JPH07222997A - Method and apparatus for treating water purifying sludge - Google Patents

Method and apparatus for treating water purifying sludge

Info

Publication number
JPH07222997A
JPH07222997A JP6036406A JP3640694A JPH07222997A JP H07222997 A JPH07222997 A JP H07222997A JP 6036406 A JP6036406 A JP 6036406A JP 3640694 A JP3640694 A JP 3640694A JP H07222997 A JPH07222997 A JP H07222997A
Authority
JP
Japan
Prior art keywords
water
sludge
manganese
separated
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6036406A
Other languages
Japanese (ja)
Other versions
JP3491769B2 (en
Inventor
Hiroshi Motohashi
寛 本橋
Sadasuke Nagamatsu
定祐 永松
Shoichi Goda
昭一 郷田
Shinichiro Egawa
眞一郎 江川
Yosuke Takashima
洋介 高嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP03640694A priority Critical patent/JP3491769B2/en
Publication of JPH07222997A publication Critical patent/JPH07222997A/en
Application granted granted Critical
Publication of JP3491769B2 publication Critical patent/JP3491769B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To obtain sludge useful as an agricultural soil amendment material by decreasing Mn in sludge produced by supplying water, which is supernatant of a reduction-concentration apparatus and a reconcentration apparatus or a part of the separated water from a dewatering apparatus and is removed of manganese, to a displacement apparatus as dilution water. CONSTITUTION:In a reduction-concentration apparatus A, sludge (a) to be treated is adjusted of its pH to an acid range, separated into solid and liquid by natural sedimentation, and manganese in water purifying sludge is transferred into water. In a displacement apparatus B, the separated sludge (b) is diluted with dilution water to transfer residual manganese into water. In a reconcentration apparatus 7, the diluted sludge C is again concentrated; the reconcentrated sludge (d) is dewatered by a dewatering apparatus 8. In this process, the supernatant of the reduction-concentration apparatus A and the reconcentration apparatus 7 or at least a part of the separated water from the dewatering apparatus 8 is led to a manganese removing apparatus C, and the treatment water is supplied to the displacement apparatus B as dilution water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、浄水設備、工業用水設
備等から発生する汚泥の処理に関するものであり、特に
資源化利用に好適な脱水汚泥を得る方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to treatment of sludge generated from water purification equipment, industrial water equipment and the like, and more particularly to a method for obtaining dehydrated sludge suitable for resource utilization.

【0002】河川水を取水源とする浄水設備や工業用水
を原水とする浄水設備において、従来行われている浄水
処理の典型的な工程は、図4に示されるような着水井
1、凝集沈殿池3、ろ過池4を配した処理工程であり、
高度浄水処理の典型的な工程は、図3に示されるような
生物処理設備2、凝集沈殿池3、ろ過池4、活性炭ろ過
池5を配した処理工程である。
In a water purification facility using river water as a water source and a water purification facility using industrial water as raw water, a typical process of conventional water treatment is a landing well 1 as shown in FIG. It is a treatment process with pond 3 and filtration pond 4.
A typical process of advanced water purification treatment is a treatment process in which a biological treatment facility 2, a coagulation sedimentation basin 3, a filtration basin 4, and an activated carbon filtration basin 5 are arranged as shown in FIG.

【0003】例えばこの高度浄水処理工程は、河川等の
水源から取水されて着水井1に貯蔵された原水20は、
先ず生物処理設備2で接触酸化により生物処理され、生
物処理水21は凝集沈殿池3で固液分離によりSSを沈
殿させ、ここで充分沈殿しなかったSSはろ過池4及び
活性炭ろ過池5でろ過除去されて処理水を得る。凝集沈
殿池3における沈殿物は排泥池10で、ろ過池4及び活
性炭ろ過池5でろ過されたSSは排水池11で、それぞ
れ貯留分離してそれらの上澄水は返送管を介して着水井
1に返送し、分離された汚泥はさらに濃縮槽7および脱
水設備8の工程を経て脱水ケーキとして回収し、またそ
の上澄水やろ液は返送管を介して着水井1に返送する工
程である。
For example, in this advanced water treatment process, raw water 20 taken from a water source such as a river and stored in the landing well 1 is
First, biological treatment is performed in the biological treatment facility 2 by catalytic oxidation, and the biologically treated water 21 precipitates SS by solid-liquid separation in the coagulation sedimentation tank 3, and SS that did not sufficiently precipitate here is filtered in the filtration tank 4 and the activated carbon filtration tank 5. It is filtered off to obtain treated water. The sediment in the coagulation sedimentation basin 3 is the drainage basin 10, the SS filtered by the filtration basin 4 and the activated carbon filtration basin 5 is the drainage basin 11, and the separated and separated supernatant liquids are returned to the well via the return pipe. The sludge that has been returned to No. 1 is further subjected to the steps of the concentration tank 7 and the dehydration facility 8 to be recovered as a dehydrated cake, and the supernatant water and the filtrate thereof are returned to the landing well 1 via the return pipe.

【0004】上記浄水処理工程から回収された脱水ケー
キは乾燥設備9で乾燥し、得られた汚泥ケーキは、客
土、培土、園芸用土等として農業関係等に資源化利用さ
れる。汚泥ケーキを農業関係等に利用するにあたって
は、通常物理性と化学性分析の検討を行ってその汚泥ケ
ーキが農業用土壌に向いているかを判断する。土壌改良
材に利用する際に行う物理性の検討に関しては、河川の
濁質の性状による特性も多少あるが、その殆どは脱水方
法、粉砕方法、乾燥方法等の処理方法により左右される
要素が大きい。化学性の検討については、その分析結果
は農業土壌に適か否か、どのような植物に適か否かの判
断に使用される他、無機態窒素(NH3 −N、NO3
N)が多い場合は窒素の添加量を調整、リン酸吸収係数
が多い場合はリン酸の添加量を増加させ調整する等の処
置をするなど、必要な調整を施こした後農業土壌に適用
されている。しかしながら、置換性Mn、水溶性Mnに
関しては、これらの分析結果を得ても、その結果に対す
る有効な対応法が従来なく、置換性Mn、水溶性Mnの
非常に少ない土壌や汚泥ケーキと混合し、これらMnを
希釈(Mn重量比を少なくする。)して使用されてい
る。
The dehydrated cake recovered from the above-mentioned water purification process is dried in the drying equipment 9, and the obtained sludge cake is utilized as a soil for soil, cultivating soil, horticultural soil and the like for resource utilization in agriculture. When using the sludge cake for agriculture, etc., usually physical and chemical analyzes are conducted to determine whether the sludge cake is suitable for agricultural soil. Regarding the examination of physical properties when using it as a soil conditioner, there are some characteristics depending on the characteristics of river turbidity, but most of them depend on the treatment method such as dehydration method, crushing method and drying method. large. The study of the chemical properties, the analysis result whether applied to agricultural soil, what plants In addition to being used to apply whether the judgment of inorganic nitrogen (NH 3 -N, NO 3 -
If the amount of N) is large, adjust the amount of nitrogen added, and if the absorption coefficient of phosphoric acid is large, apply the necessary adjustments such as increasing the amount of phosphoric acid and then applying it to agricultural soil. Has been done. However, regarding the replaceable Mn and the water-soluble Mn, even if these analysis results are obtained, there is no effective method for responding to the results, and it is possible to mix them with soil or sludge cake with a very small amount of replaceable Mn and water-soluble Mn. , These Mn are diluted (Mn weight ratio is reduced) and used.

【0005】一般に河川中には、濁質分に含まれるMn
及び水に溶出している水溶性Mnが存在している。河川
より取水している浄水や工業用水設備で取水している用
水中に存在する単位体積当たりのMn量は微量であって
も、それら浄水や工業用水の浄化設備より発生する汚泥
中にはMnが濃縮された状態で存在し、かつ、Mnは還
元状態にあるため水溶性のMn2+が多量に存在する。河
川水や工業用水等の原水の浄水処理の結果、発生する汚
泥中に存在するMnの中で、還元状態あるいはpHの変
化で容易にイオン化して水溶化する置換性Mnと水に容
易に溶出する水溶性Mnは、植物の根より容易に吸収さ
れ、植物に弊害をもたらす。植物はその種によって、M
n欠乏に弱いもの、Mn過剰によって弱いものに区分け
されているが、上記したように汚泥中にはMnが多く、
特に水溶性のMn2+が多量に存在するため、河川水や工
業用水等の原水を浄水処理することにより発生する汚泥
は、多くの植物に対してMn過剰、特に置換性Mn、水
溶性Mnの過剰を引き起こす。
Generally, in rivers, Mn contained in suspended matter
And water-soluble Mn dissolved in water is present. Even if the amount of Mn per unit volume present in purified water taken from rivers or water used in industrial water equipment is very small, Mn is contained in sludge generated from the purified water or industrial water purification equipment. Exists in a concentrated state, and Mn is in a reduced state, so that a large amount of water-soluble Mn 2+ exists. As a result of water purification treatment of raw water such as river water and industrial water, among the Mn existing in sludge generated, it is easily eluted into water and the replaceable Mn that is ionized and solubilized by reducing state or pH change. The water-soluble Mn that is absorbed is easily absorbed by the roots of the plant, and causes harmful effects on the plant. Plants depend on their species, M
It is classified into those weak to n deficiency and weak to excess Mn, but as described above, there are many Mn in sludge,
In particular, since a large amount of water-soluble Mn 2+ is present, sludge generated by treating raw water such as river water or industrial water is Mn-excessive for many plants, especially replaceable Mn and water-soluble Mn. Cause an excess of.

【0006】[0006]

【発明が解決しようとする課題】本発明は、河川水や工
業用水等の原水の浄水処理の結果、発生する汚泥中のM
n、特に置換性Mn、水溶性Mnを低減させ、農業用土
壌改良材として有効な汚泥を得ることを課題とする。
DISCLOSURE OF THE INVENTION The present invention is based on M in sludge generated as a result of purification treatment of raw water such as river water and industrial water.
It is an object of the present invention to reduce n, particularly the substituting Mn and the water-soluble Mn, and obtain a sludge effective as an agricultural soil improving material.

【0007】[0007]

【課題を解決するための手段】上記本発明の課題は以下
の浄水汚泥の処理方法によって達成される。すなわち、
(1)被処理汚泥を酸性にpH調整し、自然沈降により
固液分離して、該浄水汚泥中のマンガンを水中に移行さ
せる還元濃縮工程と、分離された汚泥を希釈水により希
釈して残存するマンガンを水中に移行させる置換工程
と、希釈された汚泥を再度濃縮する再濃縮工程と、再濃
縮された汚泥を脱水する脱水工程よりなることを特徴と
する浄水汚泥の処理方法、あるいは好ましくは、(2)
前記還元濃縮工程の上澄水、及び/または前記再濃縮工
程の分離水、及び/または前記脱水工程の分離水の少な
くとも一部を除マンガン処理工程に導き希釈水とするこ
とを特徴とする前記(1)に記載の浄水汚泥の処理方法
により達成される。本明細書にいう工程、装置に関する
濃縮、再濃縮の語は、懸濁物の動態を示すものであっ
て、Mn量の調整に関するものではない。
The above-mentioned object of the present invention can be achieved by the following method for treating purified water sludge. That is,
(1) pH adjustment of the sludge to be treated, solid-liquid separation by natural settling, solid-liquid separation, transfer of manganese in the purified water sludge into water, and diluting the separated sludge with diluting water and remaining A step of displacing manganese into water, a reconcentration step of reconcentrating the diluted sludge, and a dehydration step of dehydrating the reconcentrated sludge, or a method for treating purified sludge, or preferably , (2)
At least a part of the supernatant water of the reduction concentration step and / or the separated water of the reconcentration step and / or the separated water of the dehydration step is introduced into the manganese removal treatment step and used as dilution water. This is achieved by the method for treating purified water sludge described in 1). As used herein, the terms of concentration and reconcentration relating to steps and devices indicate the kinetics of the suspension, not the adjustment of the amount of Mn.

【0008】被処理汚泥のpHは5〜6前後が、汚泥中
の置換性Mn値、水溶性Mn値をコントロールするのに
経済的でかつ効率が良い。酸化還元電位から述べれば図
4に示すMnの相変化特性から、pH6以下にしても還
元に必要な電位差がさ程大きくならない。また日本の土
壌はpH5〜6が多い。このためpH5〜6前後の土壌
材は化学的変化も少ない。なお、Mnの水中への溶出に
は、半日程度あれば良いので、これにSSの沈降速度な
どを勘案して、還元濃縮工程の長さを決定する。
When the pH of the sludge to be treated is around 5 to 6, it is economical and efficient to control the replaceable Mn value and the water-soluble Mn value in the sludge. In terms of the oxidation-reduction potential, the potential change required for reduction does not become so large even at pH 6 or lower because of the phase change characteristics of Mn shown in FIG. Also, Japanese soil has a high pH of 5-6. Therefore, soil materials with a pH of around 5 to 6 have little chemical change. It should be noted that the elution of Mn into water may take about half a day, so the length of the reduction and concentration step is determined in consideration of the SS sedimentation rate and the like.

【0009】また、前記置換工程に供給される希釈水
は、原水等の河川水、浄水あるいは市水を用いても良い
が、前記還元工程の上澄水及び/又は濃縮工程の上澄水
及び/又は脱水工程の分離水の少なくとも一部であり、
かつ除マンガンされた水であることが水を再利用でき、
特に有効である。更に、前記希釈水を前記置換工程に供
給するにあたり、pHを調整した後供給することが好ま
しい。なお、前記除マンガン処理工程において、まず生
物処理を行った後、酸化剤を注入し、更に接触ろ過を行
うことが好ましい。あるいは、除マンガン処理工程にお
いて、まず生物処理を行った後、酸化剤を注入し、更に
凝集沈殿及び接触ろ過することも良い。また、前記脱水
工程の脱水ケーキは10mm以下の粒度分布径に粉砕し
て貯留した後、土壌改良に適用するのが好ましく、粒度
分布は正規曲線になるのが好ましく、更に1mm以下の
粒子は重量比で10〜15%程度混入することが広範囲
の植物等に利用する際好ましい。
The diluting water supplied to the replacing step may be river water such as raw water, purified water or city water, but the supernatant water of the reducing step and / or the supernatant water of the concentrating step and / or At least a part of the water separated in the dehydration step,
And the water can be reused because it is manganese-removed water,
Especially effective. Further, when supplying the dilution water to the replacement step, it is preferable to supply the dilution water after adjusting the pH. In the manganese removal treatment step, it is preferable to first perform biological treatment, then inject an oxidant, and further perform contact filtration. Alternatively, in the manganese removal treatment step, it is also possible to first perform biological treatment, then inject an oxidizing agent, and further perform coagulation sedimentation and contact filtration. The dehydrated cake in the dehydration step is preferably applied to soil improvement after crushing and storing it to a particle size distribution diameter of 10 mm or less, and the particle size distribution preferably has a regular curve. It is preferable to mix it in a ratio of about 10 to 15% when it is used for a wide range of plants and the like.

【0010】また、本発明の課題は以下の浄水汚泥の処
理装置によって達成される。すなわち、(3)浄水汚泥
を自然沈降分離する、少なくともpH調整手段を付設し
た還元濃縮装置と、該還元濃縮装置から排出される汚泥
を希釈水で希釈洗浄する置換装置と、該置換装置から排
出される汚泥を再度濃縮する再濃縮装置と、該再濃縮装
置から排出される汚泥を脱水する脱水装置とからなるこ
とを特徴とする浄水の汚泥の処理装置、あるいは好まし
くは、(4)前記還元濃縮工程の上澄水、及び/または
前記再濃縮工程の分離水、及び/または前記脱水工程の
分離水の少なくとも一部を導入し除マンガン処理して希
釈水とする除マンガン装置を備えたことを特徴とする前
記(3)に記載の浄水の汚泥の処理装置である。
Further, the object of the present invention can be achieved by the following apparatus for treating purified water sludge. That is, (3) a reducing and concentrating device that is provided with at least a pH adjusting means that naturally separates purified water sludge, a replacement device that dilutes and cleans sludge discharged from the reducing and concentrating device with dilution water, and discharge from the replacing device. Apparatus for treating purified water, comprising a re-concentrating device for re-concentrating the sludge to be re-concentrated and a dehydrating device for dehydrating the sludge discharged from the re-concentrating device, or, preferably, (4) the reduction A manganese removal device for introducing at least a part of the supernatant water of the concentration step, and / or the separated water of the reconcentration step, and / or the separated water of the dehydration step to remove manganese to obtain diluted water is provided. It is a sludge treatment device characterized by the above (3).

【0011】本発明の還元濃縮装置は、浄水処理プロセ
スで生じる全ての汚泥からMnを溶出させ、固形物(S
S)と分離するもので、一定の滞留時間がとれる通常の
沈殿槽が好ましく用いられる。沈殿槽は自然沈殿式でも
凝集沈殿式でも、また傾斜坂などの補助装置を配備して
も良い。ただし、Mnの水相への溶出には汚泥をpH6
以下、好ましくはpH5からpH6の条件とするため、
還元濃縮装置はpHセンサー、酸剤注入装置、注入制御
装置等のpH調整手段を付設する必要がある。本発明の
還元濃縮装置は、回分的にも連続的にも運転することが
できる。本発明の置換装置は、汚泥体積の1乃至10倍
の希釈水により残ったMnを水相へ溶出させる。このた
め、好ましくはpH調整手段、攪拌手段を付設する。希
釈水は、本発明の各段階で生じる分離液を用いれば、省
資源的である。該分離液はマンガン砂槽等の除マンガン
装置、あるいは前記の除マンガン工程の処理に対応する
装置群で処理されているが、さらにpH調整されて供給
されることが好ましい。本発明の再濃縮装置には、沈殿
分離装置、遠心分離装置、膜分離装置など公知の固液分
離装置が適用できる。
The reduction / concentration apparatus of the present invention elutes Mn from all sludges produced in the water purification process to remove solid matter (S
An ordinary settling tank, which separates from S) and allows a certain residence time, is preferably used. The sedimentation tank may be a natural sedimentation type or a coagulation sedimentation type, and an auxiliary device such as an inclined slope may be provided. However, to elute Mn into the aqueous phase, sludge was adjusted to pH 6
In the following, it is preferable that the conditions are pH 5 to pH 6,
It is necessary to attach a pH adjusting means such as a pH sensor, an acid agent injection device, and an injection control device to the reduction concentration device. The reduction / concentration device of the present invention can be operated batchwise or continuously. The displacement device of the present invention elutes the remaining Mn into the aqueous phase with 1 to 10 times the sludge volume of the dilution water. Therefore, a pH adjusting means and a stirring means are preferably attached. The dilution water is resource-saving if the separated liquid generated in each step of the present invention is used. The separated liquid is treated with a manganese removing device such as a manganese sand bath or a device group corresponding to the treatment of the above-mentioned manganese removing process, but it is preferable to further adjust the pH before supplying. Known solid-liquid separators such as a precipitation separator, a centrifugal separator, a membrane separator can be applied to the reconcentrator of the present invention.

【0012】次に本発明の理解のために、浄化処理中の
Mnの挙動を図1に基づいて説明する。ここでは、前塩
素注入、中塩素注入を行わない浄水処理における浄化処
理汚泥を本発明の処理方法で処理する場合について例示
する。ただし、本発明の方法は勿論塩素注入の併用を妨
げないし、また以下の説明によって制限されることもな
い。
Next, in order to understand the present invention, the behavior of Mn during the purification process will be described with reference to FIG. Here, a case will be exemplified in which the purification treatment sludge in the purification treatment in which pre-chlorination and medium-chlorination are not performed is treated by the treatment method of the present invention. However, the method of the present invention does not, of course, prevent the combined use of chlorine injection, and is not limited by the following description.

【0013】図1において、着水井1中の原水20より
本発明の処理系に流入したMnは、生物処理装置2によ
りもともとの懸濁物の他、水溶性Mn(Mn2+)は生物
酸化により懸濁物となり、一部が沈降し、排泥として還
元濃縮装置Aに流入する。次いで凝集沈殿池3ではMn
は懸濁物として沈殿し、池内底部に堆積するが、池内底
部では還元状態下にあり、Mn2+に変化し易い状態、も
しくは変化した状態で還元濃縮装置Aに流出する。ろ過
池4では、流出した懸濁質のMnがろ過池洗浄排水とし
て流出し、還元濃縮装置Aに流出する。オゾン処理装置
を経て活性炭ろ過池5では懸濁質Mn、水溶性Mn共7
価のMnに酸化されたMnが、活性炭の還元作用で4価
の懸濁質Mnとなって捕捉され、洗浄排水として還元濃
縮装置Aに流出する。
In FIG. 1, the Mn flowing into the treatment system of the present invention from the raw water 20 in the landing well 1 is the original suspension obtained by the biological treatment apparatus 2 and the water-soluble Mn (Mn 2+ ) is biologically oxidized. As a result, it becomes a suspension, part of which sediments, and flows into the reduction / concentrator A as waste sludge. Next, in the coagulation sedimentation tank 3, Mn
Precipitates as a suspension and accumulates at the bottom of the pond, but is in a reducing state at the bottom of the pond, and flows into the reduction / concentration device A in a state where it easily changes to Mn 2+ or in a changed state. In the filtration basin 4, the Mn of the suspended matter that has flowed out flows out as filtration basin cleaning wastewater, and flows out to the reduction / concentration device A. After passing through the ozone treatment device, the suspended carbon Mn and the water-soluble Mn are both contained in the activated carbon filtration basin 5.
Mn that has been oxidized into valence Mn is captured as tetravalent suspension Mn by the reducing action of the activated carbon and flows out to the reduction concentrator A as cleaning wastewater.

【0014】還元濃縮装置Aにおいて、上記排泥、懸濁
物や洗浄排水を十分滞留させることにより、懸濁質のM
nをMn2+とし、それらを還元濃縮装置上澄水とし、除
マンガン設備Cに送水する。還元濃縮装置AではpHを
5〜6程度に調整することによってMnO2 (4価のM
n)の懸濁質はMn2+の水溶性Mnに効率的に移行す
る。これはMnO2 の酸化還元電位と還元状態下での水
の酸化還元電位との電位差が経済的に大きくとれる値が
pH5〜6であり、pH調整剤として硫酸、塩酸等を注
入し、還元濃縮装置A流入時にpH調整する。
In the reducing and concentrating device A, the sludge M, suspended matter, and washing wastewater are sufficiently retained so that the suspended solid M
n is Mn 2+, and these are used as the supernatant water of the reducing and concentrating device and sent to the manganese removing facility C. In the reducing and concentrating device A, MnO 2 (tetravalent M
The n) suspension is efficiently transferred to Mn 2+ water-soluble Mn. This is because the value at which the potential difference between the redox potential of MnO 2 and the redox potential of water under a reduced state can be economically large is pH 5 to 6, and sulfuric acid, hydrochloric acid, etc. are injected as a pH adjuster to carry out reduction concentration. The pH is adjusted when the apparatus A is introduced.

【0015】置換装置Bにおいて、還元濃縮装置Aより
引き抜かれた汚泥(還元濃縮装置引抜汚泥b)を希釈水
と混合する。希釈水量は、植物種に適した置換性Mnの
値より逆算して決定される最終目標Mn濃度になる希釈
倍率から決められれば良い。通常2〜10倍となること
が多い。
In the substitution device B, the sludge drawn out from the reduction concentration device A (reduction concentration device extraction sludge b) is mixed with dilution water. The amount of dilution water may be determined from the dilution ratio that gives the final target Mn concentration, which is determined by back-calculating the value of the replaceable Mn suitable for the plant species. It is usually 2 to 10 times.

【0016】(作用)水中でのMnの存在状態を大まか
に、不溶性Mnと可溶性Mnに分けると、可溶性のMn
は、還元状態のものであるMn2+がそれにあたる。
(Function) The state of Mn present in water is roughly divided into insoluble Mn and soluble Mn.
Corresponds to Mn 2+ in the reduced state.

【0017】植物に吸収されるMnは水溶性Mn(Mn
2+)であるが、汚泥処理工程において水溶性Mnの存在
量を測定しても確かな指標とはなり難い。その理由は、
水溶性Mnは、酸化還元状態及びpH等の条件により大
きく変化するからである。実際には、置換性Mnが環境
の変化により水溶性Mnに移行したものが、定量される
水溶性Mnの大部分と考えられる。従って、置換性Mn
量が植物に吸収される可能性のあるマンガンの指標とな
り、土壌改良材としての適否を判断するために試料中の
Mn量を測定する時にしばしば使用されている。ちなみ
に、置換性Mnとは、1N−酢酸アンモニウムで抽出さ
れるMnのことである。本発明の主眼とするところは、
この置換性Mnを状態変化により水溶性Mnに移行さ
せ、汚泥中から置換性Mnを除去することである。
Mn absorbed by plants is water-soluble Mn (Mn
2+ ), it is difficult to be a reliable index even if the amount of water-soluble Mn present is measured in the sludge treatment process. The reason is,
This is because the water-soluble Mn greatly changes depending on conditions such as the redox state and pH. Actually, it is considered that most of the quantified water-soluble Mn is the one in which the substituting Mn is converted into the water-soluble Mn due to the change in environment. Therefore, the replaceability Mn
The amount is an index of manganese that may be absorbed by plants, and is often used when measuring the amount of Mn in a sample to determine its suitability as a soil conditioner. By the way, the substitutable Mn is Mn extracted with 1N-ammonium acetate. The main point of the present invention is
This is to remove the replaceable Mn from the sludge by converting the replaceable Mn into water-soluble Mn by changing the state.

【0018】ここで以下の説明のためにCharlot
により作成されたマンガン、鉄及び酸素の酸化還元状態
図より図2にわかり易いようにマンガン及び酸素の酸化
還元状態のみを取り出して示す。図2に示すように、p
Hが低いところでは、比較的高い酸化還元電位域におい
てもMnはMn2+に、すなわち、可溶性の状態をとる。
このため、本発明では図2のカーブからpH6以下に被
処理汚泥を置き、十分の時間をかけて汚泥の固相から液
相すなわち、上澄水中へMn2+を移行させる。この操作
により汚泥中よりMnを除去しつつ汚泥を濃縮する。
(還元濃縮工程)
Charlot will now be described for the following description.
From the oxidation-reduction state diagram of manganese, iron and oxygen prepared by the above, only the oxidation-reduction state of manganese and oxygen is taken out and shown for easy understanding in FIG. As shown in FIG.
When H is low, Mn becomes Mn 2+ , that is, in a soluble state even in a relatively high redox potential region.
Therefore, in the present invention, the sludge to be treated is placed at a pH of 6 or less from the curve of FIG. 2, and Mn 2+ is transferred from the solid phase of the sludge to the liquid phase, that is, the supernatant water, for a sufficient time. By this operation, the sludge is concentrated while removing Mn from the sludge.
(Reduction and concentration process)

【0019】更に、濃縮汚泥を希釈することで、残留す
るMn2+を希釈液中に移行させる。(置換工程)この
時、pHを6以下とすることが望ましいことは、上記理
由より明らかである。希釈された汚泥は、再度固液分離
され、Mnの少ない汚泥を得ることができる。(再濃縮
工程)前の置換工程において、汚泥中のMn量は調整さ
れているので、再濃縮工程において、長時間滞留させる
必要はない。以上のようにMnの溶出し易い環境を作
り、汚泥を希釈洗浄することが本発明の骨子である。
Further, by diluting the concentrated sludge, the residual Mn 2+ is transferred into the diluent. (Substitution step) At this time, it is clear from the above reason that the pH is preferably set to 6 or less. The diluted sludge is subjected to solid-liquid separation again, and sludge containing less Mn can be obtained. (Re-concentration step) Since the amount of Mn in the sludge is adjusted in the replacement step before, it is not necessary to retain it for a long time in the re-concentration step. As described above, the essence of the present invention is to create an environment in which Mn is easily eluted and to dilute and wash sludge.

【0020】なお、pH調節剤は、硫酸、塩酸、硝酸あ
るいは有機酸等の酸を使用することができる。本発明の
処理を施された汚泥は、前述のように土壌改良剤として
好適なものであるが、その施用前の貯留中にも汚泥中の
Mnに変化が起きる。このことは品質管理上好ましくな
い。このため、脱水ケーキの貯留が数日間以上に及ぶと
きは、ケーキをある程度の大きさに粉砕するが、この時
粉砕が細かすぎると圧密により空隙率が減少して、還元
状態になり、Mnが還元され易くなる。従って粉砕時の
粒径は1〜10mmとすることが好ましい。また、1m
m以下の粒径の粉砕物が生じた場合でも、その量は重量
比で30%以下とすることが好ましい。更に、脱水ケー
キは乾燥処理をして、土壌改良剤として製品化される
が、この乾燥処理は水分減少の他、雑草種や細菌等の発
生を抑制することを兼ねている。ただし、高温過ぎると
熱分解によるMnの溶出が起きるので、乾燥時は80〜
95℃とすることが良い。なお、蒸気殺菌(品物の温度
100℃)を行うとMn過剰となり植物に障害を与える
可能性がある。
Acids such as sulfuric acid, hydrochloric acid, nitric acid or organic acids can be used as the pH adjusting agent. The sludge subjected to the treatment of the present invention is suitable as a soil conditioner as described above, but the Mn in the sludge also changes during storage before application. This is not preferable for quality control. Therefore, when the dewatered cake is stored for several days or longer, the cake is crushed to a certain size, but if the crushing is too fine at this time, the porosity decreases due to compaction and the reduction state occurs, and Mn is It becomes easy to be returned. Therefore, the particle size at the time of crushing is preferably 1 to 10 mm. In addition, 1m
Even if a pulverized product having a particle size of m or less is produced, the amount thereof is preferably 30% or less by weight. Further, the dehydrated cake is dried to be commercialized as a soil improving agent. This drying process not only reduces the water content but also suppresses the generation of weed species and bacteria. However, when the temperature is too high, the elution of Mn due to thermal decomposition occurs, so when dry,
It is preferable that the temperature is 95 ° C. If steam sterilization (product temperature 100 ° C) is performed, Mn becomes excessive, which may damage plants.

【0021】[0021]

【実施例】以下に本発明の汚泥処理工程による処理結果
の評価を、置換性Mn値と水溶性Mn値の両分析を行っ
た結果に基づいて述べる。結果を第1表に示す。
EXAMPLES The evaluation of the treatment results by the sludge treatment process of the present invention will be described below based on the results of both the substitution Mn value and the water-soluble Mn value. The results are shown in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】また、経過を図1を用いて以下に説明す
る。汚泥は、生物処理装置2、凝集沈殿池3、ろ過池
4、オゾン処理装置6及び活性炭ろ過池5の各装置を経
由して、還元槽Aへ送られる。従って、還元濃縮装置A
に流入するaは汚泥及び洗浄排水の混合物である。その
時の汚泥及び洗浄排水aの状況に応じて矢印で示された
各装置を経由することになる。
The process will be described below with reference to FIG. The sludge is sent to the reduction tank A via the biological treatment device 2, the coagulation sedimentation basin 3, the filtration basin 4, the ozone treatment device 6, and the activated carbon filtration basin 5. Therefore, the reduction concentration device A
A flowing into the is a mixture of sludge and washing waste water. Depending on the situation of the sludge and the cleaning drainage a at that time, it goes through each device shown by the arrow.

【0024】該混合物は、還元濃縮槽AにおいてpH調
整を受けつつ24時間滞留し、還元濃縮槽引抜汚泥bと
還元濃縮槽上澄水gに分離される。還元濃縮槽引抜汚泥
bと還元濃縮槽上澄水gでは、pHに関しては調整によ
り6.7から5.9に低下し、Mnの状態が水溶化し易
くなっている。これは、第1表の数値より明らかで、a
の37.6mg/リットルの置換性Mnは、bとgでは
ほとんどが水溶性Mn(Mn2+)に移行している。ま
た、固形物濃度は約5倍に濃縮される。水溶性Mnはこ
の濃縮汚泥(還元濃縮槽引抜汚泥b)中に10.1mg
/リットル、還元濃縮槽上澄水g中に40.6mg/リ
ットル含まれる。
The mixture stays in the reducing and concentrating tank A for 24 hours while undergoing pH adjustment, and is separated into the reducing and concentrating tank drawn sludge b and the reducing and concentrating tank supernatant water g. The pH of the reduced concentration tank drawn-out sludge b and the reduction concentration tank supernatant water g decreased from 6.7 to 5.9 by adjustment, and the state of Mn was easily solubilized. This is clear from the numerical values in Table 1, a
The substituting Mn of 37.6 mg / liter in Example 2 was mostly converted to water-soluble Mn (Mn 2+ ) in b and g. Further, the solid matter concentration is concentrated about 5 times. Water-soluble Mn is 10.1 mg in this concentrated sludge (reducing concentration tank extraction sludge b).
Per liter, 40.6 mg / liter is contained in g of the supernatant water of the reducing concentration tank.

【0025】上記、還元濃縮槽上澄水gは除マンガン設
備Cに送られ、除マンガン処理水hの一部として、還元
濃縮槽引抜汚泥bはそのまま置換槽Bに送られ、bをh
を用いて10倍希釈して、さらに汚泥中のマンガンを水
中に溶出せしめる。ここで、希釈水である除マンガン処
理水h中のMn値は測定限界以下であるので、第1表に
示すように、置換槽流出汚泥c中の各Mn値はbの十分
の一となる。希釈された置換槽流出汚泥cは再濃縮装置
7において再度濃縮される。すなわち、還元濃縮槽Aか
ら置換槽Bを経て再濃縮装置7へと移送される過程で、
汚泥の洗浄が行われることになる。再濃縮装置7として
は、例えばチューブラ式の低加圧ろ過装置(加圧圧力2
kg/cm2 )等を好ましく使用することができる。
The above-mentioned reduction concentration tank supernatant water g is sent to the manganese removal equipment C, and as a part of the manganese removal treated water h, the reduction concentration tank draw-out sludge b is sent as it is to the replacement tank B, where b is h.
Is used to dilute the manganese in the sludge into water, and the manganese in the sludge is further eluted in water. Here, since the Mn value in the manganese-removed water h that is dilution water is below the measurement limit, as shown in Table 1, each Mn value in the displacement tank outflow sludge c is one tenth of b. . The diluted substitution tank outflow sludge c is concentrated again in the reconcentrator 7. That is, in the process of being transferred from the reduction concentration tank A through the substitution tank B to the reconcentration device 7,
The sludge will be washed. As the reconcentrator 7, for example, a tubular low pressure filtration device (pressurization pressure 2
kg / cm 2 ) or the like can be preferably used.

【0026】第1表に示すように、再濃縮装置引抜汚泥
dに含まれるMn値は処理当初の汚泥及び洗浄排水a中
の置換性Mn値で約14%、水溶性Mn値で6%に減少
する。 脱水設備8でのMnの動態については、第2表
に示すようである。ここで、脱水設備は短時間ろ布走行
式の無薬注脱水機を使用して処理した。
As shown in Table 1, the Mn value contained in the sludge d extracted from the re-concentrator is about 14% in the replaceable Mn value and 6% in the water-soluble Mn value in the sludge and the cleaning waste water a at the beginning of the treatment. Decrease. The dynamics of Mn in the dehydration equipment 8 are as shown in Table 2. Here, the dehydration equipment was treated using a short-time filter cloth traveling type chemical-free dehydrator.

【0027】[0027]

【表2】 [Table 2]

【0028】第2表よりわかる通り、脱水汚泥ケーキi
の置換性Mn値は36.5mg/ケーキkgであり、水
溶性Mn値は1mg/ケーキkgである。この値から本
発明の汚泥処理によって良好な土壌改良剤となり得る汚
泥ケーキが得られることがわかる。
As can be seen from Table 2, dehydrated sludge cake i
The substituting Mn value of is 36.5 mg / kg of cake and the water-soluble Mn value of is 1 mg / kg of cake. From this value, it is understood that the sludge treatment of the present invention can provide a sludge cake which can be a good soil improver.

【0029】比較のため、図3、図4において、排泥池
10及び排泥池11からの汚泥として示した従来の処理
方法により生じる汚泥を(図1の工程では汚泥混合物a
に相当する)、図1に示す本発明の汚泥処理工程と図3
に示す従来の汚泥処理工程とによって汚泥処理し、共に
加圧脱水機を用いた脱水設備8で脱水して得た脱水汚泥
ケーキについて置換性Mn値と水溶性Mn値の両分析を
行った結果を第3表に示す。
For comparison, the sludge produced by the conventional treatment method shown as sludge from the sludge basin 10 and the sludge basin 11 in FIGS. 3 and 4 (in the step of FIG. 1, sludge mixture a
3), and the sludge treatment process of the present invention shown in FIG.
The results of both the substitution Mn value and the water-soluble Mn value of the dehydrated sludge cake obtained by sludge treatment by the conventional sludge treatment step shown in Fig. 4 and dehydration in the dehydration facility 8 using a pressure dehydrator Is shown in Table 3.

【0030】[0030]

【表3】 [Table 3]

【0031】第3表の結果より図1に示す本発明の汚泥
処理工程により処理した脱水汚泥ケーキは置換性Mn値
及び水溶性Mn値共に従来の汚泥処理工程により処理し
た脱水汚泥ケーキの値より著しく小さく、処理の目的が
達成されていることがわかる。
From the results shown in Table 3, the dehydrated sludge cake treated by the sludge treatment step of the present invention shown in FIG. 1 has both the substitution Mn value and the water-soluble Mn value of the dehydrated sludge cake treated by the conventional sludge treatment step. Remarkably small, it can be seen that the purpose of the treatment has been achieved.

【0032】[0032]

【発明の効果】本発明により汚泥がMn障害を引起こす
ことのない肥料として供給できる。また、Mn含量を自
由に調整できるので、過Mn土壌等に対する土壌改良材
として供給することができる。本発明の浄水汚泥の処理
装置を用い、本発明の処理方法に従って処理して得られ
た汚泥ケーキが土壌改良剤として優れていることの理解
を得るため、植物のMn障害の例について概説する。植
物のMn障害の例としては、(1)ウンシュウミカンの
葉身に褐色斑点を生じ、落葉し、収量が激減する「異常
落葉」、(2)リンゴの枝幹部の樹皮に発疹状凹凸を生
じ、著しい減収を来たし、やがて枯死する「粗皮病」、
(3)カキの収穫期の果実の果皮に大きなアバタ状の緑
斑が残って商品価値が著しく下落する「緑斑病」等が報
告されている。上記(1)の「異常落葉」と土壌のMn
含有状態の調査結果を第4表に示す。
INDUSTRIAL APPLICABILITY According to the present invention, sludge can be supplied as fertilizer without causing Mn damage. Further, since the Mn content can be freely adjusted, it can be supplied as a soil improving material for over-Mn soil and the like. In order to understand that the sludge cake obtained by treating the purified water sludge treatment apparatus of the present invention according to the treatment method of the present invention is excellent as a soil conditioner, an example of Mn disorders of plants will be outlined. Examples of Mn disorders in plants include (1) "abnormal deciduous leaves" that cause brown spots on the leaf blades of Unshiu mandarin oranges, resulting in a sharp decrease in yield, and (2) rash-like irregularities on the bark of apple branch trunks. , "Progressive skin disease" that caused a significant decrease in revenue and eventually died,
(3) It has been reported that "green spot disease" or the like in which large avatar-like green spots remain on the pericarp of the fruit of the oyster at the harvest stage, resulting in a marked decrease in commercial value. “Abnormal leaf fall” in (1) above and Mn of soil
Table 4 shows the results of the investigation of the content state.

【0033】[0033]

【表4】 [Table 4]

【0034】第4表において、異常落葉園では水溶性M
n値が2.8〜6.0mg/ケーキkg、置換性Mn値
が17.7〜60.0mg/ケーキkgであり、一方健
全園では水溶性Mn値が0.6〜1.3mg/ケーキk
g、置換性Mn値が6.0〜27.3mg/ケーキkg
となっている。明らかにMn過剰障害によって発生した
病気である。葉分析においては、異常落葉園では23
5.3〜262.4mg/葉kg、一方健全園では4
8.2〜75.2mg/葉kgと大きな違いとなってい
る。これ等の結果はリンゴのマンガン過剰吸収の分析デ
ータとも非常に類似していると報告されている。本発明
の浄水処理汚泥の汚泥処理により得られる土壌改良剤用
乾燥汚泥ケーキは充分低いMn濃度のものであり、自由
に施肥し得ると共に、過剰Mn土壌を改質するのに用い
ることができる。
In Table 4, water-soluble M in the abnormal deciduous garden
The n value is 2.8 to 6.0 mg / cake kg, the replaceable Mn value is 17.7 to 60.0 mg / cake kg, while the water-soluble Mn value is 0.6 to 1.3 mg / cake in Kenzenen. k
g, the substitutable Mn value is 6.0 to 27.3 mg / cake kg
Has become. Apparently it is a disease caused by Mn excess disorder. In the leaf analysis, 23 in the abnormal deciduous garden
5.3 to 262.4 mg / kg of leaf, while in healthy garden 4
The difference is 8.2 to 75.2 mg / kg of leaf. These results were reported to be very similar to the analytical data for manganese overabsorption in apples. The dry sludge cake for soil conditioner obtained by the sludge treatment of the purified water-treated sludge of the present invention has a sufficiently low Mn concentration, can be fertilized freely, and can be used for modifying excess Mn soil.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の汚泥処理の実施態様の1例を示すフロ
ー図である。
FIG. 1 is a flow chart showing an example of an embodiment of sludge treatment of the present invention.

【図2】マンガンの酸化還元電位、pHによる形態変化
を示す図である。
FIG. 2 is a diagram showing morphological changes of manganese according to redox potential and pH.

【図3】従来の汚泥処理の実施態様の典型例を示すフロ
ー図である。
FIG. 3 is a flowchart showing a typical example of an embodiment of conventional sludge treatment.

【図4】従来の汚泥処理の実施態様の別の典型例を示す
フロー図である。
FIG. 4 is a flow chart showing another typical example of the embodiment of the conventional sludge treatment.

【符号の説明】[Explanation of symbols]

1 着水井 2 生物処理設備 3 沈殿池 4 ろ過池 5 活性炭ろ過池 6 オゾン処理設備 7 再濃縮装置 8 脱水装置 9 乾燥設備 10 排泥池 11 排水池 20 原水 21 生物処理水 A 還元濃縮装置 B 置換装置 C 除マンガン装置 D 洗浄排水槽 E 脱水設備 a 排泥及び洗浄排水 b 還元濃縮槽引抜汚泥 c 置換槽流出汚泥 d 再濃縮装置引抜汚泥 e 再濃縮装置上澄液 f 脱水ろ液 g 還元濃縮槽上澄液 h 除マンガン処理水 i 脱水汚泥ケーキ 1 Landing well 2 Biological treatment equipment 3 Sedimentation basin 4 Filtration basin 5 Activated carbon filtration basin 6 Ozone treatment equipment 7 Reconcentration equipment 8 Dehydration equipment 9 Drying equipment 10 Waste mud basin 11 Drainage basin 20 Raw water 21 Biotreatment water A Reduction reduction equipment B Substitution Equipment C Manganese removal equipment D Washing drainage tank E Dewatering equipment a Drainage and washing drainage b Reducing concentration tank drawing sludge c Substitution tank outflow sludge d Reconcentration equipment drawing sludge e Reconcentration equipment supernatant liquid f Dewatering filtrate g Reduction concentration tank Supernatant h Manganese-removed water i Dehydrated sludge cake

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江川 眞一郎 東京都港区港南1丁目6番27号 荏原イン フィルコ株式会社内 (72)発明者 高嶋 洋介 東京都港区港南1丁目6番27号 荏原イン フィルコ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Shinichiro Egawa 1-6-27 Konan, Minato-ku, Tokyo Ebara In Filco Co., Ltd. (72) Yosuke Takashima 1-6-27 Konan, Minato-ku, Tokyo Ebara Within Infilco Corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被処理汚泥を酸性にpH調整し、自然沈
降により固液分離して、該浄水汚泥中のマンガンを水中
に移行させる還元濃縮工程と、分離された汚泥を希釈水
により希釈して残存するマンガンを水中に移行させる置
換工程と、希釈された汚泥を再度濃縮する再濃縮工程
と、再濃縮された汚泥を脱水する脱水工程よりなること
を特徴とする浄水汚泥の処理方法。
1. A sludge to be treated is adjusted to an acidic pH, and solid-liquid separation is carried out by natural sedimentation to transfer manganese in the purified water sludge into water, and a sludge separated is diluted with diluting water. The method for treating purified water sludge comprises a substitution step of migrating remaining residual manganese into water, a reconcentration step of reconcentrating the diluted sludge, and a dehydration step of dehydrating the reconcentrated sludge.
【請求項2】 前記還元濃縮工程の上澄水、及び/また
は前記再濃縮工程の分離水、及び/または前記脱水工程
の分離水の少なくとも一部を除マンガン処理工程に導き
希釈水とすることを特徴とする請求項1記載の浄水汚泥
の処理方法。
2. The supernatant water of the reduction and concentration step and / or the separated water of the reconcentration step and / or at least a part of the separated water of the dehydration step is introduced into a manganese removal treatment step and used as dilution water. The method for treating purified water sludge according to claim 1, which is characterized in that.
【請求項3】 浄水汚泥を自然沈降分離する、少なくと
もpH調整手段を付設した還元濃縮装置と、該還元濃縮
装置から排出される汚泥を希釈水で希釈洗浄する置換装
置と、該置換装置から排出される汚泥を再度濃縮する再
濃縮装置と、該再濃縮装置から排出される汚泥を脱水す
る脱水装置とからなることを特徴とする浄水の汚泥の処
理装置。
3. A reducing / concentrating device for spontaneously settling and separating purified water sludge, at least a pH adjusting means, a replacement device for diluting and washing sludge discharged from the reducing / concentrating device with dilution water, and discharging from the replacement device. A sludge treatment device for purified water, comprising a re-concentrator for re-concentrating the sludge to be regenerated and a dehydrator for dehydrating the sludge discharged from the re-concentrator.
【請求項4】 前記還元濃縮工程の上澄水、及び/また
は前記再濃縮工程の分離水、及び/または前記脱水工程
の分離水の少なくとも一部を導入し除マンガン処理して
希釈水とする除マンガン装置を備えたことを特徴とする
請求項3記載の浄水の汚泥の処理装置。
4. Removal of at least a part of the supernatant water of the reduction concentration step and / or the separated water of the reconcentration step and / or the separated water of the dehydration step to remove manganese to obtain diluted water. The sludge treatment device for purified water according to claim 3, further comprising a manganese device.
JP03640694A 1994-02-10 1994-02-10 Method and apparatus for treating purified water sludge Expired - Fee Related JP3491769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03640694A JP3491769B2 (en) 1994-02-10 1994-02-10 Method and apparatus for treating purified water sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03640694A JP3491769B2 (en) 1994-02-10 1994-02-10 Method and apparatus for treating purified water sludge

Publications (2)

Publication Number Publication Date
JPH07222997A true JPH07222997A (en) 1995-08-22
JP3491769B2 JP3491769B2 (en) 2004-01-26

Family

ID=12468963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03640694A Expired - Fee Related JP3491769B2 (en) 1994-02-10 1994-02-10 Method and apparatus for treating purified water sludge

Country Status (1)

Country Link
JP (1) JP3491769B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007253052A (en) * 2006-03-23 2007-10-04 Osaka Gas Co Ltd Equipment and method for water cleaning

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007253052A (en) * 2006-03-23 2007-10-04 Osaka Gas Co Ltd Equipment and method for water cleaning
JP4571086B2 (en) * 2006-03-23 2010-10-27 大阪瓦斯株式会社 Water purification equipment and treatment method

Also Published As

Publication number Publication date
JP3491769B2 (en) 2004-01-26

Similar Documents

Publication Publication Date Title
Owen Removal of phosphorus from sewage plant effluent with lime
Zouboulis et al. Comparison of single and dual media filtration in a full-scale drinking water treatment plant
AT501991B1 (en) METHOD FOR THE TREATMENT OF WASTE FROM OLIVE OIL PRODUCTION
JPH0232958B2 (en)
EP0384329A1 (en) Process for upgrading liquid manure
US20220127176A1 (en) Method and system for treating wastewater
KR20180016436A (en) Method and device for purifying domestic or industrial water
Hutchison High‐Rate Direct Filtration
CA1115437A (en) Process for treating waste water
DE2020304A1 (en) Process for opening up and processing fresh and lazy meat
DE2059828A1 (en) Process for cleaning waste water containing protein
CN106809939B (en) Method for keeping activity of removing ammonia nitrogen in surface water by catalytic oxidation of iron-manganese oxide
JP3491769B2 (en) Method and apparatus for treating purified water sludge
Monscvitz et al. Some practical experience in direct filtration
US20110000857A1 (en) Method and system of sludge treatment
US20150041405A1 (en) Method and Installation for Processing Raw Liquid Manure and/or Fermentation Residues from Biogas Production
DE2120032A1 (en) Process for the treatment of sludge from the purification of waste water
JPH10109094A (en) Treatment of waste water or the like of barn
JPS61204081A (en) Treatment of night soil sewage
JPH0131434B2 (en)
JP2008023417A (en) Water purifying apparatus and water purifying method
WO1994002418A1 (en) A method of and an apparatus for purifying aqueous suspensions containing organic material and cations
EP0222730A2 (en) Process for drying brown coal with a high water content
JP3986144B2 (en) Sludge treatment method and equipment
JPH0199689A (en) Method for removing organic matter in water

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101114

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101114

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees