JP2007253052A - Equipment and method for water cleaning - Google Patents

Equipment and method for water cleaning Download PDF

Info

Publication number
JP2007253052A
JP2007253052A JP2006080214A JP2006080214A JP2007253052A JP 2007253052 A JP2007253052 A JP 2007253052A JP 2006080214 A JP2006080214 A JP 2006080214A JP 2006080214 A JP2006080214 A JP 2006080214A JP 2007253052 A JP2007253052 A JP 2007253052A
Authority
JP
Japan
Prior art keywords
water
tank
exhaust gas
combustion exhaust
landing well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006080214A
Other languages
Japanese (ja)
Other versions
JP4571086B2 (en
Inventor
Takeshi Fujii
岳 藤井
Kenichi Nakamura
賢一 中村
Masahiro Kimura
昌弘 木村
Masahiko Otani
正彦 尾谷
Hosei Saito
方正 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKAFU SUIDO SERVICE KOSHA
Osaka Gas Co Ltd
Original Assignee
OSAKAFU SUIDO SERVICE KOSHA
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKAFU SUIDO SERVICE KOSHA, Osaka Gas Co Ltd filed Critical OSAKAFU SUIDO SERVICE KOSHA
Priority to JP2006080214A priority Critical patent/JP4571086B2/en
Publication of JP2007253052A publication Critical patent/JP2007253052A/en
Application granted granted Critical
Publication of JP4571086B2 publication Critical patent/JP4571086B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide equipment for water cleaning, in which a return water to be returned from a Mn removal tank to a water arriving well is neutralized effectively, so that the amount of an oxidizer to be used in the water arriving well can be reduced. <P>SOLUTION: The equipment for water cleaning is provided with: the water arriving well 4 in which raw water for water cleaning is received; a precipitation basin 6 for precipitating suspended matter contained in the raw water and removing the precipitated suspended matter; a water treatment facility 8 for treating the supernatant water from the precipitation basin as required; a concentration tank 10 for concentrating sludge in the supernatant water separated in the precipitation basin 6; a dehydrator 14 for dehydrating the concentrated sludge separated in the concentration tank 10; the Mn removal tank 12 for removing a manganese component contained in the supernatant water in the concentration tank 10; and a return line 19 for returning the return water from the Mn removal tank 12 to the water arriving well 4. A neutralization tank 20 is arranged on the return line 19. Waste combustion gas from a gas engine or a gas turbine or the carbonated water produced by utilizing the waste combustion gas is supplied to the neutralization tank 20, so that the return water is neutralized by the supplied waste combustion gas or carbonated water in the neutralization tank 20. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、浄水を所要の通りに処理する浄水処理設備及び処理方法に関する。   The present invention relates to a water purification treatment facility and a treatment method for treating purified water as required.

浄水の処理設備として、浄水用の原水を取水する着水井と、原水に含まれた懸濁物を沈殿除去する沈殿池と、沈殿池からの上水を所要の通りに水処理する水処理設備と、沈殿池にて分離された上水汚泥を濃縮する濃縮槽と、濃縮槽にて分離された濃縮汚泥を脱水する脱水装置と、を備え、濃縮槽からの上澄み水を着水井に返送するようにしたものが知られている(例えば、特許文献1参照)。また、濃縮槽から着水井に返送される返送水にマンガン成分が含まれていることから、濃縮槽と着水井との間にMn除去槽を設け、このMn除去槽にて返送水に含まれたマンガン成分を除するようにしたものも知られている。また、脱水装置からの脱水分離水を濃縮槽に戻すようにしたものも知られている。この浄水処理設備におけるマンガン成分の除去は、Mn除去槽にアルカリ剤を投入し、アルカリ雰囲気下で水酸化マンガンの形態で除去し、このようにマンガン成分を除去した後に、返送水が着水井に返送される。   Water treatment equipment that treats raw water from the settling basin as required, as well as a landing well that takes raw water for water purification, a sedimentation basin that precipitates and removes suspensions contained in the raw water, And a concentration tank for concentrating the water sludge separated in the sedimentation basin and a dehydrator for dewatering the concentrated sludge separated in the concentration tank, and returning the supernatant water from the concentration tank to the landing well What was made is known (for example, refer patent document 1). In addition, since manganese components are included in the return water returned from the concentration tank to the receiving well, a Mn removal tank is provided between the concentration tank and the receiving well, and is included in the returned water in this Mn removal tank. There is also known one that removes the manganese component. There is also known one in which the dewatered separation water from the dehydrator is returned to the concentration tank. The removal of the manganese component in this water purification treatment facility is carried out by adding an alkali agent to the Mn removal tank and removing it in the form of manganese hydroxide in an alkaline atmosphere. After removing the manganese component in this way, the return water is returned to the landing well. Will be returned.

特開平11−347595号公報JP 11-347595 A

しかしながら、上述した浄水処理設備には、次の通りの解決すべき問題がある。Mn除去槽においてマンガン成分を除去した返送水はアルカリ性を呈し、このアルカリ性の返送水が着水井に返送される。また、着水井に取水される原水は、水草などの同化作用により弱アルカリ性(pH7〜8程度)を呈することが多く、夏季においてはアルカリ性が幾分強くなる傾向にある。一方、原水中の懸濁物を効率的に除去するために、また水処理設備におけるオゾン処理時の臭素酸発生を抑制するために、着水井において弱酸性となるようにpH調整するのが望ましい。   However, the above-described water purification equipment has the following problems to be solved. The return water from which the manganese component has been removed in the Mn removal tank exhibits alkalinity, and this alkaline return water is returned to the landing well. In addition, the raw water taken into the landing well often exhibits weak alkalinity (about pH 7-8) due to assimilation of aquatic plants and the like, and the alkalinity tends to be somewhat stronger in summer. On the other hand, it is desirable to adjust the pH to be weakly acidic in the landing well in order to efficiently remove suspended matter in the raw water and to suppress the generation of bromic acid during ozone treatment in the water treatment facility. .

このようなことから、従来、着水井に硫酸などの酸性剤を投与してpH調整を行っているが、このようなpH調整では、着水井にて原水のpH調整と返送水のpH調整の双方を行っているために、着水井での酸性剤の使用量が多くなり、浄水処理のコストが高くなるという問題がある。   For this reason, conventionally, an acid agent such as sulfuric acid is administered to the landing well to adjust the pH, but in such pH adjustment, the raw water and the return water are adjusted at the landing well. Since both are performed, there is a problem that the amount of the acid agent used in the landing well increases and the cost of the water purification treatment increases.

本発明の目的は、Mn除去槽から着水に返送される返送水を効果的に中和処理して着水井の酸性剤の使用量を少なくすることができる浄水処理設備及び処理方法を提供することである。   An object of the present invention is to provide a water purification treatment facility and a treatment method capable of effectively neutralizing the return water returned from the Mn removal tank to the landing and reducing the amount of the acid agent in the landing well. That is.

本発明の請求項1に記載の浄水処理設備は、浄水用の原水を取水する着水井と、原水に含まれた懸濁物を沈殿除去する沈殿池と、沈殿池からの上水を所要の通りに水処理する水処理設備と、前記沈殿池にて分離された上水汚泥を濃縮する濃縮槽と、前記濃縮槽にて分離された濃縮汚泥を脱水する脱水装置と、前記濃縮槽の上澄み水に含まれたマンガン成分を除去するMn除去槽と、前記Mn除去槽からの返送水を前記着水井に返送する返送ラインと、を備えた浄水処理設備であって、
前記返送ラインには中和槽が設けられ、ガスエンジン又はガスタービンからの燃焼排ガスが前記中和槽に供給され、この中和槽において、前記Mn除去槽からの返送水が前記燃焼排ガスによって中和処理されることを特徴とする。
The water purification treatment facility according to claim 1 of the present invention requires a landing well that takes in raw water for water purification, a sedimentation basin that precipitates and removes suspensions contained in the raw water, and water from the sedimentation basin. A water treatment facility for water treatment on the street, a concentration tank for concentrating the water sludge separated in the sedimentation basin, a dehydrator for dewatering the concentrated sludge separated in the concentration tank, and a supernatant of the concentration tank A water purification treatment facility comprising a Mn removal tank for removing manganese components contained in water, and a return line for returning return water from the Mn removal tank to the landing well,
The return line is provided with a neutralization tank, and combustion exhaust gas from a gas engine or a gas turbine is supplied to the neutralization tank. In this neutralization tank, return water from the Mn removal tank is contained by the combustion exhaust gas. It is characterized by being summed.

また、本発明の請求項2に記載の浄水処理設備は、浄水用の原水を取水する着水井と、原水に含まれた懸濁物を沈殿除去する沈殿池と、沈殿池からの上水を所要の通りに水処理する水処理設備と、前記沈殿池にて分離された上水汚泥を濃縮する濃縮槽と、前記濃縮槽にて分離された濃縮汚泥を脱水する脱水装置と、前記濃縮槽の上澄み水に含まれたマンガン成分を除去するMn除去槽と、前記Mn除去槽からの返送水を前記着水井に返送する返送ラインと、を備えた浄水処理設備であって、
前記返送ラインには中和槽が設けられ、ガスエンジン又はガスタービンからの燃焼排ガスから得られた炭酸水が前記中和槽に供給され、この中和槽において、前記Mn除去槽からの返送水が前記炭酸水によって中和処理されることを特徴とする。
Moreover, the water purification treatment facility according to claim 2 of the present invention includes a landing well that takes in raw water for water purification, a sedimentation basin that precipitates and removes suspensions contained in the raw water, and water from the sedimentation basin. Water treatment equipment for water treatment as required, a concentration tank for concentrating water sludge separated in the settling basin, a dehydrator for dewatering the concentrated sludge separated in the concentration tank, and the concentration tank A water purification treatment facility comprising a Mn removal tank that removes the manganese component contained in the supernatant water, and a return line that returns the return water from the Mn removal tank to the landing well,
The return line is provided with a neutralization tank, and carbonated water obtained from combustion exhaust gas from a gas engine or gas turbine is supplied to the neutralization tank. In this neutralization tank, the return water from the Mn removal tank Is neutralized with the carbonated water.

また、本発明の請求項3に記載の浄水処理設備では、前記炭酸水が、前記ガスエンジン又は前記ガスタービンからの前記燃焼排ガスを凝縮して炭酸水を得るための凝縮装置、又は前記燃焼排ガスを溶解して炭酸水を得るための溶解装置を用いて生成されることを特徴とする。   Further, in the water purification treatment facility according to claim 3 of the present invention, the carbonated water condenses the combustion exhaust gas from the gas engine or the gas turbine to obtain carbonated water, or the combustion exhaust gas. It is produced | generated using the melt | dissolution apparatus for melt | dissolving and obtaining carbonated water.

また、本発明の請求項4に記載の浄水処理設備では、前記ガスエンジン又は前記ガスタービンからの前記燃焼排ガスが前記着水井に供給され、この着水井において、原水が前記燃焼排ガスによってpH調整処理されることを特徴とする。   Further, in the water purification treatment facility according to claim 4 of the present invention, the combustion exhaust gas from the gas engine or the gas turbine is supplied to the landing well, and the raw water is subjected to pH adjustment treatment by the combustion exhaust gas in the landing well. It is characterized by being.

また、本発明の請求項5に記載の浄水処理設備では、前記ガスエンジン又は前記ガスタービンからの前記燃焼排ガスから得られた前記炭酸水が前記着水井に供給され、この着水井において、原水が前記炭酸水によってpH調整処理されることを特徴とする。   Moreover, in the water purification treatment facility according to claim 5 of the present invention, the carbonated water obtained from the combustion exhaust gas from the gas engine or the gas turbine is supplied to the landing well, and the raw water is supplied to the landing well. A pH adjustment treatment is performed with the carbonated water.

また、本発明の請求項6に記載の浄水処理設備は、浄水用の原水を取水する着水井と、原水に含まれた懸濁物を沈殿除去する沈殿池と、沈殿池からの上水を所要の通りに水処理する水処理設備と、を備えた浄水処理設備であって、
ガスエンジン又はガスタービンからの燃焼排ガスから得られた炭酸水が前記着水井に供給され、この着水井において、原水が前記炭酸水によってpH調整処理されることを特徴とする。
Moreover, the water purification treatment facility according to claim 6 of the present invention includes a landing well that takes in raw water for water purification, a sedimentation basin that precipitates and removes suspensions contained in the raw water, and water from the sedimentation basin. A water treatment facility equipped with a water treatment facility for treating water as required,
Carbonated water obtained from combustion exhaust gas from a gas engine or a gas turbine is supplied to the landing well, and raw water is subjected to pH adjustment treatment with the carbonated water in the landing well.

また、本発明の請求項7に記載の浄水処理方法は、浄水用の原水を着水井にて取水し、取水した原水に含まれた懸濁物を沈殿池にて沈殿除去し、前記沈殿池からの上水を水処理設備によって所要の通りに水処理するとともに、前記沈殿池にて分離された上水汚泥を濃縮槽にて濃縮し、前記濃縮槽にて上澄みされた上澄み水に含まれたマンガン成分をMn除去槽にて除去し、Mn除去槽からの返送水を前記着水井に返送する浄水処理方法であって、
前記Mn除去槽と前記着水井との間に中和槽を設け、ガスエンジン又はガスタービンからの燃焼排ガス又はこの燃焼排ガスから得られた炭酸水を前記中和槽に供給し、前記中和槽にて、前記Mn除去槽からの返送水を前記燃焼排ガス又は前記炭酸水によって中和処理することを特徴とする。
Further, in the water purification method according to claim 7 of the present invention, the raw water for water purification is taken in the landing well, the suspension contained in the taken raw water is settled and removed in the sedimentation basin, and the sedimentation basin In addition to water treatment as required by the water treatment facility, the water sludge separated in the sedimentation basin is concentrated in the concentration tank, and is contained in the supernatant water supernatant in the concentration tank. A water purification method for removing the manganese component in the Mn removal tank and returning the returned water from the Mn removal tank to the landing well,
A neutralization tank is provided between the Mn removal tank and the landing well, combustion exhaust gas from a gas engine or gas turbine or carbonated water obtained from the combustion exhaust gas is supplied to the neutralization tank, and the neutralization tank Then, the return water from the Mn removal tank is neutralized with the combustion exhaust gas or the carbonated water.

本発明の請求項1に記載の浄水処理設備によれば、Mn除去槽からの返送ラインに中和槽が設けられ、この中和槽にガスエンジン又はガスタービンからの燃焼排ガスが供給される。近年、浄水場には、多量の電力を消費することからコージェネレーションシステムが設置されることが多く、このコージェネレーションシステムのガスエンジン又はガスタービンの燃焼排ガスを有効に利用してMn除去槽からの返送水を中和して着水井に返送することができる。このように中和槽にて返送水を中和処理することによって、着水井で処理する場合に比して燃焼排ガスの接触効率が高くなり、この返送水を効率よく中和することができる。また、このように中和槽で中和処理することによって、着水井でのpH調整の処理に使用する酸性剤の使用量を少なくすることができ、これによって、浄水処理のコストの低減を図ることができる。尚、脱水装置からの脱水分離水も濃縮槽に返送した後、このMn除去槽にて併せてマンガン成分を除去した後に着水井に戻すようにしてもよい。   According to the water purification treatment facility of the first aspect of the present invention, the neutralization tank is provided in the return line from the Mn removal tank, and the combustion exhaust gas from the gas engine or the gas turbine is supplied to the neutralization tank. In recent years, a cogeneration system is often installed in a water purification plant because it consumes a large amount of electric power, and the combustion exhaust gas of the gas engine or gas turbine of this cogeneration system is effectively used to remove it from the Mn removal tank. The return water can be neutralized and returned to the landing well. By neutralizing the return water in the neutralization tank in this way, the contact efficiency of the combustion exhaust gas becomes higher than when treating in the landing well, and this return water can be efficiently neutralized. Further, by performing the neutralization treatment in the neutralization tank in this manner, the amount of the acid agent used for the pH adjustment treatment in the landing well can be reduced, thereby reducing the cost of the water purification treatment. be able to. In addition, after returning the dehydration separation water from a dehydrator to a concentration tank, you may make it return to a landing well after removing a manganese component together in this Mn removal tank.

また、本発明の請求項2に記載の浄水処理設備によれば、Mn除去槽からの返送ラインに設けられた中和槽にガスエンジン又はガスタービンからの燃焼排ガスから得られた炭酸水が供給される。このように中和槽にて炭酸水を用いて返送水を中和処理することによって、返送水を効率よく中和することができ、特に炭酸水として用いることによってより効果的に作用させて効率的な中和処理を行うことができる。   Moreover, according to the water purification treatment facility according to claim 2 of the present invention, carbonated water obtained from combustion exhaust gas from the gas engine or gas turbine is supplied to the neutralization tank provided in the return line from the Mn removal tank. Is done. Thus, by neutralizing the return water using carbonated water in the neutralization tank, the return water can be efficiently neutralized, and more efficiently by using it as carbonated water in particular. Neutralization treatment can be performed.

また、本発明の請求項3に記載の浄水処理設備によれば、燃焼排ガスを凝縮装置によって凝縮させて、又は溶解装置によって溶解させて炭酸水を得ることができる。例えば、浄水場では多量の水を扱っているので、この水との熱交換によって燃焼排ガス中の水分を凝縮させ、この凝縮した水に二酸化炭素を吸収させて炭酸水を得ることができ、また燃焼排ガスを溶解装置に導入し、燃焼排ガス中の二酸化炭素を水に溶解させて炭酸水を得ることができる。   Moreover, according to the water-purifying treatment facility described in claim 3 of the present invention, the carbonated water can be obtained by condensing the combustion exhaust gas with the condenser or dissolving it with the dissolving device. For example, since a large amount of water is handled at a water purification plant, water in the combustion exhaust gas is condensed by heat exchange with this water, and carbon dioxide is absorbed into the condensed water to obtain carbonated water. Combustion exhaust gas is introduced into a melting device, and carbon dioxide in the combustion exhaust gas can be dissolved in water to obtain carbonated water.

また、本発明の請求項4に記載の浄水処理設備によれば、ガスエンジン又はガスタービンからの燃焼排ガスが着水井にも供給されるので、ガスエンジン又はガスタービンの燃焼排ガスを有効に利用して着水井の原水のpH処理を行うことができる。   Further, according to the water purification treatment facility according to claim 4 of the present invention, since the combustion exhaust gas from the gas engine or gas turbine is also supplied to the landing well, the combustion exhaust gas of the gas engine or gas turbine is effectively used. Then, pH treatment of the raw water of the landing well can be performed.

また、本発明の請求項5又は6に記載の浄水処理設備によれば、ガスエンジン又はガスタービンからの燃焼排ガスから得られる炭酸水が着水井にも供給されるので、この炭酸水が原水により接触し易くなって効果的に作用し、効率的なpH処理を行うことができる。   Further, according to the water purification treatment facility according to claim 5 or 6 of the present invention, carbonated water obtained from the combustion exhaust gas from the gas engine or gas turbine is also supplied to the landing well. It becomes easy to contact, acts effectively, and can perform an efficient pH treatment.

また、本発明の請求項7に記載の浄水処理方法によれば、Mn除去槽からの返送ラインに設けた中和槽にガスエンジン又はガスタービンからの燃焼排ガス又はこの燃焼排ガスから得られた炭酸水が供給されるので、このコージェネレーションシステムのガスエンジン又はガスタービンの燃焼排ガスを有効に利用してMn除去槽からの返送水を中和して着水井に返送することができる。   Moreover, according to the water purification method of claim 7 of the present invention, the neutralization tank provided in the return line from the Mn removal tank has the combustion exhaust gas from the gas engine or gas turbine or the carbon dioxide obtained from this combustion exhaust gas. Since water is supplied, the return water from the Mn removal tank can be neutralized and returned to the landing well by effectively using the combustion exhaust gas of the gas engine or gas turbine of this cogeneration system.

以下、添付図面を参照して、本発明に従う浄水処理設備の実施形態について説明する。まず、図1を参照して、第1の実施形態の浄水処理設備について説明する。図1は、第1の実施形態の浄水処理設備を簡略的に示すブロック図である。   Hereinafter, with reference to an accompanying drawing, an embodiment of a water treatment facility according to the present invention is described. First, with reference to FIG. 1, the water purification equipment of 1st Embodiment is demonstrated. FIG. 1 is a block diagram schematically showing the water purification treatment facility of the first embodiment.

図1において、この浄水処理設備2は、着水井4、沈殿池6、水処理設備8、濃縮槽10及びMn除去槽12を備えている。河川などから導かれる原水は、着水井4に取水される。着水井4に取水された原水は原水送給ライン5を通して沈殿池6に導かれ、この沈殿池6にて原水中の懸濁物などが沈殿除去される。沈殿池6における沈殿効果を高めるために、着水井4から沈殿池6に流れる原水に凝集剤を添加し、この凝集剤により原水中の懸濁物が凝集される。凝集剤による凝集効果を高めるために、また水処理設備8におけるオゾン処理時の臭素酸の発生を防止するために、後述するように酸性剤としての燃焼排ガスが着水井4に供給され、燃焼排ガスを利用して原水のpH調整、例えば、pH6.5〜6.9程度になるように行われる。   In FIG. 1, this water purification treatment facility 2 includes a landing well 4, a sedimentation basin 6, a water treatment facility 8, a concentration tank 10, and a Mn removal tank 12. Raw water led from rivers and the like is taken into the landing well 4. The raw water taken into the landing well 4 is guided to the settling basin 6 through the raw water supply line 5, and suspended matter and the like in the raw water are precipitated and removed in the settling basin 6. In order to enhance the precipitation effect in the settling basin 6, a flocculant is added to the raw water flowing from the landing well 4 to the settling basin 6, and the suspension in the raw water is flocculated by the flocculant. In order to enhance the coagulation effect by the coagulant and to prevent the generation of bromic acid during the ozone treatment in the water treatment facility 8, combustion exhaust gas as an acid agent is supplied to the landing well 4 as will be described later, and the combustion exhaust gas Is used to adjust the pH of the raw water to, for example, about pH 6.5 to 6.9.

沈殿池4にて分離された上水は、上水送給ライン7を通して水処理設備8に導かれる。水処理設備8は、図示していないが、オゾン処理装置、活性炭処理装置、後処理装置及び塩素消毒装置などを含んでいる。オゾン処理装置は、処理水にオゾン処理を施して原水中の難分解性有機物を易分解性有機物に転換し、活性炭処理装置は、処理水に含まれた有機物を除去する。また、後処理装置は、活性炭処理装置から漏出する微量物質及び微生物などを除去し、塩素消毒装置は、液体塩素又は次亜塩素酸ナトリウムなどを投入して処理水を滅菌する。水処理設備8にてこのように水処理された水が浄水として浄水供給ライン9(例えば、水道管など)を通して家庭、工場などに送給される。   The clean water separated in the settling basin 4 is guided to the water treatment facility 8 through the clean water supply line 7. Although not shown, the water treatment facility 8 includes an ozone treatment device, an activated carbon treatment device, a post-treatment device, a chlorine disinfection device, and the like. The ozone treatment device performs ozone treatment on the treated water to convert the hardly decomposable organic matter in the raw water into the easily degradable organic matter, and the activated carbon treatment device removes the organic matter contained in the treated water. The post-treatment device removes trace substances and microorganisms leaking from the activated carbon treatment device, and the chlorine disinfection device sterilizes the treated water by adding liquid chlorine or sodium hypochlorite. The water treated in this way by the water treatment facility 8 is supplied as purified water to a home, factory, etc. through a purified water supply line 9 (for example, a water pipe).

一方、沈殿槽4にて分離された上水汚泥は上水汚泥送給ライン11を通して濃縮槽10に送給される。濃縮槽10では上水汚泥が例えば重力により濃縮され、濃縮槽10にて濃縮されて底部から引き出された濃縮汚泥は、濃縮汚泥送給ライン11を通して脱水装置114に送給され、またこの濃縮槽10からの上澄み水は上澄み水送給ライン13を通してMn除去槽12に送給される。   On the other hand, the water sludge separated in the settling tank 4 is fed to the concentration tank 10 through the water sludge feed line 11. In the concentration tank 10, the water sludge is concentrated by, for example, gravity, and the concentrated sludge concentrated in the concentration tank 10 and drawn from the bottom is fed to the dehydrator 114 through the concentrated sludge feed line 11. The supernatant water from 10 is fed to the Mn removal tank 12 through the supernatant water feed line 13.

脱水装置14においては、濃縮汚泥に脱水処理が行われ、この脱水処理にて脱水された脱水汚泥は脱水汚泥送給ライン15を通して乾燥機16に送給され、また脱水装置14にて脱水分離された脱水分離水は分離水送給ライン17を通して濃縮槽10に戻される。乾燥機16においては、脱水汚泥が乾燥処理され、乾燥された汚泥が固形物として取り出される。この乾燥処理の際には、浄水場に設置されたコージェネレーションシステムのガスタービン18にて発生する熱が利用され、ガスタービン18の熱を有効利用して脱水汚泥を減量化することができる。尚、コージェネレーションシステムにて発生する電力は、浄水場の各種設備の電力として利用される。   In the dewatering device 14, the concentrated sludge is dehydrated, and the dewatered sludge dehydrated by this dewatering treatment is fed to the dryer 16 through the dewatered sludge feed line 15, and dehydrated and separated by the dewatering device 14. The dehydrated separated water is returned to the concentration tank 10 through the separated water supply line 17. In the dryer 16, the dewatered sludge is dried and the dried sludge is taken out as a solid matter. In this drying process, heat generated in the gas turbine 18 of the cogeneration system installed in the water purification plant is used, and the dehydrated sludge can be reduced by effectively using the heat of the gas turbine 18. In addition, the electric power generated in the cogeneration system is used as electric power for various facilities in the water purification plant.

Mn除去槽12には、濃縮槽10からの上澄み水が送給され、このMn除去槽12にてマンガン成分が除去される。Mn除去槽12にはアルカリ性剤としての例えば苛性ソーダ液などが投入され、アルカリ雰囲気下で水酸化マンガンの形態で除去され、アルカリ性剤を用いるので、Mn除去槽12からの返送水はアルカリ性を呈する。このマンガン成分が除去された返送水はMn除去槽12から返送ライン19を通して着水井4に戻され、着水井4にて河川などからの原水と混合され、かく混合された原水が上述したように浄化処理される。   The supernatant water from the concentration tank 10 is supplied to the Mn removal tank 12, and the manganese component is removed in the Mn removal tank 12. For example, caustic soda solution as an alkaline agent is charged into the Mn removal tank 12 and removed in the form of manganese hydroxide in an alkaline atmosphere. Since the alkaline agent is used, the return water from the Mn removal tank 12 exhibits alkalinity. The return water from which the manganese component has been removed is returned from the Mn removal tank 12 to the landing well 4 through the return line 19 and mixed with the raw water from the river or the like in the landing well 4, and the mixed raw water is as described above. Purified.

この浄水処理設備2においては、返送ライン19に中和槽20を設け、この中和槽20にて返送水を中和処理することが重要である。この実施形態では、濃縮槽10から返送ライン19を通して送給される返送水が中和槽20に流入するととともに、この中和槽20にコージェネレーションシステムのガスタービン18からの燃焼排ガスが第1排ガス送給ライン21を通して供給される。このように構成されているので、中和槽20においては、ガスタービン18からの燃焼排ガスが中和槽20内の返送水に作用する。燃焼排ガスには、酸性成分となる二酸化炭素が多く含まれており、この二酸化炭素が返送水に溶解すると酸性を呈し、それ故に、ガスタービン18からの燃焼排ガスを利用して中和槽20にて返送水の中和処理を行うことができ、薬剤の使用を抑える、又はその使用を無くすことができる。そして、中和処理された返送水が返送ライン19を通して着水井4に戻され、このように中和して戻すことによって、着水井4にての返送水に対するpH調整処理を行う必要がなくなり、着水井4のpH調整処理は取水された原水に対して行えばよく、これによって原水に対するpH調整を効率よく行うことができる。尚、燃焼排ガスによる中和処理は、例えば、第1排ガス送給ライン21を通して送給される燃焼排ガスを中和槽20内の返送水中にバブリングすることによって、比較的簡単な構成で効率よく中和処理を行うことができる。   In this water purification treatment facility 2, it is important to provide a neutralization tank 20 in the return line 19 and neutralize the return water in the neutralization tank 20. In this embodiment, the return water fed from the concentration tank 10 through the return line 19 flows into the neutralization tank 20, and the combustion exhaust gas from the gas turbine 18 of the cogeneration system enters the neutralization tank 20 as the first exhaust gas. It is supplied through the feeding line 21. With this configuration, in the neutralization tank 20, the combustion exhaust gas from the gas turbine 18 acts on the return water in the neutralization tank 20. The combustion exhaust gas contains a large amount of carbon dioxide, which is an acidic component. When this carbon dioxide dissolves in the return water, the combustion exhaust gas exhibits acidity. Therefore, the combustion exhaust gas from the gas turbine 18 is used to enter the neutralization tank 20. Thus, the neutralization treatment of the return water can be performed, and the use of the drug can be suppressed or the use thereof can be eliminated. The neutralized return water is returned to the landing well 4 through the return line 19, and by neutralizing and returning in this way, there is no need to perform pH adjustment processing on the return water in the landing well 4. The pH adjustment process of the landing well 4 may be performed on the raw water taken, and thereby the pH adjustment on the raw water can be performed efficiently. The neutralization treatment with the combustion exhaust gas is efficiently performed with a relatively simple configuration by, for example, bubbling the combustion exhaust gas supplied through the first exhaust gas supply line 21 into the return water in the neutralization tank 20. Sum processing can be performed.

この実施形態では、更に、ガスタービン18からの燃焼排ガスが第2排ガス送給ライン23を通して着水井4にも供給され、ガスタービン18からの燃焼排ガスが着水井4内の原水に作用する。原水は水草などの同化作用により弱アルカリ性(pH7〜8)を呈しているが、原水に溶解して酸性を呈する燃焼排ガスを供給することによって、原水のpH調整を行うことができ、従来においてpH調整処理に多量に必要とした薬剤の使用を抑える、又はその使用を無くすことができる。尚、着水井4によるpH調整処理も、例えば、第2排ガス送給ライン23を通して送給される燃焼排ガスを着水井4内の原水中にバブリングすることによって、比較的簡単な構成で効率よく中和処理を行うことができる。   In this embodiment, the combustion exhaust gas from the gas turbine 18 is also supplied to the landing well 4 through the second exhaust gas supply line 23, and the combustion exhaust gas from the gas turbine 18 acts on the raw water in the landing well 4. The raw water is weakly alkaline (pH 7-8) due to the assimilation of aquatic plants, etc., but by supplying combustion exhaust gas that dissolves in the raw water and exhibits acidity, the pH of the raw water can be adjusted. It is possible to suppress or eliminate the use of a large amount of medicine required for the adjustment process. The pH adjustment process by the landing well 4 is also efficiently performed with a relatively simple configuration by bubbling the combustion exhaust gas supplied through the second exhaust gas supply line 23 into the raw water in the landing well 4, for example. Sum processing can be performed.

この実施形態では、コージェネレーションシステムによる発電電力及び熱に加えて、ガスタービン18により発生する燃焼排ガスも酸性剤として用いているので、システム全体を効率的に運用することができ、またこの燃焼排ガスを利用してMn除去槽12からの返送水の中和処理及び着水井4の原水のpH調整を行うことができる。尚、ガスタービン18から第1及び第2燃焼排ガス送給ライン21,23へ燃焼排ガスを所要の通りに送給するために、必要に応じて、送給ブロア(図示せず)が設けられる。   In this embodiment, in addition to the power and heat generated by the cogeneration system, the combustion exhaust gas generated by the gas turbine 18 is also used as the acid agent, so that the entire system can be operated efficiently, and this combustion exhaust gas is also used. The neutralization process of the return water from the Mn removal tank 12 and the pH adjustment of the raw water of the landing well 4 can be performed using In addition, in order to supply combustion exhaust gas from the gas turbine 18 to the first and second combustion exhaust gas supply lines 21 and 23 as required, a supply blower (not shown) is provided as necessary.

上述した浄水処理設備2では、ガスタービン18からの燃焼排ガスを返送水の中和処理及び原水のpH調整処理に用いているが、返送水の中和処理のみに用い、原水のpH調整処理については従来と同様の酸性の薬剤、例えば硫酸などを用いるようにしてもよい。   In the water purification treatment facility 2 described above, the combustion exhaust gas from the gas turbine 18 is used for the neutralization process of the return water and the pH adjustment process of the raw water. However, the pH adjustment process of the raw water is used only for the neutralization process of the return water. May use an acidic drug similar to the conventional one, such as sulfuric acid.

次いで、図2及び図3を参照して、第2の実施形態の浄水処理設備について説明する。図2は、第2の実施形態の浄水処理設備を簡略的に示すブロック図であり、図3は、図2の浄水処理設備の凝縮装置を簡略的に示す図である。尚、図2及び図3において、上述した第1の実施形態と実質上同一の部材には同一の参照番号を付し、その説明を省略する。   Then, with reference to FIG.2 and FIG.3, the water purification treatment equipment of 2nd Embodiment is demonstrated. FIG. 2 is a block diagram schematically showing the water purification treatment facility of the second embodiment, and FIG. 3 is a diagram simply showing the condensing device of the water purification treatment facility of FIG. 2 and 3, substantially the same members as those in the first embodiment described above are denoted by the same reference numerals, and description thereof is omitted.

図2において、この第2の実施形態の浄水処理設備2Aでは、ガスタービン18からの燃焼排ガスを利用して炭酸水が生成され、この炭酸水が中和槽20及び着水井4に送給される。更に説明すると、浄水処理設備2Aの燃焼排ガス排出ライン31に凝縮装置30が設けられ、この凝縮装置30にて燃焼排ガス中の水分を凝縮させて水にするとともに、この凝縮水に二酸化炭素を吸収させて炭酸水を生成する。このように生成された炭酸水は、第1炭酸水送給ライン32を通して中和槽20に送給され、また第2炭酸水送給ライン34を通して着水井4に送給される。   In FIG. 2, in the water purification treatment facility 2 </ b> A of the second embodiment, carbonated water is generated using the combustion exhaust gas from the gas turbine 18, and this carbonated water is supplied to the neutralization tank 20 and the landing well 4. The More specifically, a condensing device 30 is provided in the flue gas exhaust line 31 of the water purification treatment facility 2A. The condensing device 30 condenses moisture in the flue gas into water, and absorbs carbon dioxide in the condensed water. To produce carbonated water. The carbonated water generated in this manner is fed to the neutralization tank 20 through the first carbonated water feed line 32 and fed to the landing well 4 through the second carbonated water feed line 34.

中和槽20においては、Mn除去槽12からの返送水に第1炭酸水送給ライン32を通して投入される炭酸水が作用し、この炭酸水によって、返送水が中和処理され、中和処理された返送水が返送ライン19を通して着水井4に戻される。また、着水井4においては、取水された原水(返送水も含む)に第2炭酸水送給ライン34を通して投入される炭酸水が作用し、この炭酸水によって、原水がpH調整処理され、pH調整された原水に対して上述した浄水処理が行われる。このように炭酸水として用いることによって、返送水、原水との接触効率が高められ、また搬送などの取扱いが容易となり、中和処理、pH調整処理の効率を高めることができる。   In the neutralization tank 20, carbonated water introduced through the first carbonated water supply line 32 acts on the return water from the Mn removal tank 12, and the return water is neutralized by this carbonated water, and the neutralization treatment. The returned water is returned to the landing well 4 through the return line 19. Further, in the landing well 4, carbonated water introduced through the second carbonated water supply line 34 acts on the taken raw water (including return water), and the raw water is subjected to pH adjustment treatment by this carbonated water, and pH The above-described water purification treatment is performed on the adjusted raw water. By using it as carbonated water in this way, the contact efficiency with return water and raw water is increased, handling such as transportation is facilitated, and the efficiency of neutralization treatment and pH adjustment treatment can be enhanced.

凝縮装置30は、例えば、図3に示すように構成することができる。図3において、この凝縮装置30は熱交換器36を備え、ガスタービン18からの燃焼排ガスが燃焼排ガス排出ライン31を通して熱交換器36に導かれ、この熱交換器36を通して大気中に排出される。燃焼排ガス排出ライン31の、熱交換器36より下流側の部位には回収ライン38が接続され、この回収ライン38に回収槽40が設けられている。また、回収槽40には炭酸水送出ライン42が接続され、この炭酸水送給ライン42に第1及び第2炭酸水送給ライン32,34が接続されるとともに、この炭酸水送出ライン42に送出ポンプ41が配設される。また、水処理設備8にて水処理された浄水の一部が浄水送給ライン44を通して熱交換器36に導かれ、この熱交換器36を通して家庭、工場などに送給される(水処理設備8からの浄水の残部は、熱交換器36を通ることなく直接的に送給される。   The condensing device 30 can be configured as shown in FIG. 3, for example. In FIG. 3, the condensing device 30 includes a heat exchanger 36, and the combustion exhaust gas from the gas turbine 18 is led to the heat exchanger 36 through the combustion exhaust gas discharge line 31, and is discharged to the atmosphere through the heat exchanger 36. . A recovery line 38 is connected to a portion of the combustion exhaust gas discharge line 31 downstream of the heat exchanger 36, and a recovery tank 40 is provided in the recovery line 38. A carbonated water delivery line 42 is connected to the recovery tank 40, and first and second carbonated water feed lines 32, 34 are connected to the carbonated water feed line 42, and A delivery pump 41 is provided. Further, a part of the purified water treated by the water treatment facility 8 is led to the heat exchanger 36 through the purified water feed line 44, and is fed to the home, factory, etc. through the heat exchanger 36 (water treatment facility). The remainder of the purified water from 8 is fed directly without passing through the heat exchanger 36.

このような凝縮装置30においては、ガスタービン18からの燃焼排ガスが燃焼排ガス排出ライン31を通して流れ、また水処理設備8からの浄水の一部が浄水送給ライン44を通して流れ、熱交換器36において、燃焼排ガスと浄水との間で熱交換が行われる。浄水場にて水処理された浄水は、年間を通して20℃以下の比較的低い温度に保たれるので、この浄水によって燃焼排ガスが冷却され、燃焼排ガス中の水分が凝縮して水となり、かく凝縮した凝縮水に燃焼排ガス中の二酸化炭素が吸収され、このようにして燃焼排ガスを利用して炭酸水が生成される。   In such a condensing device 30, the combustion exhaust gas from the gas turbine 18 flows through the combustion exhaust gas discharge line 31, and part of the purified water from the water treatment facility 8 flows through the purified water feed line 44, and in the heat exchanger 36. Heat exchange is performed between the combustion exhaust gas and the purified water. Since the purified water treated at the water purification plant is kept at a relatively low temperature of 20 ° C. or lower throughout the year, the combustion exhaust gas is cooled by this purified water, and the moisture in the combustion exhaust gas is condensed into water, thus condensing. Carbon dioxide in the combustion exhaust gas is absorbed by the condensed water thus produced, and carbonated water is generated using the combustion exhaust gas.

生成された炭酸水は、回収ライン38を通して回収槽40に回収される。そして、このように回収された炭酸水が送出ポンプ41によって回収槽40から送出され、第1炭酸水送給ライン32を通して中和槽20に送給されるとともに、第2炭酸水送給ライン34を通して着水井4に送給される。   The generated carbonated water is collected in the collection tank 40 through the collection line 38. Then, the carbonated water collected in this way is sent out from the collection tank 40 by the delivery pump 41 and fed to the neutralization tank 20 through the first carbonated water feed line 32, and the second carbonated water feed line 34. To the landing well 4 through.

尚、凝縮液への二酸化炭素の溶解を効率よく行うために、コージェネレーションシステムから得られる水蒸気や温水を熱源として吸収式冷凍機を駆動させ、この吸収式冷凍機で発生した冷水を用いてガスタービンからの燃焼排ガスを冷却して炭酸水を得るようにしてもよい。   In order to efficiently dissolve carbon dioxide in the condensate, the absorption refrigerator is driven using steam or hot water obtained from a cogeneration system as a heat source, and gas is generated using cold water generated by the absorption refrigerator. The combustion exhaust gas from the turbine may be cooled to obtain carbonated water.

炭酸水を得るために、図3に示す凝縮装置30に代えて、図4に示す溶解装置50を用いるようにしてもよい。図4において、図示の溶解装置50は、水処理設備8にて所要の通りに水処理された浄水の一部が浄水送給ライン52を通して流入する溶解槽54を備えている。尚、浄水に代えて、例えば河川などから取水した原水を原水送給ライン(図示せず)を通して溶解槽54に送給するようにしてもよい。   In order to obtain carbonated water, the melting device 50 shown in FIG. 4 may be used instead of the condensing device 30 shown in FIG. In FIG. 4, the dissolution apparatus 50 shown in the figure includes a dissolution tank 54 into which a part of purified water subjected to water treatment as required by the water treatment facility 8 flows through the purified water supply line 52. Instead of purified water, raw water taken from, for example, a river may be supplied to the dissolution tank 54 through a raw water supply line (not shown).

この溶解槽54には、ガスタービン18からの燃焼排ガスが燃焼排ガス排出ライン31を通して送給され、溶解槽54中の水に浸漬された燃焼排ガス排出ライン31の先端部から水中にバブリングされ、このようにバブリングすることによって、炭酸水を効率よく得ることができる。生成された炭酸水は、回収ライン38を通して回収槽40に回収され、回収された炭酸水が送出ポンプ41によって回収槽40から送出され、第1炭酸水送給ライン32を通して中和槽20に送給されるとともに、第2炭酸水送給ライン34を通して着水井4に送給される。従って、このような溶解装置50を用いても、凝縮装置30を用いたときと同様に、中和槽20に炭酸水を供給して返送水の中和処理を行うことができるとともに、着水井4に炭酸水を供給して原水のpH調整処理を行うことができる。   Combustion exhaust gas from the gas turbine 18 is fed to the dissolution tank 54 through the combustion exhaust gas discharge line 31 and is bubbled into the water from the tip of the combustion exhaust gas discharge line 31 immersed in the water in the dissolution tank 54. By bubbling in this manner, carbonated water can be obtained efficiently. The produced carbonated water is collected in the collection tank 40 through the collection line 38, and the collected carbonated water is sent out from the collection tank 40 by the delivery pump 41 and sent to the neutralization tank 20 through the first carbonated water feed line 32. And supplied to the landing well 4 through the second carbonated water supply line 34. Accordingly, even when such a dissolving device 50 is used, carbonated water can be supplied to the neutralization tank 20 to perform the neutralization treatment of the return water, as in the case of using the condensing device 30, and the landing well 4 can be supplied with carbonated water to adjust the pH of the raw water.

尚、二酸化炭素の溶解を効率よく行うために、コージェネレーションシステムから得られる水蒸気や温水を熱源として吸収式冷凍機を駆動させ、この吸収式冷凍機で得られた冷水にガスタービンからの燃焼排ガスを溶解させるようにしてもよい。   In order to efficiently dissolve carbon dioxide, an absorption refrigerator is driven using water vapor or hot water obtained from a cogeneration system as a heat source, and the flue gas from a gas turbine is added to the cold water obtained by this absorption refrigerator. May be dissolved.

上述した浄水処理設備2Aでは、ガスタービン18からの燃焼排ガスを利用して得られた炭酸水を返送水の中和処理及び原水のpH調整処理に用いているが、返送水の中和処理のみに用い、原水のpH調整処理については従来と同様の酸性の薬剤、例えば硫酸などを用いるようにしてもよく、或いはこの炭酸水を原水のpH処理のみに用いるようにしてもよい。   In the above-described water purification treatment facility 2A, carbonated water obtained using the combustion exhaust gas from the gas turbine 18 is used for the neutralization treatment of the return water and the pH adjustment treatment of the raw water, but only the neutralization treatment of the return water. For the pH adjustment treatment of raw water, an acidic chemical similar to the conventional one, such as sulfuric acid, may be used, or this carbonated water may be used only for pH treatment of raw water.

実施例
燃焼排ガスによる中和処理及びpH調整処理を確認するために、次の通りの実験を行った。実験用に16リットルの溶解槽(曝気槽)を用意し、この曝気槽に12リットルの返送水(pH11)(Mn除去槽にてマンガン成分を除去した後の水)を投入するとともに、コージェネレーションシステムのガスタービンからの燃焼排ガスを曝気槽の返送水中にバブリングさせてこの返送水を中和処理した。返送水を中和処理するために、気液比2〜5(m−排ガス/m−原水)程度の燃焼排ガスを供給することによって、返送水をpH6.8程度に中和処理することができた。
Example In order to confirm the neutralization treatment and pH adjustment treatment with combustion exhaust gas, the following experiment was conducted. A 16 liter dissolution tank (aeration tank) was prepared for the experiment, and 12 liters of return water (pH 11) (water after removing the manganese component in the Mn removal tank) was added to this aeration tank and cogeneration was performed. Combustion exhaust gas from the system gas turbine was bubbled into the return water of the aeration tank to neutralize the return water. In order to neutralize the return water, the return water is neutralized to about pH 6.8 by supplying combustion exhaust gas with a gas-liquid ratio of about 2 to 5 (m 3 -exhaust gas / m 3 -raw water). I was able to.

また、上述した曝気槽に12リットルの原水(pH7.5)(着水井の原水)を投入するとともに、コージェネレーションシステムのガスタービンからの燃焼排ガスを曝気槽の原水中にバブリングさせてこの原水をpH調整処理した。原水をpH調整処理するために、気液比0.25〜0.4(m−排ガス/m−原水)程度の燃焼排ガスを供給することによって、原水をpH6.8以下にすることができた。 In addition, 12 liters of raw water (pH 7.5) (raw water of the landing well) is introduced into the aeration tank described above, and the combustion exhaust gas from the gas turbine of the cogeneration system is bubbled into the raw water of the aeration tank. The pH was adjusted. In order to adjust the pH of the raw water, the raw water is adjusted to pH 6.8 or less by supplying combustion exhaust gas with a gas-liquid ratio of about 0.25 to 0.4 (m 3 -exhaust gas / m 3 -raw water). did it.

以上、本発明に従う浄水処理設備及び処理方法の実施形態について説明したが、本発明はかかる実施形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の変形乃至修正が可能である。   As mentioned above, although embodiment of the water-purifying treatment equipment and the processing method according to this invention was described, this invention is not limited to this embodiment, A various deformation | transformation thru | or correction | amendment are possible without deviating from the scope of the present invention. is there.

例えば、上述した実施形態では、コージェネレーションシステムの熱電発生装置の駆動源としてガスタービン18を用いているが、その駆動源としてガスエンジンを用いるようにしてもよく、この場合、ガスエンジンから排出される燃焼排ガスが利用される。尚、ガスタービン又はガスエンジンの燃料としては天然ガス(例えば、都市ガス)を用いるのが望ましく、天然ガスを燃焼することによって、その燃焼排ガス中に含まれる不純物による水道水の物性への影響を少なくすることができる。   For example, in the above-described embodiment, the gas turbine 18 is used as a drive source of the thermoelectric generator of the cogeneration system. However, a gas engine may be used as the drive source, and in this case, the gas engine 18 is discharged from the gas engine. Combustion exhaust gas is used. It is desirable to use natural gas (for example, city gas) as the fuel for the gas turbine or gas engine. By burning natural gas, the influence of the impurities contained in the combustion exhaust gas on the physical properties of tap water is affected. Can be reduced.

第1の実施形態の浄水処理設備を簡略的に示すブロック図。The block diagram which shows simply the water purification treatment equipment of 1st Embodiment. 第2の実施形態の浄水処理設備を簡略的に示すブロック図。The block diagram which shows simply the water purification treatment equipment of 2nd Embodiment. 図3は、図2の浄水処理設備の凝縮装置を簡略的に示す図。FIG. 3 is a diagram simply illustrating the condensing device of the water purification treatment facility of FIG. 2. 溶解装置を簡略的に示す図。The figure which shows a melt | dissolution apparatus simply.

符号の説明Explanation of symbols

2,2A 浄水処理設備
4 着水井
6 沈殿池
8 水処理設備
10 濃縮槽
12 Mn除去槽
18 ガスタービン
19 返送ライン
20 中和槽
21,23 燃焼排ガス送給ライン
30 凝縮装置
32,34 炭酸水送給ライン
50 溶解装置
2,2A Water purification treatment facility 4 Landing well 6 Sedimentation basin 8 Water treatment facility 10 Concentration tank 12 Mn removal tank 18 Gas turbine 19 Return line 20 Neutralization tank 21, 23 Combustion exhaust gas supply line 30 Condenser 32, 34 Carbonated water supply Supply line 50 Dissolving device

Claims (7)

浄水用の原水を取水する着水井と、原水に含まれた懸濁物を沈殿除去する沈殿池と、沈殿池からの上水を所要の通りに水処理する水処理設備と、前記沈殿池にて分離された上水汚泥を濃縮する濃縮槽と、前記濃縮槽にて分離された濃縮汚泥を脱水する脱水装置と、前記濃縮槽の上澄み水に含まれたマンガン成分を除去するMn除去槽と、前記Mn除去槽からの返送水を前記着水井に返送する返送ラインと、を備えた浄水処理設備であって、
前記返送ラインには中和槽が設けられ、ガスエンジン又はガスタービンからの燃焼排ガスが前記中和槽に供給され、この中和槽において、前記Mn除去槽からの返送水が前記燃焼排ガスによって中和処理されることを特徴とする浄水処理設備。
A landing well that takes in raw water for water purification, a sedimentation basin that precipitates and removes suspensions contained in the raw water, a water treatment facility that treats the water from the sedimentation basin as required, and the sedimentation basin. A concentration tank for concentrating the separated water sludge, a dehydrator for dewatering the concentrated sludge separated in the concentration tank, a Mn removal tank for removing manganese components contained in the supernatant water of the concentration tank, , A water purification treatment facility comprising a return line for returning the return water from the Mn removal tank to the landing well,
The return line is provided with a neutralization tank, and combustion exhaust gas from a gas engine or a gas turbine is supplied to the neutralization tank. In this neutralization tank, return water from the Mn removal tank is contained by the combustion exhaust gas. Clean water treatment facility characterized by being treated in Japanese.
浄水用の原水を取水する着水井と、原水に含まれた懸濁物を沈殿除去する沈殿池と、沈殿池からの上水を所要の通りに水処理する水処理設備と、前記沈殿池にて分離された上水汚泥を濃縮する濃縮槽と、前記濃縮槽にて分離された濃縮汚泥を脱水する脱水装置と、前記濃縮槽の上澄み水に含まれたマンガン成分を除去するMn除去槽と、前記Mn除去槽からの返送水を前記着水井に返送する返送ラインと、を備えた浄水処理設備であって、
前記返送ラインには中和槽が設けられ、ガスエンジン又はガスタービンからの燃焼排ガスから得られた炭酸水が前記中和槽に供給され、この中和槽において、前記Mn除去槽からの返送水が前記炭酸水によって中和処理されることを特徴とする浄水処理設備。
A landing well that takes in raw water for water purification, a sedimentation basin that precipitates and removes suspensions contained in the raw water, a water treatment facility that treats the water from the sedimentation basin as required, and the sedimentation basin. A concentration tank for concentrating the separated water sludge, a dehydrator for dewatering the concentrated sludge separated in the concentration tank, a Mn removal tank for removing manganese components contained in the supernatant water of the concentration tank, , A water purification treatment facility comprising a return line for returning the return water from the Mn removal tank to the landing well,
The return line is provided with a neutralization tank, and carbonated water obtained from combustion exhaust gas from a gas engine or gas turbine is supplied to the neutralization tank. In this neutralization tank, the return water from the Mn removal tank Is purified by the carbonated water.
前記炭酸水が、前記ガスエンジン又は前記ガスタービンからの前記燃焼排ガスを凝縮して炭酸水を得るための凝縮装置、又は前記燃焼排ガスを溶解して炭酸水を得るための溶解装置を用いて生成されることを特徴とする請求項2に記載の浄水処理設備。   The carbonated water is generated using a condensing device for condensing the combustion exhaust gas from the gas engine or the gas turbine to obtain carbonated water, or a dissolving device for dissolving the combustion exhaust gas to obtain carbonated water. The water purification equipment according to claim 2, wherein 前記ガスエンジン又は前記ガスタービンからの前記燃焼排ガスが前記着水井に供給され、この着水井において、原水が前記燃焼排ガスによってpH調整処理されることを特徴とする請求項1に記載の浄水処理設備。   The water purification treatment facility according to claim 1, wherein the combustion exhaust gas from the gas engine or the gas turbine is supplied to the landing well, and raw water is subjected to pH adjustment treatment by the combustion exhaust gas in the landing well. . 前記ガスエンジン又は前記ガスタービンからの前記燃焼排ガスから得られた前記炭酸水が前記着水井に供給され、この着水井において、原水が前記炭酸水によってpH調整処理されることを特徴とする請求項2又は3に記載の浄水処理設備。   The carbonated water obtained from the combustion exhaust gas from the gas engine or the gas turbine is supplied to the landing well, and the raw water is subjected to pH adjustment treatment by the carbonated water in the landing well. The water treatment facility according to 2 or 3. 浄水用の原水を取水する着水井と、原水に含まれた懸濁物を沈殿除去する沈殿池と、沈殿池からの上水を所要の通りに水処理する水処理設備と、を備えた浄水処理設備であって、
ガスエンジン又はガスタービンからの燃焼排ガスから得られた炭酸水が前記着水井に供給され、この着水井において、原水が前記炭酸水によってpH調整処理されることを特徴とする浄水処理設備。
Purified water equipped with a landing well that takes in raw water for water purification, a sedimentation basin that precipitates and removes suspensions contained in the raw water, and a water treatment facility that treats the water from the sedimentation basin as required A processing facility,
Carbonated water obtained from combustion exhaust gas from a gas engine or a gas turbine is supplied to the landing well, and the raw water is subjected to pH adjustment treatment with the carbonated water in the landing well.
浄水用の原水を着水井にて取水し、取水した原水に含まれた懸濁物を沈殿池にて沈殿除去し、前記沈殿池からの上水を水処理設備によって所要の通りに水処理するとともに、前記沈殿池にて分離された上水汚泥を濃縮槽にて濃縮し、前記濃縮槽にて上澄みされた上澄み水に含まれたマンガン成分をMn除去槽にて除去し、Mn除去槽からの返送水を前記着水井に返送する浄水処理方法であって、
前記Mn除去槽と前記着水井との間に中和槽を設け、ガスエンジン又はガスタービンからの燃焼排ガス又はこの燃焼排ガスから得られた炭酸水を前記中和槽に供給し、前記中和槽にて、前記Mn除去槽からの返送水を前記燃焼排ガス又は前記炭酸水によって中和処理することを特徴とする浄水処理方法。
The raw water for clean water is taken in the landing well, the suspension contained in the taken raw water is settled and removed in the sedimentation basin, and the water from the sedimentation basin is treated with water treatment equipment as required. In addition, the water sludge separated in the sedimentation basin is concentrated in a concentration tank, the manganese component contained in the supernatant water supernatant in the concentration tank is removed in the Mn removal tank, from the Mn removal tank A water purification method for returning the returned water to the receiving well,
A neutralization tank is provided between the Mn removal tank and the landing well, combustion exhaust gas from a gas engine or gas turbine or carbonated water obtained from the combustion exhaust gas is supplied to the neutralization tank, and the neutralization tank The water purification process is characterized by neutralizing the return water from the Mn removal tank with the combustion exhaust gas or the carbonated water.
JP2006080214A 2006-03-23 2006-03-23 Water purification equipment and treatment method Expired - Fee Related JP4571086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006080214A JP4571086B2 (en) 2006-03-23 2006-03-23 Water purification equipment and treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006080214A JP4571086B2 (en) 2006-03-23 2006-03-23 Water purification equipment and treatment method

Publications (2)

Publication Number Publication Date
JP2007253052A true JP2007253052A (en) 2007-10-04
JP4571086B2 JP4571086B2 (en) 2010-10-27

Family

ID=38627818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006080214A Expired - Fee Related JP4571086B2 (en) 2006-03-23 2006-03-23 Water purification equipment and treatment method

Country Status (1)

Country Link
JP (1) JP4571086B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010149065A (en) * 2008-12-25 2010-07-08 Hitachi Ltd Method for cleaning water in water purification plant
JP2014054591A (en) * 2012-09-12 2014-03-27 Hitachi Ltd Operation method of water purification apparatus, and water purification apparatus provided with power generation apparatus
KR20200065129A (en) * 2018-11-29 2020-06-09 (주)윈윈 System for purificating blast furnace gas and apparatus for neutralizing bischoff scrubber waste water using co2 micro bubbling apparatus
JP2020195962A (en) * 2019-06-03 2020-12-10 鹿島建設株式会社 Manganese treatment facility, manganese treatment method, water treatment system, water treatment method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07222997A (en) * 1994-02-10 1995-08-22 Ebara Corp Method and apparatus for treating water purifying sludge
JPH08257600A (en) * 1995-03-23 1996-10-08 Ngk Insulators Ltd Concentrating method for water supply sludge
JPH11197695A (en) * 1998-01-08 1999-07-27 Ebara Corp Treatment of water purifying sludge
JPH11347595A (en) * 1998-06-11 1999-12-21 Nkk Corp Water purifying treatment equipment and concentration sludge thereof
JP2001157896A (en) * 1999-12-03 2001-06-12 Osaka Gas Co Ltd Method and apparatus for treating waste liquid
JP2003001273A (en) * 2001-06-19 2003-01-07 Air Water Inc Method for neutralizing high alkali waste water with flue gas
JP2003145172A (en) * 2001-11-14 2003-05-20 Kureha Techno Enji Kk Carbon dioxide supply method in water cleaning facilities
JP2004066206A (en) * 2002-08-01 2004-03-04 Nittetu Chemical Engineering Ltd Method of neutralizing waste water

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07222997A (en) * 1994-02-10 1995-08-22 Ebara Corp Method and apparatus for treating water purifying sludge
JPH08257600A (en) * 1995-03-23 1996-10-08 Ngk Insulators Ltd Concentrating method for water supply sludge
JPH11197695A (en) * 1998-01-08 1999-07-27 Ebara Corp Treatment of water purifying sludge
JPH11347595A (en) * 1998-06-11 1999-12-21 Nkk Corp Water purifying treatment equipment and concentration sludge thereof
JP2001157896A (en) * 1999-12-03 2001-06-12 Osaka Gas Co Ltd Method and apparatus for treating waste liquid
JP2003001273A (en) * 2001-06-19 2003-01-07 Air Water Inc Method for neutralizing high alkali waste water with flue gas
JP2003145172A (en) * 2001-11-14 2003-05-20 Kureha Techno Enji Kk Carbon dioxide supply method in water cleaning facilities
JP2004066206A (en) * 2002-08-01 2004-03-04 Nittetu Chemical Engineering Ltd Method of neutralizing waste water

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010149065A (en) * 2008-12-25 2010-07-08 Hitachi Ltd Method for cleaning water in water purification plant
JP2014054591A (en) * 2012-09-12 2014-03-27 Hitachi Ltd Operation method of water purification apparatus, and water purification apparatus provided with power generation apparatus
KR20200065129A (en) * 2018-11-29 2020-06-09 (주)윈윈 System for purificating blast furnace gas and apparatus for neutralizing bischoff scrubber waste water using co2 micro bubbling apparatus
KR102153713B1 (en) 2018-11-29 2020-09-10 (주)윈윈 System for purificating blast furnace gas and apparatus for neutralizing bischoff scrubber waste water using co2 micro bubbling apparatus
JP2020195962A (en) * 2019-06-03 2020-12-10 鹿島建設株式会社 Manganese treatment facility, manganese treatment method, water treatment system, water treatment method

Also Published As

Publication number Publication date
JP4571086B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
WO2017133511A1 (en) Treatment apparatus and method for zero liquid discharge of desulfurization wastewater
WO2017133512A1 (en) Treatment apparatus and method for zero liquid discharge of desulfurization wastewater
JP4651642B2 (en) Wastewater recycling method
JP2010089071A (en) Wastewater treatment method and wastewater treatment facility
CN109293148B (en) Treatment device and treatment method for sulfur-containing and salt-containing wastewater
CN102030441A (en) Method for treating wastewater in production of sebacic acid
JP2006281171A (en) Treatment method and apparatus of organic waste water and incinerator waste gas
JP4018667B2 (en) Desalination method and apparatus for salt-containing treated water
JP2016013537A (en) Method and apparatus for treating humin-containing waste water
JP4571086B2 (en) Water purification equipment and treatment method
CN112047553A (en) PTA high-salinity wastewater treatment, reuse and zero-discharge system and method
JP4406017B2 (en) Coal gasification wastewater treatment method
JP2008049242A (en) Garbage leachate treatment system
CN110510780A (en) It is a kind of that cigarette waste water recycling processing unit and method are washed using STRO device
CN110818000B (en) Garbage leachate membrane concentrated solution reduction and recycling treatment system and method
CN104803531B (en) Sym-closene mother liquor waste water processing method
JP7226731B2 (en) Processing method of the object to be processed
CN104529033B (en) A kind of salting out method processes the method for caprolactam wastewater
CN111470564B (en) Evaporation equipment and method with coupling of direct contact heat transfer and indirect contact heat transfer
CN115259518A (en) System and method for treating percolate concentrated solution
CN205856230U (en) A kind of system reclaiming sodium chloride from high slat-containing wastewater
JP6657720B2 (en) Steam power plant wastewater recovery method and device
JPH1015533A (en) Treatment method for drain of thermal power station
CN105923707B (en) A kind of desulfurization wastewater vibration membrane processing method and processing device
CN205856229U (en) A kind of desulfurization wastewater near-zero release processing system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100811

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4571086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees