JP2010064097A - Cooling apparatus of steel material - Google Patents

Cooling apparatus of steel material Download PDF

Info

Publication number
JP2010064097A
JP2010064097A JP2008231821A JP2008231821A JP2010064097A JP 2010064097 A JP2010064097 A JP 2010064097A JP 2008231821 A JP2008231821 A JP 2008231821A JP 2008231821 A JP2008231821 A JP 2008231821A JP 2010064097 A JP2010064097 A JP 2010064097A
Authority
JP
Japan
Prior art keywords
cooling
cooling water
water
steel material
partition wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008231821A
Other languages
Japanese (ja)
Other versions
JP5597916B2 (en
Inventor
Naoki Nakada
直樹 中田
Teruo Fujibayashi
晃夫 藤林
Hiroyuki Fukuda
啓之 福田
Kenji Hirata
健二 平田
Takayuki Komai
孝行 古米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2008231821A priority Critical patent/JP5597916B2/en
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to PCT/JP2009/063142 priority patent/WO2010008090A1/en
Priority to US13/003,970 priority patent/US8881568B2/en
Priority to EP09798014.8A priority patent/EP2329894B1/en
Priority to KR1020117000800A priority patent/KR101291832B1/en
Priority to EP15159053.6A priority patent/EP2910317B1/en
Priority to CN200980127773.3A priority patent/CN102099130B/en
Publication of JP2010064097A publication Critical patent/JP2010064097A/en
Application granted granted Critical
Publication of JP5597916B2 publication Critical patent/JP5597916B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology for uniformly cooling a hot steel plate at high cooling rate when feeding cooling water to upper and lower surfaces of the hot steel plate. <P>SOLUTION: This invention relates to a steel material cooling apparatus installed on a hot rolling line of steel material, which is provided with a header for feeding cooling water to surfaces of the steel material, a cooling water jetting nozzle extending from the header, and a bulkhead installed between the steel material and the header, wherein the bulkhead is provided with a large number of water feed ports with a fore end of the cooling water jetting nozzle being inserted therein, and a large number of water discharge ports for discharging cooling water fed to the surfaces of the steel material to a back side of the bulkhead, and the water discharge ports are arrayed on circumcenters of triangles consisting of three segments connecting the adjacent water feed ports to each other or bisected points of each ridge of the triangle. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、鋼材の冷却設備に関するものである。   The present invention relates to a steel material cooling facility.

熱間圧延によって厚板や薄板などの鋼板を製造するプロセスでは、例えば図15に示すような設備において、熱間粗圧延・仕上圧延を行った後、水冷または空冷を行って組織を制御している。水冷によって比較的低い温度、例えば450〜650℃程度に冷却すると、微細なフェライトやベイナイト組織が得られ、鋼板の強度を確保できるので、スプレー冷却水やラミナー冷却水などによって鋼板を冷却する技術が一般的である。また近年では、高い冷却速度を得て組織をより微細化し、鋼板の強度を上げる技術の開発が盛んである。   In the process of manufacturing steel plates such as thick plates and thin plates by hot rolling, for example, in equipment as shown in FIG. 15, after hot rough rolling / finish rolling, water cooling or air cooling is performed to control the structure. Yes. When cooling to a relatively low temperature, for example, about 450 to 650 ° C. by water cooling, fine ferrite and bainite structure can be obtained and the strength of the steel sheet can be secured. Therefore, there is a technology for cooling the steel sheet with spray cooling water, laminar cooling water, etc. It is common. In recent years, the development of techniques for increasing the strength of steel sheets by obtaining a high cooling rate and making the structure finer is increasing.

例えば、大量の棒状冷却水を供給して熱鋼板を冷却する技術として特許文献1や特許文献2の技術がある。これは、鋼板の上下面に多数設置したノズルから冷却水を高速で噴射するものであり、非常に高い冷却速度を得ることができ、材料特性に優れた製品を製造出来るとされている。   For example, there are technologies of Patent Document 1 and Patent Document 2 as a technology for cooling a hot steel sheet by supplying a large amount of rod-shaped cooling water. This is one in which cooling water is jetted at high speed from nozzles installed on the upper and lower surfaces of a steel plate, and a very high cooling rate can be obtained and a product excellent in material characteristics can be manufactured.

また、冷却水を供給して熱鋼板を冷却する別の技術として、特許文献3の技術がある。これは、ノズルから噴射した冷却水を鋼板とロールと側壁とで囲まれる領域に充満させてプールを形成するものであり、定常的な冷却状態となって幅方向の冷却むらを低減することができるとされている。
特開2002−239623号公報 特開2004−66308号公報 特開2006−35233号公報
Moreover, there exists a technique of patent document 3 as another technique which cools a hot-steel plate by supplying cooling water. This is to form a pool by filling the area surrounded by the steel plate, roll and side wall with the cooling water sprayed from the nozzle, and it becomes a steady cooling state and reduces uneven cooling in the width direction. It is supposed to be possible.
JP 2002-239623 A JP 2004-66308 A JP 2006-35233 A

しかしながら、従来の技術は、冷却能力や冷却均一性の確保に問題があった。   However, the conventional technique has a problem in securing the cooling capacity and the cooling uniformity.

特許文献1および2の技術は、冷却水ヘッダと熱延鋼帯との間に設けられる保護板の1つの孔またはスリットを、複数の冷却ノズルから噴射した冷却水が通過するとともに、鋼帯に供給された冷却水が同じ孔またはスリットから排出されるものである。すなわち、噴射口と排水口の機能が共存するから、図13に示すように冷却排水の流れはノズル先端から噴射される棒状冷却水にとって逆流であり、流動抵抗となっていた。   In the techniques of Patent Documents 1 and 2, cooling water sprayed from a plurality of cooling nozzles passes through one hole or slit of a protective plate provided between the cooling water header and the hot-rolled steel strip, and The supplied cooling water is discharged from the same hole or slit. That is, since the functions of the injection port and the drainage port coexist, the flow of the cooling drainage flow is reverse to the rod-shaped cooling water sprayed from the nozzle tip as shown in FIG.

また、鋼板に到達した後の排出水はお互いにぶつかり合って上昇し、ノズル口と兼用である排水口に到達するまでに流路が曲げられるので、この部分が淀みとなって、排出水の円滑な流れが妨げられていた。このように、特許文献1および2の技術では、鋼帯表面へ供給された冷却水の円滑な排出にやや難があることがわかった。従って、冷却水が確実に鋼板に届くようにするためには、ヘッダに高い噴射圧力をかけて、冷却水を高速噴射しなければならないため設備費がかかるという問題がある。   Also, the discharged water after reaching the steel plate rises by colliding with each other, and the flow path is bent until it reaches the drain outlet that is also used as the nozzle port, so this part becomes a stagnation and the discharged water Smooth flow was hindered. Thus, it has been found that the techniques of Patent Documents 1 and 2 have some difficulty in smooth discharge of the cooling water supplied to the steel strip surface. Therefore, in order to ensure that the cooling water reaches the steel plate, a high injection pressure is applied to the header and the cooling water has to be injected at a high speed, resulting in an increase in equipment costs.

また、スリット状の孔を開けると、保護板のスリット間の部分は細い板状となるため、この部分の剛性が低下し、反った鋼板が冷却設備に進入して衝突した場合、設備を損傷する危険性もある。従って、冷却処理する鋼板の板厚が2〜3mmでは問題ないが、15mm以上になると設備損傷を防止するために板厚が厚い保護板を使用しなければならないのでスリットの加工が難しくなるという問題もある。   Also, if a slit-shaped hole is made, the part between the slits of the protective plate becomes a thin plate, so the rigidity of this part decreases, and if the warped steel sheet enters the cooling equipment and collides, the equipment is damaged. There is also a risk of doing. Therefore, there is no problem if the thickness of the steel sheet to be cooled is 2 to 3 mm, but if the thickness is 15 mm or more, it is difficult to process the slit because a thick protective plate must be used to prevent equipment damage. There is also.

さらに、大きさが異なるスリット状の孔を開けると、ノズルの位置によって流動抵抗が異なるため鋼板の幅方向に冷却温度むらが発生するという問題も生じる。   Furthermore, when slit-like holes having different sizes are formed, the flow resistance varies depending on the position of the nozzle, and thus there is a problem that uneven cooling temperature occurs in the width direction of the steel sheet.

特許文献3の技術は、鋼板上面に供給された冷却水が鋼板とロールと側壁とで囲まれた空間でプールを形成し、上方に抜けていく構造となっているので、該空間に冷却水が充満するには時間がかかるため、鋼板の先端数mの範囲では、冷却水の状態が非定常となり、鋼板長手方向の冷却温度むらや反りが発生し易いという問題がある。   The technique of Patent Document 3 has a structure in which the cooling water supplied to the upper surface of the steel plate forms a pool in a space surrounded by the steel plate, the roll, and the side wall, and flows upward. Therefore, there is a problem that the state of the cooling water becomes unsteady within the range of the number of tips of the steel sheet, and uneven cooling temperature and warpage in the longitudinal direction of the steel sheet are likely to occur.

また、特許文献3の技術では、側壁を設けない場合についても記載されているが、この場合には、図17に点線矢印で示すように、ガイド板上を排出水が幅方向端部へ向けて流れることとなる。ここで、特許文献3の技術では、冷却ノズルの先端はガイド板よりも上方にあるから、排出水の幅方向流れが冷却ノズルから噴射される冷却水と干渉してしまう。   Moreover, in the technique of patent document 3, although the case where a side wall is not provided is also described, in this case, as shown by a dotted arrow in FIG. 17, the discharged water is directed on the guide plate toward the end in the width direction. Will flow. Here, in the technique of Patent Document 3, since the tip of the cooling nozzle is above the guide plate, the flow in the width direction of the discharged water interferes with the cooling water ejected from the cooling nozzle.

この幅方向流れは鋼板幅方向端部ほど多くなるため、干渉は鋼板幅方向端部側ほど強くなり、冷却ノズルから噴射される冷却水の一部または全部が鋼板上面に到達することができなくなるので、幅方向に均一な冷却を行うことが難しい。   Since this width direction flow increases at the end in the width direction of the steel sheet, the interference becomes stronger toward the end in the width direction of the steel sheet, and a part or all of the cooling water sprayed from the cooling nozzle cannot reach the upper surface of the steel sheet. Therefore, it is difficult to perform uniform cooling in the width direction.

本発明は、上記に鑑み、鋼材の表面に冷却水を供給する場合において、高熱伝達率で均一に冷却する技術を提供することを目的とする。   In view of the above, an object of the present invention is to provide a technique for uniformly cooling with high heat transfer coefficient when supplying cooling water to the surface of a steel material.

上記の課題を解決するために、本発明は以下の特徴を有する。     In order to solve the above problems, the present invention has the following features.

第一の発明は、鋼材の熱間圧延ラインに設置される鋼材の冷却設備であって、鋼材の表面に冷却水を供給するヘッダと、該ヘッダから伸長した冷却水噴射ノズルと、前記鋼材と前記ヘッダとの間に設置される隔壁とを備えるとともに、前記隔壁には、前記冷却水噴射ノズルの先端部を内挿する給水口と、前記鋼材の表面に供給された冷却水を前記隔壁の背面へ排水する排水口とが、多数設けられるとともに、前記排水口は、隣り合う前記給水口同士を結ぶ3本の線分からなる三角形の外心または前記三角形の各辺の2等分点に配列されていることを特徴とする鋼材の冷却設備である。   1st invention is the cooling equipment of the steel materials installed in the hot rolling line of steel materials, Comprising: The header which supplies cooling water to the surface of steel materials, The cooling water injection nozzle extended from the header, The above-mentioned steel materials A partition wall provided between the header and the partition wall. The partition wall includes a water supply port for inserting a tip end portion of the cooling water injection nozzle, and cooling water supplied to the surface of the steel material. There are a large number of drain outlets for draining to the back, and the drain outlets are arranged at a triangle outer center consisting of three line segments connecting the adjacent water inlets or at a bisection point on each side of the triangle It is the cooling equipment of the steel material characterized by being characterized.

第二の発明は、鋼材の熱間圧延ラインに設置される鋼材の冷却設備であって、鋼材の表面に冷却水を供給するヘッダと、該ヘッダから伸長した冷却水噴射ノズルと、前記鋼材と前記ヘッダとの間に設置される隔壁とを備えるとともに、前記隔壁には、前記冷却水噴射ノズルの先端部を内挿する給水口と、前記鋼材の表面に供給された冷却水を前記隔壁の背面へ排水する排水口とが、多数設けられるとともに、前記排水口は、隣り合う前記給水口同士を結ぶ4本の線分からなる四角形の重心または前記四角形の各辺の2等分点に配列されていることを特徴とする鋼材の冷却設備である。   A second invention is a steel material cooling facility installed in a hot rolling line for steel material, a header for supplying cooling water to the surface of the steel material, a cooling water jet nozzle extending from the header, and the steel material. A partition wall provided between the header and the partition wall. The partition wall includes a water supply port for inserting a tip end portion of the cooling water injection nozzle, and cooling water supplied to the surface of the steel material. There are a large number of drain outlets for draining to the back, and the drain outlets are arranged at the center of gravity of a quadrilateral consisting of four line segments connecting the adjacent water inlets or at the bisection point of each side of the square This is a steel material cooling facility.

第三の発明は、隔壁に設けられた排出口の総断面積を冷却水噴射ノズルの総断面積の1.5倍以上とすることを特徴とする第一または第二の発明に記載の鋼材の冷却設備である。   3rd invention sets the total cross-sectional area of the discharge port provided in the partition to 1.5 times or more the total cross-sectional area of the cooling water injection nozzle, The steel material according to the 1st or 2nd invention The cooling equipment.

第四の発明は、隔壁に設けられた給水口に内挿した冷却水噴射ノズルの外周面と前記給水口の内面との隙間を3mm以下とすることを特徴とする第一乃至第三の発明のいずれかに記載の鋼材の冷却設備である。   4th invention makes the clearance gap between the outer peripheral surface of the cooling water injection nozzle inserted in the water supply port provided in the partition and the inner surface of the said water supply port 3 mm or less, The 1st thru | or 3rd invention characterized by the above-mentioned. The steel material cooling facility according to any one of the above.

第五の発明は、冷却水噴射ノズルの内径を3〜8mm、前記冷却水噴射ノズルから噴射される冷却水は流速8m/s以上の棒状冷却水であり、水量密度を1.5〜4.0m/m ・minとすることを特徴とする第一乃至第四の発明のいずれかに記載の鋼材の冷却設備である。
According to a fifth aspect of the present invention, the cooling water injection nozzle has an inner diameter of 3 to 8 mm, the cooling water injected from the cooling water injection nozzle is a rod-shaped cooling water having a flow rate of 8 m / s or more, and the water amount density is 1.5 to 4. The steel material cooling facility according to any one of the first to fourth inventions, wherein the cooling capacity is 0 m 3 / m 2 · min.

本発明の鋼材の冷却設備を用いることにより、高い熱伝達率を得て、鋼材を目標温度に早く到達させることができる。即ち、冷却速度を高めることができるので、例えば高張力鋼板などの新製品を開発することができる。また、鋼材の冷却時間を短縮できるので、例えば、製造ライン速度を上げることによって生産性を向上させることができる。
さらに、噴射面全体で均一に冷却することができるので、品質の高い鋼材製品を製造することができる。
By using the steel material cooling equipment of the present invention, it is possible to obtain a high heat transfer coefficient and to reach the target temperature quickly. That is, since the cooling rate can be increased, a new product such as a high-tensile steel plate can be developed. Moreover, since the cooling time of steel materials can be shortened, productivity can be improved by increasing the production line speed, for example.
Furthermore, since it can cool uniformly on the whole injection surface, a high quality steel product can be manufactured.

以下、本発明の実施の形態の一例を図面を参照して説明する。なお、ここでは、本発明を厚板圧延プロセスでの鋼板の上面冷却に用いた場合を例にして述べる。   Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings. Here, the case where the present invention is used for cooling the upper surface of a steel plate in the thick plate rolling process will be described as an example.

図15は、本発明の実施に供する厚板圧延ラインの一例を示す概略図である。
加熱炉から抽出されたスラブは圧延機によって粗圧延と仕上圧延が施され、所定の仕上温度、仕上板厚とされた後、オンラインにて加速冷却設備に搬送される。冷却前にプリレベラを通して鋼板の形状を整えてから加速冷却を行うのが均一な材質を得るのに好適である。加速冷却設備では、上面冷却設備と下面冷却設備とから噴射される冷却水によって鋼板は所定温度まで冷却される。
FIG. 15 is a schematic view showing an example of a thick plate rolling line used for carrying out the present invention.
The slab extracted from the heating furnace is subjected to rough rolling and finish rolling by a rolling mill to a predetermined finishing temperature and finishing plate thickness, and then conveyed to an accelerated cooling facility online. It is suitable for obtaining a uniform material to perform accelerated cooling after adjusting the shape of the steel sheet through a pre-leveler before cooling. In the accelerated cooling facility, the steel sheet is cooled to a predetermined temperature by the cooling water sprayed from the upper surface cooling facility and the lower surface cooling facility.

図1は本発明の実施の形態の一例として、本発明の冷却装置を上面冷却設備に適用した場合の上下面冷却設備の配置を示す側面図である。   FIG. 1 is a side view showing an arrangement of upper and lower surface cooling facilities when the cooling device of the present invention is applied to an upper surface cooling facility as an example of an embodiment of the present invention.

1 上面冷却設備の概要
上面冷却設備は、熱鋼板12の上面に冷却水を供給するヘッダ1と、該ヘッダ1から伸長した冷却水噴射ノズル3と、ヘッダ1と熱鋼板12との間に鋼板幅方向に渡り水平に設置され、多数の貫通孔(給水口6と排水口7)を有する隔壁5とを備えている。そして、冷却水噴射ノズル3は円管ノズル3からなり、その先端が前記隔壁5に設けられた貫通孔(給水口6)に内挿されて、隔壁5の下端部より上方になるように設置されている。
1 Overview of Top Surface Cooling Facility The top surface cooling facility is a header 1 that supplies cooling water to the top surface of a hot steel plate 12, a cooling water injection nozzle 3 that extends from the header 1, and a steel plate between the header 1 and the hot steel plate 12. A partition wall 5 is installed horizontally across the width direction and has a large number of through holes (water supply port 6 and drain port 7). The cooling water injection nozzle 3 is composed of a circular tube nozzle 3, and its tip is inserted into a through-hole (water supply port 6) provided in the partition wall 5 so as to be above the lower end of the partition wall 5. Has been.

円管ノズル3の先端が貫通孔に内挿されて隔壁5の下端部より上方になるように設置されているのは、仮に先端が上方に反った鋼板が進入してきた場合でも隔壁5によって円管ノズル3が損傷するのを防止するためである。これによって、円管ノズル3が良好な状態で長期間にわたって冷却を行うことができるので、設備補修等を行うことなく、鋼板の温度むらの発生を防止することができる。   The circular tube nozzle 3 is installed so that the tip of the circular tube nozzle 3 is inserted into the through-hole and above the lower end of the partition wall 5 even if a steel plate whose tip is warped upward enters. This is to prevent the tube nozzle 3 from being damaged. As a result, the circular tube nozzle 3 can be cooled for a long period of time in a good state, so that it is possible to prevent the occurrence of uneven temperature in the steel sheet without repairing the equipment.

また、円管ノズル3の先端が貫通孔に内挿されているので、図16に示すように、隔壁5の上面を流れる点線矢印の排出水の幅方向流れと干渉することがない。したがって、円管ノズル3から噴射された冷却水は、幅方向位置によらず等しく鋼板上面へ達することができ、幅方向に均一な冷却を行うことができる。   Further, since the tip of the circular tube nozzle 3 is inserted in the through hole, as shown in FIG. 16, there is no interference with the flow in the width direction of the drained water indicated by the dotted arrow flowing through the upper surface of the partition wall 5. Therefore, the cooling water sprayed from the circular tube nozzle 3 can reach the upper surface of the steel plate equally regardless of the position in the width direction, and uniform cooling in the width direction can be performed.

図3に一例を示すように、隔壁5には直径10mmの貫通孔が多数開けられている。そして、給水口6には外径8mm、内径3mmの円管ノズル3が装入されている。円管ノズル3は、例えば千鳥格子状に配列され、円管ノズル3が通っていない貫通孔は、冷却水の排水口7となっている。このように、本発明の冷却設備の隔壁5に設けられた多数の貫通孔は、多数の給水口6と排水口7とから成り立っており、それぞれに役割、機能を分担している。   As shown in FIG. 3, the partition wall 5 has a large number of through holes having a diameter of 10 mm. A circular pipe nozzle 3 having an outer diameter of 8 mm and an inner diameter of 3 mm is inserted into the water supply port 6. The circular tube nozzles 3 are arranged in, for example, a staggered pattern, and the through holes through which the circular tube nozzles 3 do not pass serve as cooling water drains 7. Thus, the many through holes provided in the partition wall 5 of the cooling facility of the present invention are composed of the many water supply ports 6 and the drain ports 7, and share the role and function of each.

このとき、詳細は後述するが、 排水口7の総断面積は、円管ノズル3の内径の総断面積よりも十分広く、図1に示すように熱鋼板の上面に到達した冷却水は、鋼板表面と隔壁5との間に充満し、排水口7を通して隔壁5の上方(鋼板表面に対して隔壁5の背面側)に導かれ、速やかに排出されていく。   At this time, although details will be described later, the total cross-sectional area of the drain port 7 is sufficiently wider than the total cross-sectional area of the inner diameter of the circular tube nozzle 3, and the cooling water that has reached the upper surface of the hot steel plate as shown in FIG. The space between the steel plate surface and the partition wall 5 is filled, guided through the drain port 7 to the upper side of the partition wall 5 (on the back side of the partition wall 5 with respect to the steel plate surface), and quickly discharged.

そして、隔壁5の上方に導かれた排出水9は、図10に示すように、ヘッダ1と隔壁5との間の排水流路を鋼板幅方向外側へ導かれ排水される。   As shown in FIG. 10, the discharged water 9 guided to the upper side of the partition wall 5 is guided to the outside in the steel plate width direction and drained through the drainage channel between the header 1 and the partition wall 5.

図13に示すように排水口と給水口が同一の貫通孔に設置されていると、冷却水は、鋼板に衝突した後、隔壁5の上方に抜けにくくなって、鋼板12と隔壁5の間を鋼板幅方向端部へ向かって流れるようになる。そうすると鋼板12と隔壁5の間の冷却排水の流量は、板幅方向の端部に近づく程多くなるので、噴射冷却水が滞留水膜を貫通して鋼板に到達する力が板幅方向端部ほど阻害されることとなる。   As shown in FIG. 13, when the drainage port and the water supply port are installed in the same through hole, after the cooling water collides with the steel plate, it becomes difficult to escape above the partition wall 5, and between the steel plate 12 and the partition wall 5. Flows toward the end in the width direction of the steel sheet. Then, since the flow rate of the cooling drainage between the steel plate 12 and the partition wall 5 increases as it approaches the end in the plate width direction, the force that the injected cooling water reaches the steel plate through the staying water film is the end in the plate width direction. It will be hindered.

薄板の場合には板幅が高々2m程度であるのでその影響は限定的であるが、特に板幅が3m以上の厚板の場合には、その影響は無視できない。従って、鋼板幅方向端部の冷却が弱くなり、この場合の鋼板幅方向の温度分布は、図11に示すように凹型をした不均一な温度分布となる。   In the case of a thin plate, since the plate width is about 2 m at most, the influence is limited. However, in the case of a thick plate having a plate width of 3 m or more, the influence cannot be ignored. Accordingly, the cooling at the end in the width direction of the steel sheet becomes weak, and the temperature distribution in the width direction of the steel sheet in this case becomes a non-uniform temperature distribution having a concave shape as shown in FIG.

これに対して、本発明の冷却設備は、図14に示すように給水口6と排水口7は別個に設けられており、給水と排水を役割分担しているので、鋼板表面と隔壁5との間に充満した冷却水の冷却排水は、隔壁5の排水口7を通過して隔壁5の上方に円滑に流れて行くようになる。従って、冷却後の排水が速やかに鋼板上面から排除されるので、後続で供給される冷却水は、容易に滞留水膜を貫通することができ、十分な冷却能力を得ることができる。この場合の鋼板幅方向の温度分布は、図13に示すように幅方向に均一な温度分布を得ることができる。   On the other hand, in the cooling facility of the present invention, as shown in FIG. 14, the water supply port 6 and the water discharge port 7 are provided separately and share the roles of water supply and water discharge. The cooling water discharged from the cooling water filled in between passes through the outlet 7 of the partition wall 5 and smoothly flows above the partition wall 5. Accordingly, since the drainage after cooling is quickly removed from the upper surface of the steel sheet, the cooling water supplied subsequently can easily penetrate the staying water film, and a sufficient cooling capacity can be obtained. In this case, the temperature distribution in the width direction of the steel sheet can obtain a uniform temperature distribution in the width direction as shown in FIG.

ヘッダ1の下面と隔壁5上面との距離は、ヘッダ1下面と隔壁5上面に囲まれた空間内での鋼板幅方向流路断面積が円管ノズル3の内径の総断面積の1.5倍以上となるように設けられることが好ましく、例えば100mm程度以上である。この鋼板幅方向流路断面積が円管ノズル3の内径の総断面積の1.5倍以上ないと、隔壁5に設けられた排水口7から排出された冷却排水が円滑に鋼板幅方向に排出できないからである。   The distance between the lower surface of the header 1 and the upper surface of the partition wall 5 is such that the cross-sectional area in the steel plate width direction in the space surrounded by the lower surface of the header 1 and the upper surface of the partition wall 5 is 1.5 of the total sectional area of the inner diameter of the circular tube nozzle 3. It is preferably provided so as to be twice or more, for example, about 100 mm or more. If the cross-sectional area of the flow path in the steel plate width direction is not 1.5 times or more than the total cross-sectional area of the inner diameter of the circular tube nozzle 3, the cooling drainage discharged from the drain port 7 provided in the partition wall 5 smoothly flows in the width direction of the steel plate. This is because it cannot be discharged.

2 給水口と排水口の配置
次に冷却水を隔壁上により速やかに排出するための給水口6と排水口7との配置について図2〜図9を用いて述べる。なお図中、5は隔壁を、6は給水口を、7は排水口を、3は給水口6に装入された円管ノズルをそれぞれ示している。
2. Arrangement of Water Supply Port and Drainage Port Next, the arrangement of the water supply port 6 and the drainage port 7 for discharging cooling water more quickly on the partition wall will be described with reference to FIGS. In the figure, 5 indicates a partition wall, 6 indicates a water supply port, 7 indicates a drainage port, and 3 indicates a circular tube nozzle inserted in the water supply port 6.

(a)図2〜図3は隔壁5に給水口6を千鳥に配列した一例である。
図2は、給水口Aに着目した場合の排水口7との位置関係を説明した給排水口の部分配列図である。図3は図2の給排水口の部分配列を隔壁上に展開した隔壁の平面図である。
(A) FIGS. 2-3 is an example which arranged the water supply port 6 in the partition 5 in zigzag.
FIG. 2 is a partial array diagram of the water supply / drainage port illustrating the positional relationship with the water discharge port 7 when the water supply port A is focused. FIG. 3 is a plan view of the partition wall in which the partial arrangement of the water supply / drain ports of FIG. 2 is developed on the partition wall.

図2に示すように千鳥に配列された給水口Aの隣り合う給水口は、B〜Gの6個である。
給水口Aを頂点として隣り合う給水口B〜Gを結ぶ3本の線分から成る三角形の外心(各辺の垂直2等分線が3本交わる交点)に1個の排水口p1〜p6が設けられている。
As shown in FIG. 2, there are six water supply ports B to G adjacent to the water supply ports A arranged in a staggered manner.
There is one drainage port p1 to p6 at the outer center of a triangle consisting of three line segments connecting the adjacent water supply ports B to G with the water supply port A as the apex (intersection where three perpendicular bisectors of each side intersect). Is provided.

このように排水口を配列すると、例えば排水口p1点は、給水口A、B、Cからの距離が等しく、給水口A、B、Cから噴射された冷却水が熱鋼板12に衝突し、該熱鋼板12の表面に沿って拡散し合流する点である。そして、この合流点に排出口p1を設けたので隔壁上への排水がスムーズに行われ、図14に示すように冷却水が着実に熱鋼板12の表面に届き高い冷却能力が確保でき、その冷却能力も排水能力もすべての位置で同じであるから、鋼板幅方向で均一な温度分布を得ることができる。   When the drain outlets are arranged in this way, for example, the drain outlet p1 point has the same distance from the water inlets A, B, C, and the cooling water injected from the water inlets A, B, C collides with the hot steel plate 12, It is a point that diffuses and merges along the surface of the hot steel sheet 12. And since the discharge port p1 was provided at this confluence, drainage onto the partition wall was performed smoothly, and the cooling water steadily reached the surface of the hot steel plate 12 as shown in FIG. Since the cooling capacity and the drainage capacity are the same at all positions, a uniform temperature distribution can be obtained in the steel plate width direction.

なお、図2では、三角形ABCを辺AB、辺ACが等しい長さの二等辺三角形として示したが、本実施形態はこれに限るものではなく、例えば給水口6の千鳥状の配列が歪んだものであり、給水口の位置関係が不等辺三角形であっても、排水口をその外心に設ければよい。   In FIG. 2, the triangle ABC is shown as an isosceles triangle having the same length of the side AB and the side AC. However, the present embodiment is not limited to this. For example, the staggered arrangement of the water supply ports 6 is distorted. Even if the positional relationship between the water supply ports is an unequal triangle, the drainage port may be provided at the outer center thereof.

(b)図4〜図5は隔壁5に給水口6を千鳥に配列した他の例である。
図4は、給水口Aに着目した場合の排水口7との位置関係を説明した給排水口の部分配列図である。図5は図4の給排水口の部分配列を隔壁上に展開した隔壁5の平面図である。
図4の給水口6の配列は図2と同じであるが、排水口7の配列が異なっている。
(B) FIGS. 4 to 5 are other examples in which the water supply ports 6 are arranged in a staggered manner in the partition wall 5.
FIG. 4 is a partial array diagram of the water supply / drainage port illustrating the positional relationship with the water discharge port 7 when focusing on the water supply port A. FIG. 5 is a plan view of the partition wall 5 in which the partial arrangement of the water supply / drain ports of FIG. 4 is developed on the partition wall.
The arrangement of the water supply ports 6 in FIG. 4 is the same as that in FIG. 2, but the arrangement of the drain ports 7 is different.

即ち、図4では、給水口Aを頂点として隣り合う給水口B〜Gを結ぶ3本の線分から成る三角形の各辺の2等分点に排水口q1〜q6を設けた例である。例えば排水口q1は、給水口A、Bからの距離が等しく、給水口A、Bから噴射された冷却水が熱鋼板12の表面に沿って拡散し合流する点である。そして、この合流点に排出口q1を設けたので隔壁上への排水がスムーズに行われ、図14に示すように冷却水が着実に熱鋼板12の表面に届き高い冷却能力が確保でき、その冷却能力も排水能力もすべての位置で同じであるから、鋼板幅方向で均一な温度分布を得ることができる。   That is, FIG. 4 is an example in which drainage ports q1 to q6 are provided at bisectors of each side of a triangle formed by three line segments connecting the adjacent water supply ports B to G with the water supply port A as a vertex. For example, the drainage port q1 is a point where the distances from the water supply ports A and B are equal, and the cooling water sprayed from the water supply ports A and B diffuses and merges along the surface of the hot steel plate 12. And since the discharge port q1 was provided at this confluence, drainage onto the partition wall was performed smoothly, and the cooling water steadily reached the surface of the hot steel plate 12 as shown in FIG. Since the cooling capacity and the drainage capacity are the same at all positions, a uniform temperature distribution can be obtained in the steel plate width direction.

なお、図4では三角形ABCを辺AB、辺ACが等しい長さの二等辺三角形として示したが、本実施形態はこれに限るものではなく、例えば給水口6の千鳥状の配列が歪んだものであり、給水口の位置関係が不等辺三角形であっても、排水口をその各々の辺の2等分点に設ければよい。   In FIG. 4, the triangle ABC is shown as an isosceles triangle having sides AB and AC that are equal in length. However, the present embodiment is not limited to this. For example, the staggered arrangement of the water supply ports 6 is distorted. Even if the positional relationship of the water supply port is an unequal triangle, the drainage port may be provided at the bisection point of each side.

(c)図6〜図7は隔壁5に給水口6を碁盤の目状に配列した例である。
図6は、給水口Aに着目した場合の排水口7との位置関係を説明した給排水口の部分配列図である。図7は図6の給排水口の部分配列を隔壁上に展開した隔壁5の平面図である。
(C) FIGS. 6-7 is the example which arranged the water supply port 6 in the partition 5 in the shape of a grid.
FIG. 6 is a partial array diagram of the water supply / drainage port illustrating the positional relationship with the water discharge port 7 when attention is paid to the water supply port A. FIG. FIG. 7 is a plan view of the partition wall 5 in which the partial arrangement of the water supply / drain ports of FIG. 6 is developed on the partition wall.

図6に示すように碁盤の目状に配列された給水口Aの隣り合う給水口は、B〜Jの8個である。隣り合う給水口6同士を結ぶ4本の線分からなる四角形(長方形)の重心に1個の排水口r1〜r4が設けられている。   As shown in FIG. 6, there are eight water supply ports B to J adjacent to the water supply ports A arranged in a grid pattern. One drainage port r1 to r4 is provided at the center of gravity of a quadrangle (rectangular shape) composed of four line segments connecting adjacent water supply ports 6 to each other.

このように排水口を配列すると、例えば排水口r1点は、給水口A、C、D、Eからの距離が等しく、給水口A、C、D、Eから噴射された冷却水が熱鋼板12に衝突し、該熱鋼板12の表面に沿って拡散し合流する点である。そして、この合流点に排出口r1を設けたので隔壁上への排水がスムーズに行われ、図14に示すように冷却水が着実に熱鋼板12の表面に届き高い冷却能力が確保でき、その冷却能力も排水能力もすべての位置で同じであるから、鋼板幅方向で均一な温度分布を得ることができる。   When the drain outlets are arranged in this manner, for example, the drain outlet r1 point has the same distance from the water inlets A, C, D, E, and the cooling water injected from the water inlets A, C, D, E is the hot steel plate 12. , And diffuse and merge along the surface of the hot steel sheet 12. And since the discharge port r1 is provided at this junction, the drainage onto the partition wall is smoothly performed, and the cooling water can reach the surface of the hot steel plate 12 steadily as shown in FIG. Since the cooling capacity and the drainage capacity are the same at all positions, a uniform temperature distribution can be obtained in the steel plate width direction.

なお、図6では四角形ACDEを長方形として示したが、本実施形態はこれに限るものではなく、例えば給水口6の碁盤の目状の配列が歪んだものであっても、給水口の位置関係が四角形をなしていれば、排水口をその重心に設ければよい。ちなみに、ノズルは幅方向に等間隔で配置するのが一般的であるので、四角形ACDEは少なくとも平行四辺形と見なすことができ、その重心は2本の対角線の交点となる。   In FIG. 6, the quadrangular ACDE is shown as a rectangle, but the present embodiment is not limited to this, and for example, even if the grid-like arrangement of the grid of the water supply port 6 is distorted, the positional relationship of the water supply ports If it is square, a drain outlet may be provided at the center of gravity. Incidentally, since the nozzles are generally arranged at equal intervals in the width direction, the quadrangular ACDE can be regarded as at least a parallelogram, and the center of gravity is the intersection of two diagonal lines.

(d)図8〜図9は隔壁5に給水口6を碁盤の目状に配列した他の例である。
図8は、給水口Aに着目した場合の排水口7との位置関係を説明した給排水口の部分配列図である。図9は図8の給排水口の部分配列を隔壁上に展開した隔壁の平面図である。
図8の給水口6の配列は図6と同じであるが、排水口7の配列が異なっている。
(D) FIGS. 8-9 is another example which arranged the water supply port 6 in the partition 5 in the shape of a grid.
FIG. 8 is a partial array diagram of the water supply / drainage port illustrating the positional relationship with the water discharge port 7 when the water supply port A is focused. FIG. 9 is a plan view of a partition wall in which the partial arrangement of the water supply / drainage port of FIG. 8 is developed on the partition wall.
The arrangement of the water supply ports 6 in FIG. 8 is the same as that in FIG. 6, but the arrangement of the drain ports 7 is different.

即ち、図8では、隣り合う給水口6同士を結ぶ4本の線分からなる四角形(長方形)の二等分点に排水口s1〜s4を設けた例である。例えば排水口s1は、給水口A、Cからの距離が等しく、給水口A、Cから噴射された冷却水が熱鋼板12の表面に沿って拡散し合流する点である。   In other words, FIG. 8 shows an example in which drainage ports s1 to s4 are provided at quadrilateral (rectangular) bisectors composed of four line segments connecting adjacent water supply ports 6 to each other. For example, the drain port s1 is a point where the distances from the water supply ports A and C are equal, and the cooling water sprayed from the water supply ports A and C diffuses and merges along the surface of the hot steel plate 12.

そして、この合流点に排出口s1を設けたので隔壁上への排水がスムーズに行われ、図14に示すように冷却水が着実に熱鋼板12の表面に届き高い冷却能力が確保でき、その冷却能力も排水能力もすべての位置で同じであるから、鋼板幅方向で均一な温度分布を得ることができる。   And since the discharge port s1 is provided at this confluence, drainage onto the partition wall is performed smoothly, and the cooling water can reach the surface of the hot steel sheet 12 steadily as shown in FIG. Since the cooling capacity and the drainage capacity are the same at all positions, a uniform temperature distribution can be obtained in the steel plate width direction.

なお、図8では四角形ACDEを長方形として示したが、本実施形態はこれに限るものではなく、例えば給水口6の碁盤の目状の配列が歪んだものであっても、給水口の位置関係が四角形をなしていれば、排水口をその各々の辺の2等分点に設ければよい。   In FIG. 8, the quadrangular ACDE is shown as a rectangle. However, the present embodiment is not limited to this. For example, even if the grid-like arrangement of the grid of the water supply port 6 is distorted, the positional relationship of the water supply ports Can be provided at the bisector of each side.

ところで、給水口の相対位置関係を前記(a)、(b)のように三角形と見なすか、前記(c)、(d)のように四角形と見なすかは、給水口の配列方法による。隣り合う給水口を結んでできる三角形の最も広い内角が80°以上の場合は、四角形とみなしてよい。例えば、図6の三角形ACEでは、角Aが90°ゆえ、四角形ACDEと見なす。   By the way, whether the relative positional relationship of the water supply ports is regarded as a triangle as in the above (a) and (b) or as a quadrangle as in the above (c) and (d) depends on the arrangement method of the water supply ports. When the widest interior angle of a triangle formed by connecting adjacent water supply ports is 80 ° or more, it may be regarded as a quadrangle. For example, the triangle ACE in FIG. 6 is regarded as a square ACDE because the angle A is 90 °.

なお、排水口7の総断面積が円管ノズル3の内径の総断面積の1.5倍より小さいと、排水口の流動抵抗が大きくなり、滞留水が排水されにくくなる結果、滞留水膜を貫通して鋼板表面に到達できる冷却水量が大幅に減り、冷却能が低下するので好ましくない。より好ましくは4倍以上である。   If the total cross-sectional area of the drain port 7 is smaller than 1.5 times the total cross-sectional area of the inner diameter of the circular tube nozzle 3, the flow resistance of the drain port increases, and the stagnant water becomes difficult to drain. The amount of cooling water that can penetrate the steel plate and reach the steel sheet surface is greatly reduced, and the cooling ability is lowered, which is not preferable. More preferably, it is 4 times or more.

ちなみに、ノズル1個あたりの排出口の個数は、(a)の図3と(d)の図9では2個、(b)の図5では3個、(c)の図7では1個である。例えば、ノズル内径が5mmで、排出口が直径10mmである場合は、(a)〜(d)の全てで排水口7の総断面積が円管ノズル3の内径の総断面積の4倍以上となる。しかし、ノズル内径が8mmで、排出口が直径12mmである場合は、(c)では2.25倍にしかならないので、(a)、(b)または(d)の実施形態が好ましい。   By the way, the number of outlets per nozzle is 2 in FIG. 3 (a) and FIG. 9 in (d), 3 in FIG. 5 in (b), and 1 in FIG. 7 in (c). is there. For example, when the nozzle inner diameter is 5 mm and the discharge port is 10 mm in diameter, the total cross-sectional area of the drain port 7 is at least four times the total cross-sectional area of the inner diameter of the circular tube nozzle 3 in all of (a) to (d). It becomes. However, when the inner diameter of the nozzle is 8 mm and the outlet is 12 mm in diameter, the embodiment (a), (b) or (d) is preferred because (c) is only 2.25 times larger.

一方、排水口が多過ぎたり、排水口の断面径が大きくなりすぎると、隔壁5の剛性が小さくなって、鋼板が衝突したときに損傷し易くなる。従って、排水口の総断面積と円管ノズル3の内径の総断面積の比は1.5から20の範囲が好適である。   On the other hand, if there are too many drain ports or the cross-sectional diameter of the drain ports becomes too large, the rigidity of the partition walls 5 will be reduced and it will be easily damaged when the steel plates collide. Therefore, the ratio of the total cross-sectional area of the drain outlet and the total cross-sectional area of the inner diameter of the circular tube nozzle 3 is preferably in the range of 1.5 to 20.

また、隔壁5の給水口6に内挿した円管ノズル3の外周面と給水口6の内面との隙間は3mm以下とすることが望ましい。この隙間が大きいと、円管ノズル3から噴射される冷却水の随伴流の影響により、隔壁5の上面へ排出された冷却排水が給水口6の円管ノズルの外周面との隙間に引き込まれ、再び鋼板上に供給されることとなるので、冷却効率が悪くなる。これを防止するには、円管ノズル3の外径を給水口6の大きさとほぼ同じにすることがより好ましいが、工作精度や取り付け誤差を考慮し、実質的に影響が少ない3mmまでの隙間は許容する。より望ましくは2mm以下とする。   The gap between the outer peripheral surface of the circular tube nozzle 3 inserted into the water supply port 6 of the partition wall 5 and the inner surface of the water supply port 6 is preferably 3 mm or less. If this gap is large, the cooling drainage discharged to the upper surface of the partition wall 5 is drawn into the gap between the outer peripheral surface of the circular pipe nozzle of the water supply port 6 due to the influence of the accompanying flow of the cooling water jetted from the circular pipe nozzle 3. Since it is supplied again onto the steel plate, the cooling efficiency is deteriorated. In order to prevent this, it is more preferable that the outer diameter of the circular tube nozzle 3 is substantially the same as the size of the water supply port 6, but in consideration of work accuracy and mounting error, a gap of up to 3 mm that is substantially less affected. Is acceptable. More preferably, it is 2 mm or less.

3 冷却水噴射ノズルおよび噴射条件
さらに、冷却水が滞留水膜を貫通して鋼板に到達できるようにするためには、円管ノズル3の内径、長さ、冷却水の噴射速度やノズル距離も最適にする必要がある。
3 Cooling water injection nozzle and injection conditions Furthermore, in order to allow the cooling water to penetrate the staying water film and reach the steel plate, the inner diameter and length of the circular tube nozzle 3, the injection speed of the cooling water and the nozzle distance are also determined. Need to be optimized.

即ち、円管ノズルの内径は、3〜8mmが好適である。3mmより小さいとノズルから噴射する水の束が細くなり勢いが弱くなる。一方ノズル径が8mmを超えると流速が遅くなり、滞留水膜を貫通する力が弱くなるからである。   That is, the inner diameter of the circular tube nozzle is preferably 3 to 8 mm. If it is smaller than 3 mm, the bundle of water sprayed from the nozzle becomes thin and the momentum becomes weak. On the other hand, if the nozzle diameter exceeds 8 mm, the flow rate becomes slow and the force penetrating the staying water film becomes weak.

ノズルからの噴射する冷却水は噴射速度8m/s以上の棒状冷却水とすることが好ましい。8m/s未満では、滞留水膜を冷却水が貫通する力が極端に弱くなるからである。   It is preferable that the cooling water sprayed from the nozzle is a rod-shaped cooling water having an injection speed of 8 m / s or more. This is because if it is less than 8 m / s, the force that the cooling water penetrates through the staying water film becomes extremely weak.

ここで、本発明における棒状冷却水とは、円形状(楕円や多角の形状も含む)のノズル噴出口からある程度加圧された状態で噴射される冷却水であって、ノズル噴出口からの冷却水の噴射速度が8m/s以上であり、ノズル噴出口から噴射された水流の断面がほぼ円形に保たれた連続性と直進性のある水流の冷却水のことをいう。すなわち、円管ラミナーノズルからの自由落下流や、スプレーのような液滴状態で噴射されるものとは異なる。   Here, the rod-shaped cooling water in the present invention is cooling water injected in a state of being pressurized to some extent from a circular (including elliptical or polygonal) nozzle outlet, and is cooled from the nozzle outlet. The water jet velocity is 8 m / s or more, and the water flow jetted from the nozzle jet outlet is a continuous and straight water flow cooling water in which the cross section of the water flow is maintained in a substantially circular shape. That is, it is different from a free fall flow from a circular tube laminar nozzle or a liquid ejected in a droplet state such as a spray.

また、上面冷却の冷却水噴射ノズル3の下端から鋼板12の表面までの距離は、30〜120mmとするのが良い。30mm未満では、鋼板12が隔壁5に衝突する頻度が極端に多くなり設備保全が難しくなる。120mm超えでは、冷却水が滞留水膜を貫通する力が極端に弱くなるからである。   The distance from the lower end of the cooling water jet nozzle 3 for cooling the upper surface to the surface of the steel plate 12 is preferably 30 to 120 mm. If it is less than 30 mm, the frequency with which the steel plate 12 collides with the partition wall 5 becomes extremely high, and equipment maintenance becomes difficult. This is because if the thickness exceeds 120 mm, the force through which the cooling water penetrates the staying water film becomes extremely weak.

本発明で最も効果を発揮する水量密度の範囲は、1.5m/m・min以上である。水量密度がこれよりも低い場合には滞留水膜がそれほど厚くならず、棒状冷却水を自由落下させて鋼板を冷却する公知の技術を適用しても、幅方向の温度むらはそれほど大きくならない場合もある。一方、水量密度が4.0m/m・minよりも高い場合でも、本発明の技術を用いることは有効であるが、設備コストが高くなるなど実用化の上での問題があるので、1.5〜4.0m/m・minが最も実用的な水量密度である。 The range of the water density that is most effective in the present invention is 1.5 m 3 / m 2 · min or more. When the water density is lower than this, the staying water film does not become so thick, and even if the known technology of cooling the steel plate by free-falling the rod-shaped cooling water is applied, the temperature unevenness in the width direction does not become so large There is also. On the other hand, even when the water density is higher than 4.0 m 3 / m 2 · min, it is effective to use the technique of the present invention, but there are problems in practical use such as an increase in equipment cost. The most practical water density is 1.5 to 4.0 m 3 / m 2 · min.

4 下面冷却について
本実施形態において、鋼板下面側の冷却装置については、特に限定されるものではない。図1に示す実施形態では、上面側の冷却装置と同様の円管ノズル4を備えた冷却ヘッダ2が設けられ、上面側冷却のような冷却排水を鋼板幅方向に排出する隔壁5を設けない例を示したが、上面側と同様の隔壁を設けた本発明の冷却設備を適用してもよい。また、膜状冷却水や噴霧状のスプレー冷却水などを供給する公知の技術をもちいてもよい。
4 About bottom surface cooling In this embodiment, it does not specifically limit about the cooling device by the side of a steel plate. In the embodiment shown in FIG. 1, a cooling header 2 having a circular tube nozzle 4 similar to the cooling device on the upper surface side is provided, and the partition wall 5 that discharges cooling drainage as in the upper surface side cooling in the steel plate width direction is not provided. Although an example is shown, the cooling equipment of the present invention provided with the same partition as the upper surface side may be applied. Moreover, you may use the well-known technique which supplies film-like cooling water, spray-like spray cooling water, etc.

以上、図1に示す鋼板の上下面冷却設備を例に、本発明の冷却設備について説明したが、本発明は、これに限定されるものではない。
即ち、本実施の形態においては、厚鋼板の熱間圧延後の冷却設備について説明したが、本発明は、薄板、条鋼などの鋼材の熱間圧延や熱処理後の冷却設備として適用可能である。
As mentioned above, although the cooling equipment of this invention was demonstrated to the upper and lower surface cooling equipment of the steel plate shown in FIG. 1 as an example, this invention is not limited to this.
That is, in the present embodiment, the cooling facility after hot rolling of thick steel plates has been described, but the present invention can be applied as a cooling facility after hot rolling or heat treatment of steel materials such as thin plates and strips.

また、円管ノズルを用いた棒状冷却水の場合について述べたが、噴射の形態もこれに限定されるものではなく、噴射ノズルの選択により種々の噴射形態を選ぶことができる。さらに、鋼板上面の冷却設備として垂直方向下向きへ冷却水を噴射する場合について説明したが、噴射方向もこれに限定されるものではなく、下面冷却設備として垂直上向きへ冷却水を噴射してもよいし、垂直以外に水平や斜め方向への噴射を使うことができる。   Moreover, although the case of the rod-shaped cooling water using a circular pipe nozzle was described, the injection form is not limited to this, and various injection forms can be selected by selecting the injection nozzle. Furthermore, although the case where the cooling water is jetted vertically downward as the cooling equipment on the upper surface of the steel sheet has been described, the jetting direction is not limited to this, and the cooling water may be jetted vertically upward as the bottom cooling equipment. However, in addition to vertical, it is possible to use horizontal or oblique injection.

以下、本発明の一実施例として、厚板圧延のプロセスにおいて、引張強度590MPaクラスの鋼板の冷却を行う場合について、図面に基づいて説明する。   Hereinafter, as an embodiment of the present invention, a case of cooling a steel plate having a tensile strength of 590 MPa class in a thick plate rolling process will be described with reference to the drawings.

図15に概略を示す厚板圧延設備において、加熱炉から抽出されたスラブを粗圧延後、板厚25mm、板幅4.5mの厚鋼板に仕上圧延を行い、鋼板表面温度で820℃で圧延を終了した。圧延終了後、ホットレベラを通して、加速冷却を行った。冷却条件は、冷却開始温度780℃、冷却終了温度(加速冷却設備出側で復熱後の温度を測定した値)は、560℃とした。   In the thick plate rolling facility schematically shown in FIG. 15, the slab extracted from the heating furnace is roughly rolled, then finish rolled to a steel plate having a plate thickness of 25 mm and a plate width of 4.5 m, and rolled at a steel plate surface temperature of 820 ° C. Ended. After rolling, accelerated cooling was performed through a hot leveler. The cooling conditions were a cooling start temperature of 780 ° C. and a cooling end temperature (a value obtained by measuring the temperature after recuperation on the exit side of the accelerated cooling facility) of 560 ° C.

加速冷却試験に用いた冷却設備は、鋼板上面側は図1に示す隔壁を有する本発明の冷却設備を備え、鋼板下面側についても同様の隔壁を有する本発明の冷却設備を備えたものを用いた。   The cooling equipment used in the accelerated cooling test is the one provided with the cooling equipment of the present invention having the partition walls shown in FIG. 1 on the upper surface side of the steel sheet and the cooling equipment of the present invention having the same partition walls on the lower surface side of the steel sheet. It was.

本実施例では、鋼板上下面の隔壁の給水口6と排水口7の配置について、本発明例として2種類試験した。すなわち、本発明例1は、図2に示すように給水口を千鳥に配列し、隣り合う給水口同士を結ぶ3本の線分からなる三角形の外心に排水口を設けたものであり、1つの給水口の周りに6個の排水口7が6角形の頂点に配置される場合である。   In this example, two types of examples of the present invention were tested for the arrangement of the water supply port 6 and the drain port 7 of the partition walls on the upper and lower surfaces of the steel plate. That is, Example 1 of the present invention has water supply ports arranged in a staggered manner as shown in FIG. 2, and a drain port is provided at the outer periphery of a triangle composed of three line segments connecting adjacent water supply ports. This is a case where six drain ports 7 are arranged at the apexes of a hexagon around one water port.

本発明例2は、図6に示すように、給水口6を碁盤の目状に配列し、隣り合う給水口同士を結ぶ4本の線分からなる四角形の重心に排水口を設けたものであり、1つの給水口の周りに4個の排水口7が四角形の頂点に配置される場合である。なお、隔壁には、図2および図6に従って、直径12mmの貫通孔をあけ、給水口には円管ノズル3の先端を挿入し、残りの孔を排水口とした。   In the present invention example 2, as shown in FIG. 6, the water supply ports 6 are arranged in a grid pattern, and a drainage port is provided at the center of gravity of a quadrangle composed of four line segments connecting adjacent water supply ports. This is a case where four drainage ports 7 are arranged at the apexes of a square around one water supply port. 2 and 6, a through hole having a diameter of 12 mm was formed in the partition wall, the tip of the circular tube nozzle 3 was inserted into the water supply port, and the remaining hole was used as a drain port.

使用した円管ノズルの寸法は、内径5mm、外径9mm、鋼板幅方向のノズルピッチは50mmとし、テーブルロール間距離1mのゾーン内でノズルを長手方向に10列並べた。   The dimensions of the used circular tube nozzles were an inner diameter of 5 mm, an outer diameter of 9 mm, a nozzle pitch in the steel plate width direction of 50 mm, and 10 rows of nozzles arranged in the longitudinal direction in a zone having a distance between table rolls of 1 m.

冷却水の噴射速度と水量密度は、上面冷却水の噴射速度は、本発明例1は9.0m/s、本発明例2は12.0m/s、下面冷却水の噴射速度は、本発明例1は13.5m/s、本発明例2は18.0m/sとした。上面冷却水の水量密度は、本発明例1は2.1m/m ・min、本発明例2は2.8m/m ・min、下面冷却水の水量密度は、本発明例1は2.8m/m ・min、本発明例2は4.2m/m・minとした。 The cooling water injection speed and the water density are as follows. The top cooling water injection speed is 9.0 m / s in the present invention example 1, 12.0 m / s in the present invention example 2, and the lower cooling water injection speed is the present invention. Example 1 was 13.5 m / s, and Example 2 of the present invention was 18.0 m / s. Water flow rate of the upper surface cooling water, water density of the present invention Example 1 is 2.1m 3 / m 2 · min, the invention example 2 2.8m 3 / m 2 · min, the lower surface cooling water, the invention Example 1 Was 2.8 m 3 / m 2 · min, and Inventive Example 2 was 4.2 m 3 / m 2 · min.

本発明例1および2とも、図14に示すように、鋼板を冷却後の冷却水が速やかに鋼板上下面から排除されるので、後続で供給される冷却水は、容易に滞留水膜を貫通することができた。   In both inventive examples 1 and 2, as shown in FIG. 14, the cooling water after cooling the steel sheet is quickly eliminated from the upper and lower surfaces of the steel sheet, so that the cooling water supplied subsequently penetrates the staying water film easily. We were able to.

これによって、上下面とも高い冷却能力を均一に確保できた。この場合の鋼板幅方向の温度分布は、図12に示すように幅方向に均一な温度分布を得ることができた。板幅中央での冷却停止温度を560℃とするための冷却時間は、本発明例1では2.5秒、本発明例2では2.1秒であった。冷却速度が高くなったため、高強度を得るために必要な鋼の合金成分(例えばMnなど)の削減が可能となり、製造コストを削減することができた。   As a result, a high cooling capacity was ensured uniformly on the upper and lower surfaces. The temperature distribution in the width direction of the steel plate in this case was able to obtain a uniform temperature distribution in the width direction as shown in FIG. The cooling time for setting the cooling stop temperature at the center of the plate width to 560 ° C. was 2.5 seconds in Invention Example 1, and 2.1 seconds in Invention Example 2. Since the cooling rate became high, it became possible to reduce the steel alloy components (for example, Mn) necessary for obtaining high strength, and to reduce the manufacturing cost.

鋼板幅方向の温度分布は、550〜560℃で図12に示すようなほぼ均一な分布になり、鋼板幅方向の温度むら(最高温度-最低温度)は小さく、10℃になった。このため、材料試験の合格率は99.5%と高く、歩留りも十分に高かった。   The temperature distribution in the width direction of the steel plate was 550 to 560 ° C., and the distribution was almost uniform as shown in FIG. 12, and the temperature unevenness in the width direction of the steel plate (maximum temperature-minimum temperature) was small and became 10 ° C. For this reason, the pass rate of the material test was as high as 99.5%, and the yield was also sufficiently high.

これに対し、比較例1として、特許文献2に記載された隔壁にスリット状の孔を設け、給水口と排水口とを兼用する従来技術の冷却設備を用いた。この比較例1の冷却設備は、図13に示すように、鋼板に衝突した後の冷却水は上方に抜けにくいので、板幅中央での冷却停止温度を560℃とするために、3秒の水冷時間が必要であった。   On the other hand, as Comparative Example 1, a conventional cooling facility in which a slit-shaped hole was provided in the partition wall described in Patent Document 2 and used as both a water supply port and a water discharge port was used. As shown in FIG. 13, in the cooling facility of Comparative Example 1, the cooling water after colliding with the steel plate is difficult to escape upward, so that the cooling stop temperature at the center of the plate width is set to 560 ° C. for 3 seconds. Water cooling time was required.

冷却停止温度の板幅方向分布は、図11に示すような凹型となり、板端部付近での最も高い温度は600℃であった。従って、幅方向の温度むら(最高温度-最低温度)は40℃となった。製品の一部を取り出して材料試験を行った結果、合格率は70%と低く、歩留りも悪かった。   The distribution of the cooling stop temperature in the plate width direction was concave as shown in FIG. 11, and the highest temperature in the vicinity of the end of the plate was 600 ° C. Therefore, the temperature unevenness (maximum temperature-minimum temperature) in the width direction was 40 ° C. As a result of taking out a part of the product and conducting a material test, the acceptance rate was as low as 70% and the yield was also poor.

さらに、比較例2として、冷却水量やノズルの寸法は本発明例1と同じとし、ノズルと排出口のレイアウトを図18のようにして、冷却を行った。すなわち、比較例2は、排出口7を幅方向に並んだ給水口6すなわち円管ノズルの中間位置に設けたものであり、本発明例1(図3)のようにノズル列とノズル列との間にわざわざ排出口7の列を設けることがなく、本発明のような隔壁5に設ける排出口7のレイアウトとして採用するには、最も一般的なものと思われる。   Furthermore, as Comparative Example 2, the amount of cooling water and the dimensions of the nozzle were the same as those of Example 1 of the present invention, and cooling was performed with the layout of the nozzle and the outlet as shown in FIG. That is, in Comparative Example 2, the discharge port 7 is provided in the middle position of the water supply port 6 arranged in the width direction, that is, the circular tube nozzle, and the nozzle row and the nozzle row as in Example 1 (FIG. 3) of the present invention. It is considered that it is most common to adopt the layout of the discharge port 7 provided in the partition wall 5 as in the present invention without providing a row of the discharge ports 7 between them.

しかし、長手方向に隣り合う2つのノズルから噴射された冷却水の逃げ場がないので、本発明例1と比べて排水性が悪く、冷却能力は劣った。板幅中央での冷却停止温度を560℃とするための冷却時間は、2.8秒であった。高強度を得るために必要な鋼の合金成分(例えばMnなど)の削減は、本発明例1の半分程度にとどまった。   However, since there is no escape place for the cooling water sprayed from the two nozzles adjacent in the longitudinal direction, the drainage is poor and the cooling capacity is inferior as compared with Example 1 of the present invention. The cooling time for setting the cooling stop temperature at the center of the plate width to 560 ° C. was 2.8 seconds. Reduction of steel alloy components (for example, Mn) required for obtaining high strength was only about half that of Example 1 of the present invention.

以下、本発明の他の実施例として、H形鋼の熱間圧延プロセスにおいて、引張強度490MPaクラスの鋼板の冷却を行う場合について、図面に基づいて説明する。   Hereinafter, as another embodiment of the present invention, a case of cooling a steel sheet having a tensile strength of 490 MPa class in a hot rolling process of an H-section steel will be described with reference to the drawings.

図19に概略を示すH形鋼圧延設備において、加熱炉から抽出された鋼片を、ブレークダウン圧延、粗圧延を行った後、仕上圧延によりフランジ厚36mm、フランジ幅300m、ウェブ厚16mm、ウェブ高さ700mmとした。仕上圧延時のフランジ外表面温度は800℃であり、この後、フランジ外面の冷却開始温度を780℃として加速冷却を行った。冷却終了温度(加速冷却設備出側で復熱後の温度を測定した値)は、580℃を目標とした。   In the H-section steel rolling facility schematically shown in FIG. 19, the steel piece extracted from the heating furnace is subjected to breakdown rolling and rough rolling, and then finish rolling to obtain a flange thickness of 36 mm, a flange width of 300 m, a web thickness of 16 mm, a web The height was 700 mm. The flange outer surface temperature during finish rolling was 800 ° C., and thereafter, the cooling start temperature of the flange outer surface was set to 780 ° C. and accelerated cooling was performed. The cooling end temperature (a value obtained by measuring the temperature after recuperation at the exit side of the accelerated cooling facility) was set to 580 ° C.

加速冷却試験に用いた冷却設備は、図20に示すように、フランジ21外面と冷却ヘッダ23との間に隔壁5を有し、水平方向に噴射冷却水25を噴射する本発明の冷却設備である。フランジ21内面とウェブ22上下面の冷却は、排水性の問題があるため、行わなかった。   As shown in FIG. 20, the cooling equipment used in the accelerated cooling test is the cooling equipment of the present invention that has the partition wall 5 between the outer surface of the flange 21 and the cooling header 23 and injects the jet cooling water 25 in the horizontal direction. is there. The cooling of the inner surface of the flange 21 and the upper and lower surfaces of the web 22 was not performed because of the problem of drainage.

本実施例では、隔壁の給水口6と排水口7の配置を発明例として1種類試験した。すなわち、本発明例3は、図2に示すように給水口6を千鳥に配列し、隣り合う給水口6同士を結ぶ3本の線分からなる三角形の外心に排水口7を設けたものであり、1つの給水口6の周りに6個の排水口7が6角形の頂点に配置される場合である。なお、隔壁5には、図2に従って、直径12mmの貫通孔をあけ、給水口6には円管ノズル3を挿入し、残りの孔を排水口7とした。   In this example, one type of arrangement of the water supply port 6 and the water discharge port 7 of the partition wall was tested as an invention example. That is, Example 3 of the present invention is such that the water supply ports 6 are arranged in a staggered manner as shown in FIG. 2, and the drainage ports 7 are provided at the outer periphery of a triangle formed by three line segments connecting the adjacent water supply ports 6 to each other. There is a case where six drain ports 7 are arranged at the apex of the hexagon around one water supply port 6. According to FIG. 2, a through hole having a diameter of 12 mm was formed in the partition wall 5, the circular tube nozzle 3 was inserted into the water supply port 6, and the remaining hole was used as the drain port 7.

使用した円管ノズルの寸法は、内径4mm、外径8mm、フランジ幅方向(鉛直方向)、搬送方向ともにノズルピッチは60mmとした。冷却水の噴射速度は、8.2m/s、水量密度は2.7m/m ・minとした。 The dimensions of the used circular tube nozzle were an inner diameter of 4 mm, an outer diameter of 8 mm, a flange pitch direction (vertical direction), and a nozzle pitch of 60 mm in the transport direction. The jetting speed of the cooling water was 8.2 m / s, and the water density was 2.7 m 3 / m 2 · min.

本発明例3では、図14に示した上面冷却の場合と同様に、フランジ21外面と隔壁5との間に充満したフランジ21外面冷却後の冷却水26が隔壁の背面に速やかに排除されて、ヘッダ23と隔壁5との間の空間に入るので、後続で供給される噴射冷却水25は、隔壁5とフランジ21外面に充満する水膜27を貫通することができた。   In the third example of the present invention, the cooling water 26 after cooling the outer surface of the flange 21 filled between the outer surface of the flange 21 and the partition wall 5 is quickly eliminated on the rear surface of the partition wall, as in the case of the upper surface cooling shown in FIG. Then, since it enters the space between the header 23 and the partition wall 5, the jet cooling water 25 supplied subsequently can penetrate the water film 27 filling the partition wall 5 and the outer surface of the flange 21.

これによって、高い冷却能力を均一に確保できた。フランジ21幅中央での冷却停止温度を580℃とするための冷却時間は、2.4秒であり、フランジ21幅方向の温度分布は、570〜580℃で、図21に示すように幅方向にほぼ均一な温度分布を得ることができたので、フランジ幅方向の温度むら(最高温度-最低温度)は小さく、10℃であった。   As a result, a high cooling capacity was ensured uniformly. The cooling time for setting the cooling stop temperature at the center of the flange 21 width to 580 ° C. is 2.4 seconds, and the temperature distribution in the flange 21 width direction is 570 to 580 ° C., as shown in FIG. As a result, an uneven temperature distribution in the flange width direction (maximum temperature-minimum temperature) was small and 10 ° C.

その結果、材料試験の合格率は99.7%と高く、歩留りも十分に高かった。
また、高い冷却速度が得られたので、高強度を得るために必要な鋼の合金成分(例えばMnなど)の削減が可能となり、製造コストを削減することができた。
As a result, the pass rate of the material test was as high as 99.7%, and the yield was also sufficiently high.
Moreover, since a high cooling rate was obtained, it was possible to reduce the steel alloy components (for example, Mn) necessary for obtaining high strength, and the manufacturing cost could be reduced.

これに対し、比較例3として、一般的なスプレー冷却設備を用いて、同じ水量密度での冷却を行った。この比較例3の冷却設備では、フランジ21外面に衝突した後の冷却水がフランジ21外面近傍を落下するため、後続で供給される冷却水は、フランジ21外面に衝突した後の落下冷却水に阻害されて、フランジ21外面に到達しにくくなる。   On the other hand, as Comparative Example 3, cooling was performed with the same water density using a general spray cooling facility. In the cooling facility of Comparative Example 3, since the cooling water after colliding with the outer surface of the flange 21 falls in the vicinity of the outer surface of the flange 21, the cooling water supplied subsequently becomes the falling cooling water after colliding with the outer surface of the flange 21. It is obstructed and it becomes difficult to reach the outer surface of the flange 21.

特に、フランジ21高さ方向の低い位置では冷却能力が低下して、冷却停止温度のフランジ21幅方向分布は、図22に示すように、下部ほど高い分布となった。フランジ21の最上部付近での最も低い温度は560°であり、フランジ21の最下部付近での最も高い温度は600℃であり、フランジ幅方向の温度むら(最高温度-最低温度)は40℃となった。   In particular, the cooling capacity decreased at a low position in the flange 21 height direction, and the flange 21 width direction distribution of the cooling stop temperature became higher as the lower part as shown in FIG. The lowest temperature near the top of the flange 21 is 560 °, the highest temperature near the bottom of the flange 21 is 600 ° C., and the temperature unevenness (maximum temperature-minimum temperature) in the flange width direction is 40 ° C. It became.

そして、製品の一部を取り出して材料試験を行った結果は、合格率は80%と低く、歩留りも悪かった。   As a result of taking out a part of the product and conducting a material test, the pass rate was as low as 80% and the yield was also poor.

本発明の冷却設備の配置を説明する図である。It is a figure explaining arrangement | positioning of the cooling equipment of this invention. 給排水口の部分配列図である。It is a partial arrangement figure of a water supply / drain port. 図2を展開した隔壁の平面図である。It is a top view of the partition which developed FIG. 給排水口の他の部分配列図である。It is another partial arrangement view of a water supply / drain port. 図4を展開した隔壁の平面図である。It is a top view of the partition which developed FIG. 給排水口の部分配列図である。It is a partial arrangement figure of a water supply / drain port. 図6を展開した隔壁の平面図である。It is a top view of the partition which developed FIG. 給排水口の他の部分配列図である。It is another partial arrangement view of a water supply / drain port. 図8を展開した隔壁の平面図である。It is a top view of the partition which developed FIG. 隔壁上の冷却排水の流れを説明する図である。It is a figure explaining the flow of the cooling waste water on a partition. 従来例による鋼板幅方向温度分布を説明する図であるIt is a figure explaining the steel plate width direction temperature distribution by a prior art example. 本発明による鋼板幅方向温度分布を説明する図である。It is a figure explaining the steel plate width direction temperature distribution by this invention. 従来例による冷却水の流れを説明する図である。It is a figure explaining the flow of the cooling water by a prior art example. 本発明例による冷却水の流れを説明する図である。It is a figure explaining the flow of the cooling water by the example of the present invention. 厚板圧延ラインの概略を説明する図である。It is a figure explaining the outline of a thick plate rolling line. 本発明例の隔壁上の冷却排水との非干渉を説明する図である。It is a figure explaining non-interference with the cooling drainage on the partition of the example of the present invention. ノズル先端が隔壁よりも上方にある場合の隔壁上の冷却排水との干渉を説明する図である。It is a figure explaining interference with the cooling drainage on a partition when a nozzle tip is above a partition. 比較例の隔壁の一例を示す平面図である。It is a top view which shows an example of the partition of a comparative example. H形鋼圧延ラインの概略を説明する図である。It is a figure explaining the outline of a H-section steel rolling line. 本発明の冷却設備のH形鋼圧延ラインへの適用を説明する図である。It is a figure explaining application to the H section steel rolling line of the cooling equipment of the present invention. 本発明による鋼板幅方向温度分布を説明する図である。It is a figure explaining the steel plate width direction temperature distribution by this invention. 従来例による鋼板幅方向温度分布を説明する図である。It is a figure explaining the steel plate width direction temperature distribution by a prior art example.

符号の説明Explanation of symbols

1 上ヘッダ
2 下ヘッダ
3 上冷却水噴射ノズル(円管ノズル)
4 下冷却水噴射ノズル(円管ノズル)
5 隔壁
6 給水口
7 排水口
8 噴射冷却水
9 排出水
10 水切ロール
11 テーブルロール
12 熱鋼板
21 フランジ
22 ウェブ
23 ヘッダ
24 ノズル
25 噴射冷却水
26 排出水
27 充満水膜
1 Upper header 2 Lower header 3 Upper cooling water injection nozzle (circular tube nozzle)
4 Lower cooling water injection nozzle (circular tube nozzle)
DESCRIPTION OF SYMBOLS 5 Partition 6 Water supply port 7 Drainage port 8 Injection cooling water 9 Drainage water 10 Draining roll 11 Table roll 12 Heated steel plate 21 Flange 22 Web 23 Header 24 Nozzle 25 Injection cooling water 26 Drainage water 27 Filled water film

Claims (5)

鋼材の熱間圧延ラインに設置される鋼材の冷却設備であって、鋼材の表面に冷却水を供給するヘッダと、該ヘッダから伸長した冷却水噴射ノズルと、前記鋼材と前記ヘッダとの間に設置される隔壁とを備えるとともに、前記隔壁には、前記冷却水噴射ノズルの先端部を内挿する給水口と、前記鋼材の表面に供給された冷却水を前記隔壁の背面へ排水する排水口とが、多数設けられるとともに、前記排水口は、隣り合う前記給水口同士を結ぶ3本の線分からなる三角形の外心または前記三角形の各辺の2等分点に配列されていることを特徴とする鋼材の冷却設備。   A steel material cooling facility installed in a hot rolling line for steel materials, a header for supplying cooling water to the surface of the steel material, a cooling water jet nozzle extending from the header, and between the steel material and the header A partition wall to be installed, and a water supply port for interpolating a tip end portion of the cooling water injection nozzle, and a drain port for draining the cooling water supplied to the surface of the steel material to the back surface of the partition wall. Are provided in a large number, and the drain outlets are arranged at the outer circumference of a triangle composed of three line segments connecting the adjacent water inlets or at the bisection points of each side of the triangle. Steel cooling equipment. 鋼材の熱間圧延ラインに設置される鋼材の冷却設備であって、鋼材の表面に冷却水を供給するヘッダと、該ヘッダから伸長した冷却水噴射ノズルと、前記鋼材と前記ヘッダとの間に設置される隔壁とを備えるとともに、前記隔壁には、前記冷却水噴射ノズルの先端部を内挿する給水口と、前記鋼材の表面に供給された冷却水を前記隔壁の背面へ排水する排水口とが、多数設けられるとともに、前記排水口は、隣り合う前記給水口同士を結ぶ4本の線分からなる四角形の重心または前記四角形の各辺の2等分点に配列されていることを特徴とする鋼材の冷却設備。   A steel material cooling facility installed in a hot rolling line for steel materials, a header for supplying cooling water to the surface of the steel material, a cooling water jet nozzle extending from the header, and between the steel material and the header A partition wall to be installed, and a water supply port for interpolating a tip end portion of the cooling water injection nozzle, and a drain port for draining the cooling water supplied to the surface of the steel material to the back surface of the partition wall. And a plurality of the drain outlets are arranged at the center of gravity of a quadrilateral consisting of four line segments connecting the adjacent water inlets or at the bisection point of each side of the square. Steel material cooling equipment. 隔壁に設けられた排出口の総断面積を冷却水噴射ノズルの総断面積の1.5倍以上とすることを特徴とする請求項1または2に記載の鋼材の冷却設備。   The steel material cooling facility according to claim 1 or 2, wherein the total cross-sectional area of the discharge port provided in the partition wall is 1.5 times or more the total cross-sectional area of the cooling water injection nozzle. 隔壁に設けられた給水口に内挿した冷却水噴射ノズルの外周面と前記給水口の内面との隙間を3mm以下とすることを特徴とする請求項1乃至3のいずれかに記載の鋼材の冷却設備。   The steel material according to any one of claims 1 to 3, wherein a gap between an outer peripheral surface of a cooling water injection nozzle inserted in a water supply port provided in a partition wall and an inner surface of the water supply port is 3 mm or less. Cooling equipment. 冷却水噴射ノズルの内径を3〜8mm、前記冷却水噴射ノズルから噴射される冷却水は流速8m/s以上の棒状冷却水であり、水量密度を1.5〜4.0m/m ・minとすることを特徴とする請求項1乃至4のいずれかに記載の鋼材の冷却設備。 The cooling water injection nozzle has an inner diameter of 3 to 8 mm, and the cooling water injected from the cooling water injection nozzle is a rod-shaped cooling water having a flow velocity of 8 m / s or more, and the water amount density is 1.5 to 4.0 m 3 / m 2. The steel cooling equipment according to any one of claims 1 to 4, wherein the cooling equipment is min.
JP2008231821A 2008-07-16 2008-09-10 Steel cooling equipment Active JP5597916B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2008231821A JP5597916B2 (en) 2008-09-10 2008-09-10 Steel cooling equipment
US13/003,970 US8881568B2 (en) 2008-07-16 2009-07-15 Cooling equipment and cooling method for hot rolled steel plate
EP09798014.8A EP2329894B1 (en) 2008-07-16 2009-07-15 Cooling facility and cooling method for hot steel plate
KR1020117000800A KR101291832B1 (en) 2008-07-16 2009-07-15 Cooling facility and cooling method for hot steel plate
PCT/JP2009/063142 WO2010008090A1 (en) 2008-07-16 2009-07-15 Cooling facility and cooling method for hot steel plate
EP15159053.6A EP2910317B1 (en) 2008-07-16 2009-07-15 Cooling equipment for hot steel plate
CN200980127773.3A CN102099130B (en) 2008-07-16 2009-07-15 Cooling facility and cooling method for hot steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008231821A JP5597916B2 (en) 2008-09-10 2008-09-10 Steel cooling equipment

Publications (2)

Publication Number Publication Date
JP2010064097A true JP2010064097A (en) 2010-03-25
JP5597916B2 JP5597916B2 (en) 2014-10-01

Family

ID=42190146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008231821A Active JP5597916B2 (en) 2008-07-16 2008-09-10 Steel cooling equipment

Country Status (1)

Country Link
JP (1) JP5597916B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011001849A1 (en) * 2009-06-30 2011-01-06 住友金属工業株式会社 Cooling device for steel sheet, manufacturing device for hot-rolled steel sheet, and manufacturing method for steel sheet
CN114292999A (en) * 2021-12-10 2022-04-08 鞍钢集团工程技术有限公司 Extra-thick plate quenching device capable of automatically controlling water cooling and air cooling

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004066308A (en) * 2002-08-08 2004-03-04 Jfe Steel Kk System for cooling hot-rolled steel strip, method and line for manufacturing hot-rolled steel strip
JP2006035233A (en) * 2004-07-22 2006-02-09 Sumitomo Metal Ind Ltd Cooling device for steel plate, and manufacturing method and manufacturing device for hot-rolled steel plate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004066308A (en) * 2002-08-08 2004-03-04 Jfe Steel Kk System for cooling hot-rolled steel strip, method and line for manufacturing hot-rolled steel strip
JP2006035233A (en) * 2004-07-22 2006-02-09 Sumitomo Metal Ind Ltd Cooling device for steel plate, and manufacturing method and manufacturing device for hot-rolled steel plate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011001849A1 (en) * 2009-06-30 2011-01-06 住友金属工業株式会社 Cooling device for steel sheet, manufacturing device for hot-rolled steel sheet, and manufacturing method for steel sheet
JP2011011218A (en) * 2009-06-30 2011-01-20 Sumitomo Metal Ind Ltd Cooling device for steel sheet, device for manufacturing hot rolled steel sheet, and method for manufacturing the steel sheet
JP4674646B2 (en) * 2009-06-30 2011-04-20 住友金属工業株式会社 Steel plate cooling device, hot-rolled steel plate manufacturing device, and steel plate manufacturing method
CN114292999A (en) * 2021-12-10 2022-04-08 鞍钢集团工程技术有限公司 Extra-thick plate quenching device capable of automatically controlling water cooling and air cooling
CN114292999B (en) * 2021-12-10 2023-06-16 鞍钢集团工程技术有限公司 Super-thick plate quenching device capable of automatically controlling water cooling and air cooling

Also Published As

Publication number Publication date
JP5597916B2 (en) 2014-10-01

Similar Documents

Publication Publication Date Title
US8881568B2 (en) Cooling equipment and cooling method for hot rolled steel plate
KR100973691B1 (en) Cooling facility and cooling method of steel plate, and hot rolling facility and hot rolling method using the same
JP4449991B2 (en) Apparatus and method for cooling hot-rolled steel strip
JP4779749B2 (en) Steel plate cooling method and cooling equipment
KR20080034966A (en) Hot rolling facility of steel plate and hot rolling method
JP4853224B2 (en) Steel sheet cooling equipment and cooling method
JP2008100256A (en) Equipment and method for cooling steel sheet
JP4876781B2 (en) Steel sheet cooling equipment and cooling method
JP2011025282A (en) Equipment and method for cooling thick steel plate
JP5640648B2 (en) Method and apparatus for cooling bottom surface of hot steel sheet
JP5685861B2 (en) Draining device, draining method and cooling equipment for hot steel plate
JP5962849B2 (en) Manufacturing equipment and manufacturing method for thick steel plate
JP5597916B2 (en) Steel cooling equipment
JP4905180B2 (en) Steel cooling device and cooling method
JP4398898B2 (en) Thick steel plate cooling device and method
JP4888124B2 (en) Steel cooling device and cooling method
JP5387093B2 (en) Thermal steel sheet cooling equipment
JP5515440B2 (en) Thick steel plate cooling equipment and cooling method thereof
JP5246075B2 (en) Thermal steel sheet cooling equipment and cooling method
JP5347781B2 (en) Thermal steel sheet cooling equipment and cooling method
JP5228720B2 (en) Thick steel plate cooling equipment
JP4962349B2 (en) Lower surface cooling method and lower surface cooling device for hot-rolled steel strip
JP2009279651A (en) Method of and device for cooling back surface of hot-rolled steel strip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20131009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140728

R150 Certificate of patent or registration of utility model

Ref document number: 5597916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250