JP2010059475A - Hot dip galvanized steel sheet and method for producing the same - Google Patents

Hot dip galvanized steel sheet and method for producing the same Download PDF

Info

Publication number
JP2010059475A
JP2010059475A JP2008226065A JP2008226065A JP2010059475A JP 2010059475 A JP2010059475 A JP 2010059475A JP 2008226065 A JP2008226065 A JP 2008226065A JP 2008226065 A JP2008226065 A JP 2008226065A JP 2010059475 A JP2010059475 A JP 2010059475A
Authority
JP
Japan
Prior art keywords
less
steel sheet
content
oxide
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008226065A
Other languages
Japanese (ja)
Other versions
JP4525814B2 (en
Inventor
Jun Haga
純 芳賀
Takayuki Nishi
隆之 西
Seiji Furuhashi
誠治 古橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2008226065A priority Critical patent/JP4525814B2/en
Priority to CN200980143822.2A priority patent/CN102203312B/en
Priority to PCT/JP2009/065155 priority patent/WO2010026934A1/en
Priority to KR1020117007257A priority patent/KR101291387B1/en
Publication of JP2010059475A publication Critical patent/JP2010059475A/en
Application granted granted Critical
Publication of JP4525814B2 publication Critical patent/JP4525814B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot dip galvanized steel sheet which is satisfactory in surface properties without any stripe patterns, and has excellent press formability. <P>SOLUTION: The surface of a steel sheet having a chemical composition containing, by mass, C, Si, Mn, P, S, sol.Al, N, sol.Ti, Nb and O within predetermined ranges, in which the contents of sol.Ti and Nb satisfy the following equations (1) to (3), and the balance Fe with impurities, and in which the content of Ti oxides in oxide inclusions is ≥50.0% expressed in terms of TiO<SB>2</SB>and the content of Nb oxides is <1.0% expressed in terms of NbO is provided with a hot dip galvanizing layer: 1.0<(Ti<SP>*</SP>/48+Nb/93)/(C/12+N<SP>*</SP>/14)(1), Ti<SP>*</SP>=max[sol.Ti-(48/14)×N, O](2) and N<SP>*</SP>=max[N-(14/48)×sol.Ti, O](3), the symbols of elements in the respective equations denote the contents of the respective elements by mass% and the max[] represents the function returning the maximum value of the argument in the brackets[]. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、プレス加工等により様々な形状に成形して利用される、溶融亜鉛めっき鋼板もしくは溶融亜鉛合金めっき鋼板もしくは合金化溶融亜鉛めっき鋼板(以下、「溶融亜鉛めっき鋼板」と総称する。)とその製造方法、特に、プレス成形性に優れ、表面性状の良好な、溶融亜鉛めっき鋼板とその製造方法に関する。   The present invention is formed and used in various shapes by press working or the like, and is used as a hot dip galvanized steel sheet, a hot dip galvanized steel sheet, or an alloyed hot dip galvanized steel sheet (hereinafter collectively referred to as “hot dip galvanized steel sheet”). Further, the present invention relates to a hot dip galvanized steel sheet having excellent press formability and good surface properties, and a method for producing the same.

産業技術分野が高度に分業化した今日、各技術分野において用いられる材料には、特殊かつ高度な性能が要求されている。例えば、プレス成形して使用される冷延鋼板についても、プレス形状の多様化に伴い、より優れた成形性が必要とされている。特に、自動車用鋼板に関しては、地球環境への配慮から、車体を軽量化して燃費を向上させるために、薄肉高成形性冷延鋼板の需要が著しく高まってきている。プレス成形においては、使用される鋼板の厚さが薄いほど、割れやしわが発生しやすくなるため、より深絞り性や延性に優れた鋼板が必要とされる。   Now that the industrial technology field is highly divided, materials used in each technical field are required to have special and high performance. For example, even cold-rolled steel sheets used by press forming are required to have better formability with the diversification of press shapes. In particular, regarding automotive steel sheets, due to consideration for the global environment, the demand for thin-walled, high-formability cold-rolled steel sheets has increased significantly in order to reduce the weight of the vehicle body and improve fuel efficiency. In press molding, the thinner the steel sheet used, the easier it is to generate cracks and wrinkles. Therefore, a steel sheet with better deep drawability and ductility is required.

これまでに、深絞り用冷延鋼板として、極低炭素鋼にTiを添加した、いわゆるTi−IF鋼板について多くの提案がなされてきている。Ti添加極低炭素冷延鋼板では、鋼中のC,NがTiCやTiNとして析出固定されるために、焼鈍時に深絞り性に好ましい再結晶集合組織が形成され、優れた成形性を得ることができる。しかし、Ti添加極低炭素冷延鋼板を素材として、溶融亜鉛めっきを施すと、めっき表面に筋状の模様が発生し、外観を損ねる場合がある。この筋模様は、圧延方向に沿うめっき層の凹凸ムラにより、めっき表面に色調差が生じて認識されるものであり、凹凸の程度によっては、塗装後にも認められるため、例えばルーフ、フード、ドアのアウターパネルやサイドアウターパネル等といった美麗な外観が要求される自動車外板パネルにおいては、重大な欠陥となり忌避される。   So far, many proposals have been made on so-called Ti-IF steel sheets in which Ti is added to ultra-low carbon steel as cold-drawn steel sheets for deep drawing. In Ti-added ultra-low carbon cold-rolled steel sheets, C and N in the steel are precipitated and fixed as TiC and TiN, so that a recrystallized texture preferable for deep drawability is formed during annealing, and excellent formability is obtained. Can do. However, when hot dip galvanizing is performed using a Ti-added ultra-low carbon cold-rolled steel sheet as a raw material, a streaky pattern may be generated on the plated surface and the appearance may be impaired. This streak pattern is recognized as a difference in color tone on the plating surface due to unevenness of the plating layer along the rolling direction. Depending on the degree of the unevenness, this streak pattern is recognized even after painting. For example, a roof, a hood, a door In the case of an automobile outer panel that requires a beautiful appearance such as an outer panel or a side outer panel, it is a serious defect and is avoided.

Ti添加極低炭素溶融亜鉛めっき鋼板の筋模様を抑制する方法に関しては、いくつかの提案がなされている。例えば、特許文献1には、Ti含有量に応じて熱間圧延前のスラブ加熱温度を低下させ、地鉄表層部の結晶粒径または集合組織を均一化することにより、筋ムラを防止する技術が開示されている。しかし、スラブ加熱温度が低いと、熱間圧延の温度域が低下し、鋼板の変形抵抗が増すため、広幅材の圧延ができなくなるなど、製造上の問題が生じる。   Several proposals have been made regarding methods for suppressing streaks in Ti-added ultra-low carbon hot-dip galvanized steel sheets. For example, Patent Document 1 discloses a technique for preventing streak unevenness by lowering the slab heating temperature before hot rolling in accordance with the Ti content, and making the crystal grain size or texture of the surface layer portion uniform. Is disclosed. However, when the slab heating temperature is low, the temperature range of hot rolling is lowered and the deformation resistance of the steel sheet is increased, which causes manufacturing problems such as the inability to roll wide materials.

特許文献2には、Caを添加してサルファイド系介在物を他の複合介在物に変化させることにより、筋模様を防止する方法が開示されている。しかし、Caは高価であり歩留まりも悪いため、製造コストの上昇を招き、また、発錆の原因となる場合もある。   Patent Document 2 discloses a method for preventing streaks by adding Ca to change sulfide inclusions to other complex inclusions. However, since Ca is expensive and has a low yield, it causes an increase in manufacturing cost and may cause rusting.

特許文献3には、熱延仕上げ終了温度を高め、焼鈍後に未再結晶組織を残さないようにすることにより、筋模様を防止する方法が、特許文献4には、同じく熱延仕上げ終了温度を高めることにより、焼鈍後の集合組織を制御し、筋模様を抑制する方法が開示されている。しかし、これらのように熱延仕上げ温度を高くする方法は、スケール疵の発生を招くために、好ましくない。   Patent Document 3 discloses a method for preventing streaking by increasing the hot rolling finish finishing temperature so as not to leave an unrecrystallized structure after annealing. Patent Document 4 similarly discloses a hot rolling finishing finishing temperature. A method of controlling the texture after annealing and suppressing the streak pattern by increasing is disclosed. However, the method of increasing the hot rolling finishing temperature as described above is not preferable because it causes generation of scale wrinkles.

また、特許文献5には、めっきの凹凸化を防ぐために、Ti量を低減し、機械特性を確保するためにNbを含有させる技術が開示されている。しかし、Nb量の増加により再結晶温度が上昇するため、高温で焼鈍する必要があり、その結果、生産性が損なわれるばかりか、表面疵が発生しやすくなる。   Further, Patent Document 5 discloses a technique of containing Nb in order to reduce the Ti amount and prevent mechanical unevenness in order to prevent uneven plating. However, since the recrystallization temperature increases due to an increase in the amount of Nb, it is necessary to anneal at a high temperature. As a result, productivity is impaired and surface flaws are liable to occur.

Ti−Nb添加極低炭素冷延鋼板の製造技術に関しては、特許文献6、7に、酸可溶性Al(sol.Al)量を低減することにより再結晶温度を低下させる方法が開示されている。
特開平7−228944号公報 特開平5−9549号公報 特開2001−342522号公報 特開平10−18011号公報 特開平3−180429号公報 特開昭62−30822号公報 特開平10−226843号公報
Regarding the manufacturing technology of the Ti—Nb-added ultra-low carbon cold-rolled steel sheet, Patent Documents 6 and 7 disclose a method for reducing the recrystallization temperature by reducing the amount of acid-soluble Al (sol. Al).
JP-A-7-228944 JP-A-5-9549 JP 2001-342522 A JP-A-10-18011 Japanese Patent Laid-Open No. 3-180429 JP 62-30822 A Japanese Patent Laid-Open No. 10-226843

上述の特許文献6において開示される技術は、溶鋼の脱酸をAlによって行い、残存するsol.Alを微量に抑え、再結晶温度を低下させる方法であるが、脱酸不足が生じやすく鋼中の気泡に起因する表面欠陥が避けられず、自動車外装用鋼板に適用できるだけの表面性状を得ることができない。   The technique disclosed in Patent Document 6 described above performs deoxidation of molten steel with Al, and the remaining sol. It is a method of reducing the recrystallization temperature by suppressing the amount of Al to a small amount, but it is prone to insufficient deoxidation, and surface defects caused by bubbles in the steel are unavoidable, and a surface property that can be applied to steel sheets for automobile exteriors is obtained. I can't.

特許文献7において開示される技術は、溶鋼の脱酸をTiによって行い、sol.Alを極微量とする方法である。この方法には、Alキルド鋼でしばしば問題となる、アルミナクラスターに起因する表面欠陥の発生を防止できるという利点もある。しかし、本発明者らが検討を重ねた結果、Ti脱酸によってTi−Nb極低炭素冷延鋼板を製造した場合、再結晶温度はAl脱酸で製造した場合よりも低くなるが、深絞り性の指標であるランクフォード値(r値)は良好でないときがあることが判明した。   In the technique disclosed in Patent Document 7, deoxidation of molten steel is performed with Ti. In this method, Al is a very small amount. This method also has the advantage of preventing the occurrence of surface defects due to alumina clusters, which is often a problem with Al killed steel. However, as a result of repeated studies by the present inventors, when a Ti—Nb ultra-low carbon cold rolled steel sheet is produced by Ti deoxidation, the recrystallization temperature is lower than that produced by Al deoxidation. It has been found that the Rankford value (r value), which is an index of sex, is sometimes not good.

本発明は、そのような問題点を解決するためになされたものであり、さらに具体的にはその課題は、筋模様がなく表面性状が良好で、かつ、優れたプレス成形性を有する、溶融亜鉛めっき鋼板を提供することである。   The present invention has been made in order to solve such problems, and more specifically, the problem is that there is no streak pattern, the surface property is good, and the melt has excellent press formability. It is to provide a galvanized steel sheet.

本発明者らは、主としてTiまたは主としてTiとAlとを用いて脱酸した極低炭素冷延鋼板の機械特性および表面性状に及ぼす添加元素および介在物組成の影響について詳細な調査を行った。なお、本明細書において、鋼成分の含有量および介在物組成の含有量における「%」とはすべて質量%を意味する。   The inventors conducted a detailed investigation on the influence of additive elements and inclusion composition on the mechanical properties and surface properties of ultra-low carbon cold rolled steel sheets deoxidized mainly using Ti or mainly Ti and Al. In the present specification, “%” in the content of the steel component and the content of the inclusion composition all mean mass%.

一連の供試鋼は、質量%で、C:0.010%未満、Si:0.10%以下、Mn:2.50%以下、P:0.10%以下、S:0.004%、sol.Al:0.002%未満、N:0.005%以下、sol.Ti:0.10%以下、Nb:0.20%以下、O:0.015%以下、B:0.0020%以下、残部Feおよび不純物からなる化学組成を有するものであった。   A series of test steels are mass%, C: less than 0.010%, Si: 0.10% or less, Mn: 2.50% or less, P: 0.10% or less, S: 0.004%, sol. Al: less than 0.002%, N: 0.005% or less, sol. It had a chemical composition consisting of Ti: 0.10% or less, Nb: 0.20% or less, O: 0.015% or less, B: 0.0020% or less, the balance Fe and impurities.

このような化学組成を有する鋼片を、1250℃に加熱した後、910℃以上の温度範囲で熱間圧延し、650℃で巻き取り、得られた熱延鋼板を酸洗し、82.5%の圧延率で板厚0.7mmまで冷間圧延した。連続溶融亜鉛めっきシミュレーターを用いて、冷延鋼板を850℃まで加熱し50秒間保持した後、冷却し、溶融亜鉛めっきし、合金化処理して溶融亜鉛めっき鋼板を得た。   A steel slab having such a chemical composition is heated to 1250 ° C., then hot-rolled in a temperature range of 910 ° C. or higher, wound at 650 ° C., and the resulting hot-rolled steel sheet is pickled, 82.5 The steel sheet was cold-rolled to a thickness of 0.7 mm at a rolling rate of%. The cold-rolled steel sheet was heated to 850 ° C. and held for 50 seconds using a continuous hot-dip galvanizing simulator, then cooled, hot-dip galvanized, and alloyed to obtain a hot-dip galvanized steel sheet.

熱間圧延後の鋼板中に存在する酸化物系介在物を、エネルギー分散型X線検出器(EDS)を備えた走査電子顕微鏡(SEM)を用いて、圧延方向に平行な縦断面から観察し、引張特性との関係を調査した。この調査において観察された酸化物系介在物は、Ti酸化物、Al酸化物、Nb酸化物、Mn酸化物およびSi酸化物、さらに不純物元素の酸化物からなるものであった。なお、鋼片と溶融亜鉛めっき鋼板との間で鋼の化学組成および酸化物系介在物の組成に事実上の差異は認められなかった。また、溶融亜鉛めっき鋼板から、圧延方向、圧延方向から45°方向および圧延方向と直交する方向から引張試験片を採取して引張試験を行った。さらに、溶融亜鉛めっき鋼板の表面を目視観察し、筋模様の有無を調査した。   Using a scanning electron microscope (SEM) equipped with an energy dispersive X-ray detector (EDS), the oxide inclusions present in the steel sheet after hot rolling were observed from a longitudinal section parallel to the rolling direction. The relationship with tensile properties was investigated. The oxide inclusions observed in this investigation consisted of Ti oxides, Al oxides, Nb oxides, Mn oxides and Si oxides, and oxides of impurity elements. In addition, the difference in the chemical composition of steel and the composition of an oxide type inclusion was not recognized between the steel piece and the hot dip galvanized steel sheet. Further, tensile test specimens were taken from the hot dip galvanized steel sheet in the rolling direction, 45 ° direction from the rolling direction, and the direction orthogonal to the rolling direction. Furthermore, the surface of the hot dip galvanized steel sheet was visually observed to investigate the presence or absence of streaks.

これらの予備試験の結果、次の(A)ないし(C)のような知見を得た。
(A)図1は,NbOとSi量の関係を示すグラフである。NbOは、酸化物系介在物中のNb酸化物の含有量(質量%)を意味し、Si量は鋼中のSi含有量(質量%)を意味する。同図に示されるように、Si量の増加に伴いNbOが低下することが分かる。なお、図1はsol.Ti含有量(酸可溶性のTi量を意味する。)が0.0030%未満であるものについてのグラフである。
As a result of these preliminary tests, the following findings (A) to (C) were obtained.
(A) FIG. 1 is a graph showing the relationship between NbO and the amount of Si. NbO means the content (mass%) of the Nb oxide in the oxide inclusions, and the Si content means the Si content (mass%) in the steel. As shown in the figure, it can be seen that NbO decreases as the Si amount increases. 1 shows sol. It is a graph about what Ti content (it means acid-soluble Ti amount) is less than 0.0030%.

(B)図2は,平均r値と,(Ti/48+Nb/93)/(C/12+N/14)との関係を示すグラフである。ここで、Tiは下記式(2)から、Nは下記式(3)または(4)から、それぞれ与えられる値である。また、平均r値は、圧延方向のr値(r0°値)、圧延方向と45°をなす方向のr値(r45°値)、圧延方向と直行する方向のr値(r90°値)を用いて、下記式(5)から求めた。 (B) FIG. 2 is a graph showing the relationship between the average r value and (Ti * / 48 + Nb / 93) / (C / 12 + N * / 14). Here, Ti * is a value given from the following formula (2), and N * is a value given from the following formula (3) or (4). The average r value is the r value in the rolling direction (r 0 ° value), the r value in the direction 45 ° with the rolling direction (r 45 ° value), and the r value in the direction perpendicular to the rolling direction (r 90 °). Value) was obtained from the following formula (5).

Ti=max[sol.Ti−(48/14)×N,0] (2)
=max[N−(14/48)×sol.Ti,0] (3)
=max[N−(14/48)×sol.Ti−(14/11)×B,0] (4)
ここで、各式中の元素記号は、鋼中での各元素の含有量を質量%にて表したものであり、max[ ]は[ ]内の引数の最大値を返す関数である。
平均r値=(r0°値+2×r45°値+r90°値)/4 (5)
Ti * = max [sol. Ti- (48/14) × N, 0] (2)
N * = max [N− (14/48) × sol. Ti, 0] (3)
N * = max [N− (14/48) × sol. Ti- (14/11) × B, 0] (4)
Here, the element symbol in each formula represents the content of each element in steel in mass%, and max [] is a function that returns the maximum value of arguments in [].
Average r value = (r 0 ° value + 2 × r 45 ° value + r 90 ° value) / 4 (5)

図面中の●印はNbOが1.0%未満であったことを、▲印はNbOが1.0%以上であったことを示す。同図に示されるように、平均r値は(Ti/48+Nb/93)(C/12+N/14)の増加に伴い上昇するが、NbOが1.0%未満である場合には、1.0%以上である場合よりも上昇が速く、到達する平均r値レベルも高くなることが分かる。 The black circles in the drawing indicate that NbO was less than 1.0%, and the black triangles indicate that NbO was 1.0% or more. As shown in the figure, the average r value increases with an increase in (Ti * / 48 + Nb / 93) (C / 12 + N * / 14), but when NbO is less than 1.0%, 1 It can be seen that the rate of increase is faster than the case of 0.0% or more, and the average r value level reached is also higher.

この理由は明らかではないが、(a)NbOが1.0%未満である酸化物系介在物は、形状が微細な球状もしくは塊状であり、粒成長を抑制し、熱延鋼板を細粒化させること、(b)NbOが1.0%未満である酸化物系介在物はオーステナイトからフェライトへの変態を促進させ、熱延鋼板を細粒化させること、(c)NbOが1.0%未満である酸化物系介在物は再結晶を促進させること、(d)これらの結果、深絞り性に好ましい再結晶集合組織が形成されることに起因すると推定される。   The reason for this is not clear, but (a) oxide inclusions with NbO of less than 1.0% are fine spherical or agglomerated shapes, suppress grain growth, and refine hot-rolled steel sheets (B) an oxide inclusion with NbO less than 1.0% promotes transformation from austenite to ferrite and refines the hot-rolled steel sheet; (c) NbO has 1.0% It is presumed that the oxide inclusions that are less than this promote recrystallization, and (d) these results in the formation of a recrystallized texture preferable for deep drawability.

(C)sol.Ti量が多いほど、溶融亜鉛めっき鋼板表面に筋模様が発生し、表面性状が劣化する。この理由は明らかではないが、sol.Ti量が多いと、熱延工程で、鋼板表面近傍にTi析出物が不均一に生成し、溶融亜鉛めっき前の母材鋼板表面の結晶粒径が不均一となり、粒径のバラツキが亜鉛めっきの筋模様に反映されるためと推定される。   (C) sol. As the amount of Ti increases, a streak pattern is generated on the surface of the hot dip galvanized steel sheet and the surface properties deteriorate. The reason for this is not clear, but sol. If the amount of Ti is large, Ti precipitates are generated non-uniformly in the vicinity of the steel plate surface in the hot rolling process, the crystal grain size on the base steel plate surface before hot dip galvanizing becomes non-uniform, and the variation in particle size is galvanized. It is presumed to be reflected in the streak pattern.

以上の結果から、鋼中にSiを一定量以上含有させて、酸化物系介在物中のNb酸化物の含有量を低下させることにより、主としてTiまたは主としてTiとAlとを用いて脱酸した極低炭素冷延鋼板において高いr値を安定して得ることが可能であり、また、sol.Tiを過度に含有させずNb含有量を高めることにより、高r値の確保と筋模様のない良好な表面性状の確保を両立させることが可能である。   From the above results, deoxidation was mainly performed using Ti or mainly Ti and Al by reducing the content of Nb oxide in oxide inclusions by containing a certain amount or more of Si in the steel. It is possible to stably obtain a high r value in an extremely low carbon cold rolled steel sheet, By increasing the Nb content without excessively containing Ti, it is possible to achieve both a high r value and a good surface property without streaking.

以上の知見に基づき完成された本発明は次のとおりである。
(1)質量%で、C:0.0005%以上0.010%未満、Si:0.020%超0.40%以下、Mn:2.50%以下、P:0.10%以下、S:0.010%未満、sol.Al:0.0050%未満、N:0.005%以下、sol.Ti:0.020%以下、Nb:0.010%以上0.20%以下およびO:0.015%以下を含有し、さらにsol.TiおよびNbの含有量が下記式(1)〜(3)を満足し、残部がFeおよび不純物からなる化学組成を有し、酸化物系介在物中のTi酸化物の含有量がTiO換算で50.0質量%以上でありNb酸化物の含有量がNbO換算で1.0質量%未満である鋼板の表面に溶融亜鉛めっき層を備えることを特徴とする溶融亜鉛めっき鋼板。
1.0<(Ti/48+Nb/93)/(C/12+N/14) (1)
Ti=max[sol.Ti−(48/14)×N,0] (2)
=max[N−(14/48)×sol.Ti,0] (3)
ここで、各式中の元素記号は、鋼中での各元素の含有量を質量%にて表したものであり、max[ ]は[ ]内の引数の最大値を返す関数である。
The present invention completed based on the above knowledge is as follows.
(1) By mass%, C: 0.0005% or more and less than 0.010%, Si: more than 0.020% and 0.40% or less, Mn: 2.50% or less, P: 0.10% or less, S : Less than 0.010%, sol. Al: less than 0.0050%, N: 0.005% or less, sol. Ti: 0.020% or less, Nb: 0.010% or more and 0.20% or less, and O: 0.015% or less. The content of Ti and Nb satisfies the following formulas (1) to (3), the balance has a chemical composition consisting of Fe and impurities, and the content of Ti oxide in the oxide inclusions is TiO 2 equivalent A hot dip galvanized steel sheet comprising a hot dip galvanized layer on the surface of a steel sheet having a Nb oxide content of less than 1.0 mass% in terms of NbO.
1.0 <(Ti * / 48 + Nb / 93) / (C / 12 + N * / 14) (1)
Ti * = max [sol. Ti- (48/14) × N, 0] (2)
N * = max [N− (14/48) × sol. Ti, 0] (3)
Here, the element symbol in each formula represents the content of each element in steel in mass%, and max [] is a function that returns the maximum value of arguments in [].

また、「溶融亜鉛めっき」とは、溶融亜鉛めっきのみならず、溶融亜鉛合金めっきまたは合金化溶融亜鉛めっきを意味する。   “Hot galvanizing” means not only hot dip galvanizing but also hot dip galvanizing or galvannealed galvanizing.

(2)前記化学組成が、Feの一部に代えて、質量%で、B:0.0002%以上0.0020%以下を含有し、かつ、前記式(3)に代えて下記式(4)を満足するものであることを特徴とする上記(1)に記載の溶融亜鉛めっき鋼板。   (2) The chemical composition contains, in mass%, B: 0.0002% or more and 0.0020% or less instead of part of Fe, and the following formula (4) instead of the formula (3) The hot-dip galvanized steel sheet according to (1) above, wherein

=max[N−(14/48)×sol.Ti−(14/11)×B,0] (4)
ここで、式中の元素記号は、鋼中での各元素の含有量を質量%にて表したものであり、max[ ]は[ ]内の引数の最大値を返す関数である。
N * = max [N− (14/48) × sol. Ti- (14/11) × B, 0] (4)
Here, the element symbol in the formula represents the content of each element in the steel in mass%, and max [] is a function that returns the maximum value of the arguments in [].

(3)前記化学組成が、Feの一部に代えて、Cr,Mo,WおよびNiからなる群から選択される1種または2種以上を、合計で2.0質量%以下含有するものであることを特徴とする上記(1)または(2)に記載の溶融亜鉛めっき鋼板。   (3) The chemical composition contains one or more selected from the group consisting of Cr, Mo, W and Ni in place of a part of Fe, and a total of 2.0% by mass or less. The hot-dip galvanized steel sheet according to (1) or (2) above, wherein

(4)真空脱ガス装置を用いて脱炭精錬した溶鋼にTiを添加し、連続鋳造して上記(1)ないし(3)のいずれかに記載の化学組成および酸化物系介在物組成を有する鋼塊とし、該鋼塊を熱間圧延し、冷間圧延し、再結晶焼鈍し、溶融亜鉛めっき処理を行うことを特徴とする溶融亜鉛めっき鋼板の製造方法。   (4) Ti is added to molten steel decarburized and refined using a vacuum degassing apparatus, and continuously cast to have the chemical composition and oxide inclusion composition described in any of (1) to (3) above. A method for producing a hot dip galvanized steel sheet, comprising hot rolling, cold rolling, recrystallization annealing, and hot dip galvanizing treatment.

(5)真空脱ガス装置を用いて脱炭精錬した溶鋼にAlを添加して溶存酸素濃度を0.003質量%以上に制御した後、さらにTiを添加し、連続鋳造して上記(1)ないし(3)のいずれかに記載の化学組成および酸化物系介在物組成を有する鋼塊とし、該鋼塊を熱間圧延し、冷間圧延し、再結晶焼鈍し、溶融亜鉛めっき処理を行うことを特徴とする溶融亜鉛めっき鋼板の製造方法。   (5) After adding Al to the molten steel decarburized and refined using a vacuum degassing device to control the dissolved oxygen concentration to 0.003% by mass or more, Ti is further added, and continuous casting is performed as described in (1). Or a steel ingot having the chemical composition and oxide inclusion composition according to any one of (3), hot-rolled, cold-rolled, recrystallized annealed, and hot-dip galvanized. A method for producing a hot-dip galvanized steel sheet.

本発明によれば、プレス成形などの加工に適用できる十分な成形性を有し、鋼板表面に筋模様等の表面欠陥が発生しない溶融亜鉛めっき鋼板が得られる。また、この溶融亜鉛めっき鋼板は、大規模製鉄所における大量生産工程においても、安定して製造することが可能となる。本発明は自動車の車体軽量化を通じて地球環境問題の解決に寄与できるなど産業の発展に寄与するところ大である。   According to the present invention, a hot-dip galvanized steel sheet having sufficient formability applicable to processing such as press forming and having no surface defects such as streaks on the steel sheet surface is obtained. Moreover, this hot dip galvanized steel sheet can be stably manufactured even in a mass production process at a large-scale steelworks. The present invention greatly contributes to the development of industries, such as contributing to the solution of global environmental problems through weight reduction of automobile bodies.

本発明に係る溶融亜鉛めっき鋼板における鋼成分の化学組成および介在物組成、ならびにその鋼板を効率的・安定的に製造しうる製造方法における製鋼、圧延、溶融亜鉛めっき条件等について以下に詳述する。   The chemical composition and inclusion composition of the steel components in the hot dip galvanized steel sheet according to the present invention, and the steel making, rolling, hot dip galvanizing conditions, etc. in the production method capable of producing the steel sheet efficiently and stably will be described in detail below. .

1.鋼の化学組成
C:0.0005%以上0.010%未満
C含有量が0.010%以上になると、鋼板の延性および深絞り性が著しく損なわれる。一方、過度に極低炭素化することは、製鋼コストの上昇を伴うだけでなく、NbCの析出が不十分となり、固溶Cが残存し、深絞り性の劣化を招く。したがって、含有量の範囲を0.0005%以上0.010%未満とする。望ましい範囲は、0.0010%以上0.0040%未満であり、さらに望ましい範囲は、0.0010%以上0.0030%以下である。
1. Chemical composition of steel C: 0.0005% or more and less than 0.010% When the C content is 0.010% or more, the ductility and deep drawability of the steel sheet are significantly impaired. On the other hand, excessively low carbonization is accompanied not only by an increase in steelmaking cost, but also the precipitation of NbC becomes insufficient, so that solid solution C remains and the deep drawability deteriorates. Therefore, the content range is 0.0005% or more and less than 0.010%. A desirable range is 0.0010% or more and less than 0.0040%, and a further desirable range is 0.0010% or more and 0.0030% or less.

Si:0.020%超0.40%以下
Siは本発明における重要な構成成分であり、酸化物系介在物中のNb酸化物の含有率を下げ、鋼板の深絞り性を向上させるので、0.020%を超えて含有させる。一方、鋼板のめっき性を劣化させるので、含有量の上限を0.40%とする。好ましい範囲は、0.030%超0.20%未満であり、さらに好ましい範囲は、0.035%超0.10%未満である。
Si: more than 0.020% and 0.40% or less Si is an important component in the present invention, and lowers the content of Nb oxide in oxide inclusions and improves the deep drawability of the steel sheet. More than 0.020% is contained. On the other hand, since the plateability of the steel sheet is deteriorated, the upper limit of the content is set to 0.40%. A preferred range is more than 0.030% and less than 0.20%, and a more preferred range is more than 0.035% and less than 0.10%.

Mn:2.50%以下
Mnは、不純物であるSと結合してMnSを形成し,Sの弊害を抑制するほか,鋼板を強化する作用を有する。一方、過度に含有させると延性および深絞り性が劣化するので、含有量の上限を2.50%とする。好ましい範囲は、0.05%以上1.00%未満であり、さらに好ましい範囲は、0.15%超0.50%未満である。また、めっき性の観点からは含有量が少ないほどよく、上限を0.31%未満とすることが好ましい。
Mn: 2.50% or less Mn combines with the impurity S to form MnS and suppresses the harmful effects of S and has the effect of strengthening the steel sheet. On the other hand, if contained excessively, ductility and deep drawability deteriorate, so the upper limit of the content is made 2.50%. A preferred range is 0.05% or more and less than 1.00%, and a more preferred range is more than 0.15% and less than 0.50%. Further, from the viewpoint of plating properties, the lower the content, the better, and the upper limit is preferably less than 0.31%.

P:0.10%以下
Pは、深絞り性を損なうことなく鋼板を強化する作用を有する。しかし、過度に含有させると耐二次加工脆性が極端に劣化するので、 0.10%以下とする。好ましい範囲は0.005%以上0.050%未満であり、さらに好ましい範囲は、0.010%以上0.015%未満である。
P: 0.10% or less P has an effect of strengthening the steel sheet without impairing deep drawability. However, if excessively contained, secondary work brittleness resistance is extremely deteriorated, so the content is made 0.10% or less. A preferred range is 0.005% or more and less than 0.050%, and a more preferred range is 0.010% or more and less than 0.015%.

S:0.010%未満
Sは鋼中に不可避的に含有される不純物であり、粒界に偏析して鋼を脆化させるため、その含有量は少ないほど好ましく、0.010%未満とする。好ましい上限は0.008%未満であり、さらに好ましい上限は0.006%未満である。ただし、含有量を過度に低下させることは、製造コストの上昇を招くため、0.001%を超えて含有させることが望ましい。
S: Less than 0.010% S is an impurity inevitably contained in the steel, and segregates at the grain boundaries and embrittles the steel. Therefore, the smaller the content, the less preferable, and less than 0.010%. . A preferable upper limit is less than 0.008%, and a more preferable upper limit is less than 0.006%. However, excessively reducing the content causes an increase in manufacturing cost, so it is desirable to make the content exceed 0.001%.

sol. Al:0.0050%未満
鋼中Alは、分析時に使用する酸に溶解しない酸化物等の形態と、酸に溶解する窒化物等や固溶の形態があり、酸可溶性のAl含有量をsol.Alと表記する。sol.Al量は溶鋼段階での溶解Al量と関連付けられるため、鋼の脱酸に強く影響する。本発明ではTi酸化物を50.0%以上含む酸化物系介在物の分散を必要とし、Alはこれを阻害するので、sol.Alの含有量を0.0050%未満とする。好ましい上限は0.0030%未満である。一方、Al自体は、溶鋼の製造工程で予備脱酸や温度調整に使用できるので、sol.Alを0.0002%以上含有させることが好ましい。さらに好ましい範囲は0.0005%以上0.0020%未満である。
sol. Al: less than 0.0050% Al in steel is in the form of oxides and the like that are not soluble in the acid used during analysis, and in the form of nitrides and solid solutions that are soluble in the acid. Sol. Indicated as Al. sol. Since the Al amount is related to the dissolved Al amount in the molten steel stage, it strongly affects the deoxidation of the steel. In the present invention, it is necessary to disperse oxide inclusions containing 50.0% or more of Ti oxide, and Al inhibits this. The Al content is less than 0.0050%. A preferable upper limit is less than 0.0030%. On the other hand, Al itself can be used for preliminary deoxidation and temperature adjustment in the manufacturing process of molten steel. It is preferable to contain Al by 0.0002% or more. A more preferable range is 0.0005% or more and less than 0.0020%.

N:0.005%以下
Nは、鋼中に不可避的に含有される元素であり、含有量の増加は延性、深絞り性および耐常温時効性を劣化させるため、0.005%以下とする。好ましい範囲は0.003%以下である。ただし、過度に極低窒素化することは、製鋼コストの上昇を伴うだけでなく、窒化物の析出が不十分となり、固溶Nが残存し、深絞り性の劣化を招くので、含有量を0.001%以上とすることが望ましい。
N: 0.005% or less N is an element inevitably contained in steel, and an increase in the content deteriorates ductility, deep drawability, and normal temperature aging resistance, so 0.005% or less . A preferable range is 0.003% or less. However, excessively low nitrogen generation not only increases the steelmaking cost, but also causes insufficient precipitation of nitrides, so that solid solution N remains and causes deterioration of deep drawability. It is desirable to make it 0.001% or more.

sol.Ti:0.020%以下かつ上記式(1)、(2)および(3)または(4)を満たすこと
鋼中Tiは、分析時に使用する酸に溶解しない酸化物等の形態と、酸に溶解する炭窒化物等や固溶の形態があり、酸可溶性のTi含有量をsol.Tiと表記する。sol.Tiは本発明における重要な構成成分であり、溶融亜鉛めっき鋼板表面に筋模様が発生することを防止するために、含有量の上限を0.020%以下とする。好ましい上限は0.015%以下、さらに好ましい上限は0.004%未満である。また、鋼中のC、NをTiC、TiN等として固定し、深絞り性を向上させる作用を有するので、上記式(1)、(2)および(3)または上記式(1)、(2)および(4)を満たす範囲で含有させる。
sol. Ti: 0.020% or less and satisfying the above formulas (1), (2) and (3) or (4) Ti in steel is in the form of oxides that do not dissolve in the acid used during analysis, There are dissolved carbonitrides and solid forms, and acid-soluble Ti content is sol. Indicated as Ti. sol. Ti is an important constituent in the present invention, and the upper limit of the content is set to 0.020% or less in order to prevent streaking from occurring on the surface of the hot dip galvanized steel sheet. A preferable upper limit is 0.015% or less, and a more preferable upper limit is less than 0.004%. Further, C and N in the steel are fixed as TiC, TiN, etc., and have the effect of improving deep drawability. Therefore, the above formulas (1), (2) and (3) or the above formulas (1), (2 ) And (4).

Nb:0.010%以上0.20%以下かつ上記式(1)、(2)および(3)または(4)を満たすこと
Nbは、本発明における重要な構成成分であり、鋼中のCをNbCとして固定するとともに熱延板の組織を微細化し、深絞り性に好ましい再結晶集合組織を発達させる作用を有しており、筋模様の発生を伴うことなく深絞り性を向上させる。Nb含有量が少ないと、上記作用による所望の効果が十分に得られず、深絞り性が損なわれるので、0.010%以上であり、かつ、上記式(1)、(2)および(3)または上記式(1)、(2)および(4)を満たす範囲で含有させる。好ましい含有量の下限は、0.026%以上である。一方、Nb含有量が過剰となると、再結晶温度が上昇しすぎて深絞り性が劣化するので、0.20%以下とする。好ましいのは、1.0<(Ti/48+Nb/93)/(C/12+N/14)<10.0を満足させることであり、さらに好ましいのは、2.0<(Ti/48+Nb/93)/(C/12+N/14)<5.0を満足させることである。
Nb: 0.010% or more and 0.20% or less and satisfying the above formulas (1), (2) and (3) or (4) Nb is an important component in the present invention, and C in steel Is fixed as NbC, and the structure of the hot-rolled sheet is refined to develop a recrystallized texture preferable for deep drawability, and the deep drawability is improved without causing a streak pattern. If the Nb content is low, the desired effect due to the above action cannot be obtained sufficiently and the deep drawability is impaired, so that it is 0.010% or more, and the above formulas (1), (2) and (3 ) Or a range satisfying the above formulas (1), (2) and (4). The lower limit of the preferable content is 0.026% or more. On the other hand, if the Nb content is excessive, the recrystallization temperature rises too much and the deep drawability deteriorates, so the content is made 0.20% or less. It is preferable to satisfy 1.0 <(Ti * / 48 + Nb / 93) / (C / 12 + N * / 14) <10.0, and more preferably 2.0 <(Ti * / 48 + Nb / 93) is to satisfy the / (C / 12 + N * /14)<5.0.

O:0.015%以下
O含有量が0.015%を超えると、酸化物系介在物の生成量が多くなりすぎ、表面疵が発生しやすくなるので、0.015%以下とする。好ましい範囲は、0.010%未満である。一方、Ti酸化物の含有率が50.0%以上でありNb酸化物の含有量が1.0%未満である酸化物系介在物を適正量生成させ、深絞り性を向上させるため、0.0020%以上含有させることが好ましい。0.0030%以上含有させるとさらに好ましい。
O: 0.015% or less If the O content exceeds 0.015%, the amount of oxide inclusions is excessively increased and surface defects are likely to occur. A preferred range is less than 0.010%. On the other hand, in order to generate an appropriate amount of oxide inclusions having a Ti oxide content of 50.0% or more and an Nb oxide content of less than 1.0% to improve deep drawability, 0 0020% or more is preferable. It is more preferable to contain 0.0030% or more.

B:必要に応じ、0.0002%以上0.0020%以下
Bは、結晶粒界に偏析して粒界を強化し、耐二次加工脆性を向上させる効果を有するので、0.0002%以上含有させても良い。一方、含有量が0.0020%を上回ると、再結晶温度が上昇して、深絞り性が劣化する。したがって、0.0002%以上0.0020%以下とする。好ましい範囲は、0.0003%超0.0010%未満である。
B: If necessary, 0.0002% or more and 0.0020% or less B has the effect of segregating at the grain boundaries to strengthen the grain boundaries and improving the secondary work brittleness resistance, so 0.0002% or more It may be included. On the other hand, if the content exceeds 0.0020%, the recrystallization temperature rises and the deep drawability deteriorates. Therefore, the content is 0.0002% or more and 0.0020% or less. A preferred range is more than 0.0003% and less than 0.0010%.

Cr,Mo,WおよびNiからなる群から選択される1種以上:必要に応じ、合計で2.0%以下
これらの元素は、鋼板を強化する作用を有するので、必要に応じて1種または2種以上含有させても良い。ただし、含有量の合計が2.0%を超えると延性が著しく劣化する。したがって、合計の含有量を2.0%以下とする。なお、鋼板を強化する作用を確実に発揮させるには合計の含有量を0.05%以上とすることが好ましい。
One or more selected from the group consisting of Cr, Mo, W and Ni: If necessary, the total is 2.0% or less. Since these elements have an action of strengthening the steel sheet, You may make it contain 2 or more types. However, if the total content exceeds 2.0%, the ductility is remarkably deteriorated. Therefore, the total content is set to 2.0% or less. In addition, it is preferable to make the total content 0.05% or more in order to reliably exhibit the effect of strengthening the steel sheet.

上述した元素以外は、Feおよび不純物である。
本実施の形態の溶融亜鉛めっき鋼板は、以上の鋼組成を有する。
Other than the elements described above, Fe and impurities.
The hot dip galvanized steel sheet of the present embodiment has the above steel composition.

2.介在物組成
(1)酸化物系介在物
本発明に係る溶融亜鉛めっき鋼板は、酸化物系介在物中のNb酸化物の含有量が1.0%未満であり、Ti酸化物の含有量が50.0%以上であることとする。
2. Inclusion Composition (1) Oxide Inclusion The galvanized steel sheet according to the present invention has a content of Nb oxide in the oxide inclusion of less than 1.0% and a content of Ti oxide. It shall be 50.0% or more.

ここで、「酸化物系介在物」とは、溶鋼に含まれる元素が脱酸工程などにおいて酸化反応することによって生じたものであり、耐火物剥離等で含有されるマクロ介在物は含まない。酸化物系介在物の組成は、Nb、Ti、Al、SiおよびMnの酸化物を主体とし、このほか、不可避的に含有される不純物を含む。なお、不可避的不純物としては、Mg、Caの酸化物や、次に説明するEDSによる測定ではFe相と不可分なFe酸化物が挙げられる。   Here, the “oxide inclusion” is generated by an oxidation reaction of an element contained in molten steel in a deoxidation process or the like, and does not include a macro inclusion contained in refractory peeling or the like. The composition of oxide inclusions is mainly composed of oxides of Nb, Ti, Al, Si and Mn, and additionally contains impurities inevitably contained. Inevitable impurities include Mg and Ca oxides, and Fe oxides that are inseparable from the Fe phase as measured by EDS described below.

この酸化物系介在物の組成は次のようにして測定する。
鋼板の任意の位置から試験片を採取し、鋼板の圧延方向に平行な縦断面を研磨した後、SEMを用いて長径1μm以上の酸化物系介在物を観察し、EDSを用いて、Feを除く上記元素について定量分析を行う。得られた各元素の原子数比に基づいて、検出された各元素について予め規定された化学量論組成の酸化物換算の化学組成(単位:質量%)を求める。ここで、介在物を構成する主要元素についての化学量論組成の酸化物は次のとおりである。Ti:TiO、Nb:NbO、Al:Al、Si:SiO、Mn:MnO。また、不純物元素についての化学量論組成の酸化物は次のとおりである。Mg:MgO、Ca:CaO。この化学組成の測定を複数の酸化物系介在物に対して行い、その平均値をその鋼板における酸化物系介在物の含有量とする。測定する酸化物系介在物の数は10個以上とし、測定数は多いほど好ましい。
The composition of the oxide inclusions is measured as follows.
After collecting a test piece from an arbitrary position of the steel plate and polishing a longitudinal section parallel to the rolling direction of the steel plate, an oxide inclusion having a major axis of 1 μm or more was observed using SEM, and Fe was added using EDS. Quantitative analysis is performed on the above elements. Based on the obtained atomic ratio of each element, the chemical composition (unit: mass%) in terms of oxide of the stoichiometric composition defined in advance for each detected element is obtained. Here, the oxides of the stoichiometric composition of the main elements constituting the inclusions are as follows. Ti: TiO 2 , Nb: NbO, Al: Al 2 O 3 , Si: SiO 2 , Mn: MnO. Further, oxides of stoichiometric composition with respect to the impurity elements are as follows. Mg: MgO, Ca: CaO. The chemical composition is measured for a plurality of oxide inclusions, and the average value is defined as the content of oxide inclusions in the steel sheet. The number of oxide inclusions to be measured is 10 or more, and the larger the number of measurements, the better.

なお、縦断面のSEM観察は、溶融亜鉛めっき層の影響を避け鋼板のバルク特性をより正確に評価できるように、鋼板母材とめっき層との境界から板厚の1/4以上内側の位置で行う。また、EDSによる元素分析を行う酸化物系介在物の領域は、酸化物系介在物上に析出するMnS等の影響を避けるためにSEM像において酸化物系介在物の中央部を含む範囲とし、平均的な組成を求めるために酸化物系介在物の面積の1/4以上の範囲とすることが好ましい。   In addition, the SEM observation of the longitudinal section is a position more than 1/4 of the plate thickness from the boundary between the steel plate base metal and the plating layer so that the influence of the hot dip galvanized layer can be avoided and the bulk properties of the steel plate can be more accurately evaluated. To do. In addition, the region of the oxide inclusions for performing elemental analysis by EDS is a range including the central portion of the oxide inclusions in the SEM image in order to avoid the influence of MnS and the like deposited on the oxide inclusions, In order to obtain an average composition, it is preferable to set the range of ¼ or more of the area of the oxide inclusions.

(2)Nb酸化物
本発明に係る鋼板の酸化物系介在物に含まれるNb酸化物の含有量は1.0%未満とする。これは、Tiを用いた脱酸工程を経て製造された冷延鋼板の深絞り性を安定して向上させるためである。Nb酸化物には、NbOやNbO等の存在形態が考えられるが、Nb酸化物の含有量は、上記のようにSEM/EDSを用いて元素分析し、NbOに換算して求める。深絞り性向上のためにはNb酸化物の含有量は低いほど良いが、0.1%未満にまで低下させるためには、Tiを多量に添加する必要があり、溶融亜鉛めっき鋼板表面に筋模様が発生しやすくなるため、含有量の下限を0.1%以上とすることが好ましい。
(2) Nb oxide The content of Nb oxide contained in the oxide inclusions of the steel sheet according to the present invention is less than 1.0%. This is to stably improve the deep drawability of the cold-rolled steel sheet manufactured through a deoxidation process using Ti. The Nb oxide may be present in the form of NbO, NbO 2 or the like. The content of the Nb oxide is determined by elemental analysis using SEM / EDS as described above and converted to NbO. In order to improve deep drawability, the lower the content of Nb oxide, the better. However, in order to reduce it to less than 0.1%, it is necessary to add a large amount of Ti, and the surface of the hot dip galvanized steel sheet Since it becomes easy to generate | occur | produce a pattern, it is preferable to make the minimum of content into 0.1% or more.

(3)Ti酸化物
本発明に係る鋼板の酸化物系介在物に含まれるTi酸化物の含有量は50.0%以上とする。これは、含有量が50.0%を下回ると、酸化物系介在物が、圧延中に伸展した形状を呈し、深絞り性が損なわれるばかりか、個々の酸化物系介在物がクラスター化する傾向を示し、表面疵が発生しやすくなるからである。好ましいのは、Ti酸化物の含有量を60.0%以上とすることである。一方、Ti酸化物の含有量が高くなりすぎると、溶鋼段階で液相を含まない状態となり、連続鋳造工程において浸漬ノズルの閉塞が起こりやすくなるため、Ti酸化物の含有量を95.0%未満とすることが好ましく、90.0%未満とするとさらに好ましい。なお、Ti酸化物の含有量は、Nb酸化物の含有量と同様にSEM/EDSを用いて元素分析し、TiOに換算して求める。
(3) Ti oxide The content of Ti oxide contained in the oxide inclusions of the steel sheet according to the present invention is 50.0% or more. This is because, when the content is less than 50.0%, the oxide inclusions exhibit a shape extended during rolling, and not only the deep drawability is impaired, but individual oxide inclusions are clustered. This is because a tendency is exhibited and surface flaws are likely to occur. It is preferable that the Ti oxide content is 60.0% or more. On the other hand, if the Ti oxide content is too high, the liquid phase is not included in the molten steel stage, and the immersion nozzle is likely to be clogged in the continuous casting process, so the Ti oxide content is 95.0%. The content is preferably less than 90.0%, and more preferably less than 90.0%. The content of Ti oxide, and elemental analysis similarly using SEM / EDS and the content of Nb oxide is obtained in terms of TiO 2.

(4)その他の酸化物
ところで、大規模製鉄所の大量生産工程で、本発明に係る鋼板を製造する場合は、酸化物系介在物に、Nb酸化物、Ti酸化物以外の酸化物が含有されうる。具体的には、溶鋼にTiを添加する前に、予備的にAlを添加し鋼中酸素を部分的に除去することは、生産性および製造安定性の向上のために好ましいが、結果としてAl酸化物が生成するようになる。酸化物系介在物におけるAl酸化物の含有量の範囲は特に規定しないが、Al添加による生産性および製造安定性の向上という利点を享受するためには3.0%以上とすることが好ましい。一方、多量に含有されると、Ti酸化物の含有量が低下して深絞り性が損なわれたり、浸漬ノズルの閉塞が起こりやすくなったりするので、35.0%未満であることが好ましい。さらに好ましいAl酸化物の含有量の範囲は、5.0%以上30.0%未満である。
(4) Other oxides By the way, when manufacturing a steel sheet according to the present invention in a mass production process of a large-scale steelworks, oxides other than Nb oxide and Ti oxide are included in the oxide inclusions. Can be done. Specifically, it is preferable to add Al in advance and partially remove oxygen in the steel before adding Ti to the molten steel in order to improve productivity and manufacturing stability. Oxide is produced. The range of the content of Al oxide in the oxide inclusion is not particularly specified, but is preferably 3.0% or more in order to enjoy the advantages of improving productivity and production stability by adding Al. On the other hand, if it is contained in a large amount, the content of Ti oxide is lowered and the deep drawability is impaired or the immersion nozzle is likely to be clogged. Therefore, the content is preferably less than 35.0%. A more preferable range of the Al oxide content is 5.0% or more and less than 30.0%.

また、SiやMnを含有させる場合には、酸化物系介在物にSi酸化物やMn酸化物が含有される。酸化物系介在物におけるこれらの酸化物の含有量は特に規定しないが、Si酸化物が多量に含有されると、酸化物系介在物が圧延中に伸展した形状を呈し、深絞り性が損なわれることがあるので、Si酸化物の含有量を1.0%未満とすることが好ましい。また、Mn酸化物は、浸漬ノズルの閉塞を防止する効果があるため、2.0%以上含有させることが好ましい。しかし、多量に含有させると、Mn酸化物と親和力の強いSi酸化物の含有量が増加し、深絞り性が損なわれるため、Mn酸化物の含有量の上限を25.0%未満とすることが好ましい。Al、SiおよびMn酸化物の含有量は、上記のようにSEM/EDSを用いて元素分析し、Al、SiOおよびMnOに換算して求める。
本実施の形態の溶融亜鉛めっき鋼板は、以上の酸化物系介在物組成を有する。
Further, when Si or Mn is contained, the oxide inclusions contain Si oxide or Mn oxide. The content of these oxides in the oxide inclusions is not particularly specified, but if a large amount of Si oxide is contained, the oxide inclusions exhibit a shape that is extended during rolling, and the deep drawability is impaired. Therefore, the Si oxide content is preferably less than 1.0%. Moreover, since Mn oxide has the effect which prevents the obstruction | occlusion of an immersion nozzle, it is preferable to make it contain 2.0% or more. However, if a large amount is contained, the content of the Si oxide having a strong affinity with the Mn oxide is increased and the deep drawability is impaired. Therefore, the upper limit of the Mn oxide content should be less than 25.0%. Is preferred. The contents of Al, Si, and Mn oxide are obtained by elemental analysis using SEM / EDS as described above and converted to Al 2 O 3 , SiO 2, and MnO.
The hot dip galvanized steel sheet of the present embodiment has the above oxide inclusion composition.

3.製造方法
本発明に係る溶融亜鉛めっき鋼板は、上記の化学組成を有し、酸化物系介在物について上記の関係が満足できるのであれば、いかなる製造方法により製造されてもよい。ただし、以下の製造方法を採用することによって、本発明に係る溶融亜鉛めっき鋼板をより効率的かつ安定的に製造することが実現される。
3. Production Method The hot dip galvanized steel sheet according to the present invention may be produced by any production method as long as it has the above chemical composition and the above relationship can be satisfied with respect to oxide inclusions. However, by employing the following manufacturing method, it is possible to more efficiently and stably manufacture the hot-dip galvanized steel sheet according to the present invention.

(1)製鋼、連続鋳造
本発明に係る製造方法においては、製鋼工程では、転炉などの製鋼炉で粗脱炭した後、RH装置等の真空脱ガス装置で真空脱炭処理を行う。続いて、Ti以外の元素の成分調整を行い、その後、TiまたはTi合金を添加して脱酸処理し、連続鋳造する。TiまたはTi合金を添加して脱酸処理するのは、鋼板中に、Ti酸化物の含有量が50.0%以上でありNb酸化物の含有量が1.0%未満である酸化物系介在物を分散させ、鋼板の深絞り性を向上させるのに必要なためである。
(1) Steelmaking, continuous casting In the manufacturing method according to the present invention, in the steelmaking process, after rough decarburization in a steelmaking furnace such as a converter, vacuum decarburization processing is performed with a vacuum degassing apparatus such as an RH apparatus. Subsequently, component adjustment of elements other than Ti is performed, and then Ti or a Ti alloy is added for deoxidation treatment, and continuous casting is performed. Deoxidation treatment by adding Ti or Ti alloy is an oxide system in which the content of Ti oxide is 50.0% or more and the content of Nb oxide is less than 1.0% in the steel sheet. This is because it is necessary to disperse inclusions and improve the deep drawability of the steel sheet.

大規模製鉄所の大量生産工程において生産性や製造安定性を向上させるためには、Tiを添加する前にAlを添加して、予備的な脱酸処理や温度調整をすることが好ましい。ただし、Alによる脱酸を併用する場合には、最終的にTiを添加する前の溶存酸素濃度を0.003%以上とする必要がある。これは、溶存酸素濃度が0.003%未満であると、酸化物系介在物中のTi酸化物の含有量が低下して深絞り性が損なわれるばかりか、溶鋼段階での酸化物系介在物中においてAl酸化物の含有量が高くなりすぎ、連続鋳造時に浸漬ノズルの閉塞が生じる場合があるからである。一方、溶存酸素濃度が高すぎると、脱酸に要するTiまたはTi合金の添加量が多くなりすぎ、清浄度が悪化し、表面疵も発生しやすくなるので、最終的にTiを添加する前の溶存酸素濃度の上限を0.018%とすることが好ましい。
連続鋳造工程では、介在物に起因する表面欠陥の発生を抑制するために、鋳型内にて電磁攪拌等の外部付加的な流動を溶鋼に生じさせることが好ましい。
In order to improve productivity and manufacturing stability in a mass production process of a large-scale steelworks, it is preferable to add Al before adding Ti to perform preliminary deoxidation treatment and temperature adjustment. However, in the case of using deoxidation with Al together, the dissolved oxygen concentration before finally adding Ti needs to be 0.003% or more. This is because when the dissolved oxygen concentration is less than 0.003%, the content of Ti oxide in the oxide inclusions is reduced and the deep drawability is impaired, and the oxide inclusions in the molten steel stage This is because the content of the Al oxide in the product becomes too high, and the immersion nozzle may be blocked during continuous casting. On the other hand, if the dissolved oxygen concentration is too high, the amount of Ti or Ti alloy required for deoxidation increases too much, the cleanliness deteriorates and surface defects are likely to occur. The upper limit of the dissolved oxygen concentration is preferably 0.018%.
In the continuous casting process, in order to suppress the occurrence of surface defects due to inclusions, it is preferable to cause an external additional flow such as electromagnetic stirring in the molten steel in the mold.

(2)熱間圧延
連続鋳造によって得られた鋼塊を再加熱するか、または連続鋳造後の高温の鋼塊をそのまま、もしくは補助加熱を行ってから、熱間圧延を行う。鋼塊は、表面性状を良好に保つために、加熱前に冷間または温間で表面手入れすることが好ましい。加熱温度が低いと、圧延荷重が増大して圧延が困難となるため、加熱温度を1150℃超にすることが好ましい。
(2) Hot rolling The steel ingot obtained by continuous casting is reheated, or the hot steel ingot after continuous casting is subjected to hot rolling as it is or after auxiliary heating. In order to keep the surface properties good, it is preferable to care the surface of the steel ingot cold or warm before heating. If the heating temperature is low, the rolling load increases and rolling becomes difficult, so the heating temperature is preferably higher than 1150 ° C.

熱間圧延の条件は特に規定しないが、オーステナイト低温域で仕上げ圧延を行って熱延鋼板の結晶粒を微細化し、焼鈍時に深絞り性に好ましい再結晶集合組織を発達させるために、Ar変態点以上(Ar変態点+100℃)以下の温度範囲で最終圧下を行うことが望ましく、890℃以上920℃未満で最終圧下を行えばさらに望ましい。また、スケール性の表面欠陥を抑制するために、仕上げ圧延開始温度と仕上げ圧延終了温度との差を100℃以上とすることが好ましい。 The hot rolling conditions are not particularly specified, but the Ar 3 transformation is used in order to refine the crystal grains of the hot rolled steel sheet by performing finish rolling in a low temperature range of austenite and to develop a recrystallized texture preferable for deep drawability during annealing. It is desirable to perform the final reduction in a temperature range of not less than the point (Ar 3 transformation point + 100 ° C.) and less, and more desirably if the final reduction is performed in the range of 890 ° C. to less than 920 ° C. Moreover, in order to suppress the surface defect of scale property, it is preferable that the difference between the finish rolling start temperature and the finish rolling end temperature is 100 ° C. or more.

なお、仕上げ圧延をこれらの温度範囲で行うために、粗圧延と仕上げ圧延との間で粗圧延材を加熱してもよい。この際、粗圧延材の後端が先端よりも高温となるように加熱して、仕上げ圧延の開始時における粗圧延材の全長にわたる温度の変動を140℃以下に抑制することが望ましい。これにより、コイル内の製品特性の均一性が向上する。   In addition, in order to perform finish rolling in these temperature ranges, you may heat a rough rolling material between rough rolling and finish rolling. At this time, it is desirable to heat the rear end of the rough rolled material at a higher temperature than the front end, and to suppress the temperature variation over the entire length of the rough rolled material at the start of finish rolling to 140 ° C. or less. Thereby, the uniformity of the product characteristic in a coil improves.

粗圧延材の加熱は、例えば粗圧延機と仕上げ圧延機との間にソレノイド式誘導加熱装置を設けておき、この誘導加熱装置の上流側における長手方向の温度分布等に基づいて加熱昇温量を制御することが、例示される。   For heating the rough rolled material, for example, a solenoid-type induction heating device is provided between the rough rolling mill and the finish rolling mill, and the heating temperature rise is based on the temperature distribution in the longitudinal direction on the upstream side of the induction heating device. It is exemplified to control.

熱間圧延を終了した後に鋼板を冷却してコイル状に巻取る。巻取り温度が過度に高いとスケールの生成による歩留まりの低下を招くため、700℃未満で巻取ることが望ましい。一方、巻取り後にTiおよびNbの炭窒化物を十分に析出させ、深絞り性に好ましい再結晶集合組織を発達させるために、巻取り温度の下限を610℃超とすることが好ましい。   After the hot rolling is finished, the steel plate is cooled and wound into a coil. If the winding temperature is excessively high, the yield is reduced due to the generation of scale, and therefore it is desirable to wind at a temperature lower than 700 ° C. On the other hand, in order to sufficiently precipitate Ti and Nb carbonitrides after winding and develop a recrystallized texture preferable for deep drawability, the lower limit of the winding temperature is preferably more than 610 ° C.

(3)冷間圧延、焼鈍、めっき
冷間圧延は、酸洗等により脱スケールした後に、常法に従って行われる。冷間圧延後に行われる再結晶焼鈍によって深絞り性に好ましい再結晶集合組織を発達させるために、圧下率を70%以上とすることが好ましい。圧下率を過度に高くすると、圧延設備への負荷が高まり、生産性の低下を招く。したがって、圧下率は90%未満とし、最終板厚を0.40mm以上とすることが好ましい。さらに好ましい圧下率は85%未満である。
(3) Cold rolling, annealing, plating Cold rolling is performed according to a conventional method after descaling by pickling or the like. In order to develop a recrystallized texture preferable for deep drawability by recrystallization annealing performed after cold rolling, the rolling reduction is preferably set to 70% or more. If the reduction ratio is excessively high, the load on the rolling equipment increases, leading to a decrease in productivity. Therefore, it is preferable that the rolling reduction is less than 90% and the final plate thickness is 0.40 mm or more. A more preferable rolling reduction is less than 85%.

冷間圧延された鋼板は、必要に応じて公知の方法に従って脱脂などの処理が施され、再結晶焼鈍される。再結晶焼鈍時の加熱速度が速すぎるとフェライトが細粒化し、延性の劣化を招く。このため、均熱温度までの加熱速度は60℃/s未満とすることが好ましい。また、焼鈍温度がAc変態点以上となると、深絞り性に好ましい再結晶集合組織が変態により減少するので、焼鈍温度の上限をAc変態点未満とするのが良い。なお、再結晶焼鈍は、連続焼鈍、箱焼鈍、連続溶融亜鉛めっき行程におけるめっき前の焼鈍処理のいずれによっても差し支えはない。 The cold-rolled steel sheet is subjected to a treatment such as degreasing according to a known method, if necessary, and is recrystallized and annealed. If the heating rate at the time of recrystallization annealing is too fast, ferrite becomes finer and ductility is deteriorated. For this reason, it is preferable that the heating rate to soaking temperature shall be less than 60 degreeC / s. In addition, when the annealing temperature is equal to or higher than the Ac 3 transformation point, the recrystallization texture preferable for deep drawability is reduced by transformation. Therefore, the upper limit of the annealing temperature is preferably set to be lower than the Ac 3 transformation point. The recrystallization annealing can be performed by any of continuous annealing, box annealing, and annealing before plating in the continuous hot dip galvanizing process.

焼鈍後は、常法に従って、溶融亜鉛めっき処理を行う。生産性および耐食性の観点からは、連続溶融亜鉛めっき装置で再結晶焼鈍およびめっきを行い、さらに、合金化処理を施すことが好ましい。また、めっき前もしくはめっき後に調質圧延を行ってもかまわない。   After annealing, a hot dip galvanizing process is performed according to a conventional method. From the viewpoint of productivity and corrosion resistance, it is preferable to perform recrystallization annealing and plating with a continuous hot dip galvanizing apparatus, and to perform alloying treatment. Further, temper rolling may be performed before or after plating.

かくして、本実施の形態により製造される溶融亜鉛めっき鋼板は、例えばプレス成形等の加工に適用できる十分な成形性と、筋模様のない優れた表面性状を有する。このため、この溶融亜鉛めっき鋼板は、自動車部品用、特に自動車外板パネル用として好適に用いることができる。   Thus, the hot-dip galvanized steel sheet manufactured according to the present embodiment has sufficient formability that can be applied to processing such as press molding and excellent surface properties without streaking. For this reason, this hot-dip galvanized steel sheet can be suitably used for automobile parts, particularly for automobile outer panel.

本発明を,実施例を参照しながらより具体的に説明する。
(実施例1)
実験用真空溶解炉を用いて、表1に示される化学組成を有する鋼を溶解し、鋳造した。これらの鋼塊を熱間鍛造により厚さ20mmの鋼片とし、電気加熱炉を用いて1250℃に加熱し、30分間保持した。鋼片を炉から抽出した後、実験用熱間圧延機を用いて、910℃以上の温度範囲で熱間圧延し、厚さ4mmの熱延鋼板を得た。熱間圧延後、直ちに水スプレー冷却により650℃まで冷却してこれを巻取り温度とし、同温度に保持された電気加熱炉中に装入して30分間保持した後、20℃/hの冷却速度で炉冷却して巻取り後の徐冷処理とした。得られた鋼板を酸洗して冷間圧延母材とし、圧下率82.5%で冷間圧延し、厚さ0.7mmの冷延鋼板を得た。連続溶融亜鉛めっきシミュレーターを用いて、得られた冷延鋼板を、20℃/sの加熱速度で850℃まで加熱し50秒間保持した後、460℃まで冷却し、溶融亜鉛浴に3秒間浸漬して溶融亜鉛めっきを行った。めっき後、500℃で20秒間保持する合金化処理を施し、合金化溶融亜鉛めっき鋼板を得た。
The present invention will be described more specifically with reference to examples.
Example 1
Steel having the chemical composition shown in Table 1 was melted and cast using a laboratory vacuum melting furnace. These steel ingots were made into steel pieces having a thickness of 20 mm by hot forging, heated to 1250 ° C. using an electric heating furnace, and held for 30 minutes. After the steel slab was extracted from the furnace, it was hot-rolled in a temperature range of 910 ° C. or higher using a laboratory hot rolling mill to obtain a hot-rolled steel sheet having a thickness of 4 mm. Immediately after hot rolling, it is cooled to 650 ° C. by water spray cooling to make it a winding temperature, charged in an electric heating furnace maintained at the same temperature, held for 30 minutes, and then cooled at 20 ° C./h. The furnace was cooled at a speed and the annealing was performed after winding. The obtained steel plate was pickled and used as a cold rolled base metal, and cold rolled at a reduction rate of 82.5% to obtain a cold rolled steel plate having a thickness of 0.7 mm. Using a continuous hot dip galvanizing simulator, the obtained cold rolled steel sheet was heated to 850 ° C. at a heating rate of 20 ° C./s and held for 50 seconds, then cooled to 460 ° C. and immersed in a hot dip zinc bath for 3 seconds. Then, hot dip galvanization was performed. After plating, an alloying treatment was performed for 20 seconds at 500 ° C. to obtain an alloyed hot-dip galvanized steel sheet.

Figure 2010059475
Figure 2010059475

得られた合金化溶融亜鉛めっき鋼板から、SEM観察用試験片を採取し、圧延方向に平行な縦断面を研磨した後SEMを用いて観察した。鋼板母材とめっき層との界面から板厚の1/4以上内側の範囲に存在する長径1μm以上の酸化物系介在物を無作為に10個ないし20個選び、SEMに備え付けられたEDSで元素分析し、化学量論組成を仮定して酸化物量に換算し、酸化物系介在物の平均組成を求めた。   From the obtained galvannealed steel sheet, a specimen for SEM observation was collected, and the longitudinal section parallel to the rolling direction was polished and then observed using SEM. 10 to 20 oxide inclusions with a major axis of 1 μm or more existing in the range of 1/4 or more of the plate thickness from the interface between the steel plate base metal and the plating layer are randomly selected, and the EDS installed in the SEM Elemental analysis was performed, and the stoichiometric composition was assumed to be converted into an oxide amount, and the average composition of oxide inclusions was determined.

降伏応力(YS)、引張強度(TS)および全伸びは、得られた合金化溶融亜鉛めっき鋼板に伸び率1.0%の調質圧延を施した後、圧延方向からJIS5号引張試験片を採取し、引張試験を行うことにより求めた。r値は、圧延方向(0°方向)、圧延方向と45°をなす方向(45°方向)、および圧延方向と直行する方向(90°方向)から採取したJIS5号引張試験片に引張試験を行い、0°方向のr値(r0°値)、45°方向のr値(r45°値)、90°方向のr値(r90°値)を用いて、上記式(5)に基づき平均r値を求めた。 Yield stress (YS), tensile strength (TS) and total elongation were obtained by subjecting the obtained alloyed hot-dip galvanized steel sheet to temper rolling with an elongation of 1.0%, and then applying a JIS No. 5 tensile test piece from the rolling direction. It was obtained by collecting and conducting a tensile test. The r value is a tensile test performed on a JIS No. 5 tensile specimen taken from the rolling direction (0 ° direction), the direction forming 45 ° with the rolling direction (45 ° direction), and the direction orthogonal to the rolling direction (90 ° direction). Using the r value in the 0 ° direction (r 0 ° value), the r value in the 45 ° direction (r 45 ° value), and the r value in the 90 ° direction (r 90 ° value), Based on the average r value.

表面性状は、得られた合金化溶融亜鉛めっき鋼板の表面を目視にて観察し、筋模様発生の有無により評価した。   The surface properties were evaluated by visually observing the surface of the obtained alloyed hot-dip galvanized steel sheet and by the presence or absence of streaking.

表2に酸化物系介在物の組成分析および性能評価結果を示した。本発明が規定する範囲内の鋼板についての試験結果(試番1、2、5、8、10)は、いずれも、表面性状は良好であり、また、平均r値は1.90以上であり良好な深絞り性を示した。   Table 2 shows the composition analysis and performance evaluation results of the oxide inclusions. The test results (test numbers 1, 2, 5, 8, 10) for the steel sheets within the range defined by the present invention all have good surface properties, and the average r value is 1.90 or more. Good deep drawability was exhibited.

Figure 2010059475
Figure 2010059475

鋼組成もしくは酸化物系介在物組成が、本発明の規定する範囲から外れる鋼(鋼C、D、F、G、I、K)を用いて製造された鋼板の試験結果(試番3、4、6、7、9、11)は、表面性状とr値のいずれかが劣っていた。   Test results of steel plates manufactured using steels (steel C, D, F, G, I, K) whose steel composition or oxide inclusion composition deviates from the range defined by the present invention (Trial Nos. 3, 4) , 6, 7, 9, 11), either the surface properties or the r value was inferior.

具体的には、鋼C、Dを用いた試験(試番3、4)は鋼中のSi含有量が少なく、酸化物系介在物中のNb酸化物の含有量が多いためにr値が低い。鋼F、Kを用いた試験(試番6、11)は鋼中のsol.Al含有量が多く、酸化物系介在物中のTi酸化物の含有量が少ないためにr値が低い。鋼Gを用いた試験(試番7)は鋼中のsol.Ti含有量が多すぎるために、めっき表面に筋模様が発生し表面性状が悪い。鋼Iを用いた試験(試番9)は、上記式(1)を満たさないためr値が低い。   Specifically, in the tests using steels C and D (trial numbers 3 and 4), since the Si content in the steel is small and the content of Nb oxide in the oxide inclusions is large, the r value is high. Low. Tests using steels F and K (trial numbers 6 and 11) were conducted using sol. Since the Al content is large and the Ti oxide content in the oxide inclusions is small, the r value is low. The test using steel G (Trial No. 7) was conducted using sol. Since there is too much Ti content, a streak pattern is generated on the plating surface and the surface properties are poor. In the test using steel I (trial number 9), the r value is low because the above formula (1) is not satisfied.

(実施例2)
溶鋼290tonを転炉で脱炭精錬し、その未脱酸溶鋼を収容した取鍋をRH装置へ移送し、RH装置で真空脱炭を行った。真空脱炭が終了した後、未脱酸溶鋼の予備脱酸と溶鋼の昇温操作を兼ねてAlを添加した。Al添加後に真空槽内の溶鋼に酸素を38Nm/minで供給して適宜酸化反応による溶鋼への熱付与を実施した。その後溶鋼に酸素濃度が含有される状態で既に含有されている濃度を勘案してTi以外の各種合金を添加調整し、最後にTiを添加調整し、表3に示される化学組成になるように調整した。Alキルド鋼(鋼P、Q)では、この工程でAlを0.04%以上含有する状態として、その後Tiを添加し化学組成を調整した。
(Example 2)
The molten steel 290 ton was decarburized and refined with a converter, the ladle containing the undeoxidized molten steel was transferred to the RH apparatus, and vacuum decarburization was performed with the RH apparatus. After the vacuum decarburization was completed, Al was added for both the preliminary deoxidation of the undeoxidized molten steel and the temperature raising operation of the molten steel. After addition of Al, oxygen was supplied to the molten steel in the vacuum chamber at 38 Nm 3 / min, and heat was imparted to the molten steel by an appropriate oxidation reaction. Then, in consideration of the concentration already contained in the molten steel in an oxygen concentration state, various alloys other than Ti are added and adjusted, and finally Ti is added and adjusted so that the chemical composition shown in Table 3 is obtained. It was adjusted. In Al killed steel (steel P, Q), the chemical composition was adjusted by adding Ti after that in a state where Al was contained at 0.04% or more in this step.

Figure 2010059475
Figure 2010059475

これらの精錬実施後、溶鋼を収容した取鍋を連続鋳造機に搬送し、幅960〜1200mm、厚さ250mmのスラブ形状の鋳片を得た。この連続鋳造工程では、浸漬ノズル上部に設置された溶鋼流量を制御するスライディングゲートの開度変化を確認し、ノズル閉塞の状況を評価した。   After performing these refining, the ladle containing the molten steel was conveyed to a continuous casting machine to obtain a slab-shaped slab having a width of 960 to 1200 mm and a thickness of 250 mm. In this continuous casting process, the change in the opening of the sliding gate that controls the flow rate of the molten steel installed on the upper part of the submerged nozzle was confirmed, and the state of nozzle clogging was evaluated.

得られた鋳片を表面手入れしてから、表4に示される条件で加熱し、熱間圧延し、酸洗し、冷間圧延した。続いて、連続溶融亜鉛めっき設備にて冷延板を焼鈍し、溶融亜鉛めっきし、合金化処理した。その後、伸び率1.0%で調質圧延を施し、合金化溶融亜鉛めっき鋼板を得た。なお、一部の鋼板では、溶融亜鉛めっき後の合金化処理を省略し、溶融亜鉛めっき鋼板とした。   After the surface of the obtained slab was cleaned, it was heated under the conditions shown in Table 4, hot-rolled, pickled, and cold-rolled. Subsequently, the cold-rolled sheet was annealed in a continuous hot dip galvanizing facility, hot dip galvanized, and alloyed. Thereafter, temper rolling was performed at an elongation rate of 1.0% to obtain an galvannealed steel sheet. In some steel plates, the alloying treatment after hot dip galvanization was omitted, and hot dip galvanized steel plates were obtained.

Figure 2010059475
Figure 2010059475

得られた合金化溶融亜鉛めっき鋼板または溶融亜鉛めっき鋼板から、SEM観察用試験片を採取し、圧延方向に平行な縦断面を研磨した後SEMを用いて観察した。鋼板母材とめっき層との界面から板厚の1/4以上内側の範囲に存在する長径1μm以上の酸化物系介在物を無作為に10個ないし20個選び、SEMに備え付けられたEDSで元素分析し、化学量論組成を仮定して酸化物量に換算し、酸化物系介在物の平均組成を求めた。   From the obtained galvannealed steel sheet or hot dip galvanized steel sheet, a specimen for SEM observation was collected, and the longitudinal section parallel to the rolling direction was polished and then observed using SEM. 10 to 20 oxide inclusions with a major axis of 1 μm or more existing in the range of 1/4 or more of the plate thickness from the interface between the steel plate base metal and the plating layer are randomly selected, and the EDS installed in the SEM Elemental analysis was performed, and the stoichiometric composition was assumed to be converted into an oxide amount, and the average composition of oxide inclusions was determined.

降伏応力(YS)、引張強度(TS)および全伸びは、圧延方向からJIS5号引張試験片を採取し、引張試験を行うことにより求めた。r値は、圧延方向(0°方向)、圧延方向と45°をなす方向(45°方向)、および圧延方向と直行する方向(90°方向)から採取したJIS5号引張試験片に引張試験を行い、0°方向のr値(r0°値)、45°方向のr値(r45°値)、90°方向のr値(r90°値)を用いて、上記式(5)に基づき平均r値を求めた。 Yield stress (YS), tensile strength (TS), and total elongation were determined by taking a JIS No. 5 tensile test piece from the rolling direction and conducting a tensile test. The r value is a tensile test performed on a JIS No. 5 tensile specimen taken from the rolling direction (0 ° direction), the direction forming 45 ° with the rolling direction (45 ° direction), and the direction orthogonal to the rolling direction (90 ° direction). Using the r value in the 0 ° direction (r 0 ° value), the r value in the 45 ° direction (r 45 ° value), and the r value in the 90 ° direction (r 90 ° value), Based on the average r value.

表面性状は、得られた合金化溶融亜鉛めっき鋼板または溶融亜鉛めっき鋼板の表面を目視にて観察し、筋模様およびヘゲ、スリバー等の表面疵発生の有無により評価した。   The surface properties were evaluated by visually observing the surface of the obtained alloyed hot-dip galvanized steel sheet or hot-dip galvanized steel sheet, and the presence or absence of surface defects such as streaks and shave and sliver.

表5に酸化物系介在物の組成分析および性能評価結果を示した。本発明が規定する範囲内の鋼板についての試験結果(試番12〜15)は、いずれも、表面性状は良好であり、また、平均r値は1.80以上であり良好な深絞り性を示した。   Table 5 shows the composition analysis and performance evaluation results of the oxide inclusions. As for the test results (test numbers 12 to 15) for the steel sheets within the range defined by the present invention, the surface properties are all good, and the average r value is 1.80 or more and good deep drawability. Indicated.

Figure 2010059475
Figure 2010059475

鋼組成および酸化物系介在物組成が、本発明の規定する範囲から外れる鋼(鋼P、Q、S)を用いて製造された冷延鋼板の試験結果(試番16、17、19)は、表面性状とr値のいずれか、もしくは双方が劣っていた。   The test results (trial numbers 16, 17, 19) of cold-rolled steel sheets manufactured using steels (steel P, Q, S) whose steel composition and oxide inclusion composition deviate from the range defined by the present invention are as follows: Either the surface property and the r value or both were inferior.

具体的には、鋼Pを用いた試験(試番16)は、鋼中のsol.Al含有量が多く、酸化物系介在物中のTi酸化物の含有量が少ないためにr値が低い。鋼Qを用いた試験(試番17)は、鋼中のsol.Al含有量が多く、酸化物系介在物中のTi酸化物の含有量が少ないためにr値が低く、また、鋼中のsol.Ti量が多いために、めっき表面に筋模様が発生し表面性状が悪い。鋼Sを用いた試験(試番19)は、鋼中のO含有量が多いために、スリバー疵が発生し、表面性状が悪い。   Specifically, the test using steel P (trial number 16) was conducted using sol. Since the Al content is large and the Ti oxide content in the oxide inclusions is small, the r value is low. The test using steel Q (trial number 17) was conducted using sol. Since the Al content is large and the content of Ti oxide in the oxide inclusion is small, the r value is low, and the sol. Since the amount of Ti is large, a streak pattern is generated on the plating surface, resulting in poor surface properties. In the test using steel S (Test No. 19), since the O content in the steel is large, sliver flaws are generated and the surface properties are poor.

試番18は、鋼組成は、本発明の規定する範囲内であるが、Ti調整前の溶存酸素濃度が低く、酸化物系介在物中のTi含有量が少ないためにr値が低かった。また、スリバー疵が発生し、表面性状が不良であった。さらに、連続鋳造工程におけるスライディングノズルの開度上昇が大きく、このため多数回の連続鋳造を安定的に行うことが困難であった。   In trial No. 18, the steel composition was within the range defined by the present invention, but the r value was low because the dissolved oxygen concentration before Ti adjustment was low and the Ti content in the oxide inclusions was small. In addition, sliver wrinkles occurred and the surface properties were poor. Further, the increase in the opening of the sliding nozzle in the continuous casting process is large, and thus it has been difficult to stably perform a number of continuous castings.

酸化物系介在物中のNb酸化物の含有量(NbO)と鋼中のSi含有量の関係を示すグラフである。It is a graph which shows the relationship between content (NbO) of Nb oxide in an oxide type inclusion, and Si content in steel. 平均r値と(Ti/48+Nb/93)/(C/12+N/14)の関係を示すグラフである。It is a graph which shows the relationship between an average r value and (Ti * / 48 + Nb / 93) / (C / 12 + N * / 14).

Claims (5)

質量%で、C:0.0005%以上0.010%未満、Si:0.020%超0.40%以下、Mn:2.50%以下、P:0.10%以下、S:0.010%未満、sol.Al:0.0050%未満、N:0.005%以下、sol.Ti:0.020%以下、Nb:0.010%以上0.20%以下およびO:0.015%以下を含有し、さらにsol.TiおよびNbの含有量が下記式(1)〜(3)を満足し、残部がFeおよび不純物からなる化学組成を有し、酸化物系介在物中のTi酸化物の含有量がTiO換算で50.0質量%以上でありNb酸化物の含有量がNbO換算で1.0質量%未満である鋼板の表面に溶融亜鉛めっき層を備えることを特徴とする溶融亜鉛めっき鋼板。
1.0<(Ti/48+Nb/93)/(C/12+N/14) (1)
Ti=max[sol.Ti−(48/14)×N,0] (2)
=max[N−(14/48)×sol.Ti,0] (3)
ここで、各式中の元素記号は、鋼中での各元素の含有量を質量%にて表したものであり、max[ ]は[ ]内の引数の最大値を返す関数である。
In mass%, C: 0.0005% or more and less than 0.010%, Si: more than 0.020% and 0.40% or less, Mn: 2.50% or less, P: 0.10% or less, S: 0.00. Less than 010%, sol. Al: less than 0.0050%, N: 0.005% or less, sol. Ti: 0.020% or less, Nb: 0.010% or more and 0.20% or less, and O: 0.015% or less. The content of Ti and Nb satisfies the following formulas (1) to (3), the balance has a chemical composition consisting of Fe and impurities, and the content of Ti oxide in the oxide inclusions is TiO 2 equivalent A hot dip galvanized steel sheet comprising a hot dip galvanized layer on the surface of a steel sheet having a Nb oxide content of less than 1.0 mass% in terms of NbO.
1.0 <(Ti * / 48 + Nb / 93) / (C / 12 + N * / 14) (1)
Ti * = max [sol. Ti- (48/14) × N, 0] (2)
N * = max [N− (14/48) × sol. Ti, 0] (3)
Here, the element symbol in each formula represents the content of each element in steel in mass%, and max [] is a function that returns the maximum value of arguments in [].
前記化学組成が、Feの一部に代えて、質量%で、B:0.0002%以上0.0020%以下を含有し、かつ、前記式(3)に代えて下記式(4)を満足するものであることを特徴とする請求項1に記載の溶融亜鉛めっき鋼板。
=max[N−(14/48)×sol.Ti−(14/11)×B,0] (4)
ここで、式中の元素記号は、鋼中での各元素の含有量を質量%にて表したものであり、max[ ]は[ ]内の引数の最大値を返す関数である。
The chemical composition contains, in mass%, B: 0.0002% or more and 0.0020% or less instead of part of Fe, and satisfies the following formula (4) instead of the formula (3) The hot-dip galvanized steel sheet according to claim 1, wherein
N * = max [N− (14/48) × sol. Ti- (14/11) × B, 0] (4)
Here, the element symbol in the formula represents the content of each element in the steel in mass%, and max [] is a function that returns the maximum value of the arguments in [].
前記化学組成が、Feの一部に代えて、Cr,Mo,WおよびNiからなる群から選択される1種または2種以上を、合計で2.0質量%以下含有するものであることを特徴とする請求項1または2に記載の溶融亜鉛めっき鋼板。   The chemical composition contains at least 2.0% by mass in total of one or more selected from the group consisting of Cr, Mo, W and Ni instead of part of Fe. The hot-dip galvanized steel sheet according to claim 1 or 2. 真空脱ガス装置を用いて脱炭精錬した溶鋼にTiを添加し、連続鋳造して請求項1ないし3のいずれかに記載の化学組成および酸化物系介在物組成を有する鋼塊とし、該鋼塊を熱間圧延し、冷間圧延し、再結晶焼鈍し、溶融亜鉛めっき処理を行うことを特徴とする溶融亜鉛めっき鋼板の製造方法。   A steel ingot having a chemical composition and an oxide inclusion composition according to any one of claims 1 to 3, wherein Ti is added to molten steel decarburized and refined using a vacuum degassing apparatus and continuously cast, A method for producing a hot dip galvanized steel sheet, characterized by hot rolling a lump, cold rolling, recrystallization annealing, and hot dip galvanizing treatment. 真空脱ガス装置を用いて脱炭精錬した溶鋼にAlを添加して溶存酸素濃度を0.003質量%以上に制御した後、さらにTiを添加し、連続鋳造して請求項1ないし3のいずれかに記載の化学組成および酸化物系介在物組成を有する鋼塊とし、該鋼塊を熱間圧延し、冷間圧延し、再結晶焼鈍し、溶融亜鉛めっき処理を行うことを特徴とする溶融亜鉛めっき鋼板の製造方法。   4. After adding Al to the molten steel decarburized and refined using a vacuum degassing apparatus to control the dissolved oxygen concentration to 0.003% by mass or more, further adding Ti and continuously casting to perform any one of claims 1 to 3 A steel ingot having a chemical composition and an oxide inclusion composition as described above, and the steel ingot is hot-rolled, cold-rolled, recrystallized, and hot-dip galvanized. Manufacturing method of galvanized steel sheet.
JP2008226065A 2008-09-03 2008-09-03 Hot-dip galvanized steel sheet and manufacturing method thereof Active JP4525814B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008226065A JP4525814B2 (en) 2008-09-03 2008-09-03 Hot-dip galvanized steel sheet and manufacturing method thereof
CN200980143822.2A CN102203312B (en) 2008-09-03 2009-08-31 Steel sheet, hot-dip zinc-coated steel sheet and processes for production of same
PCT/JP2009/065155 WO2010026934A1 (en) 2008-09-03 2009-08-31 Steel sheet, hot-dip zinc-coated steel sheet and processes for production of same
KR1020117007257A KR101291387B1 (en) 2008-09-03 2009-08-31 Steel sheet, hot-dip zinc-coated steel sheet and processes for production of same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008226065A JP4525814B2 (en) 2008-09-03 2008-09-03 Hot-dip galvanized steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010059475A true JP2010059475A (en) 2010-03-18
JP4525814B2 JP4525814B2 (en) 2010-08-18

Family

ID=42186603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008226065A Active JP4525814B2 (en) 2008-09-03 2008-09-03 Hot-dip galvanized steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4525814B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113817962A (en) * 2021-08-26 2021-12-21 包头钢铁(集团)有限责任公司 Galvanized high-strength IF steel strip for connecting plate of edge beam of automobile wheel cover and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002220636A (en) * 2000-11-27 2002-08-09 Sumitomo Metal Ind Ltd Extra low-carbon thin steel sheet and manufacturing method therefor
JP2004156116A (en) * 2002-11-07 2004-06-03 Sumitomo Metal Ind Ltd Thin steel sheet and deoxidation method for molten steel for thin steel sheet
JP2006336097A (en) * 2005-06-06 2006-12-14 Nippon Steel Corp Steel sheet to be galvannealed with superior bake hardenability, and galvannealed steel sheet
JP2007186744A (en) * 2006-01-12 2007-07-26 Nippon Steel Corp Continuously cast slab for steel sheet and method for producing the same, and steel sheet and method for producing the same
JP2007231371A (en) * 2006-03-01 2007-09-13 Sumitomo Metal Ind Ltd Cold-rolled steel sheet, galvanized steel sheet, and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002220636A (en) * 2000-11-27 2002-08-09 Sumitomo Metal Ind Ltd Extra low-carbon thin steel sheet and manufacturing method therefor
JP2004156116A (en) * 2002-11-07 2004-06-03 Sumitomo Metal Ind Ltd Thin steel sheet and deoxidation method for molten steel for thin steel sheet
JP2006336097A (en) * 2005-06-06 2006-12-14 Nippon Steel Corp Steel sheet to be galvannealed with superior bake hardenability, and galvannealed steel sheet
JP2007186744A (en) * 2006-01-12 2007-07-26 Nippon Steel Corp Continuously cast slab for steel sheet and method for producing the same, and steel sheet and method for producing the same
JP2007231371A (en) * 2006-03-01 2007-09-13 Sumitomo Metal Ind Ltd Cold-rolled steel sheet, galvanized steel sheet, and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113817962A (en) * 2021-08-26 2021-12-21 包头钢铁(集团)有限责任公司 Galvanized high-strength IF steel strip for connecting plate of edge beam of automobile wheel cover and preparation method thereof

Also Published As

Publication number Publication date
JP4525814B2 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
JP5884714B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
CN110177896B (en) Steel sheet and method for producing same
KR101923327B1 (en) High strength galvanized steel sheet and production method therefor
US9771638B2 (en) Cold-rolled steel sheet
JP5839152B1 (en) Method for producing high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet
JP5504737B2 (en) High-strength hot-dip galvanized steel strip excellent in formability with small variations in material within the steel strip and method for producing the same
JP5391607B2 (en) High-strength hot-dip galvanized steel sheet with excellent appearance and method for producing the same
JP4525813B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP4345827B2 (en) High-strength cold-rolled steel sheet, high-strength galvannealed steel sheet, and production method thereof
JP4360319B2 (en) High tensile hot dip galvanized steel sheet and its manufacturing method
CN107849662B (en) Cold-rolled steel sheet, plated steel sheet, and method for producing same
JP5768405B2 (en) Steel sheet and manufacturing method thereof
JP5332547B2 (en) Cold rolled steel sheet
JP4998365B2 (en) Ultra-low carbon steel sheet and manufacturing method thereof
JP4525814B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP2004211140A (en) Hot-dip galvanized steel sheet and manufacturing method therefor
JP4525815B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP5239652B2 (en) High tensile cold-rolled steel sheet
WO2010026934A1 (en) Steel sheet, hot-dip zinc-coated steel sheet and processes for production of same
KR101169510B1 (en) Cold-rolled steel sheet, galvannealed steel sheet and processes for production of both
JP4962333B2 (en) High strength galvannealed steel sheet
TWI460287B (en) Galvannealed steel sheet and producing method thereof
WO2024053729A1 (en) Steel plate
JP2023553485A (en) Plated steel sheet with excellent strength, formability and surface quality, and its manufacturing method
CN115198207A (en) Zinc-aluminum-magnesium coating hot-rolled complex phase steel and matrix steel and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091217

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100303

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4525814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350