に形成した図1に示す多層構造のキャップとした以外は、実施例2と同様にキャップを作成し、評価した。
(Comparative Example 2)
Functional resin layer made of ethylene-vinyl alcohol copolymer (EVOH) having an average thickness of 0.14 mm, intermediate base resin layer having an average thickness of 0.2 mm, and functional resin layer made of cyclic olefin having an average thickness of 0.3 mm A cap was prepared and evaluated in the same manner as in Example 2 except that the multi-layered cap shown in FIG. 1 was formed in the center of the thickness of the top plate portion from above.

Figure 2010064490
Figure 2010064490

本発明の多層構造体は、バリア性や酸素吸収性等の機能性樹脂が効率よくその機能を発揮し得る層構造が形成されているため、これらの機能が要求される食品等の包装容器に好適に使用することができる。   Since the multilayer structure of the present invention has a layer structure in which functional resins such as barrier properties and oxygen absorbability can efficiently perform their functions, it is suitable for packaging containers such as foods that require these functions. It can be preferably used.

1 容器蓋、2 頂板部、3 スカート部、4 機能性樹脂から成る層、5 基材樹脂、6 基材樹脂から成るコア層。   1 container lid, 2 top plate part, 3 skirt part, 4 layer made of functional resin, 5 base resin, 6 core layer made of base resin.

Claims (5)

熱可塑性樹脂から成る基材樹脂層及び機能性樹脂から成る機能性樹脂層を有する多層構造体において、
前記機能性樹脂層が第一の機能性樹脂から成るシェル層で基材樹脂又は第二の機能性樹脂から成るコア層を被覆して成り、前記基材樹脂層が機能性樹脂層を内包する多層構造を有し、圧縮成形により成形されていることを特徴とする多層構造体。
In a multilayer structure having a base resin layer made of a thermoplastic resin and a functional resin layer made of a functional resin,
The functional resin layer is formed by covering a core layer made of a base resin or a second functional resin with a shell layer made of a first functional resin, and the base resin layer encapsulates the functional resin layer. A multilayer structure having a multilayer structure and formed by compression molding.
前記多層構造体が頂板部及び頂板部の周縁から垂下するスカート部とから成る容器蓋であって、少なくとも頂板部において前記多層構造が形成されている請求項1記載の多層構造体。   The multilayer structure according to claim 1, wherein the multilayer structure is a container lid including a top plate portion and a skirt portion depending from a peripheral edge of the top plate portion, and the multilayer structure is formed at least on the top plate portion. 前記頂板部内面に容器蓋に用いた機能性樹脂とは異なる機能性樹脂から成る層を有する密封材が形成されている請求項2記載の多層構造体。   The multilayer structure according to claim 2, wherein a sealing material having a layer made of a functional resin different from the functional resin used for the container lid is formed on the inner surface of the top plate portion. 前記多層構造体が口部、胴部及び底部から成るプリフォームであって、少なくとも胴部及び底部において、前記多層構造が形成されている請求項1記載の多層構造体。   The multilayer structure according to claim 1, wherein the multilayer structure is a preform including a mouth portion, a trunk portion, and a bottom portion, and the multilayer structure is formed at least at the trunk portion and the bottom portion. 前記機能性樹脂が、ガスバリア性樹脂、酸素吸収性樹脂、環状オレフィン系樹脂、液晶ポリマーの何れかである請求項1乃至4の何れかに記載の多層構造体。   The multilayer structure according to any one of claims 1 to 4, wherein the functional resin is any one of a gas barrier resin, an oxygen-absorbing resin, a cyclic olefin resin, and a liquid crystal polymer.
JP2009254619A 2009-11-06 2009-11-06 Multilayer structure Expired - Fee Related JP5286504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009254619A JP5286504B2 (en) 2009-11-06 2009-11-06 Multilayer structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009254619A JP5286504B2 (en) 2009-11-06 2009-11-06 Multilayer structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004161647A Division JP4442325B2 (en) 2004-05-31 2004-05-31 Method for producing multilayer structure

Publications (2)

Publication Number Publication Date
JP2010064490A true JP2010064490A (en) 2010-03-25
JP5286504B2 JP5286504B2 (en) 2013-09-11

Family

ID=42190468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009254619A Expired - Fee Related JP5286504B2 (en) 2009-11-06 2009-11-06 Multilayer structure

Country Status (1)

Country Link
JP (1) JP5286504B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294426A (en) * 1988-05-24 1989-11-28 Mitsubishi Gas Chem Co Inc Multiple layer container
JPH0298415A (en) * 1988-10-06 1990-04-10 Ueno Hiroshi Manufacture of compression molding having multilayer structure
JPH0728852U (en) * 1993-11-18 1995-05-30 凸版印刷株式会社 Gas barrier cap with hinge lid
JPH09216315A (en) * 1996-02-15 1997-08-19 Kishimoto Akira Composite synthetic resin cover
JP2000503942A (en) * 1996-01-25 2000-04-04 フオスター・ミラー・インコーポレイテツド Long-term storage containers for retortable food
JP2000326393A (en) * 1999-05-18 2000-11-28 Showa Denko Kk Multilayer bottle, its preform and their manufacture
JP2002328237A (en) * 2001-04-26 2002-11-15 Alps Electric Co Ltd Light transmission plate, and method of manufacturing light transmission plate as well as illuminator and liquid crystal display device
JP2002361720A (en) * 2001-06-07 2002-12-18 Toyo Seikan Kaisha Ltd Method for uniformly heating and cooling preform and apparatus therefor
JP2003033964A (en) * 2001-07-26 2003-02-04 Toyo Seikan Kaisha Ltd Multi-layer bottle
JP2003191277A (en) * 2001-12-27 2003-07-08 Nippon Pop Rivets & Fasteners Ltd Method and apparatus for manufacturing skin/resin substrate material integrated molded product

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294426A (en) * 1988-05-24 1989-11-28 Mitsubishi Gas Chem Co Inc Multiple layer container
JPH0298415A (en) * 1988-10-06 1990-04-10 Ueno Hiroshi Manufacture of compression molding having multilayer structure
JPH0728852U (en) * 1993-11-18 1995-05-30 凸版印刷株式会社 Gas barrier cap with hinge lid
JP2000503942A (en) * 1996-01-25 2000-04-04 フオスター・ミラー・インコーポレイテツド Long-term storage containers for retortable food
JPH09216315A (en) * 1996-02-15 1997-08-19 Kishimoto Akira Composite synthetic resin cover
JP2000326393A (en) * 1999-05-18 2000-11-28 Showa Denko Kk Multilayer bottle, its preform and their manufacture
JP2002328237A (en) * 2001-04-26 2002-11-15 Alps Electric Co Ltd Light transmission plate, and method of manufacturing light transmission plate as well as illuminator and liquid crystal display device
JP2002361720A (en) * 2001-06-07 2002-12-18 Toyo Seikan Kaisha Ltd Method for uniformly heating and cooling preform and apparatus therefor
JP2003033964A (en) * 2001-07-26 2003-02-04 Toyo Seikan Kaisha Ltd Multi-layer bottle
JP2003191277A (en) * 2001-12-27 2003-07-08 Nippon Pop Rivets & Fasteners Ltd Method and apparatus for manufacturing skin/resin substrate material integrated molded product

Also Published As

Publication number Publication date
JP5286504B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
KR101186401B1 (en) Multi-layer structure and production method therefor
JP6996978B2 (en) Laminated sheets and molded containers
KR101799167B1 (en) Multilayer container
CN107848657B (en) Cup-shaped multilayer container
JP2003012944A (en) Resin composition having excellent moldability and gas barrier property, and packaging material
JPH04211444A (en) Oxygen barrier resin composition
KR101113398B1 (en) Multilayer structure for packaging
JP5019000B2 (en) Multilayer structure
JP2007283568A (en) Oxygen-barrier multilayer film and multilayer package and multilayer container using the same
JP6185234B2 (en) Cup-type container and molding method thereof
JP2004161796A (en) Resin composition having excellent moldability and gas barrier property and packaging material
JP5286504B2 (en) Multilayer structure
KR102320660B1 (en) multi-layer container
JP6880553B2 (en) Composite container and its manufacturing method
JP3788442B2 (en) Multi-layer structure for packaging
JP3951752B2 (en) Plastic multilayer container
JP3912143B2 (en) Plastic multilayer container
JP4258303B2 (en) Package
JP4186586B2 (en) Oxygen-absorbing barrier material composition
JP2019182478A (en) Container for microwave heating and its manufacturing method
JP2002145351A (en) Oxygen absorbing plastic container
JP2510602B2 (en) Gas-barrier heat-resistant multi-layer polyester container
JP2013035586A (en) Resin composition, cover material for polyethylene terephthalate-made container, and packaging container
KR20170134619A (en) Multilayer container
JP2005067609A (en) Package with multi-layer structure

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130513

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130506

R150 Certificate of patent or registration of utility model

Ref document number: 5286504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees