JP5687051B2 - Copper-zinc alloy plating method and copper-zinc alloy plating bath used therefor - Google Patents

Copper-zinc alloy plating method and copper-zinc alloy plating bath used therefor Download PDF

Info

Publication number
JP5687051B2
JP5687051B2 JP2010291046A JP2010291046A JP5687051B2 JP 5687051 B2 JP5687051 B2 JP 5687051B2 JP 2010291046 A JP2010291046 A JP 2010291046A JP 2010291046 A JP2010291046 A JP 2010291046A JP 5687051 B2 JP5687051 B2 JP 5687051B2
Authority
JP
Japan
Prior art keywords
copper
zinc alloy
alloy plating
plating bath
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010291046A
Other languages
Japanese (ja)
Other versions
JP2012136753A (en
Inventor
信一 武者
信一 武者
健太郎 溝谷
健太郎 溝谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2010291046A priority Critical patent/JP5687051B2/en
Publication of JP2012136753A publication Critical patent/JP2012136753A/en
Application granted granted Critical
Publication of JP5687051B2 publication Critical patent/JP5687051B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)

Description

本発明は、銅−亜鉛合金めっき方法(以下、単に「めっき方法」とも称する)およびそれに用いる銅−亜鉛合金めっき浴(以下、単に「めっき浴」とも称する)に関し、詳しくは、めっきヤケを生じず、均一な銅−亜鉛合金めっき層(以下、単に「めっき層」とも称する)の生産性を向上させることができる銅−亜鉛合金めっき方法およびそれに用いる銅−亜鉛合金めっき浴に関する。   The present invention relates to a copper-zinc alloy plating method (hereinafter also simply referred to as “plating method”) and a copper-zinc alloy plating bath used therefor (hereinafter also simply referred to as “plating bath”). In particular, the present invention relates to a copper-zinc alloy plating method capable of improving the productivity of a uniform copper-zinc alloy plating layer (hereinafter also simply referred to as “plating layer”) and a copper-zinc alloy plating bath used therefor.

現在、銅−亜鉛合金めっきは、金属製品、プラスチック製品、セラミック製品等に真鍮色の金属光沢および色調を与えるため、装飾めっきとして工業的に広く用いられている。また、銅−亜鉛合金めっきは、タイヤ用スチールコードとゴムとの接着性を向上させる目的としても用いられている。しかしながら、従来のめっき浴はシアン化合物を多量に含んでいるため、その毒性が大きな問題となっており、また、含シアン化合物廃液の処理負担も大きなものであった。   Currently, copper-zinc alloy plating is widely used industrially as decorative plating in order to give a metallic luster and color tone of brass color to metal products, plastic products, ceramic products and the like. Copper-zinc alloy plating is also used for the purpose of improving the adhesion between a steel cord for tire and rubber. However, since the conventional plating bath contains a large amount of cyanide, its toxicity is a big problem, and the treatment load of the cyanide-containing waste liquid is also large.

かかる問題の解決手段として、今日、シアン化合物を用いない銅−亜鉛合金めっき方法が多数報告されている。例えば、逐次めっきは、黄銅めっきを被めっき製品に施すための実際的な方法であり、かかる方法においては、電着によって銅めっき層と亜鉛めっき層が被めっき製品表面に順次めっきされ、ついで、熱拡散工程が施される。逐次黄銅めっきの場合、ピロリン酸銅めっき溶液と酸性の硫酸亜鉛めっき溶液が通常使用されている(例えば、特許文献1)。一方、銅−亜鉛を同時にめっきする方法として、シアン化合物を含まない銅−亜鉛めっき浴も報告されており、グルコヘプトン酸浴や錯化剤としてヒスチジン添加のピロリン酸カリウム浴を用いためっき浴が提案されている(例えば、特許文献2)。   As a means for solving such a problem, many copper-zinc alloy plating methods not using a cyanide have been reported today. For example, sequential plating is a practical method for applying brass plating to a product to be plated. In such a method, a copper plating layer and a zinc plating layer are sequentially plated on the surface of the product to be plated by electrodeposition, A thermal diffusion process is performed. In the case of sequential brass plating, a copper pyrophosphate plating solution and an acidic zinc sulfate plating solution are usually used (for example, Patent Document 1). On the other hand, a copper-zinc plating bath not containing a cyanide compound has also been reported as a method for simultaneously plating copper-zinc, and a plating bath using a glucoheptonic acid bath or a histidine-added potassium pyrophosphate bath as a complexing agent is proposed. (For example, Patent Document 2).

しかしながら、特許文献1記載に記載されているような逐次めっきでは、銅めっき層形成工程、亜鉛めっき層形成工程及び熱拡散工程、と処理工程が多く、複雑であるため作業効率が悪いという欠点がある。また、めっき処理時の電流を大きくすることができず、めっきの生産性においても十分なものとは言えなかった。すなわち、ピロリン酸銅を用いためっき浴においては、陰極電流密度は5〜10A/dmであった。 However, in the sequential plating as described in Patent Document 1, there are a number of copper plating layer forming step, galvanizing layer forming step and thermal diffusion step, and processing steps. is there. In addition, the current during the plating process cannot be increased, and it cannot be said that the plating productivity is sufficient. That is, in the plating bath using a copper pyrophosphate, cathode current density was 5~10A / dm 2.

一方、特許文献2記載の銅−亜鉛合金めっき浴においては、シアン化合物を使用した浴を用いた場合のような毒性の問題はないが、やはり、めっきヤケのない均一なめっき層を形成することが可能な陰極電流密度は5A/dm以下であり、めっき層を生産性よく形成するのに必要とされる陰極電流密度と比べて小さいという問題を有していた。 On the other hand, in the copper-zinc alloy plating bath described in Patent Document 2, there is no problem of toxicity as in the case where a bath using a cyanide compound is used, but a uniform plating layer without plating burn is still formed. However, the cathode current density that is possible is 5 A / dm 2 or less, which is a problem that the cathode current density is smaller than the cathode current density required for forming the plating layer with high productivity.

このような問題を解消する手法として、例えば、特許文献3に、所定の組成を有する銅−亜鉛合金めっき浴のpHを好適化することにより、めっき処理時の陰極電流密度を大きくする手法が開示されている。これによれば、5A/dmを超える高陰極電流密度でめっき処理が可能となる。 As a technique for solving such a problem, for example, Patent Document 3 discloses a technique for increasing the cathode current density during the plating process by optimizing the pH of a copper-zinc alloy plating bath having a predetermined composition. Has been. According to this, the plating process can be performed at a high cathode current density exceeding 5 A / dm 2 .

特開平5−98496号公報JP-A-5-98496 特公平3−20478号公報Japanese Patent Publication No. 3-20478 特開2009−149978号公報JP 2009-149978 A

しかしながら、特許文献3の手法を用いたとしても、めっき処理の際に加える陰極電流密度は10A/dm以下であり、また、その際の電流効率は約60%程度であるため、めっき層の生産性に関しては必ずしも満足できるものではなく、さらなる改善が望まれているが、高電流密度にて銅−亜鉛合金めっきを施すと、めっき層の表面状態が悪化すると考えられる。そのため、被めっき体がスチールコードの材料である金属鋼線材の場合、めっき処理後の湿式伸線工程において、ダイスによる引き延ばし加工により、金属鋼線材表面のめっき層が破壊され、脱落してしまうおそれがある。 However, even if the technique of Patent Document 3 is used, the cathode current density applied during the plating process is 10 A / dm 2 or less, and the current efficiency at that time is about 60%. Although productivity is not always satisfactory and further improvement is desired, it is considered that when the copper-zinc alloy plating is performed at a high current density, the surface state of the plating layer is deteriorated. Therefore, when the object to be plated is a metal steel wire that is a steel cord material, the plating layer on the surface of the metal steel wire may be destroyed and dropped due to the drawing process using a die in the wet wire drawing process after plating. There is.

このような理由にから、銅−亜鉛合金めっき処理においては、電流密度を大きくすることは、生産効率を向上させる上で重要な因子であるにもかかわらず、十分な検討がなされていないというのが現状である。   For these reasons, in copper-zinc alloy plating, increasing current density is an important factor for improving production efficiency, but has not been sufficiently studied. Is the current situation.

そこで本発明の目的は、めっきヤケを生じず、均一な銅−亜鉛合金めっき層の生産性を向上させることができる銅−亜鉛合金めっき方法およびそれに用いる銅−亜鉛合金めっき浴を提供することにある。   Therefore, an object of the present invention is to provide a copper-zinc alloy plating method and a copper-zinc alloy plating bath used therefor, which can improve the productivity of a uniform copper-zinc alloy plating layer without causing plating burn. is there.

本発明者らは、上記課題を解決するため鋭意検討をした結果、下記構成とすることにより、上記課題を解決することができることを見出して、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the above-described problems can be solved by adopting the following configuration, and have completed the present invention.

すなわち、本発明の銅−亜鉛合金めっき方法は、銅塩と、亜鉛塩と、ピロリン酸アルカリ金属塩と、アミノ酸またはその塩から選ばれた少なくとも一種と、を含有し、pHが10.5〜11.8である銅−亜鉛合金めっき浴を用いた銅−亜鉛合金めっき方法において、
10A/dmを超える陰極電流密度で銅−亜鉛合金めっき処理を行い、かつ、前記銅−亜鉛合金めっき浴が、下記式、
P比=Pの質量/(Cuの質量+Znの質量)
で表わされるP比が5.5〜7.0を満足し、
前記銅−亜鉛合金めっき浴のアミノ酸またはその塩から選ばれた少なくとも一種の濃度が0.1mol/L以上であり、ピロリン酸アルカリ金属塩の濃度が0.2〜0.8mol/Lであり、前記銅−亜鉛合金めっき浴のアミノ酸またはその塩が、ヒスチジンまたはその塩であることを特徴とするものである。
That is, the copper-zinc alloy plating method of the present invention contains a copper salt, a zinc salt, an alkali metal pyrophosphate, and at least one selected from amino acids or salts thereof, and has a pH of 10.5 to In the copper-zinc alloy plating method using the copper-zinc alloy plating bath which is 11.8,
The copper-zinc alloy plating treatment is performed at a cathode current density exceeding 10 A / dm 2 , and the copper-zinc alloy plating bath has the following formula:
P ratio = mass of P 2 O 7 / (mass of Cu + mass of Zn)
P ratio represented by 5.5 to 7.0 is satisfied,
The concentration of at least one selected from amino acids or salts thereof in the copper-zinc alloy plating bath is 0.1 mol / L or more, and the concentration of alkali metal pyrophosphate is 0.2 to 0.8 mol / L, The amino acid or salt thereof in the copper-zinc alloy plating bath is histidine or a salt thereof.

本発明の銅−亜鉛合金めっき浴においては、ピロリン酸アルカリ金属塩はピロリン酸カリウムであることが好ましく、また、本発明の銅−亜鉛合金めっき浴に含まれる銅および亜鉛の和は0.03〜0.3mol/Lの範囲であることが好ましく、さらに、アルカリ金属水酸化物およびアルカリ土類金属水酸化物から選ばれた少なくとも一種を含有することが好ましい。   In the copper-zinc alloy plating bath of the present invention, the alkali metal pyrophosphate is preferably potassium pyrophosphate, and the sum of copper and zinc contained in the copper-zinc alloy plating bath of the present invention is 0.03. It is preferable that it is the range of -0.3 mol / L, Furthermore, it is preferable to contain at least 1 type chosen from the alkali metal hydroxide and the alkaline-earth metal hydroxide.

本発明の銅−亜鉛合金めっき浴は、上記本発明の銅−亜鉛合金めっき方法に用いるめっき浴である。   The copper-zinc alloy plating bath of the present invention is a plating bath used for the copper-zinc alloy plating method of the present invention.

本発明によれば、めっきヤケを生じず、均一な銅−亜鉛合金めっき層の生産性を向上させることができる銅−亜鉛合金めっき方法およびそれに用いる銅−亜鉛合金めっき浴を提供することができる。   According to the present invention, it is possible to provide a copper-zinc alloy plating method capable of improving the productivity of a uniform copper-zinc alloy plating layer and a copper-zinc alloy plating bath used therefor without causing plating burn. .

以下、本発明の好適な実施の形態について詳細に説明する。
本発明の銅−亜鉛合金めっき方法は、銅塩と、亜鉛塩と、ピロリン酸アルカリ金属塩と、アミノ酸またはその塩から選ばれた少なくとも一種と、を含有し、pHが8.5〜14である銅−亜鉛合金めっき浴を用いたものである。上記組成を有するめっき浴を用いることにより、従来は困難であると考えられていた、陰極電流密度が10A/dmを超える場合であっても、均一、かつ、めっきヤケのないめっき層を得ることができる。その結果、被めっき体としてスチールコードの材料である金属線鋼材を用いた場合においても、引き延ばし加工の際に生じる不具合を回避することができる。
Hereinafter, preferred embodiments of the present invention will be described in detail.
The copper-zinc alloy plating method of the present invention contains a copper salt, a zinc salt, an alkali metal pyrophosphate, and at least one selected from amino acids or salts thereof, and has a pH of 8.5 to 14 A certain copper-zinc alloy plating bath is used. By using a plating bath having the above composition, a plating layer that is uniform and free of plating burns is obtained even when the cathode current density exceeds 10 A / dm 2, which has been considered difficult in the past. be able to. As a result, even when a metal wire steel material that is a steel cord material is used as the object to be plated, it is possible to avoid problems that occur during the drawing process.

上記めっき浴は、下記式で表わされるP比、
P比=Pの質量/(Cuの質量+Znの質量)
が3.0〜7.0であることが好ましい。特に、P比が5.5〜7.0であれば、陰極電流密度が20A/dm以上であっても、均一でめっきヤケのないめっき層を得ることができる。かかる効果は、陰極電流密度が20〜30A/dmの範囲で顕著である。
The plating bath has a P ratio represented by the following formula:
P ratio = mass of P 2 O 7 / (mass of Cu + mass of Zn)
Is preferably 3.0 to 7.0. In particular, when the P ratio is 5.5 to 7.0, it is possible to obtain a uniform plating layer with no plating burn even if the cathode current density is 20 A / dm 2 or more. This effect is remarkable when the cathode current density is in the range of 20 to 30 A / dm2.

本発明においては、上記めっき浴中のアミノ酸またはその塩から選ばれた少なくとも一種の濃度を0.1mol/L以上とし、ピロリン酸アルカリ金属塩の濃度を0.2〜0.8mol/Lとすることが好ましい。アミノ酸またはその塩から選ばれた少なくとも一種の濃度と、ピロリン酸アルカリ金属塩の濃度が上記範囲外となると、本発明の効果を良好に得ることができない場合があるからである。   In the present invention, the concentration of at least one selected from amino acids or salts thereof in the plating bath is 0.1 mol / L or more, and the concentration of alkali metal pyrophosphate is 0.2 to 0.8 mol / L. It is preferable. This is because if the concentration of at least one selected from amino acids or salts thereof and the concentration of alkali metal pyrophosphate are outside the above ranges, the effects of the present invention may not be obtained satisfactorily.

本発明においては、銅塩としては、めっき浴の銅イオン源として公知のものであればいずれも使用可能であり、例えば、ピロリン酸銅、硫酸銅、塩化第2銅、スルファミン酸銅、酢酸第2銅、塩基性炭酸銅、臭化第2銅、ギ酸銅、水酸化銅、酸化第2銅、リン酸銅、ケイフッ化銅、ステアリン酸銅、クエン酸第2銅等を挙げることができ、これらのうち1種のみを用いてもよいし、2種以上を用いてもよい。   In the present invention, any copper salt can be used as long as it is known as a copper ion source for a plating bath. For example, copper pyrophosphate, copper sulfate, cupric chloride, copper sulfamate, acetic acid 2 copper, basic copper carbonate, cupric bromide, copper formate, copper hydroxide, cupric oxide, copper phosphate, copper fluorosilicate, copper stearate, cupric citrate, etc. Among these, only 1 type may be used and 2 or more types may be used.

亜鉛塩としては、めっき浴の亜鉛イオン源として公知のものであればいずれも使用可能であり、例えば、ピロリン酸亜鉛、硫酸亜鉛、塩化亜鉛、スルファミン酸亜鉛、酸化亜鉛、酢酸亜鉛、臭化亜鉛、塩基性炭酸亜鉛、シュウ酸亜鉛、リン酸亜鉛、ケイフッ化亜鉛、ステアリン酸亜鉛、乳酸亜鉛等を挙げることができ、これらのうち1種のみを用いてもよいし、2種以上を用いてもよい。   Any zinc salt may be used as long as it is a known zinc ion source for a plating bath. For example, zinc pyrophosphate, zinc sulfate, zinc chloride, zinc sulfamate, zinc oxide, zinc acetate, zinc bromide , Basic zinc carbonate, zinc oxalate, zinc phosphate, zinc fluorosilicate, zinc stearate, zinc lactate, etc., and only one of these may be used, or two or more may be used. Also good.

なお、めっき浴に溶解している銅および亜鉛の和は、0.03〜0.30mol/Lの範囲であることが好ましい。0.03mol/L未満であると銅の析出が優先してしまうおそれがあり、良好なめっき層を得ることが難しくなる場合がある。一方、0.30mol/Lを超えるとめっき被膜の表面に光沢が得られなくなってしまう場合がある。   The sum of copper and zinc dissolved in the plating bath is preferably in the range of 0.03 to 0.30 mol / L. If it is less than 0.03 mol / L, the deposition of copper may be prioritized, and it may be difficult to obtain a good plating layer. On the other hand, if it exceeds 0.30 mol / L, gloss may not be obtained on the surface of the plating film.

ピロリン酸アルカリ金属塩としては、公知のものであればいずれでも使用可能であり、例えば、ピロリン酸ナトリウム、ピロリン酸カリウム塩を好適に用いることができる。   Any alkali metal pyrophosphate can be used as long as it is known, and for example, sodium pyrophosphate and potassium pyrophosphate can be suitably used.

アミノ酸としては、公知のものであればいずれでも使用可能であり、例えば、グリシン、アラニン、グルタミン酸、アスパラギン酸、トレオニン、セリン、プロリン、トリプトファン、ヒスチジン等のα−アミノ酸若しくはその塩酸塩、ナトリウム塩等を挙げることができ、好ましくはヒスチジンである。なお、これらのうち1種のみを用いてもよいし、2種以上を用いてもよい。   Any known amino acid can be used, for example, glycine, alanine, glutamic acid, aspartic acid, threonine, serine, proline, tryptophan, histidine, etc. α-amino acid or its hydrochloride, sodium salt, etc. Among them, histidine is preferable. In addition, only 1 type may be used among these and 2 or more types may be used.

本発明においては、上記めっき浴のpHは8.5〜14である。pHが8.5未満であると、本発明の効果を得ることができず、一方、pHが14を超えると電流効率が低下してしまう。本発明の効果を良好に得るためには、好ましくは10.5〜11.8の範囲である。また、本発明のめっき浴のpH調整には、水酸化ナトリウム、水酸化カリウムのようなアルカリ金属水酸化物および水酸化カルシウムのようなアルカリ土類金属水酸化物を好適に用いることができ、好ましくは水酸化カリウムである。   In the present invention, the pH of the plating bath is 8.5-14. If the pH is less than 8.5, the effect of the present invention cannot be obtained. On the other hand, if the pH exceeds 14, the current efficiency decreases. In order to obtain the effect of the present invention favorably, it is preferably in the range of 10.5 to 11.8. Further, for pH adjustment of the plating bath of the present invention, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide and alkaline earth metal hydroxides such as calcium hydroxide can be suitably used. Potassium hydroxide is preferred.

上記めっき浴においては、上記各成分の配合量は特に制限されず、適宜選択することができるが、工業的な取扱いを考慮すると、銅塩を銅換算で2〜40g/L、亜鉛塩を亜鉛換算で0.5〜30g/L、ピロリン酸アルカリ金属塩150〜400g/L、アミノ酸又はその塩を0.2〜50g/L程度とすることが好ましい。   In the above plating bath, the blending amount of each of the above components is not particularly limited and can be appropriately selected. However, considering industrial handling, the copper salt is 2 to 40 g / L in terms of copper, and the zinc salt is zinc. It is preferable that 0.5-30 g / L in terms of conversion, alkali metal pyrophosphate 150-400 g / L, amino acid or a salt thereof is about 0.2-50 g / L.

本発明のめっき方法を用いてめっき処理を行う場合、通常のめっき処理の条件を採用することができる。例えば、浴温30〜40℃程度で、無攪拌下あるいは機械攪拌下又は空気攪拌下で電気めっきをすればよい。この際、陽極としては、通常の銅−亜鉛合金の電気めっきに用いられるものであれば、いずれも使用できる。   When performing a plating process using the plating method of this invention, the conditions of a normal plating process are employable. For example, electroplating may be performed at a bath temperature of about 30 to 40 ° C. with no stirring, mechanical stirring, or air stirring. At this time, any anode can be used as long as it is used for electroplating of a normal copper-zinc alloy.

本発明においては、めっき処理を行う前に、被めっき体には、常法に従ってバフ研磨、脱脂、希酸浸漬等の通常の前処理を施すことができ、あるいは光沢ニッケルめっき等の下地めっきを施すことも可能である。また、めっき後には、水洗、湯洗、乾燥等の通常行われている操作を行ってもよい。   In the present invention, before performing the plating treatment, the object to be plated can be subjected to normal pretreatment such as buffing, degreasing, dilute acid immersion, etc. according to a conventional method, or undercoating such as bright nickel plating. It is also possible to apply. Moreover, you may perform operation normally performed, such as washing with water, hot water washing, and drying, after plating.

本発明では、被めっき体としては特に制限されず、通常、銅−亜鉛合金めっきが施されるものいずれにも適用可能であり、例えば、ゴム物品補強用スチールコードに使用する金属鋼線材をはじめとした金属製品、プラスチック製品、セラミックス製品等を挙げることができる。   In the present invention, the object to be plated is not particularly limited, and is usually applicable to any of those subjected to copper-zinc alloy plating, such as metal steel wire used for steel cords for reinforcing rubber articles. Metal products, plastic products, ceramic products and the like.

本発明の、銅−亜鉛合金めっき浴は、上記本発明のめっき方法に用いるめっき浴である。本発明のめっき浴の組成は上記のとおりであり、これを用いることにより、均一でめっきヤケのない銅−亜鉛合金めっき層を、生産性良く得ることができる。   The copper-zinc alloy plating bath of the present invention is a plating bath used for the plating method of the present invention. The composition of the plating bath of the present invention is as described above, and by using this, a uniform copper-zinc alloy plating layer having no plating burn can be obtained with high productivity.

以下、本発明を実施例を用いてより詳細に説明する。
<実施例1〜4、比較例1〜3、参考例1〜3>
下記の表1および2にそれぞれ示す銅−亜鉛合金めっき浴の組成に従い、実施例1〜4、比較例1〜3および参考例1〜3の銅−亜鉛合金めっき浴を調製し、銅−亜鉛合金めっき処理を行った。めっき処理は、めっき浴作製後直ちに行ない、得られためっき層の合金組成を分析した。また、めっきヤケのない均一なめっき層を得ることができる陰極電流密度範囲および電流効率を求めた。得られた結果を下記の表1および2に併記する。
Hereinafter, the present invention will be described in more detail with reference to examples.
<Examples 1-4, Comparative Examples 1-3, Reference Examples 1-3>
The copper-zinc alloy plating baths of Examples 1-4, Comparative Examples 1-3 and Reference Examples 1-3 were prepared according to the compositions of the copper-zinc alloy plating baths shown in Tables 1 and 2 below, respectively. Alloy plating treatment was performed. The plating treatment was performed immediately after the preparation of the plating bath, and the alloy composition of the obtained plating layer was analyzed. Moreover, the cathode current density range and current efficiency which can obtain the uniform plating layer without a plating burn were calculated | required. The obtained results are shown in Tables 1 and 2 below.

Figure 0005687051
Figure 0005687051

Figure 0005687051
※めっきヤケが生じず、均一なめっき組成を得ることができる陰極電流密度の範囲
Figure 0005687051
* Cathode current density range where no plating burn occurs and a uniform plating composition can be obtained.

表1および2より、本発明によれば、陰極電流密度が10A/dmを超える範囲においても、めっきヤケのない、均一な組成の銅−亜鉛合金めっきを施すことができることが確かめられた。 From Tables 1 and 2, it was confirmed that according to the present invention, even when the cathode current density exceeds 10 A / dm 2 , copper-zinc alloy plating with a uniform composition without plating burn can be applied.

Claims (6)

銅塩と、亜鉛塩と、ピロリン酸アルカリ金属塩と、アミノ酸またはその塩から選ばれた少なくとも一種と、を含有し、pHが10.5〜11.8である銅−亜鉛合金めっき浴を用いた銅−亜鉛合金めっき方法において、
10A/dmを超える陰極電流密度で銅−亜鉛合金めっき処理を行い、かつ、前記銅−亜鉛合金めっき浴が、下記式、
P比=Pの質量/(Cuの質量+Znの質量)
で表わされるP比が5.5〜7.0を満足し、
前記銅−亜鉛合金めっき浴のアミノ酸またはその塩から選ばれた少なくとも一種の濃度が0.1mol/L以上であり、ピロリン酸アルカリ金属塩の濃度が0.2〜0.8mol/Lであり、前記銅−亜鉛合金めっき浴のアミノ酸またはその塩が、ヒスチジンまたはその塩であることを特徴とする銅−亜鉛合金めっき方法。
A copper-zinc alloy plating bath containing a copper salt, a zinc salt, an alkali metal pyrophosphate, and at least one selected from amino acids or salts thereof and having a pH of 10.5 to 11.8 is used. In the conventional copper-zinc alloy plating method,
The copper-zinc alloy plating treatment is performed at a cathode current density exceeding 10 A / dm 2 , and the copper-zinc alloy plating bath has the following formula:
P ratio = mass of P 2 O 7 / (mass of Cu + mass of Zn)
P ratio represented by 5.5 to 7.0 is satisfied,
The concentration of at least one selected from amino acids or salts thereof in the copper-zinc alloy plating bath is 0.1 mol / L or more, and the concentration of alkali metal pyrophosphate is 0.2 to 0.8 mol / L, The copper-zinc alloy plating method, wherein the amino acid or salt thereof in the copper-zinc alloy plating bath is histidine or a salt thereof.
前記銅−亜鉛合金めっき浴のピロリン酸アルカリ金属塩がピロリン酸カリウムである請求項記載の銅−亜鉛合金めっき方法。 The copper - copper pyrophosphate alkali metal salts of zinc alloy plating bath according to claim 1, which is a potassium pyrophosphate - zinc alloy plating method. 前記銅−亜鉛合金めっき浴のピロリン酸アルカリ金属塩がピロリン酸ナトリウムである請求項1または2記載の銅−亜鉛合金めっき方法。 The copper-zinc alloy plating method according to claim 1 or 2, wherein the alkali metal pyrophosphate of the copper-zinc alloy plating bath is sodium pyrophosphate. 前記銅−亜鉛合金めっき浴に含まれる銅および亜鉛の和が0.03〜0.3mol/Lの範囲である請求項1〜のうちいずれか一項記載の銅−亜鉛合金めっき方法。 The copper-zinc alloy plating method according to any one of claims 1 to 3 , wherein a sum of copper and zinc contained in the copper-zinc alloy plating bath is in a range of 0.03 to 0.3 mol / L. 前記銅−亜鉛合金めっき浴が、アルカリ金属水酸化物およびアルカリ土類金属水酸化物から選ばれた少なくとも一種を含有する請求項1〜のうちいずれか一項記載の銅−亜鉛合金めっき方法。 The copper-zinc alloy plating bath according to any one of claims 1 to 4 , wherein the copper-zinc alloy plating bath contains at least one selected from alkali metal hydroxides and alkaline earth metal hydroxides. . 請求項1〜のうちいずれか一項記載の銅−亜鉛合金めっき方法に用いる銅−亜鉛合金めっき浴。 The copper-zinc alloy plating bath used for the copper-zinc alloy plating method as described in any one of Claims 1-5 .
JP2010291046A 2010-12-27 2010-12-27 Copper-zinc alloy plating method and copper-zinc alloy plating bath used therefor Expired - Fee Related JP5687051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010291046A JP5687051B2 (en) 2010-12-27 2010-12-27 Copper-zinc alloy plating method and copper-zinc alloy plating bath used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010291046A JP5687051B2 (en) 2010-12-27 2010-12-27 Copper-zinc alloy plating method and copper-zinc alloy plating bath used therefor

Publications (2)

Publication Number Publication Date
JP2012136753A JP2012136753A (en) 2012-07-19
JP5687051B2 true JP5687051B2 (en) 2015-03-18

Family

ID=46674398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010291046A Expired - Fee Related JP5687051B2 (en) 2010-12-27 2010-12-27 Copper-zinc alloy plating method and copper-zinc alloy plating bath used therefor

Country Status (1)

Country Link
JP (1) JP5687051B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019176049A1 (en) * 2018-03-15 2019-09-19 日本エレクトロプレイテイング・エンジニヤース株式会社 Electrolytic rhodium plating solution

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63203790A (en) * 1987-02-17 1988-08-23 Oosakashi Bright copper-zinc alloy electroplating bath containing no cyanogen compound
JP3361914B2 (en) * 1995-04-05 2003-01-07 大阪市 Manufacturing method of copper foil for printed circuit
TW420729B (en) * 1996-02-12 2001-02-01 Gould Electronics Inc A non-cyanide brass plating bath and a method of making metallic foil having a brass layer using the non-cyanide brass plating bath
JP2009149978A (en) * 2007-11-26 2009-07-09 Bridgestone Corp Copper-zinc alloy electroplating bath and plating method using the same
JP5274817B2 (en) * 2007-11-26 2013-08-28 株式会社ブリヂストン Copper-zinc alloy electroplating bath and plating method using the same
JP5657199B2 (en) * 2008-09-04 2015-01-21 株式会社ブリヂストン Copper-zinc alloy electroplating bath
JP2010092369A (en) * 2008-10-09 2010-04-22 Nec Corp Job analysis system, job analysis method, and job analysis program
JP2010270375A (en) * 2009-05-22 2010-12-02 Bridgestone Corp Method for producing copper-zinc alloy plating film, and copper-zinc alloy plating film

Also Published As

Publication number Publication date
JP2012136753A (en) 2012-07-19

Similar Documents

Publication Publication Date Title
JP2009215590A (en) Copper-zinc alloy electroplating method, steel wire using the same, steel wire-rubber bonded composite and tire
JP5322083B2 (en) Trivalent chromium plating bath and manufacturing method thereof
JP5336762B2 (en) Copper-zinc alloy electroplating bath and plating method using the same
JP2012504701A (en) Method for depositing a palladium-rhodium layer with improved whiteness
FR2807450A1 (en) ELECTROLYTIC BATH INTENDED FOR THE ELECTROCHEMICAL DEPOSIT OF PALLADIUM OR ITS ALLOYS
JP2012126951A (en) Nickel plating liquid and nickel plating method
JP2010270374A (en) Copper-tin-zinc alloy electroplating bath, and method for producing alloy plating film using the same
JP4862445B2 (en) Method for producing electrogalvanized steel sheet
JP6025899B2 (en) Electroless nickel plating bath and electroless plating method using the same
JP2010189673A (en) Trivalent chromium plating bath
JP5687051B2 (en) Copper-zinc alloy plating method and copper-zinc alloy plating bath used therefor
JP2009149965A (en) Silver-plating method
JP2009149978A (en) Copper-zinc alloy electroplating bath and plating method using the same
JP5657199B2 (en) Copper-zinc alloy electroplating bath
JP5274817B2 (en) Copper-zinc alloy electroplating bath and plating method using the same
TWI762661B (en) Nickel electroplating bath for depositing a decorative nickel coating on a substrate
JP5299994B2 (en) Copper-zinc alloy electroplating bath and steel cord wire with copper-zinc alloy plating
US20100243466A1 (en) Copper-zinc alloy electroplating bath and plating method using the copper-zinc alloy electroplating bath
JP2010270375A (en) Method for producing copper-zinc alloy plating film, and copper-zinc alloy plating film
WO2009093499A1 (en) Trivalent chromium plating bath
WO2010101212A1 (en) Copper-zinc alloy electroplating bath and method of plating using same
JP3422595B2 (en) Zinc displacement bath for aluminum alloy
JP2009127098A (en) Copper-zinc alloy electroplating bath, and plating method using the same
JP5686961B2 (en) Copper-zinc alloy electroplating bath and steel cord wire for plating steel cord wire
JP6156330B2 (en) Method for producing electrogalvanized steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141001

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150121

R150 Certificate of patent or registration of utility model

Ref document number: 5687051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees