JP2010064016A - Method for treating drainage and drainage treatment facility - Google Patents

Method for treating drainage and drainage treatment facility Download PDF

Info

Publication number
JP2010064016A
JP2010064016A JP2008233385A JP2008233385A JP2010064016A JP 2010064016 A JP2010064016 A JP 2010064016A JP 2008233385 A JP2008233385 A JP 2008233385A JP 2008233385 A JP2008233385 A JP 2008233385A JP 2010064016 A JP2010064016 A JP 2010064016A
Authority
JP
Japan
Prior art keywords
membrane
wastewater
temperature
heat
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008233385A
Other languages
Japanese (ja)
Other versions
JP4862027B2 (en
Inventor
Yukiko Hirai
友希子 平井
Hiroyuki Hosoda
博之 細田
Shigeo Yamagata
成生 山形
Tomonobu Nishimura
友伸 西村
Hirohisa Nikaido
宏央 二階堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2008233385A priority Critical patent/JP4862027B2/en
Publication of JP2010064016A publication Critical patent/JP2010064016A/en
Application granted granted Critical
Publication of JP4862027B2 publication Critical patent/JP4862027B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating drainage drained from an incineration plant which hardly deteriorate an RO membrane, and can efficiently recover the heat of combustion exhaust gas in an incineration plant, and to provide drainage treatment facilities. <P>SOLUTION: In the method for treating drainage drained from an incineration plant equipped with: an incineration apparatus firing organic matter; a heat recovery apparatus recovering the heat of combustion exhaust gas exhausted from the incineration apparatus; and a temperature reduction apparatus further reducing the temperature of the combustion exhaust gas heat-recovered by the heat recovery apparatus, the method includes: a chlorine amount measurement stage where the amount of free residual chlorine comprised in the drainage is measured; a dechlorination agent adding stage where a dechlorination agent is added to the drainage; a dechlorination agent increasing stage where the dechlorination agent to be added to the drainage is increased correspondingly to the increase of the amount of the free residual chlorine; an RO membrane separation stage where concentrated water is separated away from the drainage to which the dechlorination agent has been added with a reverse osmosis membrane (RO membrane); and a temperature reducing stage where the temperature of the heat-recovered combustion exhaust gas is reduced with the heat of vaporization of the concentrated water by the temperature reduction apparatus. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、焼却プラントから排出される排水の排水処理方法及び該排水の排水処理設備に関する。   The present invention relates to a wastewater treatment method for wastewater discharged from an incineration plant and a wastewater treatment facility for the wastewater.

従来、有機物を燃焼させる焼却装置と、該焼却装置から排出される燃焼排ガスの熱を回収する熱回収装置と、該熱回収装置で熱回収された燃焼排ガスをさらに減温させる減温装置とが備えられた焼却プラントから排出される排水の排水処理方法としては、該排水を凝集剤などによって凝集処理した後にろ過処理する排水処理方法などが知られている。   Conventionally, an incinerator that combusts organic matter, a heat recovery device that recovers the heat of combustion exhaust gas discharged from the incinerator, and a temperature reduction device that further reduces the temperature of the combustion exhaust gas recovered by the heat recovery device. As a wastewater treatment method for wastewater discharged from an incineration plant provided, a wastewater treatment method in which the wastewater is agglomerated with a coagulant and then filtered is known.

従来の排水処理方法としては、例えば、焼却プラントから排出される排水を凝集剤などによって凝集処理した後に生物処理を行い、さらに砂ろ過によってろ過処理する排水処理方法などが知られている(特許文献1)。この種の排水処理方法には、浄化された浄化水の大部分を放流できることが記載されている。   As a conventional wastewater treatment method, for example, a wastewater treatment method is known in which wastewater discharged from an incineration plant is agglomerated by a flocculant or the like, then biologically treated, and further filtered by sand filtration (Patent Literature). 1). This type of wastewater treatment method describes that most of the purified water can be discharged.

ところで、焼却プラントから排出される排水の排水処理方法としては、いわゆる環境問題に対応すべく、排水処理によって浄化された浄化水を極力放流しない方式を採用したものが強く求められている。   By the way, as a wastewater treatment method for wastewater discharged from an incineration plant, there is a strong demand for a method using a method in which purified water purified by wastewater treatment is not discharged as much as possible in order to cope with so-called environmental problems.

しかしながら、斯かる排水処理方法においては、浄化水を極力放流しないようにするために、大半の浄化水を減温塔などの減温装置に噴射して気化させ浄化水の容量を減らすことなどが行われている。詳しくは、廃熱ボイラなどの熱回収装置で熱回収された後の燃焼排ガスに対して、減温装置において浄化水を噴射等することにより、浄化水を気化させてその容量を減らし、一方で、熱回収された燃焼排ガスを浄化水の気化熱によって減温することなどが行われている。即ち、斯かる排水処理方法においては、比較的多量の浄化水が減温装置における減温のために用いられることとなる。   However, in such a wastewater treatment method, in order to prevent the purified water from being discharged as much as possible, it is possible to reduce the volume of the purified water by injecting most of the purified water into a temperature reducing device such as a temperature reducing tower to vaporize it. Has been done. Specifically, the combustion exhaust gas after heat recovery by a heat recovery device such as a waste heat boiler is injected with purified water in the temperature reducing device to vaporize the purified water and reduce its capacity. The temperature of the combustion exhaust gas recovered by heat is reduced by the heat of vaporization of purified water. That is, in such a wastewater treatment method, a relatively large amount of purified water is used for temperature reduction in the temperature reduction device.

このように、排水処理によって浄化された浄化水を極力放流しない方式を採用した排水処理方法においては、減温装置に噴射等される浄化水が比較的多量であるが故に、その気化熱により減温する温度幅を比較的大きく設定することとなる。その分だけ、減温装置の上流側にある廃熱ボイラなどの熱回収装置において、燃焼排ガスから回収する熱量を少なく設定せざるを得ない。即ち、減温装置において減温させる温度幅を比較的大きくすることに伴い、熱回収装置における燃焼排ガスからの熱回収量をより小さくすることとなり、焼却プラントにおける燃焼排ガスからの熱回収効率が低くなりやすいという問題がある。   In this way, in the wastewater treatment method that employs a method in which the purified water purified by the wastewater treatment is not discharged as much as possible, the amount of purified water that is injected into the temperature reducing device is relatively large. The temperature range to be heated is set to be relatively large. Accordingly, in the heat recovery device such as a waste heat boiler on the upstream side of the temperature reduction device, the amount of heat recovered from the combustion exhaust gas has to be set small. That is, as the temperature range for reducing the temperature in the temperature reducing device is relatively large, the amount of heat recovered from the combustion exhaust gas in the heat recovery device is further reduced, and the heat recovery efficiency from the combustion exhaust gas in the incineration plant is low. There is a problem that it is easy to become.

特開平10−99898号公報Japanese Patent Laid-Open No. 10-99898

そこで、焼却プラントから排水される排水の排水処理方法であって、焼却プラントにおける燃焼排ガスの熱を効率よく回収できる排水処理方法が要望されている。   Therefore, there is a demand for a wastewater treatment method for wastewater discharged from an incineration plant, which can efficiently recover the heat of combustion exhaust gas in the incineration plant.

また、焼却プラントから排出される排水の排水処理方法においては、排水に次亜塩素酸イオンなどの酸化性物質が含まれることがあり、しかもその濃度が突発的に上昇することがあるため、排水に含まれる酸化性物質によって、排水処理設備として用いる逆浸透膜が特に劣化しやすいという問題がある。そこで、突発的な酸化性物質濃度の上昇に対しても酸化性物質を迅速に低減させることができ、逆浸透膜を劣化させにくい排水処理方法が要望されている。   In addition, in wastewater treatment methods for wastewater discharged from incineration plants, wastewater may contain oxidizing substances such as hypochlorite ions, and its concentration may increase suddenly. There is a problem that the reverse osmosis membrane used as the waste water treatment equipment is particularly susceptible to deterioration due to the oxidizing substance contained in the water. Thus, there is a demand for a wastewater treatment method that can rapidly reduce the oxidizing substance even when the concentration of the oxidizing substance suddenly increases, and that does not deteriorate the reverse osmosis membrane.

本発明は、上記問題点、要望点等に鑑み、焼却プラントから排水される排水の排水処理方法であって、逆浸透膜を劣化させにくく、焼却プラントにおける燃焼排ガスの熱を効率よく回収できる排水処理方法を提供することを課題とする。また、焼却プラントから排水される排水の排水処理設備であって、逆浸透膜を劣化させにくく、焼却プラントにおける燃焼排ガスの熱を効率よく回収できる排水処理設備を提供することを課題とする。   The present invention is a wastewater treatment method for wastewater discharged from an incineration plant in view of the above-mentioned problems, demands, etc., and is a wastewater that can hardly recover the reverse osmosis membrane and can efficiently recover the heat of combustion exhaust gas in the incineration plant. It is an object to provide a processing method. It is another object of the present invention to provide a wastewater treatment facility for wastewater discharged from an incineration plant, which is unlikely to deteriorate a reverse osmosis membrane and can efficiently recover the heat of combustion exhaust gas in the incineration plant.

上記課題を解決すべく、本発明に係る排水処理方法は、有機物を燃焼させる焼却装置と、該焼却装置から排出される燃焼排ガスの熱を回収する熱回収装置と、前記熱回収装置で熱回収された燃焼排ガスをさらに減温させる減温装置とが備えられた焼却プラントから排出される排水の排水処理方法であって、前記排水に含まれる遊離残留塩素の量を測定する塩素量測定工程と、前記排水に脱塩素剤を添加する脱塩素剤添加工程と、前記遊離残留塩素の量の上昇に対応して前記排水に添加する脱塩素剤を増加させる脱塩素剤増加工程と、前記脱塩素剤が添加された前記排水から逆浸透膜(RO膜)によって濃縮水を分離除去するRO膜分離工程と、熱回収された燃焼排ガスを前記濃縮水の気化熱により前記減温装置で減温させる減温工程とを実施することを特徴とする。   In order to solve the above problems, a wastewater treatment method according to the present invention includes an incinerator for burning organic matter, a heat recovery device for recovering the heat of combustion exhaust gas discharged from the incinerator, and heat recovery by the heat recovery device. A wastewater treatment method for wastewater discharged from an incineration plant provided with a temperature reducing device for further reducing the temperature of the exhausted flue gas, the chlorine amount measuring step for measuring the amount of free residual chlorine contained in the wastewater, A dechlorinating agent adding step for adding a dechlorinating agent to the waste water, a dechlorinating agent increasing step for increasing the dechlorinating agent added to the waste water in response to an increase in the amount of free residual chlorine, and the dechlorination RO membrane separation step of separating and removing concentrated water from the waste water to which the agent has been added by a reverse osmosis membrane (RO membrane), and reducing the temperature of the combustion exhaust gas that has been recovered by the temperature reducing device by the heat of vaporization of the concentrated water Implementing a temperature reduction process And wherein the Rukoto.

上記構成からなる排水処理方法によれば、前記排水に脱塩素剤を添加する脱塩素剤添加工程を実施することにより、前記排水に添加される脱塩素剤によって前記排水に含まれる遊離残留塩素が低減され、前記排水に含まれる遊離残留塩素の濃度は、比較的低濃度に保たれ得る。さらに、前記排水に含まれる遊離残留塩素の量を測定する塩素量測定工程と、前記遊離残留塩素の量の上昇に対応して前記排水に添加する脱塩素剤を増加させる脱塩素剤増加工程とを実施することにより、前記排水に含まれる遊離残留塩素の量が突発的に上昇した場合であっても、遊離残留塩素濃度の上昇を迅速に検知でき、それに対応して前記排水に添加する脱塩素剤を迅速に増加させることができる。従って、前記排水に含まれる遊離残留塩素の濃度が突発的に上昇した場合であっても、前記排水に含まれる遊離残留塩素を迅速に低減させることができる。   According to the wastewater treatment method having the above-described configuration, by carrying out a dechlorinating agent addition step of adding a dechlorinating agent to the wastewater, free residual chlorine contained in the wastewater is removed by the dechlorinating agent added to the wastewater. The concentration of free residual chlorine that is reduced and contained in the wastewater can be kept relatively low. Furthermore, a chlorine amount measuring step for measuring the amount of free residual chlorine contained in the wastewater, and a dechlorinating agent increasing step for increasing the amount of dechlorinating agent added to the wastewater in response to an increase in the amount of free residual chlorine, As a result, even if the amount of free residual chlorine contained in the wastewater suddenly increases, an increase in the free residual chlorine concentration can be detected quickly, and the drainage added to the wastewater is correspondingly detected. The chlorine agent can be increased rapidly. Therefore, even if the concentration of free residual chlorine contained in the waste water suddenly increases, the free residual chlorine contained in the waste water can be rapidly reduced.

また、上記構成からなる排水処理方法によれば、前記焼却プラントから排出され不純物等を含む前記排水を逆浸透膜によって濃縮し、容積が減じられた前記濃縮水として分離除去できる。前記濃縮水を前記減温装置内に噴射等するなど、熱回収された燃焼排ガスを前記濃縮水の気化熱により前記減温装置で減温させるに際して、濃縮によって容積が減じられている分、気化させる水量が少ないため、前記燃焼排ガスを減温する温度幅を小さくすることができる。また、前記減温装置で減温される熱回収された燃焼排ガスは、その上流側で熱回収装置により熱を回収されたものであり、熱回収された燃焼排ガスを前記減温装置において減温する温度幅を小さくする分、その上流側にある前記熱回収装置において燃焼排ガスから回収する熱量を大きくすることができる。   In addition, according to the wastewater treatment method having the above-described configuration, the wastewater discharged from the incineration plant and containing impurities and the like can be concentrated by a reverse osmosis membrane, and separated and removed as the concentrated water having a reduced volume. When the temperature of the combustion exhaust gas recovered by heat is reduced by the temperature reduction device by the heat of vaporization of the concentrated water, such as by injecting the concentrated water into the temperature reduction device, the volume is reduced by concentration. Since the amount of water to be generated is small, the temperature range for reducing the temperature of the combustion exhaust gas can be reduced. Further, the heat-recovered combustion exhaust gas reduced in temperature by the temperature-reducing device is heat recovered by the heat-recovery device on the upstream side, and the heat-recovered combustion exhaust gas is reduced in temperature by the temperature-reducing device. The amount of heat recovered from the combustion exhaust gas in the heat recovery device on the upstream side can be increased by reducing the temperature range.

また、本発明に係る排水処理方法は、前記脱塩素剤添加工程を実施する前に、前記排水に含まれる浮遊物を減少させる前処理工程を実施することが好ましい。前記脱塩素剤添加工程を実施する前に、前記前処理工程を実施することにより、前記排水に含まれ得る浮遊物を減少させることができ、前記逆浸透膜の目詰まりを抑制できる。従って、前記逆浸透膜の交換頻度が低くなり、より効率的に前記分離水を得ることができ、焼却プラントにおける燃焼排ガスの熱をより効率よく回収できるという利点がある。   Moreover, it is preferable that the waste water treatment method which concerns on this invention implements the pre-processing process which reduces the suspended | floating matter contained in the said waste_water | drain before implementing the said dechlorinating agent addition process. By carrying out the pretreatment step before carrying out the dechlorinating agent addition step, suspended matters that can be contained in the waste water can be reduced, and clogging of the reverse osmosis membrane can be suppressed. Therefore, there is an advantage that the frequency of replacement of the reverse osmosis membrane is reduced, the separated water can be obtained more efficiently, and the heat of the combustion exhaust gas in the incineration plant can be recovered more efficiently.

また、本発明に係る排水処理方法は、前記前処理工程で、前記排水に含まれる浮遊物を減少させるべく、前記排水を精密ろ過膜(MF膜)によって分離し該MF膜を透過したMF膜透過排水を前記排水から分離除去することが好ましい。前記前処理工程で、前記排水をMF膜によって分離し該MF膜を透過したMF膜透過排水を前記排水から分離除去することにより、前記排水に含まれる浮遊物をより減少させることができ、前記RO膜分離工程における逆浸透膜の目詰まりがより起こりにくく、前記逆浸透膜の継続使用期間がより長くなり得る。従って、前記逆浸透膜の交換頻度が低くなり、より効率的に前記分離水を得ることができ、焼却プラントにおける燃焼排ガスの熱をより効率よく回収できるという利点がある。   In the wastewater treatment method according to the present invention, in the pretreatment step, the wastewater is separated by a microfiltration membrane (MF membrane) and the MF membrane is permeated through the MF membrane so as to reduce suspended matter contained in the wastewater. It is preferable to separate and remove the permeated waste water from the waste water. In the pretreatment step, the wastewater is separated by the MF membrane, and the MF membrane permeated wastewater that has permeated the MF membrane is separated and removed from the wastewater, so that the suspended matter contained in the wastewater can be further reduced. Clogging of the reverse osmosis membrane in the RO membrane separation step is less likely to occur, and the continuous use period of the reverse osmosis membrane can be longer. Therefore, there is an advantage that the frequency of replacement of the reverse osmosis membrane is reduced, the separated water can be obtained more efficiently, and the heat of the combustion exhaust gas in the incineration plant can be recovered more efficiently.

本発明に係る排水処理設備は、有機物を燃焼させる焼却装置と、該焼却装置から排出される燃焼排ガスの熱を回収する熱回収装置と、前記熱回収装置で熱回収された燃焼排ガスをさらに減温させる減温装置とが備えられた焼却プラントから排出される排水の排水処理設備であって、前記排水に含まれる遊離残留塩素の量を測定する塩素量測定手段と、前記排水に脱塩素剤を添加する脱塩素剤添加手段と、前記遊離残留塩素の量の上昇に対応して前記排水に添加する脱塩素剤を増加させる脱塩素剤増加手段と、前記脱塩素剤が添加された前記排水から逆浸透膜(RO膜)によって濃縮水を分離除去するRO膜分離手段と、熱回収された燃焼排ガスを前記濃縮水の気化熱により前記減温装置で減温させる減温手段とが備えられていることを特徴とする。   The wastewater treatment facility according to the present invention further reduces an incinerator that burns organic matter, a heat recovery device that recovers the heat of combustion exhaust gas discharged from the incinerator, and the combustion exhaust gas that has been heat recovered by the heat recovery device. A wastewater treatment facility for wastewater discharged from an incineration plant equipped with a temperature reducing device for heating, a chlorine amount measuring means for measuring the amount of free residual chlorine contained in the wastewater, and a dechlorinating agent for the wastewater A dechlorinating agent adding means for adding, a dechlorinating agent increasing means for increasing the dechlorinating agent added to the wastewater in response to an increase in the amount of free residual chlorine, and the wastewater to which the dechlorinating agent is added RO membrane separation means for separating and removing the concentrated water from the reverse osmosis membrane (RO membrane), and a temperature reducing means for reducing the temperature of the heat-recovered combustion exhaust gas by the temperature reducing device by the heat of vaporization of the concentrated water. It is characterized by That.

本発明に係る排水処理方法は、前記排水に添加される脱塩素剤によって前記遊離残留塩素が低減され、前記排水に含まれる遊離残留塩素の濃度は、比較的低濃度に保たれ得る。また、前記排水に含まれる遊離残留塩素濃度が突発的に上昇した場合であっても、遊離残留塩素濃度の上昇を迅速に検知でき、それに対応して前記排水に添加する脱塩素剤を迅速に増加させることができるため、前記排水に含まれる遊離残留塩素を迅速に低減させることができる。従って、前記排水に含まれ得る遊離残留塩素によって前記逆浸透膜が劣化しにくい。
また、本発明に係る排水処理方法は、上述の通り、前記排水を逆浸透膜によって濃縮し、容積が減じられた前記濃縮水を前記排水から分離除去でき、濃縮によって容積が減じられている分、熱回収された燃焼排ガスを気化熱により減温させる水量が少ないため、熱回収された燃焼排ガスを前記減温装置で減温する温度幅を小さくすることができる。また、熱回収された燃焼排ガスを前記減温装置において減温する温度幅を小さくする分、前記熱回収装置において燃焼排ガスから回収する熱量を大きくすることができる。
従って、本発明の排水処理方法は、逆浸透膜を劣化させにくく、焼却プラントにおける燃焼排ガスの熱を効率よく回収できるという効果を奏する。
In the wastewater treatment method according to the present invention, the free residual chlorine is reduced by the dechlorinating agent added to the wastewater, and the concentration of free residual chlorine contained in the wastewater can be kept at a relatively low concentration. Moreover, even if the free residual chlorine concentration contained in the wastewater suddenly increases, the increase in the free residual chlorine concentration can be detected quickly, and a corresponding dechlorinating agent added to the wastewater can be quickly detected. Since it can increase, the free residual chlorine contained in the said waste_water | drain can be reduced rapidly. Accordingly, the reverse osmosis membrane is unlikely to deteriorate due to free residual chlorine that may be contained in the waste water.
In addition, as described above, the wastewater treatment method according to the present invention concentrates the wastewater with a reverse osmosis membrane, and can separate and remove the concentrated water whose volume has been reduced from the wastewater. Since the amount of water used to reduce the temperature of the heat-recovered combustion exhaust gas by the heat of vaporization is small, the temperature range for reducing the temperature of the heat-recovered combustion exhaust gas by the temperature reducing device can be reduced. Further, the amount of heat recovered from the combustion exhaust gas in the heat recovery device can be increased by reducing the temperature range in which the temperature of the heat recovery combustion exhaust gas is decreased in the temperature reducing device.
Therefore, the wastewater treatment method of the present invention has an effect that the reverse osmosis membrane is hardly deteriorated and the heat of the combustion exhaust gas in the incineration plant can be efficiently recovered.

以下、本発明に係る排水処理方法の一実施形態について説明する。   Hereinafter, an embodiment of a wastewater treatment method according to the present invention will be described.

本実施形態の排水処理方法は、有機物を燃焼させる焼却装置1と、該焼却装置1から排出される燃焼排ガスの熱を回収する熱回収装置2と、該熱回収装置2で熱回収された燃焼排ガス(以下、熱回収燃焼排ガスともいう)をさらに減温させる減温装置3とが備えられた焼却プラントから排出される排水の排水処理方法であって、前記排水に含まれる遊離残留塩素の量を測定する塩素量測定工程と、前記排水に脱塩素剤を添加する脱塩素剤添加工程と、前記遊離残留塩素の量の上昇に対応して前記排水に添加する脱塩素剤を増加させる脱塩素剤増加工程と、前記脱塩素剤が添加された前記排水から逆浸透膜(以下、RO膜ともいう)によって濃縮水を分離除去するRO膜分離工程と、前記熱回収燃焼排ガスを前記濃縮水の気化熱により前記減温装置3で減温させる減温工程とを実施する排水処理方法である。   The wastewater treatment method of the present embodiment includes an incinerator 1 that burns organic matter, a heat recovery device 2 that recovers the heat of combustion exhaust gas discharged from the incinerator 1, and combustion that is heat recovered by the heat recovery device 2 A wastewater treatment method for wastewater discharged from an incineration plant provided with a temperature reducing device 3 for further reducing the temperature of exhaust gas (hereinafter also referred to as heat recovery combustion exhaust gas), wherein the amount of free residual chlorine contained in the wastewater A chlorine amount measuring step for measuring the amount of chlorine, a dechlorinating agent adding step for adding a dechlorinating agent to the wastewater, and a dechlorination for increasing the amount of dechlorinating agent added to the wastewater in response to an increase in the amount of free residual chlorine An agent increasing step, an RO membrane separation step of separating and removing concentrated water from the waste water to which the dechlorinating agent has been added by a reverse osmosis membrane (hereinafter also referred to as RO membrane), and the heat recovery combustion exhaust gas from the concentrated water Reduced temperature by heat of vaporization A waste water treatment method for implementing a temperature reducing step to decrease the temperature of at location 3.

詳しくは、本実施形態の排水処理方法は、有機物を燃焼させる焼却装置1と、該焼却装置1から排出される燃焼排ガスの熱を回収する熱回収装置2と、該熱回収装置2で熱回収された燃焼排ガスをさらに減温させる減温装置3とが備えられた焼却プラントから排出される排水の排水処理方法であって、
前記排水に含まれる遊離残留塩素の量を継続的に測定する塩素量測定工程と、前記排水に所定量の脱塩素剤を添加する脱塩素剤添加工程と、前記遊離残留塩素の量の上昇に対応して前記排水に添加する脱塩素剤を増加させる脱塩素剤増加工程と、前記脱塩素剤が添加された前記排水から逆浸透膜(RO膜)によって濃縮水を分離除去するRO膜分離工程と、前記熱回収燃焼排ガスを前記濃縮水の気化熱により前記減温装置3で減温させる減温工程とを実施し、さらに前記脱塩素剤添加工程を実施する前に、前記排水に含まれる浮遊物を減少させる前処理工程を実施する排水処理方法である。
Specifically, the wastewater treatment method of the present embodiment includes an incinerator 1 that burns organic matter, a heat recovery device 2 that recovers the heat of combustion exhaust gas discharged from the incinerator 1, and heat recovery by the heat recovery device 2. A wastewater treatment method for wastewater discharged from an incineration plant equipped with a temperature reducing device 3 for further reducing the temperature of the exhaust gas emitted from the combustion exhaust,
A chlorine amount measurement step for continuously measuring the amount of free residual chlorine contained in the waste water, a dechlorination agent addition step for adding a predetermined amount of dechlorination agent to the waste water, and an increase in the amount of free residual chlorine Correspondingly, a dechlorinating agent increasing step for increasing the dechlorinating agent added to the wastewater, and a RO membrane separation step for separating and removing concentrated water from the wastewater to which the dechlorinating agent has been added by a reverse osmosis membrane (RO membrane) And a temperature reduction step of reducing the temperature of the heat recovery combustion exhaust gas by the temperature reduction device 3 by the heat of vaporization of the concentrated water, and further before the step of adding the dechlorinating agent, This is a wastewater treatment method for carrying out a pretreatment process for reducing suspended matters.

さらに詳しくは、本実施形態の排水処理方法は、有機物を燃焼させる焼却装置1と、該焼却装置1から排出される燃焼排ガスの熱を回収する熱回収装置2と、該熱回収装置2で熱回収された燃焼排ガスをさらに減温させる減温装置3とが備えられた焼却プラントから排出される排水の排水処理方法であって、
前記排水に含まれる浮遊物を減少させるべく前記排水を精密ろ過膜(以下、MF膜ともいう)によって分離し該精密ろ過膜(MF膜)を透過したMF膜透過排水を前記排水から分離除去する前処理工程と、前記MF膜透過排水に含まれる遊離残留塩素の量を継続的に測定する塩素量測定工程と、前記遊離残留塩素を所定量以下にし得る量の脱塩素剤を前記排水に添加する脱塩素剤添加工程と、前記遊離残留塩素の量の上昇に対応して前記排水に添加する脱塩素剤を増加させる脱塩素剤増加工程と、前記脱塩素剤が添加された前記排水から逆浸透膜(RO膜)によって濃縮水を分離除去するRO膜分離工程と、前記熱回収燃焼排ガスを前記濃縮水の気化熱により前記減温装置3で減温させる減温工程とを実施する排水処理方法である。
More specifically, the wastewater treatment method of the present embodiment includes an incinerator 1 that burns organic matter, a heat recovery device 2 that recovers the heat of combustion exhaust gas discharged from the incinerator 1, and heat generated by the heat recovery device 2. A wastewater treatment method for wastewater discharged from an incineration plant equipped with a temperature reducing device 3 for further reducing the temperature of recovered combustion exhaust gas,
In order to reduce suspended matter contained in the wastewater, the wastewater is separated by a microfiltration membrane (hereinafter also referred to as MF membrane), and the MF membrane permeated wastewater that has permeated the microfiltration membrane (MF membrane) is separated and removed from the wastewater. A pretreatment step, a chlorine amount measurement step for continuously measuring the amount of free residual chlorine contained in the MF membrane permeated wastewater, and an amount of dechlorinating agent that can reduce the free residual chlorine to a predetermined amount or less are added to the wastewater. A dechlorinating agent adding step, a dechlorinating agent increasing step for increasing the dechlorinating agent to be added to the wastewater in response to an increase in the amount of free residual chlorine, and a reverse operation from the wastewater to which the dechlorinating agent is added. Waste water treatment for performing a RO membrane separation step of separating and removing concentrated water by an osmosis membrane (RO membrane), and a temperature reduction step of reducing the temperature of the heat recovery combustion exhaust gas by the temperature reduction device 3 by heat of vaporization of the concentrated water Is the method.

ここで、前記焼却プラントに備えられている前記焼却装置1、前記熱回収装置2、及び前記減温装置3について説明する。なお、前記焼却プラントには、必要に応じて適宜、他の装置等が備えられ得る。
前記焼却装置1、前記熱回収装置2、及び前記減温装置3を備えた焼却プラントの概略図を図1に示す。
Here, the said incinerator 1, the said heat recovery apparatus 2, and the said temperature reduction apparatus 3 with which the said incineration plant is equipped are demonstrated. In addition, the said incineration plant may be equipped with another apparatus etc. suitably as needed.
FIG. 1 shows a schematic diagram of an incineration plant including the incinerator 1, the heat recovery device 2, and the temperature reducing device 3.

前記焼却装置1は、有機物を燃焼させるものであり、具体的には、例えば、焼却炉が挙げられる。燃焼する有機物としては、特に限定されるものではないが、例えば、都市ごみ、産業廃棄物、廃木材、下水汚泥、スラッジなどが挙げられる。なお、前記焼却装置1としては、ストーカ炉、流動床焼却炉、ガス化溶融炉、灰溶融炉等焼却プラントの技術分野において従来公知の一般的なものを用いることができる。   The said incinerator 1 burns organic substance, and specifically, an incinerator is mentioned, for example. Although it does not specifically limit as an organic substance to burn, For example, municipal waste, industrial waste, waste wood, sewage sludge, sludge etc. are mentioned. In addition, as said incinerator 1, the conventionally well-known general thing can be used in the technical field of incineration plants, such as a stoker furnace, a fluidized-bed incinerator, a gasification melting furnace, an ash melting furnace.

前記熱回収装置2は、前記焼却装置1から排出される燃焼排ガスの熱を回収するものである。前記熱回収装置2としては、例えば、燃焼排ガスの熱を回収して水に伝え、水蒸気や温水に換える廃熱ボイラなどが挙げられる。前記熱回収装置2に導入される燃焼排ガスは、通常、800〜1300℃程度の温度になっている。なお、前記熱回収装置2としては、焼却プラントの技術分野において従来公知の一般的なものを用いることができる。   The heat recovery device 2 recovers the heat of the combustion exhaust gas discharged from the incinerator 1. Examples of the heat recovery device 2 include a waste heat boiler that recovers the heat of combustion exhaust gas and transmits it to water, and replaces it with water vapor or hot water. The combustion exhaust gas introduced into the heat recovery apparatus 2 is usually at a temperature of about 800 to 1300 ° C. In addition, as the said heat recovery apparatus 2, the conventionally well-known general thing can be used in the technical field of an incineration plant.

前記減温装置3は、前記熱回収装置2で熱回収された燃焼排ガスをさらに減温させるものである。前記減温装置3としては、特に限定されるものではないが、前記熱回収装置2から導入される前記熱回収燃焼排ガスに水を噴射又は噴霧し、水の気化熱を利用して前記熱回収燃焼排ガスの温度を下げる減温塔などが挙げられる。前記熱回収装置2で熱回収された燃焼排ガスは、通常、250〜400℃程度の温度になっている。なお、前記減温装置3としては、焼却プラントの技術分野において従来公知の一般的なものを用いることができる。   The temperature reducing device 3 further reduces the temperature of the combustion exhaust gas recovered by the heat recovery device 2. The temperature reducing device 3 is not particularly limited, but water is sprayed or sprayed on the heat recovery combustion exhaust gas introduced from the heat recovery device 2, and the heat recovery is performed using heat of vaporization of water. A temperature reducing tower that lowers the temperature of the combustion exhaust gas may be used. The combustion exhaust gas heat recovered by the heat recovery device 2 is usually at a temperature of about 250 to 400 ° C. In addition, as the said temperature reduction apparatus 3, a conventionally well-known general thing can be used in the technical field of an incineration plant.

前記熱回収燃焼排ガスが前記減温装置3によって減温された後のガスの温度は、通常、150〜200℃程度になっている。このガスは前記濃縮水の水が気化した水蒸気を含んでおり、集塵器等でさらに塵などが取り除かれ、大気中に放出される。   The temperature of the gas after the heat recovery combustion exhaust gas has been reduced by the temperature reducing device 3 is usually about 150 to 200 ° C. This gas contains water vapor obtained by evaporating the water of the concentrated water, and dust and the like are further removed by a dust collector or the like and released into the atmosphere.

前記焼却プラントから排出される排水は、少なくとも焼却装置1の周辺機器を冷却した後の機器冷却排水を含んでいる。他にも該排水としては、例えば、廃熱ボイラなどの熱回収装置2からブローされるブロー排水、焼却プラントから発生する焼却残渣やスラグを冷却する残渣冷却排水、廃棄物収集車を洗浄したときに発生する洗車排水、生活排水など、又はその他焼却プラント内で発生する排水が挙げられる。   The waste water discharged from the incineration plant includes at least equipment cooling waste water after cooling the peripheral equipment of the incinerator 1. Other examples of the waste water include blow waste water blown from the heat recovery device 2 such as a waste heat boiler, residue cooling waste water for cooling incineration residues and slag generated from an incineration plant, and waste collection vehicles Wastewater generated in the incineration plant, such as car wash wastewater, domestic wastewater, etc.

次に、本実施形態の排水処理方法で実施する各工程について詳しく説明する。なお、本実施形態の排水処理方法で用いる装置類の概略図を図2に示す。   Next, each process implemented with the waste water treatment method of this embodiment is demonstrated in detail. In addition, the schematic of the apparatus used with the waste water treatment method of this embodiment is shown in FIG.

本実施形態の排水処理方法は、まず、焼却プラントから排出される排水に含まれる浮遊物を減少させる前処理工程を前記脱塩素剤添加工程の前に実施する。   In the wastewater treatment method of this embodiment, first, a pretreatment process for reducing suspended matters contained in wastewater discharged from an incineration plant is performed before the dechlorinating agent addition process.

前処理工程を前記脱塩素剤添加工程の前に実施することにより、前記排水に含まれ得る浮遊物を減少させることができ、前記脱塩素剤添加工程後に実施する前記RO膜分離工程で用いる前記RO膜の目詰まりを抑制できる。従って、前記RO膜の交換頻度が低くなり、より効率的に前記分離水を得ることができ、焼却プラントにおける燃焼排ガスの熱をより効率よく回収できる。従って、前記RO膜の交換頻度が低くなり、より効率的に前記分離水を得ることができ、焼却プラントにおける燃焼排ガスの熱をより効率よく回収できる。   By carrying out the pretreatment step before the dechlorination agent addition step, the suspended matter that can be contained in the waste water can be reduced, and the RO membrane separation step performed after the dechlorination agent addition step is used. RO membrane clogging can be suppressed. Therefore, the replacement frequency of the RO membrane is reduced, the separated water can be obtained more efficiently, and the heat of the combustion exhaust gas in the incineration plant can be recovered more efficiently. Therefore, the replacement frequency of the RO membrane is reduced, the separated water can be obtained more efficiently, and the heat of the combustion exhaust gas in the incineration plant can be recovered more efficiently.

前記浮遊物としては、有機性微粒子、無機性微粒子などが挙げられ、その他の固体状微粒子なども挙げられる。これら浮遊物は、前記焼却プラントから排出される排水に含まれ得る。   Examples of the suspended matter include organic fine particles and inorganic fine particles, and other solid fine particles. These floating substances can be included in the waste water discharged from the incineration plant.

前記前処理工程では、図2に示すように、前記排水に含まれる浮遊物を減少させるべく、前記排水をMF膜によって分離し該MF膜を透過したMF膜透過排水を前記排水から分離除去する。   In the pretreatment step, as shown in FIG. 2, in order to reduce suspended matter contained in the wastewater, the wastewater is separated by an MF membrane, and the MF membrane permeated wastewater that has permeated the MF membrane is separated and removed from the wastewater. .

前記前処理工程において、前記排水をMF膜によって分離し該MF膜を透過したMF膜透過排水を前記排水から分離除去することにより、前記排水に含まれ得る比較的小さい浮遊物を前記MF膜によって除去でき、前記RO膜分離工程で用いられる前記逆浸透膜(RO膜)の目詰まりをより抑制できる。従って、前記逆浸透膜(RO膜)の交換頻度が低くなり、より効率的に前記濃縮水を得ることができる。即ち、上述のごとく焼却プラントにおける燃焼排ガスの熱をより効率よく回収できるうえに、より効率的に前記分離水を得ることができる。   In the pretreatment step, the wastewater is separated by the MF membrane, and the MF membrane permeated wastewater that has permeated the MF membrane is separated and removed from the wastewater, so that the relatively small suspended matter that can be contained in the wastewater is removed by the MF membrane. It is possible to remove the clogging of the reverse osmosis membrane (RO membrane) used in the RO membrane separation step. Therefore, the exchange frequency of the reverse osmosis membrane (RO membrane) is reduced, and the concentrated water can be obtained more efficiently. That is, as described above, the heat of the combustion exhaust gas in the incineration plant can be recovered more efficiently, and the separated water can be obtained more efficiently.

また、前記前処理工程においては、未だ前記脱塩素剤添加工程が実施されていない排水をMF膜によって分離するため、前記排水には遊離残留塩素が含まれ得る。遊離残留塩素が含まれ得る排水を前記精密ろ過膜(MF膜)によって分離することにより、該精密ろ過膜(MF膜)における微生物の繁殖が抑制され得る。即ち、排水に含まれている遊離残留塩素によって前記精密ろ過膜(MF膜)における微生物の繁殖が抑制され得る。このように、前記精密ろ過膜(MF膜)における微生物の繁殖を抑制し得る点、及び、後述するように前記RO膜の劣化を抑制する点において、本実施形態の排水処理方法は、前記前処理工程の後であって前記RO膜分離工程の前に、前記脱塩素剤添加工程を実施する。   In the pretreatment step, wastewater that has not yet been subjected to the dechlorinating agent addition step is separated by an MF membrane, and thus the wastewater may contain free residual chlorine. By separating the wastewater that may contain free residual chlorine by the microfiltration membrane (MF membrane), the growth of microorganisms in the microfiltration membrane (MF membrane) can be suppressed. That is, the growth of microorganisms in the microfiltration membrane (MF membrane) can be suppressed by free residual chlorine contained in the waste water. As described above, the wastewater treatment method of the present embodiment is capable of suppressing the growth of microorganisms in the microfiltration membrane (MF membrane) and suppressing the deterioration of the RO membrane as described later. After the processing step and before the RO membrane separation step, the dechlorinating agent addition step is performed.

前記精密ろ過膜(MF膜)としては、水処理の技術分野において従来公知の一般的な精密ろ過膜を用いることができる。詳しくは、前記精密ろ過膜(MF膜)としては、多孔質の膜が挙げられ、ろ過膜ユニットとなっているものが用いられ得る。ろ過膜ユニットとしては、例えば、中空糸膜、スパイラル膜、チューブラー膜がベッセル内に保持されたものが挙げられる。また、前記精密ろ過膜(MF膜)としては、中空糸膜あるいは平膜をそのまま被処理水中に浸漬して用いるものも例示される。なお、前記精密ろ過膜(MF膜)は、通常、50nm〜10μm程度の孔径の孔を有している。   As the microfiltration membrane (MF membrane), a conventionally known general microfiltration membrane can be used in the technical field of water treatment. Specifically, as the microfiltration membrane (MF membrane), a porous membrane can be used, and a filtration membrane unit can be used. Examples of the filtration membrane unit include those in which a hollow fiber membrane, a spiral membrane, and a tubular membrane are held in a vessel. Examples of the microfiltration membrane (MF membrane) include those in which a hollow fiber membrane or a flat membrane is used as it is by immersing it in the water to be treated. The microfiltration membrane (MF membrane) usually has pores with a pore diameter of about 50 nm to 10 μm.

なお、前記前処理工程においては、前記精密ろ過膜(MF膜)以外にも、前記RO膜の孔径より大きい孔径を備えた、通常、2nm〜200nm程度の孔径を有する、例えば限外ろ過膜(UF膜)などを用いることができ、また、これらのうちいずれかを複数用いたもの、又はこれらを組み合わせたものなどを用いることができる。   In the pretreatment step, in addition to the microfiltration membrane (MF membrane), the pore size is usually larger than the pore size of the RO membrane and usually has a pore size of about 2 nm to 200 nm, for example, an ultrafiltration membrane ( UF membrane) or the like can be used, and a combination of these or a combination of these can be used.

さらに、前記前処理工程では、前記排水に含まれる前記浮遊物を減少させる目的で、前記排水に凝集剤を添加し、主に前記浮遊物が凝集してなる凝集物を発生、沈殿させる凝集沈殿工程を実施することができる。該凝集沈殿工程を実施することにより、凝集物を前記排水から除去し、前記排水に含まれ得る前記浮遊物を減少させることができる。   Further, in the pretreatment step, for the purpose of reducing the suspended matter contained in the wastewater, a flocculant is added to the wastewater, and agglomerate mainly formed by aggregation of the suspended matter is generated and precipitated. A process can be performed. By carrying out the coagulation sedimentation step, aggregates can be removed from the waste water, and the suspended matter that can be contained in the waste water can be reduced.

前記排水に凝集剤を添加することにより、前記浮遊物が凝集物となって沈殿しやすくなるという利点がある。前記凝集物が沈殿した後の上澄み水を、続いてMF膜によって分離し該MF膜を透過したMF膜透過排水を前記排水から分離除去する。これにより、前記RO膜の目詰まりをさらに抑制することができる。   By adding a flocculant to the waste water, there is an advantage that the suspended matter becomes agglomerated and easily settles. The supernatant water after the aggregates have settled is separated by an MF membrane, and the MF membrane permeated wastewater that has permeated the MF membrane is separated and removed from the wastewater. Thereby, clogging of the RO membrane can be further suppressed.

前記凝集剤としては、従来公知の一般的な凝集剤を用いることができる。前記凝集剤としては、例えば、硫酸第一鉄,硫酸第二鉄,塩化第二鉄などの鉄系凝集剤、硫酸アルミニウム(硫酸バンド)、ポリ塩化アルミニウム(PAC)などのアルミ系凝集剤、これらの混合物等が例示される。なお、前記凝集剤の添加量は、適宜調整され得る。   A conventionally known general flocculant can be used as the flocculant. Examples of the flocculant include iron-based flocculants such as ferrous sulfate, ferric sulfate, and ferric chloride, aluminum-based flocculants such as aluminum sulfate (sulfuric acid band), polyaluminum chloride (PAC), and the like. Examples of such a mixture are illustrated. The amount of the flocculant added can be adjusted as appropriate.

前記凝集沈殿工程は、前記排水が所定量貯留され、前記凝集剤が添加されるように備えられている凝集装置を用いて実施できる。前記凝集装置は、前記凝集剤が適宜、適量、適当な時期に前記排水へ添加されるように備えられている。前記排水に含まれる浮遊物が凝集剤によって凝集物として沈殿した後の上澄み水は、図2に示すように次の工程で用いられ得る。   The coagulation sedimentation step can be carried out using a coagulation apparatus provided so that a predetermined amount of the waste water is stored and the coagulant is added. The aggregating apparatus is provided so that the aggregating agent is appropriately added in an appropriate amount to the drainage at an appropriate time. The supernatant water after the suspended matter contained in the waste water is precipitated as an aggregate by the coagulant can be used in the next step as shown in FIG.

加えて、前記前処理工程では、前記排水に含まれる前記浮遊物を減少させる目的で、前記凝集沈殿工程を実施した後に、砂ろ過工程を実施することができる。前記凝集沈殿工程を実施した後に、前記凝集物が沈殿した後の上澄み水を用いて前記砂ろ過工程を実施することにより、凝集物として沈殿しなかった浮遊物であってもさらに減少され得るため、前記排水に含まれた前記浮遊物をより確実に低減できるという利点がある。   In addition, in the pretreatment step, a sand filtration step can be performed after the coagulation sedimentation step is performed for the purpose of reducing the suspended matter contained in the waste water. Since the sand filtration step is performed using the supernatant water after the aggregate is precipitated after the aggregation and precipitation step, the suspended matter that has not precipitated as the aggregate can be further reduced. There is an advantage that the suspended matter contained in the waste water can be more reliably reduced.

前記砂ろ過工程は、例えば、砂利の層の上に砂やアンスラサイト等ろ過メディアの層を敷いた砂ろ過装置を用いて実施できる。該砂ろ過装置は、主に前記排水に含まれる浮遊物を減少させるものであり、前記砂ろ過装置としては、一般的に用いられているものが挙げられる。前記砂ろ過装置を透過した水は、図2に示すように次の工程で用いられ得る。また、前記砂ろ過装置を透過した水の一部は、前記濃縮水と混合されて、詳細を後述する前記減温工程で用いられ得る。   The sand filtration step can be performed, for example, using a sand filtration device in which a layer of filtration media such as sand or anthracite is laid on a gravel layer. The sand filter mainly reduces suspended matters contained in the waste water, and examples of the sand filter include those commonly used. The water that has passed through the sand filtration device can be used in the next step as shown in FIG. Moreover, a part of the water which permeate | transmitted the said sand filtration apparatus can be mixed with the said concentrated water, and can be used at the said temperature reduction process mentioned later for details.

次に、前記塩素量測定工程、前記脱塩素剤添加工程、及び前記脱塩素剤増加工程について説明する。図3は、これら各工程で用いる装置類の概略図であり、図2における脱塩素水槽4をより詳細に表したものである。また、脱塩素剤貯留槽5を表したものである。   Next, the chlorine amount measuring step, the dechlorinating agent adding step, and the dechlorinating agent increasing step will be described. FIG. 3 is a schematic view of devices used in each of these steps, and shows the dechlorination water tank 4 in FIG. 2 in more detail. Moreover, the dechlorinating agent storage tank 5 is represented.

本実施形態の排水処理方法は、前記排水に含まれる遊離残留塩素の量を継続的に測定する塩素量測定工程を前記前処理工程の後に実施する。詳しくは、前記塩素量測定工程を前記前処理工程の後であって、前記RO膜分離工程の前に実施する。   In the wastewater treatment method of the present embodiment, a chlorine amount measurement step for continuously measuring the amount of free residual chlorine contained in the wastewater is performed after the pretreatment step. Specifically, the chlorine amount measurement step is performed after the pretreatment step and before the RO membrane separation step.

また、本実施形態の排水処理方法は、前記遊離残留塩素を所定量以下に保つことができる量の脱塩素剤を前記排水に添加する脱塩素剤添加工程を前記前処理工程の後に実施する。詳しくは、前記脱塩素剤添加工程を前記前処理工程の後であって、前記RO膜分離工程の前に実施する。   Moreover, the waste water treatment method of this embodiment implements the dechlorination agent addition process which adds the quantity of dechlorination agent which can keep the said free residual chlorine below to predetermined amount to the said waste water after the said pre-treatment process. Specifically, the dechlorinating agent addition step is performed after the pretreatment step and before the RO membrane separation step.

また、本実施形態の排水処理方法は、前記遊離残留塩素の量の上昇に対応して前記排水に添加する脱塩素剤を増加させる脱塩素剤増加工程を前記前処理工程の後に実施する。詳しくは、前記脱塩素剤増加工程を前記前処理工程の後であって、前記RO膜分離工程の前に実施する。   Moreover, the wastewater treatment method of this embodiment implements the dechlorinating agent increase process which increases the dechlorinating agent added to the said wastewater corresponding to the raise of the quantity of the said free residual chlorine after the said pretreatment process. Specifically, the dechlorinating agent increasing step is performed after the pretreatment step and before the RO membrane separation step.

なお、前記塩素量測定工程、及び前記脱塩素剤添加工程は、通常、同時に実施し、継続的に実施する。即ち、継続的に前記排水の遊離残留塩素濃度を検知しながら、継続的に前記排水に所定量の脱塩素剤を添加する。また、前記脱塩素剤増加工程は、遊離残留塩素濃度の上昇に対応して前記排水に添加する脱塩素剤の量を増加させる工程であり、必要に応じて実施するものである。即ち、前記塩素量測定工程において遊離残留塩素濃度が所定値以上に上昇した場合に、前記排水に添加する脱塩素剤の量を増加させて、前記排水に含まれる次亜塩素酸イオンなどの遊離残留塩素を還元させて低減させる。   In addition, the said chlorine amount measurement process and the said dechlorinating agent addition process are normally implemented simultaneously, and are implemented continuously. That is, a predetermined amount of dechlorinating agent is continuously added to the waste water while continuously detecting the free residual chlorine concentration of the waste water. The dechlorinating agent increasing step is a step of increasing the amount of the dechlorinating agent added to the waste water in response to an increase in free residual chlorine concentration, and is performed as necessary. That is, when the concentration of free residual chlorine rises above a predetermined value in the chlorine content measurement step, the amount of dechlorinating agent added to the wastewater is increased to release free hypochlorite ions and the like contained in the wastewater. Residual chlorine is reduced and reduced.

前記塩素量測定工程は、詳しくは、前記排水の酸化還元電位又は遊離残留塩素濃度を計測し、前記排水に含まれる次亜塩素酸イオンなどの遊離残留塩素の量を検知する工程である。具体的には、前記塩素量測定工程は、例えば、図3に示した、前記MF膜を透過したMF膜透過排水を一時的に貯留する脱塩素水槽4と、該脱塩素水槽4に備えられた遊離残留塩素量検知装置とを用いることにより実施することができる。前記遊離残留塩素量検知装置としては、酸化還元電位計(ORP)又は塩素計などを用いることができる。
なお、酸化還元電位計(ORP)又は塩素計としては、水処理の技術分野において従来公知の一般的な、市販されているものを用いることができる。
More specifically, the chlorine amount measuring step is a step of measuring the amount of free residual chlorine such as hypochlorite ions contained in the wastewater by measuring the oxidation-reduction potential or free residual chlorine concentration of the wastewater. Specifically, the chlorine amount measurement step is provided in the dechlorination water tank 4 for temporarily storing the MF membrane permeated wastewater that has permeated the MF membrane, as shown in FIG. It can be implemented by using a free residual chlorine amount detection device. As the free residual chlorine amount detection device, an oxidation-reduction potentiometer (ORP) or a chlorine meter can be used.
In addition, as a redox potential meter (ORP) or a chlorine meter, the conventionally well-known general and commercially available thing can be used in the technical field of water treatment.

前記遊離残留塩素とは、詳しくは、次亜塩素酸イオン(ClO-)、次亜塩素酸(HClO)、塩素分子(Cl2)である。
なお、焼却プラントから排出される排水は、前記焼却プラントの操業状態、プラント内での作業によって、酸化性物質である遊離残留塩素の濃度が突発的に上昇することがある。前記排水に含まれる遊離残留塩素の濃度が上昇すると、排水の酸化還元電位が上昇するため、該酸化還元電位の値は、前記排水に含まれる遊離残留塩素の濃度を示す指標となる。
More specifically, the free residual chlorine includes hypochlorite ions (ClO ), hypochlorous acid (HClO), and chlorine molecules (Cl 2 ).
In addition, the wastewater discharged | emitted from an incineration plant may raise the density | concentration of the free residual chlorine which is an oxidizing substance suddenly by the operation state of the said incineration plant, and the operation | work in a plant. When the concentration of free residual chlorine contained in the wastewater rises, the oxidation-reduction potential of the wastewater rises. Therefore, the value of the oxidation-reduction potential serves as an index indicating the concentration of free residual chlorine contained in the wastewater.

前記脱塩素剤添加工程は、詳しくは、酸化性物質である前記遊離残留塩素による前記RO膜の劣化を抑制する目的で、前記排水に所定量の脱塩素剤を添加する工程である。具体的には、前記脱塩素剤添加工程は、例えば、図3に示した、脱塩素剤を貯留する脱塩素剤貯留槽5と、前記MF膜透過排水がRO膜へ導かれる途中の段階で脱塩素剤貯留槽5から脱塩素剤をポンプにより供給して添加する手段とを用いることにより実施できる。前記脱塩素剤添加工程を実施することにより、酸化性物質である遊離残留塩素による前記RO膜の劣化、特に芳香族ポリアミドで形成されたRO膜の劣化を抑制することができる。   Specifically, the dechlorinating agent adding step is a step of adding a predetermined amount of dechlorinating agent to the waste water for the purpose of suppressing the deterioration of the RO membrane due to the free residual chlorine which is an oxidizing substance. Specifically, the dechlorinating agent adding step is, for example, in the stage shown in FIG. 3 while the dechlorinating agent storage tank 5 for storing the dechlorinating agent and the MF membrane permeating wastewater being led to the RO membrane. The dechlorinating agent storage tank 5 can be used by supplying the dechlorinating agent with a pump and adding it. By performing the dechlorinating agent addition step, it is possible to suppress the deterioration of the RO membrane, particularly the RO membrane formed of aromatic polyamide, due to free residual chlorine which is an oxidizing substance.

ここで、所定量の脱塩素剤とは、前記RO膜分離工程を実施する前の排水における遊離残留塩素の量を所定量以下に保つことのできる通常の量の脱塩素剤であり、例えば、前記排水の酸化還元電位を100mV以下、又は前記排水の遊離残留塩素濃度を10ppm以下に保つことのできる通常の量の脱塩素剤である。なお、前記焼却プラントにおける操業状態、プラント内での作業によって、前記排水に含まれる遊離残留塩素の量が変動し得るため、添加される脱塩素剤の所定量は変動し得る。また、上述のごとく前記排水の遊離残留塩素濃度は、突発的に上昇することがあり、所定量の脱塩素剤だけでは、RO膜で分離される前記排水の遊離残留塩素濃度の上昇を抑えられなくなり得る。   Here, the predetermined amount of dechlorinating agent is a normal amount of dechlorinating agent capable of keeping the amount of free residual chlorine in the waste water before performing the RO membrane separation step below a predetermined amount, for example, It is a normal amount of dechlorinating agent capable of keeping the oxidation-reduction potential of the waste water at 100 mV or less, or the free residual chlorine concentration of the waste water at 10 ppm or less. In addition, since the quantity of the free residual chlorine contained in the said waste_water | drain can be fluctuate | varied with the operation state in the said incineration plant, and the operation | work in a plant, the predetermined amount of the dechlorinating agent added may fluctuate. In addition, as described above, the concentration of free residual chlorine in the waste water may increase suddenly, and with only a predetermined amount of dechlorinating agent, the increase in the concentration of free residual chlorine in the waste water separated by the RO membrane can be suppressed. It can disappear.

前記脱塩素剤としては、添加された後の排水のCODを上昇させにくいという点で、無機還元剤が好ましい。前記無機還元剤としては、例えば、重亜硫酸ソーダ(亜硫酸水素ソーダ)などの重亜硫酸塩、チオ硫酸ソーダなどのチオ硫酸塩、など、水処理の技術分野において従来公知の一般的なものを用いることができる。なお、これらの脱塩素剤は、例えば、水に溶解させて水溶液としてから前記排水に添加させることができる。   As the dechlorinating agent, an inorganic reducing agent is preferable in that it is difficult to raise the COD of the waste water after being added. As the inorganic reducing agent, for example, bisulfites such as sodium bisulfite (sodium hydrogen sulfite), thiosulfates such as sodium thiosulfate, etc., those conventionally known in the field of water treatment are used. Can do. In addition, these dechlorinating agents can be dissolved in water to form an aqueous solution and then added to the waste water.

前記脱塩素剤増加工程は、具体的には、例えば、図3に示すように、必要に応じて前記脱塩素剤貯留槽5から前記脱塩素水槽4に脱塩素剤を供給できるように備えられたポンプと、前記酸化還元電位計又は塩素計とを用いて、前記ポンプを酸化還元電位計又は塩素計と連動させて、酸化還元電位又は遊離残留塩素濃度が所定値より大きくなった場合に前記ポンプを作動させて、前記脱塩素剤貯留槽5から前記脱塩素水槽4に脱塩素剤を添加することにより実施できる。前記脱塩素剤増加工程を実施することにより、前記排水に含まれる次亜塩素酸イオンなどの遊離残留塩素が突発的に増加した場合であっても、前記排水に含まれる次亜塩素酸イオンなどの遊離残留塩素の濃度上昇を抑えることができ、酸化性物質である遊離残留塩素による前記RO膜の劣化を抑制することができる。   Specifically, the dechlorinating agent increasing step is provided so that the dechlorinating agent can be supplied from the dechlorinating agent storage tank 5 to the dechlorinating water tank 4 as required, for example, as shown in FIG. When the redox potential or free residual chlorine concentration is greater than a predetermined value by using the pump and the redox potential meter or chlorine meter, the pump is linked with the redox potential meter or chlorine meter. It can be implemented by adding a dechlorinating agent from the dechlorinating agent storage tank 5 to the dechlorinating water tank 4 by operating a pump. Even if free residual chlorine such as hypochlorite ions contained in the wastewater is suddenly increased by performing the dechlorinating agent increasing step, hypochlorite ions contained in the wastewater, etc. The increase in the concentration of free residual chlorine can be suppressed, and deterioration of the RO membrane due to free residual chlorine which is an oxidizing substance can be suppressed.

ここで、前記脱塩素剤増加工程において酸化還元電位又は遊離残留塩素濃度の上昇に対応する方法としては、特に限定されず、例えば、酸化還元電位や遊離残留塩素濃度が所定値より大きくなった場合に対応する方法、酸化還元電位や遊離残留塩素濃度の連続的な上昇が認識された場合に対応する方法、酸化還元電位や遊離残留塩素濃度の経時的な上昇傾向が認識された場合に対応する方法などが挙げられる。このようにして、前記脱塩素剤増加工程では、酸化還元電位や遊離残留塩素濃度の上昇に対応して前記排水に添加する脱塩素剤の量を増加させることができる。   Here, in the dechlorinating agent increasing step, the method corresponding to the increase in the oxidation-reduction potential or the free residual chlorine concentration is not particularly limited. For example, when the oxidation-reduction potential or the free residual chlorine concentration is larger than a predetermined value. This method corresponds to the case where a continuous increase in redox potential and free residual chlorine concentration is recognized. The method etc. are mentioned. Thus, in the dechlorinating agent increasing step, the amount of dechlorinating agent added to the waste water can be increased in response to an increase in redox potential or free residual chlorine concentration.

なお、前記脱塩素剤添加工程及び前記脱塩素剤増加工程は、上述のごとく図3に示すように、別々の手段によって実施することもできるが、同じ手段を用いて実施することもできる。具体的には、例えば、前記脱塩素剤貯留槽5から前記脱塩素水槽4に脱塩素剤を供給できるように備えられたポンプによって、前記脱塩素剤貯留槽5から前記脱塩素水槽4に所定量の脱塩素剤を添加することにより前記脱塩素剤添加工程を実施し、該ポンプを酸化還元電位計又は塩素計と連動させて、酸化還元電位や遊離残留塩素濃度が所定値より大きくなった場合に前記ポンプの供給能力を上げて、前記脱塩素剤貯留槽5から前記脱塩素水槽4に供給する脱塩素剤の量を増加することにより前記脱塩素剤増加工程を実施できる。   In addition, although the said dechlorinating agent addition process and the said dechlorinating agent increase process can also be implemented by a separate means as shown in FIG. 3 as mentioned above, they can also be implemented using the same means. Specifically, for example, the dechlorinating agent storage tank 5 is connected to the dechlorinating water tank 4 by a pump provided so that the dechlorinating agent can be supplied from the dechlorinating agent storage tank 5 to the dechlorination water tank 4. The dechlorinating agent addition step was carried out by adding a certain amount of dechlorinating agent, and the redox potential and free residual chlorine concentration were larger than the predetermined values by linking the pump with the redox potential meter or chlorine meter. In this case, the dechlorinating agent increasing step can be performed by increasing the supply capacity of the pump and increasing the amount of the dechlorinating agent supplied from the dechlorinating agent storage tank 5 to the dechlorinating water tank 4.

本実施形態の排水処理方法は、前記RO膜分離工程を前記前処理工程の後であって前記減温工程の前に実施する。前記RO膜分離工程では、前記排水からRO膜によって濃縮水を分離除去する。即ち、前記焼却プラントから排出される排水をRO膜によって分離して、前記排水に含まれる不純物が濃縮され実質的に容積が減少した前記濃縮水を分離除去する。従って、前記RO膜分離工程を実施して前記排水から前記濃縮水を分離除去することにより、前記排水の一部を汚染度がより高められた水にすることができると認識することもできる。汚染度が比較的高い水は、通常、放流等できず、前記排水と混合されるなどして再度排水処理されるところ、本実施形態の排水処理方法での減温工程(後述)におけるように、汚染度が比較的高くなった前記濃縮水を気化させてその容量を減らすことは、排水処理の効率化の点において好ましい。   In the wastewater treatment method of this embodiment, the RO membrane separation step is performed after the pretreatment step and before the temperature reduction step. In the RO membrane separation step, concentrated water is separated and removed from the wastewater by the RO membrane. That is, the waste water discharged from the incineration plant is separated by the RO membrane, and the concentrated water whose impurities are concentrated and the volume is substantially reduced is separated and removed. Therefore, it can also be recognized that a part of the waste water can be converted into water having a higher degree of contamination by performing the RO membrane separation step to separate and remove the concentrated water from the waste water. Water with a relatively high degree of contamination usually cannot be discharged, but is mixed with the waste water and drained again, as in the temperature reduction step (described later) in the waste water treatment method of this embodiment. In order to increase the efficiency of wastewater treatment, it is preferable to vaporize the concentrated water having a relatively high degree of contamination to reduce its capacity.

一方、前記RO膜分離工程では、前記焼却プラントから排出される排水をRO膜によって分離して、前記排水に含まれる不純物を減少させ、実質的に容積が減少した前記透過水を分離除去できる。前記透過水は、前記排水に含まれる不純物等が減少されて、工業用水と同程度の比較的浄化度の高いものになっており、比較的高浄化度が要求される用途で用いられ得る。即ち、例えば、前記透過水を放流することができ、又は、焼却プラント内において高浄化度の求められるボイラ原水、機器冷却水、プラント内で使用するプラント用水等の用途向けなど、汚染されている前記排水をそのまま適用することができない用途で用いることができる。従って、前記RO膜分離工程を実施して前記排水から前記透過水を分離除去することにより、前記排水の一部を比較的浄化度の高い水とし、より高い浄化度が求められる用途に適用することができる。   On the other hand, in the RO membrane separation step, wastewater discharged from the incineration plant can be separated by the RO membrane, impurities contained in the wastewater can be reduced, and the permeate having a substantially reduced volume can be separated and removed. The permeated water has a relatively high purification level comparable to that of industrial water by reducing impurities contained in the wastewater, and can be used in applications that require a relatively high level of purification. That is, for example, the permeated water can be discharged, or it is contaminated for uses such as boiler raw water, equipment cooling water, plant water used in the plant, etc. that require a high degree of purification in the incineration plant. It can be used in applications where the waste water cannot be applied as it is. Accordingly, the RO membrane separation step is performed to separate and remove the permeate from the wastewater, so that a part of the wastewater is made into water having a relatively high purification degree, and is applied to applications where a higher degree of purification is required. be able to.

ここで、前記不純物としては、イオン成分、有機物などが挙げられる。前記不純物の前記イオン成分としては、例えば、陽イオン性物質、陰イオン性物質などが挙げられ、具体的には、陰イオンとイオン結合して水に溶解しにくいスケールを発生させやすいカルシウムイオン、マグネシウムイオンなどが例示される。また、前記有機物としては、前記原水に溶解している水溶性有機物などが挙げられる。   Here, examples of the impurities include ionic components and organic substances. Examples of the ionic component of the impurity include a cationic substance, an anionic substance, and the like. Specifically, calcium ions that are ionic-bonded to anions and easily generate scales that are not easily dissolved in water, A magnesium ion etc. are illustrated. Examples of the organic substance include a water-soluble organic substance dissolved in the raw water.

前記逆浸透膜(RO膜)としては、水処理の技術分野において従来公知の一般的な逆浸透膜を用いることができる。詳しくは、前記逆浸透膜としては、例えば、逆浸透膜ユニットとなっているものが用いられ得る。逆浸透膜ユニットとしては、中空糸膜、スパイラル膜、管状膜等の状態で設置されたろ過膜が、ベッセル内に保持され高い圧力に耐えられるようになったものが挙げられる。また、前記逆浸透膜としては、例えば、非対称膜の緻密層と微細多孔層とで構成される複合膜が挙げられる。なお、前記逆浸透膜にある孔の孔径としては、通常、2nm以下が例示される。   As the reverse osmosis membrane (RO membrane), a conventionally known general reverse osmosis membrane can be used in the technical field of water treatment. Specifically, for example, a reverse osmosis membrane unit may be used as the reverse osmosis membrane. Examples of the reverse osmosis membrane unit include those in which a filtration membrane installed in a state of a hollow fiber membrane, a spiral membrane, a tubular membrane or the like is held in a vessel and can withstand high pressure. Moreover, as said reverse osmosis membrane, the composite membrane comprised by the dense layer and microporous layer of an asymmetric membrane is mentioned, for example. In addition, 2 nm or less is normally illustrated as a hole diameter of the hole in the said reverse osmosis membrane.

また、前記RO膜分離工程では、該RO膜によって濃縮された濃縮水に、析出物(いわゆるスケール)が発生することを防止する目的で、前記MF膜を透過したMF膜透過排水にスケール防止剤を添加することができる。前記MF膜透過排水にスケール防止剤を添加することにより、前記MF膜透過排水に含まれるスケールになり得る成分(イオン状シリカ、カルシウムイオン、マグネシウムイオンなどの硬度成分、溶解性蒸発残留物、重炭酸など)がスケールとなって析出することを抑制することができる。   In the RO membrane separation step, a scale inhibitor is added to the MF membrane permeated wastewater that has permeated the MF membrane for the purpose of preventing precipitates (so-called scales) from being generated in the concentrated water concentrated by the RO membrane. Can be added. By adding a scale inhibitor to the MF membrane permeated wastewater, components that can become scales contained in the MF membrane permeated wastewater (hardness components such as ionic silica, calcium ions, magnesium ions, soluble evaporation residues, It is possible to suppress the precipitation of carbonic acid and the like as a scale.

前記スケール防止剤としては、具体的には、キレート剤作用を有する化合物、より具体的には、ポリリン酸、ホスホン酸、カルボン酸系高分子電解質(一般に低分子量ポリマーと呼ばれる)等を用いることができる。   As the scale inhibitor, specifically, a compound having a chelating agent action, more specifically, polyphosphoric acid, phosphonic acid, a carboxylic acid polymer electrolyte (generally called a low molecular weight polymer) or the like is used. it can.

また、前記RO膜分離工程では、前記RO膜に発生し得るバイオファウリングを防止する目的で、前記MF膜透過排水にバイオファウリング抑制剤を添加することができる。前記MF膜透過排水にバイオファウリング抑制剤を添加することにより、前記RO膜の目詰まりを生じさせるバイオファウリングを抑制することができる。   In the RO membrane separation step, a biofouling inhibitor can be added to the MF membrane permeated wastewater for the purpose of preventing biofouling that may occur in the RO membrane. By adding a biofouling inhibitor to the MF membrane permeated wastewater, biofouling that causes clogging of the RO membrane can be suppressed.

前記バイオファウリング抑制剤としては、水処理の技術分野において従来公知の一般的なものを用いることができる。   As the biofouling inhibitor, a conventionally known general agent in the technical field of water treatment can be used.

なお、前記RO膜分離工程では、前記逆浸透膜(RO膜)のユニットを2つ直列につなげて(図示せず)実施することができる。前記逆浸透膜(RO膜)のユニットを2つ直列につなげることにより、逆浸透膜を透過した透過水の浄化度をさらに高めることができ、該透過水を例えば廃熱ボイラに供給される純水などの浄化度の極めて高い水として適用できる。   In the RO membrane separation step, two units of the reverse osmosis membrane (RO membrane) can be connected in series (not shown). By connecting two units of the reverse osmosis membrane (RO membrane) in series, the degree of purification of the permeated water that has permeated the reverse osmosis membrane can be further increased, and the permeated water is supplied to, for example, a waste heat boiler. It can be applied as highly purified water such as water.

本実施形態の排水処理方法は、前記減温工程を前記RO膜分離工程の後に実施する。前記減温工程では、前記濃縮水の気化熱により前記熱回収ガスを減温させる。   In the wastewater treatment method of this embodiment, the temperature reduction step is performed after the RO membrane separation step. In the temperature reduction step, the temperature of the heat recovery gas is reduced by the heat of vaporization of the concentrated water.

詳しくは、前記減温工程では、前記熱回収装置2を通過して熱が回収された前記熱回収燃焼排ガスに対して、前記減温装置3において前記濃縮水を噴射することによって、前記熱回収燃焼排ガスをさらに減温する。該減温、即ち温度を低下させることは、前記濃縮水が蒸発する際の気化熱を利用しておこなう。   Specifically, in the temperature reduction step, the heat recovery is performed by injecting the concentrated water in the temperature reduction device 3 to the heat recovery combustion exhaust gas from which heat has been recovered through the heat recovery device 2. Reduce the temperature of combustion exhaust gas further. The temperature reduction, that is, the temperature reduction, is performed using heat of vaporization when the concentrated water evaporates.

前記減温工程においては、前記濃縮水を前記減温装置3内に噴射等するなど、前記熱回収燃焼排ガスを前記濃縮水の気化熱により減温させるに際して、前記排水の容積が減じられて前記濃縮水となっている分、気化させる水の量が少ないため、前記熱回収燃焼排ガスを減温する温度幅を小さく設定することができる。また、前記減温装置3で減温される前記熱回収燃焼排ガスは、その上流側で熱回収装置2により燃焼排ガスから熱を回収されたものであり、前記熱回収燃焼排ガスを前記減温装置3において減温する温度幅を小さくする分、その上流側にある前記熱回収装置2において燃焼排ガスから回収する熱量を大きく設定することができる。なお、前記濃縮水の水分は、前記減温工程を実施することにより、通常、水蒸気となって大気中に放出される。   In the temperature reduction step, when the heat recovery combustion exhaust gas is reduced in temperature by the heat of vaporization of the concentrated water, such as by injecting the concentrated water into the temperature reducing device 3, the volume of the waste water is reduced and the volume is reduced. Since the amount of water to be vaporized is small due to the concentrated water, the temperature range for reducing the temperature of the heat recovery combustion exhaust gas can be set small. Further, the heat recovery combustion exhaust gas reduced in temperature by the temperature reduction device 3 is heat recovered from the combustion exhaust gas by the heat recovery device 2 on the upstream side, and the heat recovery combustion exhaust gas is converted into the temperature reduction device. The amount of heat recovered from the combustion exhaust gas in the heat recovery device 2 on the upstream side can be set larger by the amount of the temperature range to be decreased in 3. In addition, the water | moisture content of the said concentrated water is normally discharge | released in air | atmosphere as water vapor | steam by implementing the said temperature reduction process.

具体的には、例えば、前記燃焼排ガスが1000℃であって、前記熱回収燃焼排ガスを前記減温工程により150℃にまで減温するように設定すると、本実施形態の排水処理方法では、前記濃縮水が比較的少ないため、前記熱回収燃焼排ガスを前記減温工程によって300℃から150℃、即ち150℃の温度幅で減温するように設定し得る。従って、前記熱回収装置2においては、1000℃から300℃、即ち700℃分の熱を回収できる。
一方、従来の排水処理方法では、前記減温工程で用いる水が比較的多いため、例えば、前記熱回収燃焼排ガスを前記減温工程によって400℃から150℃、即ち(上記の例における150℃の温度幅より大きい)250℃の温度幅で減温するように設定し得る。従って、前記熱回収装置2においては、1000℃から400℃、即ち(上記の例における700℃分より少ない)600℃分の熱しか回収できない。
Specifically, for example, when the combustion exhaust gas is 1000 ° C. and the heat recovery combustion exhaust gas is set to be reduced to 150 ° C. by the temperature reduction step, in the wastewater treatment method of the present embodiment, Since the concentrated water is relatively small, the heat recovery flue gas can be set to be reduced in temperature range from 300 ° C. to 150 ° C., that is, 150 ° C. by the temperature reduction step. Therefore, the heat recovery apparatus 2 can recover heat from 1000 ° C. to 300 ° C., that is, 700 ° C.
On the other hand, in the conventional wastewater treatment method, since a relatively large amount of water is used in the temperature reduction step, for example, the heat recovery combustion exhaust gas is reduced from 400 ° C. to 150 ° C. by the temperature reduction step, ie, 150 ° C. in the above example. The temperature may be set to decrease at a temperature range of 250 ° C. (greater than the temperature range). Therefore, the heat recovery apparatus 2 can recover only heat from 1000 ° C. to 400 ° C., that is, 600 ° C. (less than 700 ° C. in the above example).

なお、前記MF膜濃縮水中に含まれる浮遊物(SS)が多い場合には、前記濃縮水を前記減温装置3内に噴射等する際に、配管やノズルの目詰まりを起こす可能性がある。斯かる現象を防ぐべく、前記MF膜濃縮水の全部又は一部を上流側へ返送して、斯かるMF膜濃縮水の全部又は一部に対して前記前処理工程を実施し、前記MF膜濃縮水中に含まれる浮遊物を除去する処理を行ってもよい。   In addition, when there are many suspended | floating matter (SS) contained in the said MF membrane concentrated water, when the said concentrated water is injected in the said temperature reduction apparatus 3, etc., it may cause clogging of piping or a nozzle. . In order to prevent such a phenomenon, all or part of the MF membrane concentrated water is returned to the upstream side, and the pretreatment step is performed on all or part of the MF membrane concentrated water, and the MF membrane You may perform the process which removes the suspended | floating matter contained in concentrated water.

本実施形態の排水処理方法は、前記RO膜分離工程及び前記減温工程を実施することにより、前記熱回収装置2において燃焼排ガスから回収する熱量をより大きくすることができることは上述の通りであり、好ましくは、排水処理後の水を極力放流しない方式、より好ましくは、前記排水を実質的に放流しない方式において実施する。   As described above, the wastewater treatment method of the present embodiment can increase the amount of heat recovered from the combustion exhaust gas in the heat recovery device 2 by performing the RO membrane separation step and the temperature reduction step. Preferably, it is carried out in a system that does not discharge the drained water as much as possible, and more preferably in a system that does not discharge the waste water substantially.

詳しくは、従来の排水処理方法においては、排水処理後の水を極力放流しないようにする目的で、排水処理後の水の一部を焼却装置1周辺機器の冷却、その他プラント用水などに利用できるものの、排水処理後の水の大半は、減温装置3内を通過する前記熱回収燃焼排ガスに噴射して気化させ、排水処理後の水の容量を減らすことなどを行う。即ち、比較的多量の水が減温装置3における減温のために用いられることとなる。減温装置3に噴射等される水が比較的多量であるが故に、その気化熱により減温する温度幅を比較的大きく設定することとなる。その分だけ、減温装置3の上流側にある熱回収装置2において、燃焼排ガスから回収する熱量を少なく設定せざるを得ない。即ち、減温装置3において減温する温度幅を大きくすることに伴い、熱回収装置2における燃焼排ガスからの熱回収量を小さくすることとなり、焼却プラントにおける燃焼排ガスからの熱回収効率が低くなりやすい。   Specifically, in the conventional wastewater treatment method, a part of the water after the wastewater treatment can be used for cooling the peripheral equipment of the incinerator 1 or other plant water for the purpose of preventing the drained water from being discharged as much as possible. However, most of the water after the waste water treatment is vaporized by being injected into the heat recovery combustion exhaust gas passing through the temperature reducing device 3 to reduce the capacity of the water after the waste water treatment. That is, a relatively large amount of water is used for temperature reduction in the temperature reduction device 3. Since a relatively large amount of water is jetted to the temperature reducing device 3, the temperature range for reducing the temperature by the heat of vaporization is set to be relatively large. Accordingly, in the heat recovery device 2 on the upstream side of the temperature reducing device 3, the amount of heat recovered from the combustion exhaust gas must be set small. That is, as the temperature range for reducing the temperature in the temperature reducing device 3 is increased, the heat recovery amount from the combustion exhaust gas in the heat recovery device 2 is reduced, and the heat recovery efficiency from the combustion exhaust gas in the incineration plant is reduced. Cheap.

そこで、本実施形態の排水処理方法のごとく、前記RO膜分離工程によって前記焼却プラントから排出される排水をRO膜によって分離して、前記排水に含まれる不純物が濃縮され汚染度がより高められた前記濃縮水を分離除去する。汚染度が比較的高い水は、通常、放流等できず、前記排水と混合されるなどして再度排水処理されるところ、汚染度が比較的高くなった前記濃縮水を気化させてその容量を減らすことは、排水処理後の水を極力放流しないようにする目的を達成する点において好ましい。   Therefore, as in the wastewater treatment method of the present embodiment, the wastewater discharged from the incineration plant by the RO membrane separation step is separated by the RO membrane, the impurities contained in the wastewater are concentrated, and the pollution degree is further increased. The concentrated water is separated and removed. Water with a relatively high degree of contamination usually cannot be discharged, etc., and is mixed with the waste water to be drained again, so that the concentrated water with a relatively high degree of contamination is vaporized to increase its capacity. The reduction is preferable in terms of achieving the purpose of preventing the drained water from being discharged as much as possible.

一方、前記RO膜分離工程では、前記焼却プラントから排出される排水をRO膜によって分離して、前記排水に含まれる不純物を減少させ、実質的に容積が減少した前記透過水を分離除去できる。前記透過水は、前記排水に含まれる不純物等が減少されて、工業用水等と同程度の比較的浄化度の高いものになっており、比較的高い浄化度が要求される用途で用いられ得る。即ち、例えば、焼却プラント内において比較的高い浄化度の求められるボイラ原水、機器冷却水、プラント内で使用するプラント用水等の用途向けなどで用いることができる。従って、前記RO膜分離工程を実施して、前記排水の一部を比較的浄化度の高い前記透過水を生じさせることは、該透過水を焼却プラントにおける様々な用途に適用できることにつながり、排水処理後の水を極力放流しないようにする目的を達成する点において好ましい。   On the other hand, in the RO membrane separation step, wastewater discharged from the incineration plant can be separated by the RO membrane, impurities contained in the wastewater can be reduced, and the permeate having a substantially reduced volume can be separated and removed. The permeated water has a relatively high degree of purification, such as industrial water, with reduced impurities and the like contained in the wastewater, and can be used in applications that require a relatively high degree of purification. . That is, for example, it can be used for purposes such as boiler raw water, equipment cooling water, and plant water used in the plant, which require a relatively high degree of purification in the incineration plant. Therefore, by carrying out the RO membrane separation step and generating the permeate having a relatively high degree of purification from a part of the waste water, the permeate can be applied to various uses in an incineration plant. It is preferable in that the purpose of preventing the treated water from being discharged as much as possible is achieved.

さらに付言するならば、前記減温工程で用いる濃縮水は、焼却プラントから排出される排水に含まれる不純物が濃縮され、汚染度が高まったものであり、例えばボイラ原水、機器冷却水、プラント内で使用するプラント用水などのように比較的高浄化度が要求される用途においてそのまま利用できるものではない。よって、前記濃縮水を極力放流しないようにするためには、再度排水処理することとなり、再度排水処理する分だけ排水処理量が増える。そこで、前記濃縮水を前記排水と混合する代わりに、本実施形態の排水処理方法のように前記減温工程を実施し、前記濃縮水を前記減温装置3で蒸発させ、前記濃縮水の気化熱により前記熱回収燃焼排ガスを減温させることにより、上述のごとく前記熱回収装置2において燃焼排ガスから回収する熱量を大きくすることができるうえに、排水処理量が増加することを抑制できる。   In addition, the concentrated water used in the temperature reduction step is a concentrated water whose impurities contained in the waste water discharged from the incineration plant are concentrated, and thus, for example, boiler raw water, equipment cooling water, It cannot be used as it is in applications that require a relatively high degree of purification, such as plant water used in Therefore, in order to prevent the concentrated water from being discharged as much as possible, the wastewater treatment is performed again, and the amount of wastewater treatment increases by the amount of wastewater treatment again. Therefore, instead of mixing the concentrated water with the wastewater, the temperature reducing step is performed as in the wastewater treatment method of the present embodiment, the concentrated water is evaporated by the temperature reducing device 3, and the concentrated water is vaporized. By reducing the temperature of the heat recovery combustion exhaust gas by heat, it is possible to increase the amount of heat recovered from the combustion exhaust gas in the heat recovery device 2 as described above, and to suppress an increase in the amount of wastewater treatment.

なお、前記前記減温工程で用いる濃縮水には、前記前処理工程においてMF膜によって前記排水が濃縮されたMF膜濃縮水を混合させることができる。また、前記濃縮水には、前記MF膜を逆流洗浄(逆洗)したときや薬品洗浄したときの排水を混合させることができる。即ち、前記濃縮水には、必要に応じて、他の排水等を混合させることができる。   The concentrated water used in the temperature reducing step can be mixed with the MF membrane concentrated water in which the waste water is concentrated by the MF membrane in the pretreatment step. Further, the concentrated water can be mixed with waste water when the MF membrane is backwashed (backwashed) or chemically washed. That is, other waste water or the like can be mixed with the concentrated water as necessary.

本実施形態の排水処理方法は、前記RO膜分離工程においてRO膜を透過した透過水をさらに取り扱う後処理工程を、前記RO膜分離工程の後に実施することができる。   In the wastewater treatment method of the present embodiment, a post-treatment process that further handles the permeated water that has permeated the RO membrane in the RO membrane separation step can be performed after the RO membrane separation step.

具体的には、前記後処理工程では、前記透過水が純水と同等の水質となることから、前記透過水を直接廃熱ボイラへ給水することができる。なお、前記後処理工程においては、焼却プラントにおいて必ずしも完全なクローズドシステムを採用していない場合、前記透過水を海、河川、又は下水等へ放流することができる。   Specifically, in the post-treatment step, the permeated water has a water quality equivalent to that of pure water, and thus the permeated water can be directly supplied to the waste heat boiler. In addition, in the said post-processing process, when the complete closed system is not necessarily employ | adopted in an incineration plant, the said permeated water can be discharged | emitted to the sea, a river, or sewage.

なお、前記前処理工程の前に、例えば、従来公知の水処理方法を採用する態様も本発明に含まれ得る。また例えば、前記後処理工程の後に、従来公知の水処理方法を採用する態様も本発明に含まれ得る。   In addition, before the said pretreatment process, the aspect which employ | adopts a conventionally well-known water treatment method can also be included in this invention, for example. For example, the aspect which employ | adopts a conventionally well-known water treatment method after the said post-processing process can also be contained in this invention.

続いて、本発明に係る排水処理設備の一実施形態について説明する。   Subsequently, an embodiment of the wastewater treatment facility according to the present invention will be described.

本実施形態の排水処理設備は、有機物を燃焼させる焼却装置1と、該焼却装置1から排出される燃焼排ガスの熱を回収する熱回収装置2と、前記熱回収装置2で熱回収された燃焼排ガス(熱回収燃焼排ガス)をさらに減温させる減温装置3とが備えられた焼却プラントから排出される排水の排水処理設備であって、
前記排水に含まれる遊離残留塩素の量を測定する塩素量測定手段と、前記排水に脱塩素剤を添加する脱塩素剤添加手段と、前記遊離残留塩素の量の上昇に対応して前記排水に添加する脱塩素剤を増加させる脱塩素剤増加手段と、前記脱塩素剤が添加された前記排水から逆浸透膜(RO膜)によって濃縮水を分離除去するRO膜分離手段と、前記熱回収燃焼排ガスを前記濃縮水の気化熱により前記減温装置3で減温させる減温手段とが備えられていることを特徴とする。
The wastewater treatment facility of the present embodiment includes an incinerator 1 that burns organic matter, a heat recovery device 2 that recovers the heat of combustion exhaust gas discharged from the incinerator 1, and a combustion that is heat recovered by the heat recovery device 2 A wastewater treatment facility for wastewater discharged from an incineration plant equipped with a temperature reducing device 3 for further reducing the temperature of exhaust gas (heat recovery combustion exhaust gas),
Chlorine amount measuring means for measuring the amount of free residual chlorine contained in the wastewater, dechlorinating agent adding means for adding a dechlorinating agent to the wastewater, and the drainage in response to an increase in the amount of free residual chlorine. A dechlorinating agent increasing means for increasing a dechlorinating agent to be added; a RO membrane separating means for separating and removing concentrated water from the waste water to which the dechlorinating agent is added by a reverse osmosis membrane (RO membrane); and the heat recovery combustion And a temperature reducing means for reducing the temperature of the exhaust gas by the temperature reducing device 3 by heat of vaporization of the concentrated water.

前記塩素量測定手段としては、水処理の技術分野において従来公知の一般的な装置が挙げられ、例えば、酸化還元電位計又は塩素計を備え前記MF膜透過排水を一時的に貯留する脱塩素水槽4などが挙げられる。   Examples of the chlorine amount measuring means include conventionally known general devices in the technical field of water treatment. For example, a dechlorination water tank provided with an oxidation-reduction potentiometer or a chlorine meter and temporarily storing the MF membrane permeated waste water 4 etc. are mentioned.

前記脱塩素剤添加手段としては、水処理の技術分野において従来公知の一般的な装置が挙げられ、例えば、脱塩素剤を貯留する脱塩素剤貯留槽5、MF膜透過排水がRO膜へ導かれる途中の段階で脱塩素剤貯留槽5から脱塩素剤を添加するように備えられた配管などが挙げられる。   Examples of the dechlorinating agent adding means include a conventionally known general apparatus in the technical field of water treatment. For example, the dechlorinating agent storage tank 5 for storing the dechlorinating agent, and the MF membrane permeate drainage lead to the RO membrane. An example of the pipe is a pipe provided to add the dechlorinating agent from the dechlorinating agent storage tank 5 in the middle of the process.

前記脱塩素剤増加手段としては、水処理の技術分野において従来公知の一般的な装置が挙げられ、例えば、必要に応じて前記脱塩素剤貯留槽5から前記脱塩素水槽4に脱塩素剤を添加できるように備えられたポンプ、該ポンプが酸化還元電位計又は塩素計と連動して酸化還元電位又は遊離残留塩素濃度が所定値より大きくなった場合に前記ポンプが作動して前記脱塩素剤貯留槽5から前記脱塩素水槽4に脱塩素剤が添加されるように備えられた装置などが挙げられる。   Examples of the dechlorinating agent increasing means include conventionally known general devices in the technical field of water treatment. For example, a dechlorinating agent is supplied from the dechlorinating agent storage tank 5 to the dechlorinating water tank 4 as necessary. A pump provided so that it can be added, and the pump operates when the redox potential or free residual chlorine concentration is greater than a predetermined value in conjunction with the redox potential meter or chlorine meter, and the dechlorinating agent For example, a device provided so that a dechlorinating agent is added from the storage tank 5 to the dechlorinated water tank 4 may be used.

前記RO膜分離手段としては、水処理の技術分野において従来公知の一般的な装置が挙げられ、例えば、上述したRO膜、又はRO膜ユニットなどが挙げられる。   Examples of the RO membrane separation means include general devices conventionally known in the technical field of water treatment, and examples thereof include the above-described RO membrane or RO membrane unit.

前記減温手段としては、水処理の技術分野において従来公知の一般的な装置が挙げられる。例えば、前記熱回収装置2から導入される前記熱回収燃焼排ガスに水を噴射又は噴霧し、前記熱回収燃焼排ガスの温度を水の気化熱により下げる減温塔などの減温装置3にまで前記濃縮水を引き込む装置(図示せず)などが挙げられる。   Examples of the temperature reducing means include conventionally known general devices in the technical field of water treatment. For example, water is injected or sprayed on the heat recovery combustion exhaust gas introduced from the heat recovery device 2, and the temperature recovery device 3 such as a temperature reduction tower that lowers the temperature of the heat recovery combustion exhaust gas by the heat of vaporization of water is used. An apparatus (not shown) for drawing concentrated water may be used.

また、本実施形態の排水処理設備は、前記排水に含まれる浮遊物を減少させるべく前記排水を精密ろ過膜(以下、MF膜ともいう)によって分離し該精密ろ過膜(MF膜)を透過したMF膜透過排水を前記排水から分離除去する前処理手段が備えられ得る。   In addition, the wastewater treatment facility of the present embodiment separates the wastewater by a microfiltration membrane (hereinafter also referred to as MF membrane) to reduce suspended matters contained in the wastewater, and permeates the microfiltration membrane (MF membrane). Pretreatment means for separating and removing the MF membrane permeated wastewater from the wastewater may be provided.

本実施形態の排水処理設備は、他に、前記排水が所定量貯蓄され前記凝集剤が適宜、適量、適当な時期に前記排水へ添加される凝集装置や、砂利の層の上に砂やアンスラサイト等ろ過メディアの層を敷いたものなど、一般的に用いられている砂ろ過装置が備えられ得る。   In addition, the wastewater treatment facility according to the present embodiment includes a flocculation apparatus in which a predetermined amount of the wastewater is stored and the flocculant is added to the wastewater at an appropriate amount at an appropriate time, or sand or ansula on a gravel layer. Commonly used sand filtration devices such as those with a layer of filtration media such as a site may be provided.

本実施形態の排水処理設備は、一般的な方法によって製造することができる。即ち、前記MF膜、前記RO膜、前記凝集装置、前記砂ろ過装置などとしては、水処理の技術分野において一般的に用いられているものを採用することができ、これらに必要な配管、配線等を設置するなどして組み合わせ、通常の方法で本実施形態の排水処理設備を製造することができる。   The waste water treatment facility of the present embodiment can be manufactured by a general method. That is, as the MF membrane, the RO membrane, the aggregating device, the sand filtering device, etc., those generally used in the technical field of water treatment can be adopted, and the piping and wiring necessary for these can be adopted. The waste water treatment facility of the present embodiment can be manufactured by a normal method by combining them by installing them.

本発明は、上記例示の焼却プラントから排出される排水の排水処理方法および排水処理設備に限定されるものではない。
また、一般の水処理方法および水処理設備において用いられる種々の態様を、本発明の効果を損ねない範囲において、採用することができる。
The present invention is not limited to the waste water treatment method and waste water treatment equipment for waste water discharged from the incineration plant illustrated above.
Moreover, the various aspects used in a general water treatment method and water treatment equipment can be employed within a range that does not impair the effects of the present invention.

焼却プラントを簡略的に表した簡略図。A simplified diagram showing the incineration plant. 本実施形態の排水処理方法で用いる装置類の概略図。Schematic of the apparatus used with the waste water treatment method of this embodiment. 塩素量測定工程、脱塩素剤添加工程、及び脱塩素剤増加工程で用いる装置類の概略図。Schematic of the apparatus used in a chlorine amount measurement process, a dechlorinating agent addition process, and a dechlorinating agent increase process.

符号の説明Explanation of symbols

1・・・焼却装置(焼却炉)
2・・・熱回収装置(廃熱ボイラ)
3・・・減温装置(減温塔)
4・・・脱塩素水槽
5・・・脱塩素剤貯留槽
6・・・遊離残留塩素量検知装置(酸化還元電位計又は塩素計)
P・・・ポンプ
1 ... Incinerator (incinerator)
2. Heat recovery device (waste heat boiler)
3 ... Temperature reduction device (temperature reduction tower)
4 ... Dechlorination water tank 5 ... Dechlorination agent storage tank 6 ... Free residual chlorine amount detection device (redox potential meter or chlorine meter)
P ... Pump

Claims (4)

有機物を燃焼させる焼却装置と、該焼却装置から排出される燃焼排ガスの熱を回収する熱回収装置と、前記熱回収装置で熱回収された燃焼排ガスをさらに減温させる減温装置とが備えられた焼却プラントから排出される排水の排水処理方法であって、
前記排水に含まれる遊離残留塩素の量を測定する塩素量測定工程と、前記排水に脱塩素剤を添加する脱塩素剤添加工程と、前記遊離残留塩素の量の上昇に対応して前記排水に添加する脱塩素剤を増加させる脱塩素剤増加工程と、前記脱塩素剤が添加された前記排水から逆浸透膜(RO膜)によって濃縮水を分離除去するRO膜分離工程と、熱回収された燃焼排ガスを前記濃縮水の気化熱により前記減温装置で減温させる減温工程とを実施することを特徴とする排水処理方法。
An incinerator that combusts organic matter, a heat recovery device that recovers the heat of the combustion exhaust gas discharged from the incineration device, and a temperature reduction device that further reduces the temperature of the combustion exhaust gas recovered by the heat recovery device. A wastewater treatment method for wastewater discharged from an incineration plant,
A chlorine amount measuring step for measuring the amount of free residual chlorine contained in the waste water, a dechlorinating agent adding step for adding a dechlorinating agent to the waste water, and the waste water corresponding to an increase in the amount of free residual chlorine. A dechlorinating agent increasing step for increasing the dechlorinating agent to be added, a RO membrane separating step for separating and removing concentrated water from the waste water to which the dechlorinating agent was added by a reverse osmosis membrane (RO membrane), and heat recovery A wastewater treatment method, comprising: performing a temperature reduction step of reducing the temperature of combustion exhaust gas by the temperature reduction device using the heat of vaporization of the concentrated water.
前記脱塩素剤添加工程を実施する前に、前記排水に含まれる浮遊物を減少させる前処理工程を実施する請求項1記載の排水処理方法。   The wastewater treatment method according to claim 1, wherein a pretreatment step for reducing suspended matters contained in the wastewater is performed before the dechlorinating agent addition step. 前記前処理工程では、前記排水に含まれる浮遊物を減少させるべく、前記排水を精密ろ過膜(MF膜)によって分離し該MF膜を透過したMF膜透過排水を前記排水から分離除去する請求項2記載の排水処理方法。   In the pretreatment step, in order to reduce suspended matter contained in the wastewater, the wastewater is separated by a microfiltration membrane (MF membrane), and the MF membrane permeated wastewater that has permeated the MF membrane is separated and removed from the wastewater. The waste water treatment method according to 2. 有機物を燃焼させる焼却装置と、該焼却装置から排出される燃焼排ガスの熱を回収する熱回収装置と、前記熱回収装置で熱回収された燃焼排ガスをさらに減温させる減温装置とが備えられた焼却プラントから排出される排水の排水処理設備であって、
前記排水に含まれる遊離残留塩素の量を測定する塩素量測定手段と、前記排水に脱塩素剤を添加する脱塩素剤添加手段と、前記遊離残留塩素の量の上昇に対応して前記排水に添加する脱塩素剤を増加させる脱塩素剤増加手段と、前記脱塩素剤が添加された前記排水から逆浸透膜(RO膜)によって濃縮水を分離除去するRO膜分離手段と、熱回収された燃焼排ガスを前記濃縮水の気化熱により前記減温装置で減温させる減温手段とが備えられていることを特徴とする排水処理設備。
An incinerator that combusts organic matter, a heat recovery device that recovers the heat of the combustion exhaust gas discharged from the incineration device, and a temperature reduction device that further reduces the temperature of the combustion exhaust gas recovered by the heat recovery device. Wastewater treatment facility for wastewater discharged from an incineration plant,
Chlorine amount measuring means for measuring the amount of free residual chlorine contained in the wastewater, dechlorinating agent adding means for adding a dechlorinating agent to the wastewater, and the drainage in response to an increase in the amount of free residual chlorine. A dechlorinating agent increasing means for increasing the dechlorinating agent to be added; an RO membrane separating means for separating and removing concentrated water from the waste water to which the dechlorinating agent has been added by a reverse osmosis membrane (RO membrane); and heat recovery A waste water treatment facility comprising: a temperature reducing means for reducing the temperature of the combustion exhaust gas by the heat of vaporization of the concentrated water by the temperature reducing device.
JP2008233385A 2008-09-11 2008-09-11 Wastewater treatment method and wastewater treatment facility Active JP4862027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008233385A JP4862027B2 (en) 2008-09-11 2008-09-11 Wastewater treatment method and wastewater treatment facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008233385A JP4862027B2 (en) 2008-09-11 2008-09-11 Wastewater treatment method and wastewater treatment facility

Publications (2)

Publication Number Publication Date
JP2010064016A true JP2010064016A (en) 2010-03-25
JP4862027B2 JP4862027B2 (en) 2012-01-25

Family

ID=42190079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008233385A Active JP4862027B2 (en) 2008-09-11 2008-09-11 Wastewater treatment method and wastewater treatment facility

Country Status (1)

Country Link
JP (1) JP4862027B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014024049A (en) * 2012-07-30 2014-02-06 Jfe Engineering Corp Treatment method and treatment facility for incineration plant effluent
JP2014030777A (en) * 2012-08-01 2014-02-20 Jfe Engineering Corp Method and device for processing wastewater from incineration plant
JP2014104450A (en) * 2012-11-29 2014-06-09 Jfe Engineering Corp Wastewater treatment method
JP2014213259A (en) * 2013-04-25 2014-11-17 Jfeエンジニアリング株式会社 Wastewater treatment method and apparatus
JP2016030243A (en) * 2014-07-30 2016-03-07 Jfeエンジニアリング株式会社 Wastewater treatment method and wastewater treatment apparatus
JP2016187773A (en) * 2015-03-30 2016-11-04 Jfeエンジニアリング株式会社 Method and apparatus for treating incineration plant waste water
JP2017039108A (en) * 2015-08-21 2017-02-23 株式会社神鋼環境ソリューション Wastewater treatment method and waste water treatment equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002166256A (en) * 2000-11-30 2002-06-11 Hitachi Ltd Treatment apparatus for industrial waste
JP2002210447A (en) * 2001-01-23 2002-07-30 Kurimoto Ltd Treatment of discharged material from melting furnace
JP2004163034A (en) * 2002-11-14 2004-06-10 Ebara Corp Molten slag cooling device and method, and gasification melting system using molten slag cooling device
JP2004255368A (en) * 2003-02-07 2004-09-16 Toray Ind Inc Method for producing composite semipermeable membrane and water using the same
JP2006192378A (en) * 2005-01-14 2006-07-27 Idemitsu Kosan Co Ltd Hardly decomposable substances-containing water treatment method
JP2006212540A (en) * 2005-02-03 2006-08-17 Japan Organo Co Ltd Treatment method of chemical-washing waste liquid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002166256A (en) * 2000-11-30 2002-06-11 Hitachi Ltd Treatment apparatus for industrial waste
JP2002210447A (en) * 2001-01-23 2002-07-30 Kurimoto Ltd Treatment of discharged material from melting furnace
JP2004163034A (en) * 2002-11-14 2004-06-10 Ebara Corp Molten slag cooling device and method, and gasification melting system using molten slag cooling device
JP2004255368A (en) * 2003-02-07 2004-09-16 Toray Ind Inc Method for producing composite semipermeable membrane and water using the same
JP2006192378A (en) * 2005-01-14 2006-07-27 Idemitsu Kosan Co Ltd Hardly decomposable substances-containing water treatment method
JP2006212540A (en) * 2005-02-03 2006-08-17 Japan Organo Co Ltd Treatment method of chemical-washing waste liquid

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014024049A (en) * 2012-07-30 2014-02-06 Jfe Engineering Corp Treatment method and treatment facility for incineration plant effluent
JP2014030777A (en) * 2012-08-01 2014-02-20 Jfe Engineering Corp Method and device for processing wastewater from incineration plant
JP2014104450A (en) * 2012-11-29 2014-06-09 Jfe Engineering Corp Wastewater treatment method
JP2014213259A (en) * 2013-04-25 2014-11-17 Jfeエンジニアリング株式会社 Wastewater treatment method and apparatus
JP2016030243A (en) * 2014-07-30 2016-03-07 Jfeエンジニアリング株式会社 Wastewater treatment method and wastewater treatment apparatus
JP2016187773A (en) * 2015-03-30 2016-11-04 Jfeエンジニアリング株式会社 Method and apparatus for treating incineration plant waste water
JP2017039108A (en) * 2015-08-21 2017-02-23 株式会社神鋼環境ソリューション Wastewater treatment method and waste water treatment equipment

Also Published As

Publication number Publication date
JP4862027B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
JP5636163B2 (en) Wastewater treatment method and wastewater treatment facility
JP4862027B2 (en) Wastewater treatment method and wastewater treatment facility
JP5874925B2 (en) Incineration plant wastewater treatment method and treatment equipment
Zheng et al. Insight into the magnetic lime coagulation-membrane distillation process for desulfurization wastewater treatment: From pollutant removal feature to membrane fouling
Koo et al. Recycling of oleochemical wastewater for boiler feed water using reverse osmosis membranes—A case study
WO2017022113A1 (en) Water treatment system, power generation plant, and method for controlling water treatment system
JP5874924B2 (en) Incineration plant wastewater treatment method and treatment equipment
JP2014014738A (en) Method and apparatus for treating organic wastewater
JP2011016100A (en) Wastewater treatment method
JP2012130891A (en) Method and apparatus for treating organic waste water
TWI679172B (en) Wastewater treatment method of incineration plant
JP2011000522A (en) Method and apparatus for producing acid and alkali from leachate
CN109641765B (en) Method and device for recovering drained water of incineration complete equipment
JP2006021956A (en) Facility and method for dechlorinating carbonized product
CN114632787A (en) Industrial salt carbon trapping process
JPS5815039B2 (en) Waste incineration plant wastewater treatment method
JP6657720B2 (en) Steam power plant wastewater recovery method and device
JP3861268B2 (en) Thermal power plant wastewater treatment method
JP2007253052A (en) Equipment and method for water cleaning
CN210595643U (en) System for zero release of power plant&#39;s whole factory waste water and resource utilization
US20160208658A1 (en) Method for the recovery of process wastewaters of a fossil-fueled steam power plant and fossil-fueled steam power plant
KR100991864B1 (en) Treatment method and its process of chemical cleaning waste solution generated from nuclear power plants using coagulation and filtration technologies
CN203878016U (en) FGD (flue gas desulfurization) wastewater treatment device
JP2017039108A (en) Wastewater treatment method and waste water treatment equipment
KR101144899B1 (en) Water supplying apparatus for thermal power generation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110607

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110607

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111107

R150 Certificate of patent or registration of utility model

Ref document number: 4862027

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250