JP2010063252A - Core for high-speed motor having excellent heat dissipation properties and core material for high-speed motor - Google Patents

Core for high-speed motor having excellent heat dissipation properties and core material for high-speed motor Download PDF

Info

Publication number
JP2010063252A
JP2010063252A JP2008225459A JP2008225459A JP2010063252A JP 2010063252 A JP2010063252 A JP 2010063252A JP 2008225459 A JP2008225459 A JP 2008225459A JP 2008225459 A JP2008225459 A JP 2008225459A JP 2010063252 A JP2010063252 A JP 2010063252A
Authority
JP
Japan
Prior art keywords
core
surface layer
thickness
inner layer
layer part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008225459A
Other languages
Japanese (ja)
Other versions
JP5326440B2 (en
Inventor
Yoshihiko Oda
善彦 尾田
Masaaki Kono
雅昭 河野
Akira Fujita
藤田  明
Yoshiaki Zaizen
善彰 財前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008225459A priority Critical patent/JP5326440B2/en
Publication of JP2010063252A publication Critical patent/JP2010063252A/en
Application granted granted Critical
Publication of JP5326440B2 publication Critical patent/JP5326440B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Abstract

<P>PROBLEM TO BE SOLVED: To provide a core for high speed motor which exhibits excellent heat dissipation properties, and to provide a core material for high speed motor. <P>SOLUTION: The core for high speed motor uses a double-layered material as a core and the shear plane ratio of punched end face is 50% or more. The double-layered material satisfies following conditions (1)-(3). (1) The surface layer consists of an electromagnetic steel plate which contains 4-7 mass% of Si and the remainder of Fe and inevitable impurities, (2) the inner layer consists of a material having thermal conductivity of 30 W/mK or more, (3) the board thickness is 0.05-0.5 mm, and (4) the ratio of thickness at the surface layer to the overall thickness is 0.1-0.7. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば、ハイブリッド電気自動車用モータ等に用いられる高速モータ用コアおよび高速モータ用コア材料に関する。   The present invention relates to a high-speed motor core and a high-speed motor core material used for, for example, a motor for a hybrid electric vehicle.

例えば、ハイブリッド電気自動車のモータは小型化の観点より高周波域での駆動が行われている。このようなモータのコア材として、無方向性電磁鋼板が使用されている。そして、無方向性電磁鋼板には高周波鉄損の低い電磁鋼板が要望されており、このような背景から、現在は、Si+Al=3〜4%程度の高グレードの電磁鋼板が使用されている。
しかし、近年では、さらなる小型化の観点より回転数は一層高くなっており、加えて、エンジンの近くにモータが設置されることから、通常のモータよりも高温下で駆動されることが多い。このため、コア材として使用される電磁鋼板に対しても、さらなる低鉄損化と高周波励磁により発生した熱を効率よく除くことが強く要望される。
For example, a motor of a hybrid electric vehicle is driven in a high frequency range from the viewpoint of miniaturization. Non-oriented electrical steel sheets are used as the core material of such motors. And non-oriented electrical steel sheets are required to be electrical steel sheets with low high-frequency iron loss. Against this background, high grade electrical steel sheets with Si + Al = 3-4% are currently used. Yes.
However, in recent years, the number of revolutions has been further increased from the viewpoint of further miniaturization, and in addition, since a motor is installed near the engine, it is often driven at a higher temperature than a normal motor. For this reason, it is strongly desired to efficiently remove heat generated by further lowering iron loss and high-frequency excitation for the electromagnetic steel sheet used as the core material.

従来から、電磁鋼板の高周波鉄損を低減するためにはSi添加が効果的であることが知られている。しかし、Si添加を行うと熱伝導率も低下するため、モータで発生した熱は外部に逃げにくくなるという課題がある。
特許文献1には、Siを0.1〜1.2%とし、板厚を0.25〜0.45mmとした熱伝導率に優れる無方向性電磁鋼板が開示されている。しかし、特許文献1の材料ではSi量が低いために高周波での発熱が大きく、高周波モータの温度上昇を十分に抑えることが難しいという課題がある。
特開平9-283316号公報
Conventionally, it has been known that Si addition is effective for reducing high-frequency iron loss of electrical steel sheets. However, if Si is added, the thermal conductivity is also reduced, so that the heat generated by the motor is difficult to escape to the outside.
Patent Document 1 discloses a non-oriented electrical steel sheet having excellent thermal conductivity with Si of 0.1 to 1.2% and a plate thickness of 0.25 to 0.45 mm. However, the material of Patent Document 1 has a problem that since the amount of Si is low, heat generation at high frequency is large, and it is difficult to sufficiently suppress the temperature increase of the high frequency motor.
JP-A-9-283316

本発明は、かかる事情に鑑みなされたもので、熱放散性に優れた高速モータ用コアおよび高速モータ用コア材料を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object thereof is to provide a high-speed motor core and a high-speed motor core material excellent in heat dissipation.

本発明者らは、上記課題を解決するために、高周波モータの温度上昇を抑制する手法について鋭意検討した。その結果、コア表層部のSi量を高めることで高周波鉄損を低減し、高周波でほとんど磁化されないコア内層部に熱伝導率の高い材料を組み合わせることにより高周波鉄損を低減しつつ、熱放散性も高めることが可能になることを知見した。   In order to solve the above-mentioned problems, the present inventors diligently studied a method for suppressing the temperature increase of the high-frequency motor. As a result, the high-frequency iron loss is reduced by increasing the amount of Si in the core surface layer part, and the heat dissipating property while reducing the high-frequency iron loss by combining a material having high thermal conductivity with the core inner layer part that is hardly magnetized at high frequency. It has been found that it will be possible to increase it.

本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。
[1]下記(1)〜(4)を満足する複層型材料を鉄心として用い、打ち抜き端面の剪断面比率が50%以上であることを特徴とする熱放散性に優れた高速モータ用コア。
(1)表層部は、質量%で、Si:4〜7%を含み、残部Feおよび不可避不純物である電磁鋼板からなり、(2)内層部は、熱伝導率30W/mK以上の材料からなり、(3)板厚0.05〜0.5mmであり、(4)表層部厚みの全厚に対する比率が0.1〜0.7である。
[2]下記(1)〜(4)を満足する複層型材料を鉄心として用い、打ち抜き端面の剪断面比率が50%以上であることを特徴とする熱放散性に優れた高速モータ用コア。
(1)表層部は、質量%で、Si:4〜7%を含み、残部Feおよび不可避不純物である電磁鋼板からなり、(2)内層部は、質量%で、Si:2%以下を含み、残部Feおよび不可避不純物である電磁鋼板からなり、(3)板厚0.05〜0.5mmであり、(4)表層部厚みの全厚に対する比率が0.1〜0.7である。
[3]前記[1]または[2]において、前記複層型材料の平均結晶粒径が150μm以下であることを特徴とする熱放散性に優れた高速モータ用コア。
[4]前記[1]〜[3]のいずれかにおいて、前記複層型材料において、表層部と内層部の界面における直径5μm以上の介在物量が50個/mm2以下であることを特徴とする熱放散性に優れた高速モータ用コア。
[5]表層部は、質量%で、Si:4〜7%を含み、残部Feおよび不可避不純物である電磁鋼板からなり、内層部は、質量%で、Si:2%以下を含み、残部Feおよび不可避不純物である電磁鋼板からなる複層型モータコア材料であり、平均結晶粒径は150μm以下で、さらに、板厚が0.05〜0.5mmで、前記表層部厚みの全厚に対する比率が0.1〜0.7であることを特徴とする熱放散性に優れた高速モータ用コア材料。
[6]表層部は、質量%で、Si:4〜7%を含み、残部Feおよび不可避不純物である電磁鋼板からなり、内層部は、質量%で、Si:2%以下を含み、残部Feおよび不可避不純物である電磁鋼板からなる複層型モータコア材料であり、前記表層部と前記内層部の界面における直径5μm以上の介在物量が50個/mm2以下で、さらに、板厚が0.05〜0.5mmで、前記表層部厚みの全厚に対する比率が0.1〜0.7であることを特徴とする熱放散性に優れた高速モータ用コア材料。
[7]表層部は、質量%で、Si:4〜7%を含み、残部Feおよび不可避不純物である電磁鋼板からなり、内層部は、質量%で、Si:2%以下を含み、残部Feおよび不可避不純物である電磁鋼板からなる複層型モータコア材料であり、平均結晶粒径が150μm以下で、前記表層部と前記内層部の界面における直径5μm以上の介在物量が50個/mm2以下で、さらに、板厚0.05〜0.5mmで、表層部厚みの全厚に対する比率が0.1〜0.7であることを特徴とする熱放散性に優れた高速モータ用コア材料。
なお、本明細書において、鋼の成分を示す%は、すべて質量%である。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] A core for a high-speed motor excellent in heat dissipation, wherein a multilayer material satisfying the following (1) to (4) is used as an iron core, and the shearing surface ratio of the punched end surface is 50% or more .
(1) Surface layer part is composed of 4% to 7% by mass, Si: 4% to 7% balance Fe and inevitable impurities. (2) Inner layer part is made of material with thermal conductivity of 30W / mK or more. (3) The plate thickness is 0.05 to 0.5 mm, and (4) the ratio of the surface layer thickness to the total thickness is 0.1 to 0.7.
[2] A core for a high-speed motor excellent in heat dissipation, wherein a multilayer material satisfying the following (1) to (4) is used as an iron core, and the shearing surface ratio of the punched end surface is 50% or more .
(1) The surface layer part is composed of 4% to 7% by mass and Si: 4 to 7%, and the balance Fe and inevitable impurities are magnetic steel sheets. (2) The inner layer part is mass% and includes Si: 2% or less. The remaining Fe and the inevitable impurities are magnetic steel sheets, (3) the thickness is 0.05 to 0.5 mm, and (4) the ratio of the surface layer thickness to the total thickness is 0.1 to 0.7.
[3] A core for a high-speed motor excellent in heat dissipation, characterized in that in [1] or [2], the multilayer material has an average crystal grain size of 150 μm or less.
[4] In any one of the above [1] to [3], in the multilayer material, the amount of inclusions having a diameter of 5 μm or more at the interface between the surface layer portion and the inner layer portion is 50 pieces / mm 2 or less. High-speed motor core with excellent heat dissipation.
[5] The surface layer part is composed of 4% to 7% by mass, Si: 4 to 7% of the balance Fe and an inevitable impurity, and the inner layer part contains Si: 2% or less by mass%. And a multilayer motor core material made of an electromagnetic steel plate that is an inevitable impurity, the average crystal grain size is 150 μm or less, and the plate thickness is 0.05 to 0.5 mm, and the ratio of the surface layer thickness to the total thickness is 0.1 to 0.7. A core material for high-speed motors with excellent heat dissipation.
[6] The surface layer part is composed of 4% to 7% by mass and Si: 4 to 7% of the balance, and consists of a magnetic steel sheet that is an inevitable impurity, and the inner layer part is 2% by mass and contains Si: 2% or less. And a multilayer motor core material made of an electromagnetic steel plate which is an inevitable impurity, the amount of inclusions having a diameter of 5 μm or more at the interface between the surface layer portion and the inner layer portion is 50 pieces / mm 2 or less, and the plate thickness is 0.05 to 0.5 A core material for a high-speed motor excellent in heat dissipation, wherein the ratio of the thickness of the surface layer portion to the total thickness is 0.1 to 0.7.
[7] The surface layer part is composed of 4% to 7% by mass, Si: 4 to 7% of the balance Fe and an inevitable impurity, and the inner layer part contains Si: 2% or less by mass%. And a multilayer motor core material made of magnetic steel sheet, which is an inevitable impurity, having an average crystal grain size of 150 μm or less and an amount of inclusions having a diameter of 5 μm or more at the interface between the surface layer part and the inner layer part of 50 pieces / mm 2 or less. Furthermore, a core material for a high-speed motor excellent in heat dissipation, characterized in that the thickness is 0.05 to 0.5 mm and the ratio of the surface layer thickness to the total thickness is 0.1 to 0.7.
In addition, in this specification,% which shows the component of steel is mass% altogether.

本発明によれば、熱放散性に優れた高速モータ用コアおよび高速モータ用コア材料が得られる。
そして、発熱の少ないモータコアを得ることができることで、本発明の高速モータ用コアは、特にモータコアの発熱が問題となるハイブリッド電気自動車用のモータコア、電気自動車用のモータコア、工作機械のモータコアとして有用となる。
According to the present invention, a high-speed motor core and a high-speed motor core material excellent in heat dissipation are obtained.
And since a motor core with less heat generation can be obtained, the core for a high-speed motor of the present invention is particularly useful as a motor core for a hybrid electric vehicle, a motor core for an electric vehicle, and a motor core for a machine tool in which the heat generation of the motor core is a problem. Become.

本発明における高速モータ用コアは、打ち抜き端面の剪断面比率が50%以上であり、例えば、下記(1)〜(3)を満足する複層型材料を用い所定の形状に打ち抜き加工することにより得られる。
(1)表層部は、質量%で、Si:4〜7%を含み、残部Feおよび不可避不純物である電磁鋼板からなり、
(2)内層部は、熱伝導率30W/mK以上の材料からなり、
(3)板厚0.05〜0.5mmであり、
(4)表層部厚みの全厚に対する比率が0.1〜0.7である。
このように、本発明においては、上記高速モータ用コアを構成する材料において、表層部で高周波鉄損を低減しつつ、内層部で熱放散性を高めることを特徴とする。これは本発明において最も重要な要件であり、このような複層型材料を鉄心として用い、打ち抜き端面の剪断面比率が50%以上とすることで熱放散性に優れた高速モータ用コアが得られることになる。
The core for a high-speed motor in the present invention has a shearing surface ratio of 50% or more at the punched end face, and is punched into a predetermined shape using, for example, a multilayer material satisfying the following (1) to (3): can get.
(1) The surface layer part is composed of a magnetic steel sheet that is mass% and contains Si: 4 to 7%, and the balance is Fe and inevitable impurities,
(2) The inner layer is made of a material with a thermal conductivity of 30 W / mK or more,
(3) Plate thickness is 0.05-0.5mm,
(4) The ratio of the surface layer thickness to the total thickness is 0.1 to 0.7.
As described above, the present invention is characterized in that in the material constituting the high-speed motor core, heat dissipation is enhanced in the inner layer portion while reducing high-frequency iron loss in the surface layer portion. This is the most important requirement in the present invention. By using such a multilayer material as an iron core and a shearing surface ratio of the punched end surface of 50% or more, a high-speed motor core having excellent heat dissipation is obtained. Will be.

なお、本発明は板厚方向に表層−内層−表層の3層構造を有する複層材を対象としており、表層部とは鋼板表面を含む層のことを指す。一方、内層部とは前記表層部を除いた板厚方向での中央部のことである。ここで、表層部と内層部の界面は以下の領域のことを指す。すなわち、EPMAにて鋼板板厚方向にSiの濃度勾配を測定した場合、表層部と内層部の境界においてSiの濃度分布の急激な変化が生じる。このSiの急激な濃度変化が見られる位置を界面とする。ただし、Siの拡散等により、界面が一義的に定まらない場合は、界面の始まりは、表面のSi濃度を100としたとき、Si濃度が90となる位置とする。一方、界面の終わりは、中心のSi濃度を100としたとき、Si濃度が110となる位置とする。   The present invention is directed to a multilayer material having a three-layer structure of surface layer-inner layer-surface layer in the plate thickness direction, and the surface layer portion refers to a layer including the surface of the steel plate. On the other hand, the inner layer portion is a central portion in the thickness direction excluding the surface layer portion. Here, the interface between the surface layer portion and the inner layer portion refers to the following region. That is, when the Si concentration gradient is measured in the steel plate thickness direction by EPMA, a sudden change in the Si concentration distribution occurs at the boundary between the surface layer portion and the inner layer portion. The position at which this rapid concentration change of Si is seen is taken as the interface. However, when the interface is not uniquely determined due to Si diffusion or the like, the start of the interface is a position where the Si concentration becomes 90 when the Si concentration on the surface is 100. On the other hand, the end of the interface is a position where the Si concentration becomes 110 when the central Si concentration is 100.

次に、本発明の詳細を実験結果に基づいて説明する。
最初に、高速モータ用コア材料となる複層型材料の表層部について検討する。
コア表層部で高周波鉄損を低減する手段として、Si量を高めることが考えられる。そこで、下記サンプルを作成し、表層部のSi量と鉄損W5/3kとの関係を調査した。
内層部に用いるSi=0.5%の鋼と、表層部に用いるSi量を2.5〜7%まで変化させた鋼を各々溶製しインゴットとした後、複層比(表層厚/全厚)が0.3となるように貼り合わせ、その後、熱間圧延、900℃×30sの熱延板焼鈍を行い、板破断を防止するため300℃で温間圧延を行い、板厚を0.35mmとした。その後、1000℃×30sの仕上焼鈍を行い、幅30mm、長さ280mmのエプスタインサンプルを切り出し磁気特性を評価した。なお、磁気特性はJIS C2550に記載の方法に基づき測定した。
以上より得られた結果を、図1に表層部のSi量と鉄損W5/3kとの関係として示す。図1より、表層Si量が4%以上で鉄損が低下していることがわかる。これは鋼板内層部に比べて鋼板表層部では固有抵抗が高いために、高周波透磁率が鋼板表層部で高くなり、通常の表皮効果以上に鋼板表層部に磁束が集中することにより渦電流損が低下したためと考えられる。
以上より、鋼板表層部のSi量は4%以上、好ましくは4.5%以上とする。一方、Si量が7%を超えた場合には温間圧延を行っても板破断を防止することが困難であるため、鋼板表層部のSi量の上限は7%とする。
Next, details of the present invention will be described based on experimental results.
First, the surface layer part of the multilayer material that becomes the core material for high-speed motors will be examined.
As a means for reducing high-frequency iron loss at the core surface layer, it is conceivable to increase the amount of Si. Therefore, the following sample was prepared, and the relationship between the amount of Si in the surface layer and the iron loss W5 / 3k was investigated.
After melting the steel of Si = 0.5% used for the inner layer part and the steel with the Si amount used for the surface layer part changed from 2.5% to 7% to form an ingot, the multilayer ratio (surface layer thickness / total thickness) is 0.3. Then, hot rolling and 900 ° C. × 30 s hot-rolled sheet annealing were performed, and in order to prevent sheet breakage, warm rolling was performed at 300 ° C., and the plate thickness was set to 0.35 mm. Thereafter, finish annealing at 1000 ° C. × 30 s was performed, and an Epstein sample having a width of 30 mm and a length of 280 mm was cut out to evaluate magnetic properties. Magnetic properties were measured based on the method described in JIS C2550.
The results obtained from the above are shown in FIG. 1 as the relationship between the Si content of the surface layer and the iron loss W5 / 3k. FIG. 1 shows that the iron loss is reduced when the surface Si content is 4% or more. This is because the specific resistance is higher in the steel plate surface layer than in the steel plate inner layer, so that the high-frequency permeability is higher in the steel plate surface layer, and eddy current loss is caused by the concentration of magnetic flux in the steel plate surface layer than the normal skin effect. This is thought to be due to a decline.
From the above, the Si content of the steel sheet surface layer portion is 4% or more, preferably 4.5% or more. On the other hand, when the Si content exceeds 7%, it is difficult to prevent sheet breakage even if warm rolling is performed, so the upper limit of the Si content of the steel sheet surface layer is 7%.

次に内層部の熱伝導率向上によるモータの発熱抑制について検討する。
表層部に用いるSi=5.50%の鋼と、内層部に用いるSiを0.1〜5.7%まで変化させた鋼を各々溶製しインゴットとした後、複層比(表層厚/全厚)が0.3となるように貼り合わせ、その後、熱間圧延、900℃×30sの熱延板焼鈍を行い、板破断を防止するため300℃での温間圧延を行い、板厚を0.35mmとした。その後、上記により得られた材料を用いて24極のIPMモータを作製した。ここで、ステーター外形は200mm、ロータ外形は110mm、積み厚100mmである。本モータを15000rpmで10min回転させた後、ティース部の温度を測定した。なお、温度測定位置はティース先端より50mmのティース幅中央部であり、モータ積層端部より10mmの位置とした。また、ステーターはアルミのケースに焼きばめで固定し、モータコアの冷却は空冷とした。
以上より得られた結果を、図2に内層部の熱伝導率とモータ温度との関係として示す。ここで、内層部の熱伝導率は、製品板の表層部を化学研磨により除去し、内層部のみとした後レーザーフラッシュ法にて求めた。図2より、内層部の熱伝導率が30W/mK以上でモータ温度の低下が大きいことがわかる。これは、モータで生じた発熱がコア内層部の熱伝導率の高い部分を伝わって回りに拡散したためと考えられる。以上より、コア内層部の熱伝導率は30W/mK以上とする。
Next, we will examine the suppression of heat generation of the motor by improving the thermal conductivity of the inner layer.
After the steel of Si = 5.50% used for the surface layer part and the steel with the Si used for the inner layer part changed from 0.1 to 5.7% were melted into ingots, the multilayer ratio (surface layer thickness / total thickness) was 0.3. After that, hot rolling and 900 ° C. × 30 s hot rolled sheet annealing were performed, and in order to prevent sheet breakage, warm rolling was performed at 300 ° C., and the sheet thickness was set to 0.35 mm. Thereafter, a 24-pole IPM motor was produced using the material obtained as described above. Here, the stator outer shape is 200 mm, the rotor outer shape is 110 mm, and the stacking thickness is 100 mm. The motor was rotated at 15000 rpm for 10 minutes, and then the temperature of the teeth portion was measured. The temperature measurement position was at the center of the teeth width of 50 mm from the tip of the teeth and at a position of 10 mm from the end of the motor stack. The stator was fixed to the aluminum case by shrink fitting, and the motor core was cooled by air.
The results obtained from the above are shown in FIG. 2 as the relationship between the thermal conductivity of the inner layer and the motor temperature. Here, the thermal conductivity of the inner layer portion was determined by a laser flash method after removing the surface layer portion of the product plate by chemical polishing to make only the inner layer portion. From FIG. 2, it can be seen that when the thermal conductivity of the inner layer portion is 30 W / mK or more, the motor temperature greatly decreases. This is presumably because the heat generated by the motor spreads around the core inner layer portion having a high thermal conductivity. From the above, the thermal conductivity of the core inner layer is set to 30 W / mK or more.

そして、このように高い熱伝導率の材料を電磁鋼板で得る場合にはSi量を低減する必要があり、Si量は2%以下、好ましくは1.5%以下、より好ましくは1%以下である。
また、高い熱伝導率の材料として、電磁鋼板の他に、より熱伝導率の高い、純鉄、アルミ、銅等で内層部を作製することもできる。アルミ、銅等で内層部を作製する場合には表層部と内層部をそれぞれ作製しておき、圧着法等で一体化すればよい。
In order to obtain a material having such a high thermal conductivity with a magnetic steel sheet, it is necessary to reduce the Si content, and the Si content is 2% or less, preferably 1.5% or less, more preferably 1% or less.
Further, as a material having high thermal conductivity, the inner layer portion can be made of pure iron, aluminum, copper or the like having higher thermal conductivity in addition to the electromagnetic steel sheet. When the inner layer portion is made of aluminum, copper, or the like, the surface layer portion and the inner layer portion are respectively prepared and integrated by a pressure bonding method or the like.

次に複層比について検討する。
表層部に用いるSi=5.5%の鋼と、内層部に用いるSi=1.0%とした鋼を各々溶製しインゴットとした後、複層比(表層厚/全厚)を0.02〜0.8となるように貼り合わせ、その後、熱間圧延、900℃×30sの熱延板焼鈍を行い、板破断を防止するため250℃での温間圧延を行い、板厚を0.35mmとした。その後、1000℃×30sの仕上焼鈍を行い、上記により得られた材料を用いて24極のIPMモータを作製しモータ温度を測定した。なお、モータ温度の測定方法は上記と同様である。
以上より得られた結果を、図3に複層比とモータ温度との関係として示す。図3より、複層比が0.1〜0.7の場合にモータ温度が低下していることがわかる。これは表層の高抵抗部が0.1未満では鉄損が高くなるため発熱量が増大したものと考えられる。一方、高抵抗部が0.7超となった場合には内層部の熱伝導率の高い部分の割合が小さくなるためモータ温度が低下しなかったものと考えられる。以上より、複層比は0.1〜0.7とする。
Next, the multilayer ratio will be examined.
After melting the steel of Si = 5.5% used for the surface layer part and the steel made of Si = 1.0% used for the inner layer part into ingots, the multilayer ratio (surface layer thickness / total thickness) becomes 0.02 to 0.8. After that, hot rolling and 900 ° C. × 30 s hot-rolled sheet annealing were performed, and in order to prevent sheet breakage, warm rolling was performed at 250 ° C., and the plate thickness was set to 0.35 mm. Then, finish annealing at 1000 ° C. × 30 s was performed, and a 24-pole IPM motor was manufactured using the material obtained as described above, and the motor temperature was measured. The method for measuring the motor temperature is the same as described above.
The results obtained as described above are shown as the relationship between the multilayer ratio and the motor temperature in FIG. FIG. 3 shows that the motor temperature decreases when the multilayer ratio is 0.1 to 0.7. This is thought to be because the heat loss increased because the iron loss increased when the high resistance portion of the surface layer was less than 0.1. On the other hand, when the high resistance portion exceeds 0.7, it is considered that the motor temperature did not decrease because the ratio of the high thermal conductivity portion of the inner layer portion becomes small. From the above, the multilayer ratio is 0.1 to 0.7.

また、複層型材料の板厚は0.05〜0.5mmとする。これは、0.05mm未満では打ち抜き工数が著しく増大するためである。一方、0.5mm超えでは高周波鉄損が高くなるためである。   The plate thickness of the multilayer material is 0.05 to 0.5 mm. This is because if the thickness is less than 0.05 mm, the number of punching steps is remarkably increased. On the other hand, if it exceeds 0.5 mm, the high-frequency iron loss increases.

次に、モータコアの抜熱の安定性について検討する。
表層部に用いるSi=5.5%の鋼と、内層部に用いるSi=1.0%とした鋼を各々溶製しインゴットとした後、複層比(表層厚/全厚)を0.3となるように貼り合わせ、その後、熱間圧延、900℃×30sの熱延板焼鈍を行い、板破断を防止するため250℃での温間圧延を行い、板厚を0.35mmとした。その後、1000℃×30sの仕上焼鈍を行い、上記により得られた材料を数種類の金型で打ち抜きモータコアとし、24極のIPMモータを10台作製しモータ温度を測定した。
その結果、モータ温度上昇は抑制されているものの、コアにより温度にばらつきがあることが明らかとなった。この原因について調査したところ、コアの温度上昇が大きい材料では打ち抜き端面の剪断面比率が50%未満と小さく、一方で、剪断面比率が50%以上のコアにおいては温度上昇が抑制されていることが判明した。これは、高周波励磁により発生したモータコアの熱がステーターコアの外周からアルミケースへ伝わる際、剪断面比率が小さいとアルミケースとコア間の密着部の面積が小さくなるためと考えられる。以上のことから、モータコアの打ち抜き端面の剪断面比率は50%以上とする。
Next, the stability of heat removal from the motor core will be examined.
After melting the steel of Si = 5.5% used for the surface layer part and the steel made of Si = 1.0% used for the inner layer part into ingots, pasting them so that the multilayer ratio (surface layer thickness / total thickness) becomes 0.3 After that, hot rolling and hot-rolled sheet annealing at 900 ° C. × 30 s were performed, and warm rolling at 250 ° C. was performed to prevent sheet breakage, and the sheet thickness was set to 0.35 mm. After that, finish annealing at 1000 ° C. × 30 s was performed, and the material obtained above was punched out with several types of dies to form a motor core. Ten 24-pole IPM motors were produced and the motor temperature was measured.
As a result, it was revealed that although the temperature rise of the motor is suppressed, the temperature varies depending on the core. As a result of investigating this cause, it is found that the material with a large core temperature rise has a small shear surface ratio of the punched end face of less than 50%, while the core with a shear surface ratio of 50% or more suppresses the temperature rise. There was found. This is considered to be because when the heat of the motor core generated by the high frequency excitation is transferred from the outer periphery of the stator core to the aluminum case, the area of the close contact portion between the aluminum case and the core becomes small if the shear plane ratio is small. From the above, the shear surface ratio of the punched end surface of the motor core is set to 50% or more.

なお、複層型材料では板厚方向で変形抵抗が異なることから、剪断面比率が従来の単層材料に比べ低下しやすい。このため、剪断面比率を50%以上とするためには複層型材料の平均結晶粒径を150μm以下とすることが好ましい。一方、結晶粒径が150μm超えとなった粗大粒組織を有する複層鋼板を打ち抜く際にはクリアランスを3%以下と非常に小さくするか、ファインブランキングを用いることにより剪断面比率を50%以上とすることも可能である。   In addition, since the deformation resistance differs in the plate thickness direction in the multilayer material, the shear plane ratio tends to be lower than that in the conventional single layer material. For this reason, in order to make the shear plane ratio 50% or more, it is preferable that the average crystal grain size of the multilayer material is 150 μm or less. On the other hand, when punching a multi-layer steel sheet with a coarse grain structure with a crystal grain size exceeding 150μm, the clearance is reduced to 3% or less, or the shear plane ratio is set to 50% or more by using fine blanking. It is also possible.

次にモータコアの抜熱性をさらに向上させるため、表層部と内層部の界面の介在物の最適化について検討する。
表層部に用いるSi=5.50%の鋼と、内層部に用いるSi=1.4%とした鋼を各々溶製し、内層材の表面粗さを変化させることにより表層部と内層部の界面の介在物量を変化させたインゴットを作製し、複層比(表層厚/全厚)が0.3となるように貼り合わせ、その後、熱間圧延、900℃×30sの熱延板焼鈍を行い、板破断を防止するため300℃での温間圧延を行い、板厚を0.35mmとした。その後、上記により得られた材料を用いて24極のIPMモータを作製し、上述の実験と同様にモータ部の発熱を調査した。ここで、モータコアの剪断面比率は70%であった。
以上より得られた結果を、図4にモータの温度と介在物量の関係として示す。ここで、介在物の観察には板厚方向に界面まで研磨した後、光学顕微鏡を用い200倍にて20視野観察し、介在物と明確に識別可能な円相当直径が5μm以上の量をカウントした。ここでの界面とはEPMAによりSi分布が急激に変化する部分であり、本材料ではSiの拡散が生じていないため、一義的に決定することができる。図4より、介在物量を50個/mm2以下とすることによりモータ温度が低下することがわかる。この介在物低減によりモータ温度上昇が抑制された原因は明確でないが、介在物低減により表層部から内層部へと熱が容易に伝わるようになったためではないかと考えられる。
Next, in order to further improve the heat removal performance of the motor core, the optimization of inclusions at the interface between the surface layer portion and the inner layer portion will be examined.
The amount of inclusions at the interface between the surface layer and the inner layer by melting the steel of Si = 5.50% used for the surface layer and the steel with Si = 1.4% used for the inner layer, respectively, and changing the surface roughness of the inner layer material Ingots with different thicknesses were prepared and bonded so that the multi-layer ratio (surface layer thickness / total thickness) was 0.3, and then hot-rolled and hot-rolled sheet annealed at 900 ° C for 30 seconds to prevent plate breakage. Therefore, warm rolling at 300 ° C. was performed and the plate thickness was set to 0.35 mm. Thereafter, a 24-pole IPM motor was produced using the material obtained as described above, and the heat generation of the motor part was investigated in the same manner as in the above experiment. Here, the shear surface ratio of the motor core was 70%.
The results obtained from the above are shown in FIG. 4 as the relationship between the motor temperature and the amount of inclusions. Here, after observing the inclusions in the plate thickness direction for the observation of inclusions, 20 optical fields were observed at 200 times using an optical microscope, and the number of equivalent circle diameters that were clearly distinguishable from inclusions was counted as 5 μm or more. did. The interface here is a portion where the Si distribution changes abruptly by EPMA, and Si diffusion does not occur in this material, so it can be uniquely determined. FIG. 4 shows that the motor temperature decreases when the amount of inclusions is 50 pieces / mm 2 or less. The reason why the increase in the motor temperature is suppressed by this inclusion reduction is not clear, but it is thought that heat is easily transferred from the surface layer portion to the inner layer portion due to the inclusion reduction.

次に、本発明の熱放散性に優れた高速モータ用コア材料の製造方法について説明する。
本発明においては、表層部に鉄損の低い高Siの材料を形成し、内層部には熱伝導率の高い材料を形成することが重要である。そのための手法として、例えば、成分の異なる材料を各々転炉で吹練し、溶鋼を脱ガス処理し所定の成分に調整し、引き続き鋳造を行いスラブとした後、所定の複層比となるように表層部の鋼板と内層部の材料を貼り合わせ、その後、スラブを通常の方法にて熱間圧延、次いで、一回の冷間または温間圧延、もしくは中間焼鈍をはさんだ2回以上の冷間または温間圧延により所定の板厚とした後に、仕上焼鈍を行うことにより本発明の複層型材料を得ることができる。ここで、熱間圧延時の仕上温度、巻取り温度は特に規定する必要はなく、通常でかまわない。また、熱延後の熱延板焼鈍は行っても良いが必須ではない。
また、鋼板を複層組織とすることで上記複層型材料として用いることも可能である。例えば、表層部に鉄損の低い高Siを形成し、内層部の熱伝導率の高くするために、仕上焼鈍板にSiの浸珪処理を行うことができる。この場合、打ち抜き端面の剪断面比率を50%以上とするため、結晶粒径が200〜300μmに粗大化する浸珪材では打ち抜き時にファインブランキング等を採用する必要がある。
さらに、上述したように、内層部には、鉄鋼以外の銅、アルミ等の熱伝導率の高い材料を用いることもできる。
Next, the manufacturing method of the core material for high speed motors excellent in the heat dissipation of this invention is demonstrated.
In the present invention, it is important to form a high Si material with low iron loss in the surface layer portion and to form a material with high thermal conductivity in the inner layer portion. As a technique for that purpose, for example, materials having different components are blown in a converter, the molten steel is degassed and adjusted to a predetermined component, continuously cast into a slab, and then a predetermined multilayer ratio is obtained. Then, the surface steel plate and the inner layer material are bonded together, and then the slab is hot-rolled in the usual manner, and then cold or warm-rolled once, or cold-cooled twice or more with intermediate annealing. The multi-layer material of the present invention can be obtained by performing finish annealing after a predetermined thickness is obtained by hot or warm rolling. Here, the finishing temperature and the coiling temperature at the time of hot rolling do not need to be specified and may be normal. Moreover, although hot-rolled sheet annealing after hot rolling may be performed, it is not essential.
Moreover, it is also possible to use as a multilayer material by making a steel plate into a multilayer structure. For example, in order to form high Si with a low iron loss in the surface layer portion and to increase the thermal conductivity of the inner layer portion, it is possible to perform silicon silicidation treatment on the finish annealing plate. In this case, in order to set the shearing face ratio of the punched end face to 50% or more, it is necessary to employ fine blanking or the like at the time of punching in a siliconized material whose crystal grain size is coarsened to 200 to 300 μm.
Furthermore, as described above, a material having high thermal conductivity such as copper and aluminum other than steel can be used for the inner layer portion.

表1に示す鋼を用い、転炉で吹練した後に脱ガス処理を行うことにより所定の成分に調整後鋳造し、スラブとした。次いで、得られたスラブを表1に示す複層比となるように積層し、外周を溶接した後、1140℃で1hr加熱し、板厚2.0mmまで熱間圧延を行った。熱延仕上げ温度は800℃とした。巻取り温度は610℃とし、巻取り後、900℃×30sの熱延板焼鈍を施した。その後、酸洗を行い、表1に示す板厚まで温間圧延を行い、表1に示す仕上焼鈍条件で焼鈍を行った。
以上により得られた供試材に対して、磁気測定を行った。なお、磁気測定は25cmエプスタイン試験片を用いて行った。
The steel shown in Table 1 was blown in a converter and then degassed to adjust to a predetermined component and then cast into a slab. Next, the obtained slabs were laminated so as to have a multilayer ratio shown in Table 1, the outer periphery was welded, and then heated at 1140 ° C. for 1 hour, and hot rolled to a plate thickness of 2.0 mm. The hot rolling finishing temperature was 800 ° C. The coiling temperature was 610 ° C., and after coiling, hot rolled sheet annealing at 900 ° C. × 30 s was performed. Then, pickling was performed, warm rolling was performed to the plate thickness shown in Table 1, and annealing was performed under the finish annealing conditions shown in Table 1.
Magnetic measurements were performed on the specimens obtained as described above. Magnetic measurement was performed using a 25 cm Epstein test piece.

また、上記供試材を用いて24極のIPMモータを作製した。ここで、ステーター外形は200mm、ロータ外形は110mm、積み厚100mmである。
本モータを15000rpmで10min回転させた後、ティース部の温度を測定した。温度測定位置はティース先端より50mmのティース幅中央部であり、モータ積層端部より10mmの位置とした。また、ステーターはアルミのケースに焼きばめで固定し、モータコアの冷却は空冷とした。素材の熱伝導率の測定はレーザーフラッシュ法により測定した。
また、複層型材料の表面粗さ、内層材の介在物量、平均結晶粒径、打ち抜き端面の剪断面比率は以下のようにして求めた。
In addition, a 24-pole IPM motor was fabricated using the above test material. Here, the stator outer shape is 200 mm, the rotor outer shape is 110 mm, and the stacking thickness is 100 mm.
The motor was rotated at 15000 rpm for 10 minutes, and then the temperature of the teeth portion was measured. The temperature measurement position was at the center of the teeth width of 50 mm from the tip of the teeth, and 10 mm from the end of the motor stack. The stator was fixed to the aluminum case by shrink fitting, and the motor core was cooled by air. The thermal conductivity of the material was measured by a laser flash method.
In addition, the surface roughness of the multilayer material, the amount of inclusions in the inner layer material, the average crystal grain size, and the shear plane ratio of the punched end face were determined as follows.

内層材の熱伝導率
供試材の表層部を化学研磨により除去し、内層部のみとした後レーザーフラッシュ法にて求めた。
The surface layer portion of the inner layer material was removed by chemical polishing to obtain only the inner layer portion, and then obtained by a laser flash method.

複層型材料の表面粗さ
クラッド前の内層材の表面をJIS B 0601に記載の方法に基づいて測定し、表面粗さRaを求めた。
Surface roughness of the multilayer material The surface of the inner layer material before cladding was measured based on the method described in JIS B 0601 to determine the surface roughness Ra.

内層材の介在物量
板厚方向に界面まで研磨した後、光学顕微鏡を用い200倍にて20視野観察し、介在物と明確に識別可能な円相当直径が5μm以上の量をカウントした。
The amount of inclusions in the inner layer was polished to the interface in the plate thickness direction, and then 20 fields of view were observed at 200 times using an optical microscope, and the amount of an equivalent circle diameter that was clearly distinguishable from inclusions was counted to 5 μm or more.

平均結晶粒径
鋼板断面における結晶粒径をJIS G0551に記載の方法に基づいて測定した。
The crystal grain size in the average crystal grain size steel plate cross section was measured based on the method described in JIS G0551.

打ち抜き端面の剪断面比率
打ち抜き材の端面をSEMを用い100倍にて5視野観察し、剪断面比率の平均値を求めた。
得られた結果を成分、製造条件と併せて表1に示す。
Shear surface ratio of the punched end face The end face of the punched material was observed with five fields of view at 100 times using SEM, and the average value of the shear face ratio was determined.
The obtained results are shown in Table 1 together with the components and production conditions.

Figure 2010063252
Figure 2010063252

表1より、表層、内層の熱伝導率、複層比、打ち抜き端面の剪断面比率が本発明の範囲の本発明例では、発熱の少ないモータコアが得られることがわかる。   From Table 1, it can be seen that in the present invention example in which the thermal conductivity of the surface layer and the inner layer, the multilayer ratio, and the shear surface ratio of the punched end face are within the scope of the present invention, a motor core with less heat generation can be obtained.

表2に示す鋼と銅を用い、圧着法にて複層材とした。さらに、実施例1と同様の方法にて、モータの作製、評価を行った。
得られた結果を成分、製造条件と併せて表2に示す。
The steel and copper shown in Table 2 were used to form a multilayer material by a compression method. Further, a motor was manufactured and evaluated in the same manner as in Example 1.
The obtained results are shown in Table 2 together with the components and production conditions.

Figure 2010063252
Figure 2010063252

表2より、本発明例では、発熱の少ないモータコアが得られることがわかる。   From Table 2, it can be seen that in the present invention example, a motor core with less heat generation can be obtained.

本発明の熱放散性に優れた高速モータ用コアを用いることにより、特にモータコアの発熱が問題となるハイブリッド電気自動車用のモータコア、電気自動車用のモータコア、工作機械のモータコアを中心に、多様な用途での使用が可能となる。   By using the core for a high-speed motor excellent in heat dissipation according to the present invention, various applications such as a motor core for a hybrid electric vehicle, a motor core for an electric vehicle, and a motor core for a machine tool, in particular, where the heat generation of the motor core is a problem. It can be used in

表層Si量と鉄損との関係を示す図である。It is a figure which shows the relationship between surface layer Si amount and an iron loss. 内層材の熱伝導率とモータ温度との関係を示す図である。It is a figure which shows the relationship between the heat conductivity of an inner-layer material, and motor temperature. 複層比とモータ温度との関係を示す図である。It is a figure which shows the relationship between multilayer ratio and motor temperature. 複層型材料界面の介在物量とモータ温度との関係を示す図である。It is a figure which shows the relationship between the amount of inclusion of a multilayer material interface, and motor temperature.

Claims (7)

下記(1)〜(4)を満足する複層型材料を鉄心として用い、打ち抜き端面の剪断面比率が50%以上であることを特徴とする熱放散性に優れた高速モータ用コア。
(1)表層部は、質量%で、Si:4〜7%を含み、残部Feおよび不可避不純物である電磁鋼板からなり、(2)内層部は、熱伝導率30W/mK以上の材料からなり、(3)板厚0.05〜0.5mmであり、(4)表層部厚みの全厚に対する比率が0.1〜0.7である。
A core for a high-speed motor excellent in heat dissipation, wherein a multilayer material satisfying the following (1) to (4) is used as an iron core, and the shearing surface ratio of the punched end surface is 50% or more.
(1) Surface layer part is composed of 4% to 7% by mass, Si: 4% to 7% balance Fe and inevitable impurities. (2) Inner layer part is made of material with thermal conductivity of 30W / mK or more. (3) The plate thickness is 0.05 to 0.5 mm, and (4) the ratio of the surface layer thickness to the total thickness is 0.1 to 0.7.
下記(1)〜(4)を満足する複層型材料を鉄心として用い、打ち抜き端面の剪断面比率が50%以上であることを特徴とする熱放散性に優れた高速モータ用コア。
(1)表層部は、質量%で、Si:4〜7%を含み、残部Feおよび不可避不純物である電磁鋼板からなり、(2)内層部は、質量%で、Si:2%以下を含み、残部Feおよび不可避不純物である電磁鋼板からなり、(3)板厚0.05〜0.5mmであり、(4)表層部厚みの全厚に対する比率が0.1〜0.7である。
A core for a high-speed motor excellent in heat dissipation, wherein a multilayer material satisfying the following (1) to (4) is used as an iron core, and the shearing surface ratio of the punched end surface is 50% or more.
(1) The surface layer part is composed of 4% to 7% by mass and Si: 4 to 7%, and the balance Fe and inevitable impurities are magnetic steel sheets. (2) The inner layer part is mass% and includes Si: 2% or less. The remaining Fe and the inevitable impurities are magnetic steel sheets, (3) the thickness is 0.05 to 0.5 mm, and (4) the ratio of the surface layer thickness to the total thickness is 0.1 to 0.7.
前記複層型材料の平均結晶粒径が150μm以下であることを特徴とする請求項1または2に記載の熱放散性に優れた高速モータ用コア。   The core for a high-speed motor excellent in heat dissipation according to claim 1 or 2, wherein the multilayer material has an average crystal grain size of 150 µm or less. 前記複層型材料において、表層部と内層部の界面における直径5μm以上の介在物量が50個/mm2以下であることを特徴とする請求項1〜3のいずれかに記載の熱放散性に優れた高速モータ用コア。 In the multilayer material, the amount of inclusions having a diameter of 5 μm or more at the interface between the surface layer portion and the inner layer portion is 50 pieces / mm 2 or less. Excellent core for high-speed motors. 表層部は、質量%で、Si:4〜7%を含み、残部Feおよび不可避不純物である電磁鋼板からなり、内層部は、質量%で、Si:2%以下を含み、残部Feおよび不可避不純物である電磁鋼板からなる複層型モータコア材料であり、平均結晶粒径は150μm以下で、さらに、板厚が0.05〜0.5mmで、前記表層部厚みの全厚に対する比率が0.1〜0.7であることを特徴とする熱放散性に優れた高速モータ用コア材料。   The surface layer part is composed of a magnetic steel sheet that contains Si: 4 to 7% by mass%, the remainder being Fe and inevitable impurities, and the inner layer part is mass% and contains Si: 2% or less, and the balance Fe and inevitable impurities. It is a multilayer motor core material made of an electromagnetic steel sheet, the average crystal grain size is 150 μm or less, the plate thickness is 0.05 to 0.5 mm, and the ratio of the surface layer thickness to the total thickness is 0.1 to 0.7 A core material for high-speed motors with excellent heat dissipation. 表層部は、質量%で、Si:4〜7%を含み、残部Feおよび不可避不純物である電磁鋼板からなり、内層部は、質量%で、Si:2%以下を含み、残部Feおよび不可避不純物である電磁鋼板からなる複層型モータコア材料であり、前記表層部と前記内層部の界面における直径5μm以上の介在物量が50個/mm2以下で、さらに、板厚が0.05〜0.5mmで、前記表層部厚みの全厚に対する比率が0.1〜0.7であることを特徴とする熱放散性に優れた高速モータ用コア材料。 The surface layer part is composed of a magnetic steel sheet that contains Si: 4 to 7% by mass%, the remainder being Fe and inevitable impurities, and the inner layer part is mass% and contains Si: 2% or less, and the balance Fe and inevitable impurities. It is a multilayer motor core material made of an electromagnetic steel sheet, the amount of inclusions having a diameter of 5 μm or more at the interface between the surface layer part and the inner layer part is 50 pieces / mm 2 or less, and the plate thickness is 0.05 to 0.5 mm, A core material for a high-speed motor excellent in heat dissipation, wherein the ratio of the thickness of the surface layer portion to the total thickness is 0.1 to 0.7. 表層部は、質量%で、Si:4〜7%を含み、残部Feおよび不可避不純物である電磁鋼板からなり、内層部は、質量%で、Si:2%以下を含み、残部Feおよび不可避不純物である電磁鋼板からなる複層型モータコア材料であり、平均結晶粒径が150μm以下で、前記表層部と前記内層部の界面における直径5μm以上の介在物量が50個/mm2以下で、さらに、板厚0.05〜0.5mmで、表層部厚みの全厚に対する比率が0.1〜0.7であることを特徴とする熱放散性に優れた高速モータ用コア材料。 The surface layer part is composed of a magnetic steel sheet that contains Si: 4 to 7% by mass%, the remainder being Fe and inevitable impurities, and the inner layer part is mass% and contains Si: 2% or less, and the balance Fe and inevitable impurities. A multilayer motor core material made of an electromagnetic steel sheet, wherein the average crystal grain size is 150 μm or less, the amount of inclusions having a diameter of 5 μm or more at the interface between the surface layer part and the inner layer part is 50 pieces / mm 2 or less, A core material for a high-speed motor excellent in heat dissipation, characterized in that the thickness is 0.05 to 0.5 mm and the ratio of the surface layer thickness to the total thickness is 0.1 to 0.7.
JP2008225459A 2008-09-03 2008-09-03 High-speed motor core and high-speed motor core material with excellent heat dissipation Active JP5326440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008225459A JP5326440B2 (en) 2008-09-03 2008-09-03 High-speed motor core and high-speed motor core material with excellent heat dissipation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008225459A JP5326440B2 (en) 2008-09-03 2008-09-03 High-speed motor core and high-speed motor core material with excellent heat dissipation

Publications (2)

Publication Number Publication Date
JP2010063252A true JP2010063252A (en) 2010-03-18
JP5326440B2 JP5326440B2 (en) 2013-10-30

Family

ID=42189442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008225459A Active JP5326440B2 (en) 2008-09-03 2008-09-03 High-speed motor core and high-speed motor core material with excellent heat dissipation

Country Status (1)

Country Link
JP (1) JP5326440B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013159823A (en) * 2012-02-06 2013-08-19 Jfe Steel Corp Steel plate for motor core excellent in core loss characteristic after punching
JP2016169435A (en) * 2015-03-16 2016-09-23 新日鐵住金株式会社 Magnetic steel sheet having high strength and excellent in magnetic property
JP6519725B1 (en) * 2017-12-12 2019-05-29 Jfeスチール株式会社 Multi-layered electromagnetic steel sheet
WO2019117095A1 (en) * 2017-12-12 2019-06-20 Jfeスチール株式会社 Multilayer electromagnetic steel sheet
WO2019117096A1 (en) * 2017-12-12 2019-06-20 Jfeスチール株式会社 Multilayer electromagnetic steel sheet
WO2019117089A1 (en) * 2017-12-12 2019-06-20 Jfeスチール株式会社 Multilayer electromagnetic steel sheet
JP2020090720A (en) * 2018-12-07 2020-06-11 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and manufacturing method therefor
WO2020241315A1 (en) * 2019-05-28 2020-12-03 Jfeスチール株式会社 Method for manufacturing motor core
JPWO2021261121A1 (en) * 2020-06-25 2021-12-30

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05263198A (en) * 1991-12-26 1993-10-12 Nippon Steel Corp Double-layered non-oriented silicon steel sheet excellent in magnetic property
JPH09283316A (en) * 1996-04-17 1997-10-31 Nippon Steel Corp Non-oriented magnetic steel plate with high magnetic flux density/low iron loss, which is superior in heat conductivity, and its manufacture
JPH11293422A (en) * 1998-04-07 1999-10-26 Nkk Corp Silicon steel plate remarkably low in high frequency iron loss
JPH11307354A (en) * 1998-04-17 1999-11-05 Nkk Corp High efficiency and high speed rotary machine
JP2003226948A (en) * 2002-02-06 2003-08-15 Sumitomo Metal Ind Ltd Nonoriented silicon steel sheet and production method therefor
JP2003253404A (en) * 2002-02-26 2003-09-10 Sumitomo Metal Ind Ltd Non-oriented silicon steel sheet for rotating machine and production method thereof
JP2005020909A (en) * 2003-06-26 2005-01-20 Jfe Steel Kk Stator core for rotating machine excellent in magnetic characteristic and its manufacturing method
JP2007100166A (en) * 2005-10-04 2007-04-19 Jfe Steel Kk Non-oriented electrical steel sheet with excellent shape of blanked edge face, and its manufacturing method
JP2010062275A (en) * 2008-09-03 2010-03-18 Jfe Steel Corp Motor core and motor core material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05263198A (en) * 1991-12-26 1993-10-12 Nippon Steel Corp Double-layered non-oriented silicon steel sheet excellent in magnetic property
JPH09283316A (en) * 1996-04-17 1997-10-31 Nippon Steel Corp Non-oriented magnetic steel plate with high magnetic flux density/low iron loss, which is superior in heat conductivity, and its manufacture
JPH11293422A (en) * 1998-04-07 1999-10-26 Nkk Corp Silicon steel plate remarkably low in high frequency iron loss
JPH11307354A (en) * 1998-04-17 1999-11-05 Nkk Corp High efficiency and high speed rotary machine
JP2003226948A (en) * 2002-02-06 2003-08-15 Sumitomo Metal Ind Ltd Nonoriented silicon steel sheet and production method therefor
JP2003253404A (en) * 2002-02-26 2003-09-10 Sumitomo Metal Ind Ltd Non-oriented silicon steel sheet for rotating machine and production method thereof
JP2005020909A (en) * 2003-06-26 2005-01-20 Jfe Steel Kk Stator core for rotating machine excellent in magnetic characteristic and its manufacturing method
JP2007100166A (en) * 2005-10-04 2007-04-19 Jfe Steel Kk Non-oriented electrical steel sheet with excellent shape of blanked edge face, and its manufacturing method
JP2010062275A (en) * 2008-09-03 2010-03-18 Jfe Steel Corp Motor core and motor core material

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013159823A (en) * 2012-02-06 2013-08-19 Jfe Steel Corp Steel plate for motor core excellent in core loss characteristic after punching
JP2016169435A (en) * 2015-03-16 2016-09-23 新日鐵住金株式会社 Magnetic steel sheet having high strength and excellent in magnetic property
KR102380300B1 (en) 2017-12-12 2022-03-29 제이에프이 스틸 가부시키가이샤 Multilayer electrical steel sheet
WO2019117096A1 (en) * 2017-12-12 2019-06-20 Jfeスチール株式会社 Multilayer electromagnetic steel sheet
RU2741917C1 (en) * 2017-12-12 2021-01-29 ДжФЕ СТИЛ КОРПОРЕЙШН Multi-layer electrical steel sheet
WO2019117089A1 (en) * 2017-12-12 2019-06-20 Jfeスチール株式会社 Multilayer electromagnetic steel sheet
JP6555448B1 (en) * 2017-12-12 2019-08-07 Jfeスチール株式会社 Multi-layer electrical steel sheet
JP6555449B1 (en) * 2017-12-12 2019-08-07 Jfeスチール株式会社 Multi-layer electrical steel sheet
TWI675113B (en) * 2017-12-12 2019-10-21 日商杰富意鋼鐵股份有限公司 Multilayer electromagnetic steel sheet
US11401589B2 (en) 2017-12-12 2022-08-02 Jfe Steel Corporation Multilayer electrical steel sheet
KR20200089741A (en) * 2017-12-12 2020-07-27 제이에프이 스틸 가부시키가이샤 Double-layered electrical steel sheet
CN111479942A (en) * 2017-12-12 2020-07-31 杰富意钢铁株式会社 Multilayer electromagnetic steel sheet
KR20200092392A (en) * 2017-12-12 2020-08-03 제이에프이 스틸 가부시키가이샤 Double-layered electrical steel sheet
KR20200093037A (en) * 2017-12-12 2020-08-04 제이에프이 스틸 가부시키가이샤 Double-layered electrical steel sheet
EP3725905A4 (en) * 2017-12-12 2020-10-21 JFE Steel Corporation Multilayer electromagnetic steel sheet
EP3725907A4 (en) * 2017-12-12 2020-10-21 JFE Steel Corporation Multilayer electromagnetic steel sheet
US11355271B2 (en) 2017-12-12 2022-06-07 Jfe Steel Corporation Multilayer electrical steel sheet
WO2019117095A1 (en) * 2017-12-12 2019-06-20 Jfeスチール株式会社 Multilayer electromagnetic steel sheet
RU2742291C1 (en) * 2017-12-12 2021-02-04 ДжФЕ СТИЛ КОРПОРЕЙШН Multilayered sheet of electrical steel
RU2742292C1 (en) * 2017-12-12 2021-02-04 ДжФЕ СТИЛ КОРПОРЕЙШН Multilayered sheet of electrical steel
US11335485B2 (en) 2017-12-12 2022-05-17 Jfe Steel Corporation Multilayer electrical steel sheet
KR102394513B1 (en) 2017-12-12 2022-05-04 제이에프이 스틸 가부시키가이샤 Multilayer electrical steel sheet
KR102394521B1 (en) * 2017-12-12 2022-05-04 제이에프이 스틸 가부시키가이샤 Multilayer electrical steel sheet
JP6519725B1 (en) * 2017-12-12 2019-05-29 Jfeスチール株式会社 Multi-layered electromagnetic steel sheet
JP7028148B2 (en) 2018-12-07 2022-03-02 Jfeスチール株式会社 Non-oriented electrical steel sheet and its manufacturing method
JP2020090720A (en) * 2018-12-07 2020-06-11 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and manufacturing method therefor
JP7052876B2 (en) 2019-05-28 2022-04-12 Jfeスチール株式会社 How to manufacture the motor core
JPWO2020241315A1 (en) * 2019-05-28 2021-09-13 Jfeスチール株式会社 Motor core manufacturing method
WO2020241315A1 (en) * 2019-05-28 2020-12-03 Jfeスチール株式会社 Method for manufacturing motor core
WO2021261121A1 (en) * 2020-06-25 2021-12-30 Jfeスチール株式会社 Motor core and motor
JPWO2021261121A1 (en) * 2020-06-25 2021-12-30
JP7243842B2 (en) 2020-06-25 2023-03-22 Jfeスチール株式会社 motor core and motor

Also Published As

Publication number Publication date
JP5326440B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
JP5326440B2 (en) High-speed motor core and high-speed motor core material with excellent heat dissipation
JP4855222B2 (en) Non-oriented electrical steel sheet for split core
JP6260800B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof, and motor core and manufacturing method thereof
KR100956530B1 (en) Nonoriented electromagnetic steel sheet
JP5444812B2 (en) Core material for high-speed motors
JP5699642B2 (en) Motor core
JP2007016278A (en) Non-oriented electromagnetic steel sheet for rotor, and its manufacturing method
JP4855220B2 (en) Non-oriented electrical steel sheet for split core
JP2011084761A (en) Non-oriented electromagnetic steel sheet for rotor and manufacturing method therefor
JP7328491B2 (en) Non-oriented electrical steel sheet
JP5326441B2 (en) Motor core and motor core material
JP4019608B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP7159593B2 (en) Non-oriented electrical steel sheet and its manufacturing method, and motor core and its manufacturing method
KR102554094B1 (en) non-oriented electrical steel
JP2006009048A (en) Nonoriented silicon steel sheet for rotor and production method therefor
JP2019012777A (en) Non-oriented electromagnetic steel plate and manufacturing method thereof
JP2018178198A (en) Nonoriented electromagnetic steel sheet and manufacturing method therefor
JP5939190B2 (en) Electrical steel sheet
JP6048282B2 (en) Electrical steel sheet
JP5333415B2 (en) Non-oriented electrical steel sheet for rotor and manufacturing method thereof
JP2000160306A (en) Non-oriented silicon steel sheet excellent in workability and its production
WO2022210895A1 (en) Rotating electric machine, set of iron core of stator and iron core of rotor, method for manufacturing rotating electric machine, method for manufacturing non-oriented electrical steel sheet for stator and non-oriented electrical steel sheet for rotor, method for manufacturing stator and rotor, and set of non-oriented electrical steel sheets
JP7159592B2 (en) Non-oriented electrical steel sheet and its manufacturing method, and motor core and its manufacturing method
JP4272576B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density
JP2003243214A (en) Non-grain oriented electrical steel sheet for motor iron core and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110823

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R150 Certificate of patent or registration of utility model

Ref document number: 5326440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250