JP2010059508A - Copper-zinc alloy electroplating bath - Google Patents

Copper-zinc alloy electroplating bath Download PDF

Info

Publication number
JP2010059508A
JP2010059508A JP2008227549A JP2008227549A JP2010059508A JP 2010059508 A JP2010059508 A JP 2010059508A JP 2008227549 A JP2008227549 A JP 2008227549A JP 2008227549 A JP2008227549 A JP 2008227549A JP 2010059508 A JP2010059508 A JP 2010059508A
Authority
JP
Japan
Prior art keywords
copper
zinc alloy
zinc
mol
electroplating bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008227549A
Other languages
Japanese (ja)
Other versions
JP5657199B2 (en
Inventor
Yuji Sugano
裕士 菅野
Yukiko Yamamoto
由紀子 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2008227549A priority Critical patent/JP5657199B2/en
Priority to PCT/JP2009/065425 priority patent/WO2010027021A1/en
Publication of JP2010059508A publication Critical patent/JP2010059508A/en
Application granted granted Critical
Publication of JP5657199B2 publication Critical patent/JP5657199B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/58Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper-zinc alloy electroplating bath for forming a copper-zinc alloy plating layer having improved corrosion resistance and obtaining the copper-zinc alloy plating layer which has a target composition, is homogeneous and has glossiness over a wide range of electric current density. <P>SOLUTION: The copper-zinc alloy electroplating bath contains copper salt, zinc salt and pyrophosphoric acid ion, wherein a ratio (P/M) of volume molar concentration P (mol/L) of added pyrophosphoric acid ion to total volume molar concentration M (mol/L) of copper ion and zinc ion contained in the bath is in the range of 2.0 to 3.2. The total volume molar concentration M (mol/L) is preferably in the range of 0.03 to 0.50 (mol/L) and pH is preferably in the range of 5 to 10. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は銅‐亜鉛合金電気めっき浴(以下、単に「めっき浴」とも称す)に関し、詳しくは、耐腐食性が向上した銅‐亜鉛合金めっき層を形成することができ、かつ、目的組成を有する均一で光沢のある銅‐亜鉛合金めっき層を幅広い電流密度で得ることができる銅‐亜鉛合金電気めっき浴に関する。   The present invention relates to a copper-zinc alloy electroplating bath (hereinafter also simply referred to as “plating bath”), and more specifically, can form a copper-zinc alloy plating layer with improved corrosion resistance, and has a target composition. The present invention relates to a copper-zinc alloy electroplating bath capable of obtaining a uniform and shiny copper-zinc alloy plating layer with a wide current density.

現在、銅‐亜鉛合金めっきは、金属製品、プラスチック製品、セラミック製品等に真鍮色の金属光沢および色調を与えるため、装飾めっきとして工業的に広く用いられている。しかし、従来のめっき浴はシアン化合物を多量に含んでいるため、その毒性が大きな問題となっており、また、含シアン化合物廃液の処理負担も大きなものであった。   At present, copper-zinc alloy plating is widely used industrially as decorative plating in order to give a metallic luster and color tone of brass color to metal products, plastic products, ceramic products and the like. However, since the conventional plating bath contains a large amount of cyanide, its toxicity is a big problem, and the treatment load of the cyanide-containing waste liquid is also large.

かかる解決手段として、今日、シアン化合物を用いない銅‐亜鉛合金めっき方法が多数報告されている。例えば、逐次めっき方法は、黄銅めっきを被めっき製品に施すための実際的な方法であり、かかる方法においては、電着によって銅めっき層と亜鉛めっき層が被めっき製品表面に順次めっきされ、ついで、熱拡散工程が施される。逐次黄銅めっき方法の場合、ピロリン酸銅めっき溶液と酸性の硫酸亜鉛めっき溶液が通常使用されている(例えば、特許文献1)。   As a solution to this problem, many copper-zinc alloy plating methods that do not use cyanide have been reported today. For example, the sequential plating method is a practical method for applying brass plating to a product to be plated. In such a method, a copper plating layer and a zinc plating layer are sequentially plated on the surface of the product to be plated by electrodeposition. A thermal diffusion process is performed. In the sequential brass plating method, a copper pyrophosphate plating solution and an acidic zinc sulfate plating solution are usually used (for example, Patent Document 1).

また、錯化剤として酒石酸やグルコヘプトン酸を添加した硫酸銅および硫酸亜鉛を金属源とした浴を用いためっき浴が提案されている(例えば、特許文献2)。
特開平5−98496号公報 特公平3−20478号公報
In addition, a plating bath using a bath using copper sulfate and zinc sulfate to which tartaric acid or glucoheptonic acid is added as a complexing agent as a metal source has been proposed (for example, Patent Document 2).
JP-A-5-98496 Japanese Patent Publication No. 3-20478

しかしながら、特許文献1に記載されているような逐次めっき方法では、銅めっき層形成工程、亜鉛めっき層形成工程および熱拡散工程、と処理工程が多く、複雑であるため、作業効率が悪いという欠点がある。また、特許文献2に記載されている方法を用いた場合、シアン浴のような毒性の問題は解消するが、通常、pHが11以上という高pH領域でめっき処理がなされるため、元来低pH領域で良好なめっき層が得られる硫酸金属塩を浴中に含有している場合は、めっき層の付着力の低下が発生するという問題がある。   However, in the sequential plating method as described in Patent Document 1, since there are many copper plating layer forming steps, galvanized layer forming steps and thermal diffusion steps, and processing steps, the work efficiency is poor. There is. Further, when the method described in Patent Document 2 is used, the problem of toxicity such as a cyan bath is solved. However, since the plating treatment is usually performed in a high pH region where the pH is 11 or more, it is originally low. When the metal sulfate containing a good plating layer in the pH region is contained in the bath, there is a problem that the adhesion of the plating layer is reduced.

また、めっき層内にカルボン酸基を有する有機化合物が取り込まれることで、めっき下地金属が露出した際に、大気中の酸素および水分により銅‐亜鉛合金めっき層と下地金属との間で発生する腐食を促進するという問題も有している。   In addition, when an organic compound having a carboxylic acid group is incorporated into the plating layer, it is generated between the copper-zinc alloy plating layer and the base metal due to oxygen and moisture in the atmosphere when the plating base metal is exposed. It also has the problem of promoting corrosion.

そこで本発明の目的は、耐腐食性が向上した銅‐亜鉛合金めっき層を形成することができ、かつ、目的組成を有する均一で光沢のある銅‐亜鉛合金めっき層を幅広い電流密度で得ることができる銅‐亜鉛合金電気めっき浴を提供することにある。   Accordingly, an object of the present invention is to form a copper-zinc alloy plating layer with improved corrosion resistance and to obtain a uniform and shiny copper-zinc alloy plating layer having a target composition with a wide current density. An object of the present invention is to provide a copper-zinc alloy electroplating bath.

本発明者らは、上記課題を解決するために鋭意検討した結果、銅‐亜鉛合金電気めっき浴の構成を下記のとおりとすることにより、上記目的を達成することができることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that the above object can be achieved by configuring the copper-zinc alloy electroplating bath as follows. It came to be completed.

すなわち、本発明の銅‐亜鉛合金電気めっき浴は、銅塩と、亜鉛塩と、ピロリン酸イオンとを含有する銅‐亜鉛合金電気めっき浴において、銅イオンおよび亜鉛イオンの総容積モル濃度M(mol/L)と添加するピロリン酸イオンの容積モル濃度P(mol/L)の比(P/M)が2.0〜3.2の範囲であることを特徴とするものである。   That is, the copper-zinc alloy electroplating bath of the present invention is a copper-zinc alloy electroplating bath containing a copper salt, a zinc salt, and pyrophosphate ions. mol / L) and the molar ratio P (mol / L) of the pyrophosphate ion to be added (P / M) is in the range of 2.0 to 3.2.

本発明においては、前記総容積モル濃度M(mol/L)は0.03〜0.50(mol/L)の範囲であることが好ましく、また、pHは5〜10の範囲であることが好ましい。   In the present invention, the total volume molarity M (mol / L) is preferably in the range of 0.03 to 0.50 (mol / L), and the pH is in the range of 5 to 10. preferable.

また、本発明の金属コードは、本発明の銅‐亜鉛合金電気めっき浴を用いてめっき処理がなされた金属ワイヤを用いたことを特徴とするものである。   The metal cord of the present invention is characterized in that a metal wire plated using the copper-zinc alloy electroplating bath of the present invention is used.

本発明によれば、銅‐亜鉛合金電気めっき浴を上記構成にしたことにより、耐腐食性が向上した銅‐亜鉛合金めっき層を形成することができ、かつ、目的組成を有する均一で光沢のある銅‐亜鉛合金めっき層を幅広い電流密度で得ることが可能となった。   According to the present invention, the copper-zinc alloy electroplating bath is configured as described above, whereby a copper-zinc alloy plating layer with improved corrosion resistance can be formed, and a uniform and glossy composition having a target composition can be formed. It is possible to obtain a certain copper-zinc alloy plating layer with wide current density.

以下、本発明の好適な実施の形態について詳細に説明する。
本発明の銅‐亜鉛合金電気めっき浴は、銅塩と、亜鉛塩と、ピロリン酸イオンとを含有する銅‐亜鉛合金めっき浴である。本発明においては、めっき浴中に含まれる銅イオンおよび亜鉛イオンの総容積モル濃度M(mol/L)と添加するピロリン酸イオンの容積モル濃度P(mol/L)の比(P/M)を2.0〜3.2の範囲とすることが重要である。ピロリン酸イオンを錯化剤として用いることにより、めっき下地金属が露出した際の腐食を有機化合物が促進するというという問題を解決することができる。
Hereinafter, preferred embodiments of the present invention will be described in detail.
The copper-zinc alloy electroplating bath of the present invention is a copper-zinc alloy plating bath containing a copper salt, a zinc salt, and pyrophosphate ions. In the present invention, the ratio (P / M) of the total molar volume M (mol / L) of copper ions and zinc ions contained in the plating bath to the molar volume P (mol / L) of pyrophosphate ions to be added. Is in the range of 2.0 to 3.2. By using pyrophosphate ions as a complexing agent, it is possible to solve the problem that the organic compound promotes corrosion when the plating base metal is exposed.

また、P/Mの範囲を2.0〜3.2とすることで、光沢のある均一な銅‐亜鉛合金めっき層を、低電流密度から高電流密度の範囲で得ることができる。本発明の効果を良好に得るためには、P/Mの範囲は、好適には2.5〜3.0である。   Moreover, by setting the range of P / M to 2.0 to 3.2, a glossy and uniform copper-zinc alloy plating layer can be obtained in a range of low current density to high current density. In order to obtain the effect of the present invention satisfactorily, the range of P / M is preferably 2.5 to 3.0.

銅塩としては、めっき浴の銅イオン源として公知のものであればいずれも使用可能であり、例えば、ピロリン酸銅、硫酸銅、塩化第2銅、スルファミン酸銅、酢酸第2銅、塩基性炭酸銅、臭化第2銅、ギ酸銅、水酸化銅、酸化第2銅、リン酸銅、ケイフッ化銅、ステアリン酸銅、クエン酸第2銅等を挙げることができ、これらのうち1種のみを用いてもよいし、2種以上を用いてもよい。   Any copper salt can be used as long as it is a known copper ion source for a plating bath. For example, copper pyrophosphate, copper sulfate, cupric chloride, copper sulfamate, cupric acetate, basic Examples include copper carbonate, cupric bromide, copper formate, copper hydroxide, cupric oxide, copper phosphate, copper fluorosilicate, copper stearate, cupric citrate, etc., one of these May be used alone, or two or more of them may be used.

亜鉛塩としては、めっき浴の亜鉛イオン源として公知のものであればいずれも使用可能であり、例えば、ピロリン酸亜鉛、硫酸亜鉛、塩化亜鉛、スルファミン酸亜鉛、酸化亜鉛、酢酸亜鉛、臭化亜鉛、塩基性炭酸亜鉛、シュウ酸亜鉛、リン酸亜鉛、ケイフッ化亜鉛、ステアリン酸亜鉛、乳酸亜鉛等を挙げることができ、これらのうち1種のみを用いてもよいし、2種以上を用いてもよい。   Any zinc salt may be used as long as it is a known zinc ion source for a plating bath. For example, zinc pyrophosphate, zinc sulfate, zinc chloride, zinc sulfamate, zinc oxide, zinc acetate, zinc bromide , Basic zinc carbonate, zinc oxalate, zinc phosphate, zinc silicofluoride, zinc stearate, zinc lactate, etc., and only one of these may be used, or two or more may be used. Also good.

ピロリン酸イオン源としては、公知のものであればいずれでも使用可能であり、例えば、そのナトリウム塩、カリウム塩等を挙げることができる。   As the pyrophosphate ion source, any known one can be used, and examples thereof include a sodium salt and a potassium salt thereof.

また、本発明においては、銅イオンおよび亜鉛イオンの総容積モル濃度M(mol/L)が0.03〜0.50(mol/L)の範囲であることが好ましい。総容積モル濃度Mが0.03(mol/L)未満であると、銅の析出が優先されてしまい、均一な銅‐亜鉛合金めっき層を得ることが難しくなる。一方、総容積モル濃度M(mol/L)が0.50(mol/L)を超えると、銅‐亜鉛合金めっき層表面に十分な光沢が得られなくなってしまう。   Moreover, in this invention, it is preferable that the total volume molar concentration M (mol / L) of a copper ion and a zinc ion is the range of 0.03-0.50 (mol / L). If the total volume molarity M is less than 0.03 (mol / L), copper deposition is prioritized, making it difficult to obtain a uniform copper-zinc alloy plating layer. On the other hand, when the total volume molar concentration M (mol / L) exceeds 0.50 (mol / L), sufficient gloss cannot be obtained on the surface of the copper-zinc alloy plating layer.

さらに、本発明においては、めっき浴のpHは5〜10の範囲であることが好ましい。pHが10を超えると、めっき液が不安定となり沈殿物が生じてしまい、均一な銅‐亜鉛合金めっき層を得ることが難しくなる。一方、pHが5未満になると、ピロリン酸が加水分解され、やはり、均一な銅‐亜鉛合金めっき層を良好に得ることができなくなってしまう。また、pHを5〜10の範囲とすることで、硫酸金属塩による銅‐亜鉛合金めっき層の付着率を向上させることが可能となるという効果も得られる。   Furthermore, in this invention, it is preferable that pH of a plating bath is the range of 5-10. If the pH exceeds 10, the plating solution becomes unstable and precipitates are formed, making it difficult to obtain a uniform copper-zinc alloy plating layer. On the other hand, when the pH is less than 5, pyrophosphoric acid is hydrolyzed, so that a uniform copper-zinc alloy plating layer cannot be obtained satisfactorily. Moreover, the effect that it becomes possible to improve the adhesion rate of the copper-zinc alloy plating layer by a sulfate metal salt by making pH into the range of 5-10 is also acquired.

本発明の銅‐亜鉛合金電気めっき浴を使用して銅‐亜鉛合金めっき処理を施すに際しては、通常の電気めっき方法を採用することができる。例えば、浴温30〜40℃程度、無攪拌下あるいは機械攪拌下又は空気攪拌下で電気めっきすればよい。この際、陽極としては、通常の銅‐亜鉛合金の電気めっきに用いられるものであれば、いずれも使用できる。本発明の銅‐亜鉛合金電気めっき浴を用いることにより、耐腐食性が向上した銅‐亜鉛合金めっき層を形成することができ、かつ、目的組成を有する均一で光沢のある銅‐亜鉛合金めっき層を幅広い電流密度で得ることが可能となる。   In performing the copper-zinc alloy plating treatment using the copper-zinc alloy electroplating bath of the present invention, a normal electroplating method can be employed. For example, electroplating may be performed at a bath temperature of about 30 to 40 ° C. with no stirring, mechanical stirring, or air stirring. At this time, any anode can be used as long as it can be used for electroplating of a normal copper-zinc alloy. By using the copper-zinc alloy electroplating bath of the present invention, a copper-zinc alloy plating layer with improved corrosion resistance can be formed, and a uniform and glossy copper-zinc alloy plating having a target composition can be formed. Layers can be obtained with a wide range of current densities.

上記銅‐亜鉛合金電気めっき処理を行う前に、被めっき体には、常法に従ってバフ研磨、脱脂、希酸浸漬等の通常の前処理を施すことができ、あるいは光沢ニッケルめっき等の下地めっきを施すことも可能である。また、銅‐亜鉛合金めっき処理後には、水洗、湯洗、乾燥等の通常行われている操作を行ってもよく、さらに必要に応じて、重クロム酸希薄溶液への浸漬、クリヤー塗装等を行ってもよい。   Before performing the copper-zinc alloy electroplating treatment, the object to be plated can be subjected to conventional pretreatment such as buffing, degreasing, dilute acid immersion, etc. according to a conventional method, or underplating such as bright nickel plating It is also possible to apply. In addition, after the copper-zinc alloy plating treatment, usual operations such as water washing, hot water washing and drying may be performed, and if necessary, immersion in a dichromate dilute solution, clear coating, etc. You may go.

本発明においては、被めっき体としては特に制限されず、通常、銅‐亜鉛合金めっき処理が施されるものであれば、いずれでも使用でき、例えば、金属コードの製造に用いられる金属ワイヤ等の金属製品や、プラスチック製品、セラミックス製品等を挙げることができる。これらには、銅‐亜鉛合金めっき処理を施す前に、常法に従って下地めっきを施すのが好ましい。   In the present invention, the material to be plated is not particularly limited, and any metal can be used as long as it is usually subjected to a copper-zinc alloy plating treatment, such as a metal wire used for the production of a metal cord. Examples include metal products, plastic products, and ceramic products. These are preferably subjected to base plating according to a conventional method before the copper-zinc alloy plating treatment.

以下、本発明を実施例を用いてより詳細に説明する。
(実施例1〜8、比較例)
下記表1に示す浴組成を有する銅‐亜鉛合金電気めっき浴を調製し、下記表2中の条件に従い、被めっき体として、ニッケルめっきを施したステンレス鋼板に銅‐亜鉛合金めっき処理を施し、評価試験の試料とした。
Hereinafter, the present invention will be described in more detail with reference to examples.
(Examples 1-8, comparative example)
Prepare a copper-zinc alloy electroplating bath having the bath composition shown in Table 1 below, and subject the nickel-plated stainless steel plate to a copper-zinc alloy plating treatment as a body to be plated according to the conditions in Table 2 below. Samples for evaluation tests were used.

得られた銅‐亜鉛合金めっき層の元素含有量をX線光電子分光分析装置(ESCA)により定量分析したところ、表1に示されているような銅原子%、亜鉛原子%であった。なお、ESCA分析の主要条件は下記のとおりであった。
使用機器:ESCA‐750 (株式会社 島津製作所製)
1.X線源 Mg製円錐状アノード
2.試料寸法 6mmφ
3.X線照射部分 試料全面
4.測定室真空度 2×10−5Pa以下
5.X線出力 8kV、30mA
6.イオンエッチング
(1)使用ガス Arガス、純度99.999%
(2)アルゴンガス圧 5×10−4Pa
(3)放電電流 20mA
(4)加速電圧 2kV
(5)イオン電流 8〜12μV
(6)エッチングスピード 50〜100オングストローム/分
(7)エッチング時間 300秒
When the element content of the obtained copper-zinc alloy plating layer was quantitatively analyzed by an X-ray photoelectron spectrometer (ESCA), it was copper atom% and zinc atom% as shown in Table 1. The main conditions for ESCA analysis were as follows.
Equipment used: ESCA-750 (manufactured by Shimadzu Corporation)
1. X-ray source Mg conical anode2. Sample size 6mmφ
3. X-ray irradiation part Whole sample surface 4. 4. Vacuum degree of measurement chamber 2 × 10 −5 Pa or less X-ray output 8 kV, 30 mA
6). Ion etching (1) Gas used Ar gas, purity 99.999%
(2) Argon gas pressure 5 × 10 −4 Pa
(3) Discharge current 20mA
(4) Acceleration voltage 2kV
(5) Ion current 8-12μV
(6) Etching speed 50-100 angstrom / min (7) Etching time 300 seconds

(耐腐食性試験)
得られた銅‐亜鉛合金めっき層につき、積層後の接着強度a(N/cm)、および、沸騰水中に2時間保持した後の接着強度b(N/cm)をJIS C6481に準拠して(引きはがし幅1mm)、測定した。得られた結果から下記式に基づき、劣化率(%)を求めた。
劣化率(%)={(a−b)/a}×100
この数値が小さいほど劣化が少なく、耐腐食性に優れていることを意味する。結果を表2に併せて示す。
(Corrosion resistance test)
With respect to the obtained copper-zinc alloy plating layer, the adhesive strength a (N / cm) after lamination and the adhesive strength b (N / cm) after being kept in boiling water for 2 hours in accordance with JIS C6481 ( The peel width was 1 mm) and measured. Based on the obtained result, the deterioration rate (%) was determined based on the following formula.
Deterioration rate (%) = {(ab) / a} × 100
A smaller value means less deterioration and better corrosion resistance. The results are also shown in Table 2.

Figure 2010059508
Figure 2010059508

Figure 2010059508
Figure 2010059508

表2の結果より、本発明の銅‐亜鉛合金電気めっき浴を用いることで、耐腐食性が向上した銅‐亜鉛合金めっき層を形成することができ、かつ、目的組成を有する均一で光沢のある銅‐亜鉛合金めっき層を幅広い電流密度で得ることができることが確かめられた。   From the results in Table 2, by using the copper-zinc alloy electroplating bath of the present invention, a copper-zinc alloy plating layer with improved corrosion resistance can be formed, and a uniform and glossy composition having a target composition can be obtained. It was confirmed that a certain copper-zinc alloy plating layer can be obtained with wide current density.

Claims (4)

銅塩と、亜鉛塩と、ピロリン酸イオンとを含有する銅‐亜鉛合金電気めっき浴において、銅イオンおよび亜鉛イオンの総容積モル濃度M(mol/L)と添加するピロリン酸イオンの容積モル濃度P(mol/L)の比(P/M)が2.0〜3.2の範囲であることを特徴とする銅‐亜鉛合金電気めっき浴。   In a copper-zinc alloy electroplating bath containing a copper salt, a zinc salt, and pyrophosphate ions, the total volume molar concentration M (mol / L) of copper ions and zinc ions and the volume molar concentration of pyrophosphate ions to be added A copper-zinc alloy electroplating bath, wherein the ratio (P / M) of P (mol / L) is in the range of 2.0 to 3.2. 前記総容積モル濃度M(mol/L)が0.03〜0.50(mol/L)の範囲である請求項1記載の銅‐亜鉛合金電気めっき浴。   The copper-zinc alloy electroplating bath according to claim 1, wherein the total volume molarity M (mol / L) is in the range of 0.03 to 0.50 (mol / L). pHが5〜10の範囲である請求項1または2記載の銅‐亜鉛合金電気めっき浴。   The copper-zinc alloy electroplating bath according to claim 1 or 2, wherein the pH is in the range of 5-10. 請求項1〜3のうちいずれか一項記載の銅‐亜鉛合金電気めっき浴を用いてめっき処理がなされた金属ワイヤを用いたことを特徴とする金属コード。   A metal cord using a metal wire plated with the copper-zinc alloy electroplating bath according to any one of claims 1 to 3.
JP2008227549A 2008-09-04 2008-09-04 Copper-zinc alloy electroplating bath Expired - Fee Related JP5657199B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008227549A JP5657199B2 (en) 2008-09-04 2008-09-04 Copper-zinc alloy electroplating bath
PCT/JP2009/065425 WO2010027021A1 (en) 2008-09-04 2009-09-03 Copper-zinc alloy electroplating bath

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008227549A JP5657199B2 (en) 2008-09-04 2008-09-04 Copper-zinc alloy electroplating bath

Publications (2)

Publication Number Publication Date
JP2010059508A true JP2010059508A (en) 2010-03-18
JP5657199B2 JP5657199B2 (en) 2015-01-21

Family

ID=41797187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008227549A Expired - Fee Related JP5657199B2 (en) 2008-09-04 2008-09-04 Copper-zinc alloy electroplating bath

Country Status (2)

Country Link
JP (1) JP5657199B2 (en)
WO (1) WO2010027021A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012136753A (en) * 2010-12-27 2012-07-19 Bridgestone Corp Copper-zinc alloy plating method, and copper-zinc alloy plating bath used therefor
CN105154936A (en) * 2015-08-21 2015-12-16 无锡桥阳机械制造有限公司 Rare earth lanthanum-copper-zinc alloy electroplating liquid and electroplating method thereof
CN106498463A (en) * 2016-12-25 2017-03-15 苏州锆钒电子科技有限公司 A kind of new cyanideless electro-plating signal bronze technique

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117287A (en) * 1984-10-23 1986-06-04 エヌ・ヴイ・ベカルト・エス・エイ Iron base material having rubber adhesible metal film formedthereto and its production
JPH0598496A (en) * 1991-04-08 1993-04-20 Goodyear Tire & Rubber Co:The Method for forming copper layer on steel filament
JPH08277485A (en) * 1995-04-05 1996-10-22 Osaka City Production of copper foil for printed circuit
JPH09217193A (en) * 1996-02-12 1997-08-19 Gould Electron Inc Non-cyanide brass plating bath mixture, production of metallic foil having brass layer and method for using non-cyanide brass plating bath
JP2000273776A (en) * 1999-03-23 2000-10-03 Kanai Hiroaki Steel wire for tire reinforcement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117287A (en) * 1984-10-23 1986-06-04 エヌ・ヴイ・ベカルト・エス・エイ Iron base material having rubber adhesible metal film formedthereto and its production
JPH0598496A (en) * 1991-04-08 1993-04-20 Goodyear Tire & Rubber Co:The Method for forming copper layer on steel filament
JPH08277485A (en) * 1995-04-05 1996-10-22 Osaka City Production of copper foil for printed circuit
JPH09217193A (en) * 1996-02-12 1997-08-19 Gould Electron Inc Non-cyanide brass plating bath mixture, production of metallic foil having brass layer and method for using non-cyanide brass plating bath
JP2000273776A (en) * 1999-03-23 2000-10-03 Kanai Hiroaki Steel wire for tire reinforcement

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012136753A (en) * 2010-12-27 2012-07-19 Bridgestone Corp Copper-zinc alloy plating method, and copper-zinc alloy plating bath used therefor
CN105154936A (en) * 2015-08-21 2015-12-16 无锡桥阳机械制造有限公司 Rare earth lanthanum-copper-zinc alloy electroplating liquid and electroplating method thereof
CN106498463A (en) * 2016-12-25 2017-03-15 苏州锆钒电子科技有限公司 A kind of new cyanideless electro-plating signal bronze technique

Also Published As

Publication number Publication date
JP5657199B2 (en) 2015-01-21
WO2010027021A1 (en) 2010-03-11

Similar Documents

Publication Publication Date Title
JP5548725B2 (en) Gold-palladium alloy electroplating solution, preparation method thereof and electroplating method
JP2009215590A (en) Copper-zinc alloy electroplating method, steel wire using the same, steel wire-rubber bonded composite and tire
JP5336762B2 (en) Copper-zinc alloy electroplating bath and plating method using the same
JP4736084B2 (en) Manufacturing method of product made of magnesium or magnesium alloy
JP5464869B2 (en) Sn-coated copper or copper alloy and method for producing the same
JP2014519555A (en) Electrolyte, its use for the deposition of black ruthenium coating and the coating so obtained
KR101232963B1 (en) Plated steel sheet for can and process for producing the plated steel sheet
WO2005017235A1 (en) Magnesium or magnesium alloy product and method for producing same
JP5657199B2 (en) Copper-zinc alloy electroplating bath
JP5464876B2 (en) Sn-coated copper or copper alloy and method for producing the same
JP2007009261A (en) Copper foil for printed circuit board, and its manufacturing method
JP3361914B2 (en) Manufacturing method of copper foil for printed circuit
JP2010270374A (en) Copper-tin-zinc alloy electroplating bath, and method for producing alloy plating film using the same
KR101803219B1 (en) Steel sheet for container and manufacturing method therefor
JP2009149978A (en) Copper-zinc alloy electroplating bath and plating method using the same
JP5299994B2 (en) Copper-zinc alloy electroplating bath and steel cord wire with copper-zinc alloy plating
JP5274817B2 (en) Copper-zinc alloy electroplating bath and plating method using the same
JPS63137193A (en) Stainless steel contact material for electronic parts and its production
JP7133199B2 (en) Electrolytic palladium-copper alloy plating solution for forming palladium-copper alloy release foil
JP6197778B2 (en) Steel plate for container and method for producing the same
JP5687051B2 (en) Copper-zinc alloy plating method and copper-zinc alloy plating bath used therefor
JP2010270375A (en) Method for producing copper-zinc alloy plating film, and copper-zinc alloy plating film
JP6008068B1 (en) Surface-treated steel sheet and method for producing surface-treated steel sheet
JP6517501B2 (en) Strike copper plating solution and strike copper plating method
WO2010101212A1 (en) Copper-zinc alloy electroplating bath and method of plating using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140829

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141126

R150 Certificate of patent or registration of utility model

Ref document number: 5657199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees