WO2024053729A1 - Steel plate - Google Patents

Steel plate Download PDF

Info

Publication number
WO2024053729A1
WO2024053729A1 PCT/JP2023/032812 JP2023032812W WO2024053729A1 WO 2024053729 A1 WO2024053729 A1 WO 2024053729A1 JP 2023032812 W JP2023032812 W JP 2023032812W WO 2024053729 A1 WO2024053729 A1 WO 2024053729A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
martensite
content
steel plate
area ratio
Prior art date
Application number
PCT/JP2023/032812
Other languages
French (fr)
Japanese (ja)
Inventor
克哉 中野
諭 弘中
真衣 永野
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Publication of WO2024053729A1 publication Critical patent/WO2024053729A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to a steel plate, and more particularly, to a steel plate with an excellent appearance and a tensile strength of 400 MPa or more, which is mainly used as an outer panel member of an automobile, for example.
  • Patent Document 1 in mass %, C: 0.02 to 0.3%, Si: 0.1 to 2.0%, Mn: less than 1.0%, Cr: more than 1.0 to 3.0%. 0%, P: 0.02% or less, S: 0.02% or less, Al: 0.014% or less, N: 0.001 to 0.008%, and 2.5 ⁇ 1.5Mn %+Cr%, 4.1-2.3Mn%-1.2Cr% ⁇ Si%, and the steel sheet for hot-dip galvanizing is characterized in that the balance is Fe and unavoidable impurities.
  • Patent Document 1 teaches that by optimizing the amounts of Mn, Cr, and Si added, it is possible to achieve both workability and post-processing appearance of a hot-dip galvanized steel sheet having a tensile strength of 390 MPa or more. Furthermore, in Patent Document 1, by setting the area ratio of ferrite, which is the main phase, to 70% or more and setting the area ratio of the hard second phase containing martensite to 30% or less, strength, yield strength, yield ratio, - It is taught that it is possible to achieve a good range of all ductility balances.
  • Patent Document 2 in mass%, C: 0.0005 to 0.01%, Si: 0.2% or less, Mn: 0.1 to 1.5%, P: 0.03% or less, S: 0 .005 to 0.03%, Ti: 0.02 to 0.1%, Al: 0.01 to 0.05%, N: 0.005% or less, Sb: 0.03% or less, Cu: 0.
  • the content (mass%) of Ti element contained in precipitates with a size of less than 20 nm in the surface layer part of the plate thickness up to 10 ⁇ m from each surface is 9% or less of the total Ti content (mass%) in the steel plate.
  • a cold-rolled steel sheet is described that is characterized by:
  • the content (mass%) of Ti element contained in precipitates with a size of less than 20 nm in the surface layer part of the plate thickness up to 10 ⁇ m from each surface of both sides of the steel plate is calculated as the total Ti content (mass%) in the steel plate. %) to 9% or less, it is possible to avoid appearance unevenness caused by such fine Ti-based precipitates and obtain a cold-rolled steel sheet with excellent surface properties. It has been taught that this method can be suitably used for parts that require excellent post-molding surface quality, mainly automobile outer panels.
  • Patent Document 1 discusses improving formability and appearance after forming mainly from the viewpoint of chemical composition, but from the viewpoint of making the metal structure appropriate, Sufficient consideration has not necessarily been given. Therefore, with the steel sheets of the prior art, there is still room for improvement in terms of formability and improved appearance after forming.
  • an object of the present invention is to provide a steel plate that can achieve both strength, formability, and appearance after forming using a novel configuration.
  • the present inventors conducted studies focusing on the distribution state of martensite in addition to optimizing the proportion of martensite, which is a hard structure, in the metal structure. As a result, the present inventors were able to uniformly disperse martensite, which is included in a predetermined proportion in the metal structure, in both the micro and macro areas of the metal structure, thereby improving the structure based on such a hard structure. In addition to achieving the desired high strength and formability, the present inventors have discovered that the formation of minute irregularities on the steel plate surface is significantly suppressed even when strain is applied by press forming, etc., and the present invention has been completed. .
  • the gist of the invention is as follows. (1) In mass%, C: 0.03-0.08%, Si: 0.01-1.00%, Mn: 0.50-3.00%, P: 0.1000% or less, S: 0.0200% or less, Al: 1.000% or less, N: 0.0200% or less, O: 0 to 0.020%, Cr: 0-2.000%, Mo: 0-1.000%, Ti: 0 to 0.500%, Nb: 0 to 0.500%, B: 0 to 0.0100%, Cu: 0 to 1.000%, Ni: 0 to 1.00%, W: 0-0.100%, V: 0-1.000%, Ta: 0-0.100%, Co: 0-3.000%, Sn: 0-1.000%, Sb: 0 to 0.500%, As: 0 to 0.050%, Mg: 0 to 0.050%, Zr: 0 to 0.050%, Ca: 0-0.0500%, Y: 0 to 0.0500%, La: 0 to 0.0500%, Ce:
  • the chemical composition is in mass%; Cr: 0.001-2.000%, Mo: 0.001 to 1.000%, Ti: 0.001 to 0.500%, Nb: 0.001-0.500%, B: 0.0001 to 0.0100%, Cu: 0.001 to 1.000%, Ni: 0.001 to 1.00%, W: 0.001-0.100%, V: 0.001-1.000%, Ta: 0.001 to 0.100%, Co: 0.001 to 3.000%, Sn: 0.001 to 1.000%, Sb: 0.001 to 0.500%, As: 0.001 to 0.050%, Mg: 0.0001-0.050%, Zr: 0.0001 to 0.050%, Ca: 0.0001-0.0500%, Y: 0.0001-0.0500%, La: 0.0001 to 0.0500%, Ce: 0.0001 to 0.0500%, and Bi: 0.0001 to 0.0500%
  • the steel plate according to the embodiment of the present invention has, in mass%, C: 0.03-0.08%, Si: 0.01-1.00%, Mn: 0.50-3.00%, P: 0.1000% or less, S: 0.0200% or less, Al: 1.000% or less, N: 0.0200% or less, O: 0 to 0.020%, Cr: 0-2.000%, Mo: 0-1.000%, Ti: 0-0.500%, Nb: 0 to 0.500%, B: 0 to 0.0100%, Cu: 0-1.000%, Ni: 0 to 1.00%, W: 0-0.100%, V: 0-1.000%, Ta: 0-0.100%, Co: 0-3.000%, Sn: 0-1.000%, Sb: 0 to 0.500%, As: 0 to 0.050%, Mg: 0 to 0.050%, Zr: 0 to 0.050%, Ca: 0-0.0500%, Y: 0 to 0.0500%, La: 0 to 0.0500%
  • DP steel composite structure steel
  • a soft structure consisting of ferrite and a hard structure consisting of martensite coexist non-uniform deformation occurs where the soft structure and its surroundings are preferentially deformed during processing such as press forming, and the steel plate after forming
  • the appearance of minute irregularities on the surface may cause appearance defects called ghost lines.
  • the soft tissue made of ferrite is greatly deformed and dented, while the hard tissue made of martensite is deformed small.
  • Mn is an element that tends to segregate in the form of streaks in steel sheets. More specifically, during casting, Mn-enriched regions such as center segregation and micro-segregation are formed, and during hot rolling and cold rolling, Mn enriched regions are formed in the rolling direction. By being stretched, Mn segregates into streaks.
  • the present inventors first achieved the desired high strength by optimizing the chemical composition of the steel sheet and optimizing the ratio of ferrite, which is a soft structure, and martensite, which is a hard structure, in the metal structure.
  • the present inventors focused on the distribution state of martensite, which is a hard structure in the metal structure, and more specifically, controlled the distribution of martensite from a different perspective than reducing Mn segregation.
  • the present inventors configure the metal structure in the steel sheet before final annealing with bainite and/or martensite, and then add such metal structure to the steel sheet.
  • the average particle spacing of martensite should be controlled to 2.5 ⁇ m or less. It is necessary to satisfy both the requirements of controlling the standard deviation in the area ratio of martensite in the direction perpendicular to the rolling direction and the plate thickness direction to 1.5% or less.
  • the martensitic structure further has substructures such as packets, blocks, and laths within the prior austenite grains, and therefore has many different internal interfaces compared to structures such as ferrite. It is an organization that has Like martensite, bainite is also a structure that has many various interfaces inside.
  • the interface between these can become a nucleation site for austenite. It becomes possible to disperse and generate a very large amount of carbide. Therefore, it is considered possible to generate austenite finely and uniformly over the entire steel plate by generating a large amount of carbide on the interface and then heating the temperature to a two-phase region of ferrite and austenite. Finally, by rapidly cooling a steel sheet with such a metal structure, martensite is generated from these austenites, so the average particle spacing of martensite is controlled to 2.5 ⁇ m or less in the final metal structure.
  • the standard deviation in the area ratio of martensite in the direction perpendicular to the rolling direction and the plate thickness direction is controlled to be 1.5% or less.
  • a metal structure in which martensite is uniformly dispersed in both micro and macro regions can be obtained. It is thought that by performing such heat treatment, it becomes possible to disperse martensite finely and uniformly throughout the steel sheet to the extent that the influence of Mn segregation is negated. Conventionally, it has been common to consider the distribution control of hard structures from the perspective of reducing Mn segregation itself, so it is not necessary to depend on the presence or degree of Mn segregation. The fact that martensite can be uniformly dispersed in both the micro and macro regions is quite surprising and surprising.
  • good formability is ensured by controlling the area ratio of ferrite, which is a soft structure, to 80 to 95%, and at the same time, good formability is ensured, and the area ratio of ferrite, which is a soft structure, is controlled to 80 to 95%.
  • the area ratio of martensite to 5 to 20% and further controlling the chemical composition of the steel plate within a predetermined range, a high tensile strength of 400 MPa or more can be ensured. As a result, it becomes possible to achieve a high level of both strength, moldability, and appearance after molding.
  • each component of the steel plate according to the embodiment of the present invention will be explained in more detail.
  • the tissue fraction will be expressed as an area ratio, so the unit of tissue fraction "%" means area %.
  • the metallographic structure is controlled in the 1/4th part of the thickness of the steel plate.
  • the 1/4th part of the thickness of the steel plate means the area between the plane at a depth of 1/8 of the thickness of the steel plate and the plane at a depth of 3/8 of the thickness from the rolling surface of the steel plate.
  • all tissue fractions mean values at 1/4 part of the plate thickness.
  • ferrite Since ferrite has a soft structure, it is easily deformed and contributes to improving elongation.
  • the area ratio of ferrite is 80% or more, sufficient formability can be obtained. From the viewpoint of improving formability, the higher the area ratio of ferrite is, the more preferable it is, and may be, for example, 82% or more, 85% or more, 87% or more, or 90% or more.
  • the area ratio of ferrite is set to 95% or less.
  • the area ratio of ferrite may be 94% or less or 92% or less.
  • Martensite has a high dislocation density and is a hard structure, so it is a structure that contributes to improving tensile strength.
  • a tensile strength of 400 MPa or more can be ensured.
  • the area ratio of martensite is 20% or less, moldability and appearance can be ensured.
  • the area ratio of martensite may be 17% or less or 15% or less.
  • "martensite” includes not only as-quenched martensite (so-called fresh martensite) but also tempered martensite.
  • the residual structure other than ferrite and martensite may have an area ratio of 0%, but when the residual structure exists, the residual structure is at least one of bainite, pearlite, and retained austenite.
  • the area ratio of at least one of residual structures, ie, bainite, pearlite, and retained austenite is set to be 10% or less in total, for example, 8% or less, 6% or less, 4% or less. % or less, 3% or less, or 2% or less.
  • the area percentage of retained austenite may be between 0 and 3%.
  • the area percentage of retained austenite may be 2% or less, 1% or less, 0.5% or less, 0.3% or less, or 0.1% or less.
  • setting the area ratio of the remaining structure to 0% requires sophisticated control in the manufacturing process of the steel plate, which may lead to a decrease in yield. Therefore, the area ratio of the remaining tissue may be 0.5% or more or 1% or more.
  • Identification of metal structure and calculation of area ratio are performed using FE-SEM (measured using a field emission scanning electron microscope, e.g., JEOL JSM-7200F, accelerating voltage 15 kV) after corrosion using nital reagent or Repeller liquid. This is carried out using an optical microscope and X-ray diffraction method. Structure observation using FE-SEM and an optical microscope is performed at a magnification of 1,000 to 50,000 times on a 100 ⁇ m ⁇ 100 ⁇ m area in a steel plate cross section parallel to the rolling direction and perpendicular to the plate surface. For each metal structure, measurement points are set at three locations, and the area ratio is determined by calculating the average value of the measured values.
  • FE-SEM measured using a field emission scanning electron microscope, e.g., JEOL JSM-7200F, accelerating voltage 15 kV
  • the measurement length in the plate thickness direction is set to 10 ⁇ m or more, preferably 50 ⁇ m or more. The same applies to the "100 ⁇ m x 100 ⁇ m area" in the following description.
  • the area ratio of ferrite is within the range of 1/8th position to 3/8th position of the plate thickness, centered at the 1/4th position of the plate thickness, in an electron channeling contrast image by FE-SEM (field emission scanning electron microscope). It is determined by observing a 100 ⁇ m x 100 ⁇ m area. More specifically, it can be calculated by image analysis using image analysis software Image J.
  • the area ratio of martensite is determined by the following procedure. First, the observation surface of the sample is etched with repeller liquid, and then an area of 100 ⁇ m x 100 ⁇ m is observed using FE-SEM within the range of 1/8 to 3/8 of the plate thickness, centered at the 1/4 plate thickness position. do. In repeller corrosion, martensite and retained austenite are not corroded, so the area ratio of the uncorroded region corresponds to the total area ratio of martensite and retained austenite. Specifically, the image analysis software Image J was used to binarize the metal structure based on differences in brightness.The black part of the image data is ferrite, and the white part that has not been corroded by the repeller is martensite and retained austenite. Total organization.
  • the area ratio of martensite is calculated by subtracting the area ratio of retained austenite measured by the X-ray diffraction method, which will be described later, from the area ratio of this uncorroded region.
  • the area ratio of martensite determined by this method also includes the area ratio of tempered martensite.
  • the area ratio of retained austenite is calculated by X-ray diffraction method.
  • the sample is removed by mechanical polishing and chemical polishing from the surface of the sample to a depth of 1/4 in the thickness direction.
  • the integrated intensity ratio of the diffraction peaks of (200) and (211) of the bcc phase and (200), (220) and (311) of the fcc phase obtained using MoK ⁇ rays at a position of 1/4 of the plate thickness. From this, the tissue fraction of retained austenite is calculated. A general 5-peak method is used as this calculation method.
  • the calculated microstructure fraction of retained austenite is determined as the area fraction of retained austenite.
  • Bainite is identified in the following manner from the position and arrangement of cementite contained within the tissue in this observation region. Bainite is classified into upper bainite and lower bainite, and in upper bainite, cementite or retained austenite exists at the interface of lath-shaped bainitic ferrite.
  • bainite In lower bainite, cementite exists inside lath-like bainitic ferrite, and the crystal orientation relationship between bainitic ferrite and cementite is one type, and cementite has the same variant. Based on these characteristic points, upper bainite and lower bainite can be respectively identified. In the present invention, these are collectively referred to as bainite, and the area ratio of the identified bainite is calculated based on image analysis. Note that cementite is observed as a region with high brightness on the SEM image. By analyzing the chemical composition of cementite using energy dispersive X-ray spectroscopy (EDS), it can be confirmed that cementite is a carbonitride mainly composed of iron.
  • EDS energy dispersive X-ray spectroscopy
  • Identification of pearlite and calculation of area ratio are performed in the following steps. First, the observation surface of the sample is corroded with a nital reagent, and then a range from 1/8 to 3/8 of the plate thickness, centered at the 1/4 plate thickness position, is observed using an optical microscope. Images observed with an optical microscope are binarized based on differences in brightness, and areas where black and white areas are dispersed in a lamellar manner are identified as pearlite, and the area ratio of this area is calculated based on image analysis.
  • the image analysis software Image J was used to binarize the difference in brightness, and an image captured at a measurement magnification of 500 times including an imaging range of 100 ⁇ m x 100 ⁇ m was used to calculate the area of pearlite using a point counting method. Find the rate. In the above imaging range, draw 8 lines parallel to the rolling direction at equal intervals and 8 lines perpendicular to the rolling direction at equal intervals, and calculate the proportion of pearlite among the 64 intersections of these lines. It can be calculated as an area fraction.
  • the average particle spacing of martensite which is a hard structure
  • the average particle spacing of martensite is an index representing the uniformity of hard structure distribution in the micro region. The smaller the average particle spacing of martensite, the more densely and uniformly the hard structure is dispersed, and therefore, it can be said that the uniformity is higher.
  • the appearance of the steel plate after press forming becomes better as the amount of deformation of the steel plate during press forming is more uniform, especially in the width direction of the steel plate.
  • the amount of deformation of a steel plate is strongly influenced by the distribution of the hard structure, so in order to make the amount of deformation of the steel plate uniform in the width direction of the steel plate, it is necessary to make the distribution of the hard structure in the metal structure uniform. .
  • the amount of deformation of the steel plate in the width direction can be reduced even during forming such as press forming. As a result, a good appearance after molding can be achieved.
  • the average particle spacing of martensite is preferably 2.4 ⁇ m or less, more preferably 2.2 ⁇ m or less, most preferably 2.0 ⁇ m or less or 1.8 ⁇ m or less.
  • the lower limit is not particularly limited, for example, the average particle spacing of martensite may be 0.5 ⁇ m or more, 0.8 ⁇ m or more, or 1.0 ⁇ m or more.
  • the average particle spacing of martensite is determined as follows. First, a sample having a steel plate cross section in a direction parallel to the rolling direction and perpendicular to the plate surface is taken, and this cross section is used as an observation surface. On this observation surface, an area of 100 ⁇ m x 100 ⁇ m within the range of 1/8 to 3/8 of the plate thickness centered at the 1/4 position of the plate thickness was set as the observation area, and martensite was identified using FE-SEM. do. Specifically, using image analysis software Image J, the metal structure is binarized based on the difference in brightness, and martensite is identified.
  • the black part of the image data is ferrite, and the white part not corroded by repeller is the total structure of martensite and retained austenite.
  • the area ratio of retained austenite is sufficiently low compared to the area ratio of martensite, so the white structure can be regarded as martensite.
  • the distance between the centers (centers of gravity) of all adjacent martensite grains is calculated based on image analysis as the grain spacing, and the average value of the calculated grain spacing is Strictly speaking, it is determined as the average particle spacing of particles containing martensite and/or retained austenite.
  • the standard deviation in the area ratio of martensite in the direction perpendicular to the rolling direction and the plate thickness direction is 1.5% or less
  • the standard deviation in the area ratio of martensite in the direction perpendicular to the rolling direction and the plate thickness direction is controlled to be 1.5% or less.
  • the standard deviation is an index representing the uniformity of the hard tissue in the macro region. Appearance, which is an issue during press forming, depends on minute irregularities on the surface of the steel sheet due to differences in the amount of deformation in the width direction of the steel sheet.
  • the width of the steel plate can be improved even during forming such as press forming.
  • the standard deviation in the area ratio of martensite in the direction perpendicular to the rolling direction and the plate thickness direction is preferably 1.4% or less, more preferably 1.2% or less, and most preferably 1.0% or less.
  • the lower limit is not particularly limited, for example, the standard deviation may be 0.1% or more, 0.3% or more, or 0.5% or more.
  • the standard deviation in the area ratio of martensite in the direction perpendicular to the rolling direction and the plate thickness direction is determined as follows. First, a metallographic image in a cross section of a steel plate in a 50 mm area in a direction perpendicular to the rolling direction is obtained. In the case of an image of 10 mm or smaller, multiple images may be acquired and stitched together to form a 50 mm image. Next, the acquired image is divided into every 100 ⁇ m (0.1 mm) in the direction perpendicular to the rolling direction, and the area ratio of martensite in the entire plate thickness is calculated for each divided range.
  • the standard deviation of the martensite area ratio is calculated based on the martensite area ratio calculated from each of the 500 divided images in total. This operation is performed for three regions having different positions in the rolling direction, and the average value of the standard deviations determined for each region is determined as the standard deviation in the area ratio of martensite in the direction perpendicular to the rolling direction and the plate thickness direction.
  • the following method is adopted as a method for specifying the rolling direction of the steel plate.
  • the S concentration is measured using an electron probe micro analyzer (EPMA).
  • the measurement conditions are an accelerating voltage of 15 kV, a measurement pitch of 1 ⁇ m, and a distribution image in a 500 ⁇ m square range at the center of the plate thickness.
  • the stretched region with a high S concentration is determined to be an inclusion such as MnS.
  • % in chemical composition means mass %.
  • C is an element that secures a predetermined amount of martensite and improves the strength of the steel plate.
  • the C content is set to 0.03% or more.
  • the C content may be 0.04% or more or 0.05% or more.
  • the C content is set to 0.08% or less.
  • the C content may be 0.07% or less or 0.06% or less.
  • Si 0.01 to 1.00%
  • Si is an element that improves the strength of steel sheets through solid solution strengthening.
  • the Si content is set to 0.01% or more.
  • the Si content may be 0.05% or more, 0.10% or more, 0.20% or more, 0.30% or more, or 0.40% or more.
  • the Si content is set to 1.00% or less.
  • the Si content may be 0.90% or less, 0.80% or less, 0.70% or less, or 0.60% or less.
  • Mn is an element that improves hardenability and contributes to improving steel sheet strength.
  • the Mn content is set to 0.50% or more.
  • the Mn content may be 0.70% or more, 1.00% or more, 1.20% or more, or 1.50% or more.
  • the metal structure in the steel sheet before final annealing is changed in order to uniformly disperse martensite in both the micro and macro regions in the final metal structure. It must be composed of bainite and/or martensite. Therefore, improving hardenability by adding Mn is also important in improving the appearance after molding.
  • the Mn content is set to 3.00% or less.
  • the Mn content may be 2.80% or less, 2.50% or less, 2.20% or less, or 2.00% or less.
  • P is an impurity element, and is an element that causes embrittlement of the welded portion and deteriorates the plating properties. Therefore, the P content is set to 0.1000% or less.
  • the P content may be 0.0600% or less, 0.0200% or less, 0.0150% or less, or 0.0100% or less.
  • the lower the P content, the better, and the lower limit is not particularly limited and may be 0%.
  • the P content may be 0.0001% or more, 0.0002% or more, or 0.0005% or more.
  • S is an impurity element that inhibits weldability and also inhibits manufacturability during casting and hot rolling. Therefore, the S content is set to 0.0200% or less.
  • the S content may be 0.0150% or less, 0.0120% or less, 0.0100% or less, or 0.0080% or less.
  • the lower the S content, the better, and the lower limit is not particularly limited and may be 0%.
  • the S content may be 0.0001% or more, 0.0002% or more, or 0.0005% or more.
  • Al is an element that functions as a deoxidizing agent and is an effective element for increasing the strength of steel.
  • the Al content may be 0%, in order to fully obtain these effects, the Al content is preferably 0.001% or more.
  • the Al content may be 0.005% or more, 0.010% or more, 0.025% or more, or 0.050% or more.
  • the Al content is set to 1.000% or less.
  • the Al content may be 0.800% or less, 0.600% or less, or 0.300% or less.
  • N is an element that causes blowholes to occur during welding. Therefore, the N content is set to 0.0200% or less.
  • the N content may be 0.0180% or less, 0.0150% or less, 0.0100% or less, 0.0080% or less, or 0.0060% or less.
  • the lower the N content, the better, and the lower limit is not particularly limited and may be 0%.
  • the N content may be 0.0001% or more, 0.0002% or more, or 0.0005% or more.
  • O is an element that causes blowholes to occur during welding. Therefore, the O content is set to 0.020% or less.
  • the O content may be 0.018% or less, 0.015% or less, 0.010% or less, or 0.008% or less.
  • the lower the O content, the better, and the lower limit is not particularly limited and may be 0%.
  • the O content may be 0.0001% or more, 0.0002% or more, or 0.0005% or more.
  • the steel plate may contain at least one of the following optional elements in place of a portion of the remaining Fe for the purpose of improving properties, if necessary.
  • the steel plate has Cr: 0 to 2.000%, Mo: 0 to 1.000%, Ti: 0 to 0.500%, Nb: 0 to 0.500%, B: 0 to 0.0100%, Cu: 0-1.000%, Ni: 0-1.00%, W: 0-0.100%, V: 0-1.000%, Ta: 0-0.100%, Co: 0-3 .000%, Sn: 0-1.000%, Sb: 0-0.500%, As: 0-0.050%, Mg: 0-0.050%, Zr: 0-0.050%, Ca Contains at least one of: 0 to 0.0500%, Y: 0 to 0.0500%, La: 0 to 0.0500%, Ce: 0 to 0.0500%, and Bi: 0 to 0.0500%.
  • Cr 0-2.000%
  • Cr is an element that improves hardenability and contributes to improving the strength of the steel sheet.
  • the Cr content may be 0%, but in order to obtain the above effects, the Cr content is preferably 0.001% or more.
  • the Cr content may be 0.010% or more, 0.100% or more, or 0.200% or more.
  • the Cr content is preferably 2.000% or less, and may be 1.500% or less, 1.000% or less, or 0.500% or less.
  • Mo is an element that contributes to increasing the strength of the steel sheet. This effect can be obtained even with a small amount.
  • the Mo content may be 0%, in order to obtain the above effects, the Mo content is preferably 0.001% or more.
  • the Mo content may be 0.010% or more, 0.020% or more, 0.050% or more, or 0.100% or more.
  • the Mo content is preferably 1.000% or less.
  • the Mo content may be 0.800% or less, 0.400% or less, or 0.200% or less.
  • Ti is an element effective in controlling the morphology of carbides. Ti can help increase the strength of ferrite. Although the Ti content may be 0%, in order to obtain these effects, the Ti content is preferably 0.001% or more. The Ti content may be 0.002% or more, 0.010% or more, 0.020% or more, or 0.050% or more. On the other hand, even if Ti is contained excessively, the effect may be saturated and the manufacturing cost may increase. Therefore, the Ti content is preferably 0.500% or less, and may be 0.400% or less, 0.200% or less, or 0.100% or less.
  • Nb is an element effective in controlling the morphology of carbides, and is also effective in improving the toughness of steel sheets by refining the structure. These effects can be obtained even in minute amounts.
  • the Nb content may be 0%, in order to obtain the above effects, the Nb content is preferably 0.001% or more.
  • the Nb content may be 0.005% or more or 0.010% or more.
  • the Nb content is preferably 0.500% or less.
  • the Nb content may be 0.200% or less, 0.100% or less, or 0.060% or less.
  • B is an element that suppresses the formation of ferrite and pearlite and promotes the formation of martensite in the cooling process from austenite. Further, B is an element useful for increasing the strength of steel. These effects can be obtained even in minute amounts.
  • the B content may be 0%, but in order to obtain the above effects, the B content is preferably 0.0001% or more.
  • the B content may be 0.0005% or more or 0.0010% or more.
  • the B content is preferably 0.0100% or less.
  • the B content may be 0.0080% or less, 0.0050% or less, 0.0030% or less, or 0.0020% or less.
  • Cu is an element that contributes to improving the strength of steel sheets. This effect can be obtained even with a small amount.
  • the Cu content may be 0%, but in order to obtain the above effects, the Cu content is preferably 0.001% or more.
  • the Cu content may be 0.005% or more, 0.010% or more, or 0.050% or more.
  • the Cu content is preferably 1.000% or less.
  • the Cu content may be 0.800% or less, 0.600% or less, 0.300% or less, or 0.100% or less.
  • Ni is an element effective in improving the strength of steel sheets.
  • the Ni content may be 0%, in order to obtain the above effects, the Ni content is preferably 0.001% or more.
  • the Ni content may be 0.005% or more or 0.010% or more.
  • the Ni content is preferably 1.00% or less.
  • the Ni content may be 0.80% or less, 0.40% or less, or 0.20% or less.
  • W is an element effective in controlling the morphology of carbides and improving the strength of steel sheets.
  • the W content may be 0%, in order to obtain these effects, the W content is preferably 0.001% or more.
  • the W content may be 0.005% or more or 0.010% or more.
  • the W content is preferably 0.100% or less.
  • the W content may be 0.080% or less, 0.040% or less, or 0.020% or less.
  • V is an element effective in controlling the morphology of carbides, and is also effective in improving the toughness of steel sheets by refining the structure.
  • the V content may be 0%, in order to obtain the above effects, the V content is preferably 0.001% or more.
  • the V content may be 0.005% or more, 0.010% or more, or 0.050% or more.
  • the V content is preferably 1.000% or less.
  • the V content may be 0.400% or less, 0.200% or less, or 0.100% or less.
  • Ta is an element effective in controlling the morphology of carbides and improving the strength of steel sheets.
  • the Ta content may be 0%, but in order to obtain these effects, the Ta content is preferably 0.001% or more.
  • the Ta content may be 0.005% or more or 0.010% or more.
  • the Ta content is preferably 0.100% or less.
  • the Ta content may be 0.080% or less, 0.040% or less, or 0.020% or less.
  • Co is an element effective in improving the strength of steel sheets.
  • the Co content may be 0%, in order to obtain the above effects, the Co content is preferably 0.001% or more.
  • the Co content may be 0.005% or more, 0.010% or more, or 0.100% or more.
  • the Co content is preferably 3.000% or less.
  • the Co content may be 2.000% or less, 1.000% or less, 0.500% or less, or 0.200% or less.
  • Sn is an element that can be contained in a steel plate when scrap is used as a raw material for the steel plate. Furthermore, Sn may cause embrittlement of ferrite. Therefore, the Sn content is preferably as low as possible, and is preferably 1.000% or less. The Sn content may be 0.100% or less, 0.040% or less, or 0.020% or less. Although the Sn content may be 0%, reducing the Sn content to less than 0.001% causes an excessive increase in refining cost. Therefore, the Sn content may be 0.001% or more, 0.005% or more, or 0.010% or more.
  • Sb is an element that can be contained in a steel plate when scrap is used as a raw material for the steel plate. Furthermore, Sb strongly segregates at grain boundaries and may cause embrittlement of the grain boundaries. Therefore, the Sb content is preferably as low as possible, and is preferably 0.500% or less. The Sb content may be 0.100% or less, 0.040% or less, or 0.020% or less. Although the Sb content may be 0%, reducing the Sb content to less than 0.001% causes an excessive increase in refining cost. Therefore, the Sb content may be 0.001% or more, 0.005% or more, or 0.010% or more.
  • As is an element that can be contained in a steel plate when scrap is used as a raw material for the steel plate. Furthermore, As is an element that strongly segregates at grain boundaries, and the smaller the As content, the more preferable it is.
  • the As content is preferably 0.050% or less, and may be 0.040% or less or 0.020% or less. Although the As content may be 0%, reducing the As content to less than 0.001% causes an excessive increase in refining cost. Therefore, the As content may be 0.001% or more, 0.005% or more, or 0.010% or more.
  • Mg controls the morphology of sulfides and oxides and contributes to improving the bending formability of the steel sheet. This effect can be obtained even with a small amount.
  • the Mg content may be 0%, but in order to obtain the above effects, the Mg content is preferably 0.0001% or more.
  • the Mg content may be 0.0005% or more, 0.001% or more, or 0.005%.
  • the Mg content is preferably 0.050% or less.
  • the Mg content may be 0.040% or less, 0.020% or less, or 0.010% or less.
  • Zr is an element that can control the form of sulfide in trace amounts.
  • the Zr content may be 0%, but in order to obtain the above effects, the Zr content is preferably 0.0001% or more.
  • the Zr content may be 0.0005% or more, 0.001% or more, or 0.005% or more.
  • the Zr content is preferably 0.050% or less.
  • the Zr content may be 0.040% or less, 0.020% or less, or 0.010% or less.
  • Ca, Y, La, and Ce are elements that can control the form of sulfide in trace amounts.
  • the Ca, Y, La, and Ce contents may be 0%, but in order to obtain the above effects, it is preferable that the Ca, Y, La, and Ce contents are each 0.0001% or more, and 0.0005%.
  • the content may be 0.0010% or more, 0.0020% or more, or 0.0030% or more.
  • the Ca, Y, La, and Ce contents are each preferably 0.0500% or less, and may be 0.0200% or less, 0.0100% or less, or 0.0060% or less.
  • Bi is an element that has the effect of improving formability by making the solidified structure finer.
  • the Bi content may be 0%, but in order to obtain such an effect, the Bi content is preferably 0.0001% or more, 0.0005% or more, 0.0010% or more, or 0.0050%. % or more.
  • the Bi content is preferably 0.0500% or less, and may be 0.0400% or less, 0.0200% or less, or 0.0100% or less.
  • the remainder other than the above elements consists of Fe and impurities.
  • Impurities are elements that are mixed in from steel raw materials and/or during the steel manufacturing process and are allowed to exist within a range that does not impede the properties of the steel sheet according to the embodiment of the present invention.
  • the chemical composition of the steel plate according to the embodiment of the present invention may be measured by a general analysis method.
  • the chemical composition of the steel plate may be measured using inductively coupled plasma-atomic emission spectrometry (ICP-AES).
  • ICP-AES inductively coupled plasma-atomic emission spectrometry
  • C and S may be measured using a combustion-infrared absorption method, N using an inert gas melting-thermal conductivity method, and O using an inert gas melting-non-dispersive infrared absorption method.
  • the steel plate according to the embodiment of the present invention has a thickness of, for example, 0.2 to 2.0 mm, although it is not particularly limited.
  • a steel plate having such a thickness is suitable for use as a material for lid members such as automobile doors and hoods.
  • the plate thickness may be 0.3 mm or more or 0.4 mm or more.
  • the plate thickness may be 1.8 mm or less, 1.5 mm or less, 1.2 mm or less, or 1.0 mm or less.
  • the thickness of the steel plate is measured with a micrometer.
  • the steel plate according to the embodiment of the present invention may further have a plating layer on the surface for the purpose of improving corrosion resistance.
  • the plating layer may be any suitable plating layer, such as a hot-dip plating layer or an electroplating layer.
  • the hot-dip plating layer may be, for example, a hot-dip galvanized layer, a hot-dip zinc alloy plating layer (a hot-dip plating layer composed of an alloy of zinc and additional elements such as Si and Al), or an alloy formed by alloying these platings. It may be a hot dip galvanized layer (alloyed plating layer).
  • the hot-dip galvanized layer and the hot-dip zinc alloy plated layer are preferably plating layers containing less than 7% by mass of Fe, and the alloyed plating layer is a plating layer containing 7% by mass or more and 15% by mass or less of Fe. It is preferable that In the hot-dip galvanized layer, the hot-dip zinc alloy plated layer, and the alloyed plating layer, components other than zinc and Fe are not particularly limited, and various configurations can be adopted within a normal range. Furthermore, the plating layer may be, for example, an aluminum plating layer. Further, the amount of the plating layer to be deposited is not particularly limited and may be a general amount to be deposited.
  • high tensile strength specifically, a tensile strength of 400 MPa or more can be achieved.
  • the tensile strength is preferably 440 MPa or more or 480 MPa or more, more preferably 540 MPa or more or 600 MPa or more.
  • the upper limit is not particularly limited, for example, the tensile strength may be 980 MPa or less or 900 MPa or less.
  • excellent formability can be achieved, and more specifically, a total elongation of 20% or more can be achieved.
  • the total elongation is preferably 22% or more, more preferably 25% or more or 30% or more.
  • the upper limit is not particularly limited, for example, the total elongation may be 50% or less or 45% or less.
  • Tensile strength and total elongation are measured by conducting a tensile test in accordance with JIS Z 2241:2011 based on a JIS No. 5 test piece taken from a direction in which the longitudinal direction of the test piece is parallel to the rolling direction of the steel plate. .
  • the steel plate according to the embodiment of the present invention has high strength, specifically, a tensile strength of 400 MPa or more, it can maintain excellent formability and appearance even after forming such as press forming. Therefore, the steel sheet according to the embodiment of the present invention is very useful for use as outer panel members of automobiles, such as roofs, hoods, fenders, and doors, which require a high level of design, for example.
  • the method for manufacturing a steel plate according to an embodiment of the present invention includes: A hot rolling process comprising heating a slab having the chemical composition described above in connection with a steel plate to a temperature of 1100 to 1400°C for finish rolling and then winding at a temperature of 500 to 700°C, a hot rolling step in which the finishing temperature of the finish rolling is 800 to 1350°C; A pickling process of pickling the obtained hot rolled steel sheet, A cold rolling process in which pickled hot rolled steel sheets are cold rolled at a reduction rate of 20 to 90%; The step of primary annealing the obtained cold-rolled steel sheet, the primary annealing is to heat the cold-rolled steel sheet and hold it at a maximum heating temperature of 3 to 950°C for 10 to 500 seconds, and then to 500 to 950°C.
  • a primary annealing process that includes cooling to a cooling stop temperature of 350°C or less by controlling the average cooling rate in a temperature range of 700°C to 50°C/sec or more, and a secondary annealing of the cold rolled steel plate after the primary annealing.
  • the secondary annealing is a step of heating the cold-rolled steel sheet and holding it at a maximum heating temperature of (Ac1+20) to 820°C for 10 to 500 seconds, followed by average cooling in a temperature range of 500 to 700°C. It is characterized by including a secondary annealing step in which the cooling rate is controlled at 30° C./second or higher, and the average cooling rate in the temperature range of 200 to 500° C. is controlled to 40° C./second or higher. Each step will be explained in detail below.
  • a slab having the chemical composition described above in connection with steel plate is heated.
  • the slab used is preferably cast by a continuous casting method from the viewpoint of productivity, but may be manufactured by an ingot casting method or a thin slab casting method.
  • the slabs used contain relatively high amounts of alloying elements in order to obtain high strength steel sheets. For this reason, it is necessary to heat the slab to dissolve the alloying elements in the slab before hot rolling. If the heating temperature is less than 1100° C., the alloying elements will not be fully dissolved in the slab, leaving coarse alloy carbides, which may cause embrittlement cracking during hot rolling. For this reason, the heating temperature is preferably 1100°C or higher.
  • the upper limit of the heating temperature is not particularly limited, but is preferably 1400° C. or lower from the viewpoint of the capacity of the heating equipment and productivity.
  • the heated slab may be subjected to rough rolling before finish rolling in order to adjust the plate thickness or the like.
  • the conditions for rough rolling are not particularly limited as long as the desired sheet bar dimensions can be ensured.
  • the heated slab, or the optionally rough rolled slab is then subjected to finish rolling. Since the slab used as described above contains a relatively large amount of alloying elements, it is necessary to increase the rolling load during hot rolling. For this reason, hot rolling is preferably performed at a high temperature.
  • the finishing temperature of finish rolling is important in terms of controlling the metallographic structure of the steel sheet. If the finishing temperature of finish rolling is low, the metal structure may become non-uniform and formability may deteriorate. For this reason, the finishing temperature of finish rolling is set to 800°C or higher. On the other hand, in order to suppress coarsening of austenite, the finishing temperature of finish rolling is set to 1350° C. or lower.
  • the finish-rolled hot rolled steel sheet is wound up at a winding temperature of 500 to 700°C. The growth of oxide scale can be suppressed by setting the winding temperature to 500 to 700°C.
  • the obtained hot-rolled steel sheet is pickled to remove oxidized scale formed on the surface of the hot-rolled steel sheet.
  • Pickling may be carried out under conditions suitable for removing oxide scale, and may be carried out once or in multiple steps to ensure removal of oxide scale.
  • the pickled hot rolled steel sheet is cold rolled at a rolling reduction of 20 to 90% in a cold rolling process.
  • the rolling reduction ratio in cold rolling is set to 20% or more, the shape of the cold rolled steel sheet can be kept flat and a decrease in ductility in the final product can be suppressed.
  • the rolling reduction ratio in cold rolling is set to 90% or less, it is possible to prevent the rolling load from becoming excessive and making rolling difficult.
  • the number of rolling passes and the rolling reduction rate for each pass are not particularly limited, and may be appropriately set so that the rolling reduction rate of the entire cold rolling falls within the above range.
  • the obtained cold-rolled steel sheet is heated in the next primary annealing step, held at a maximum heating temperature of 3 to 950°C for 10 to 500 seconds, and then reduced to an average cooling rate of 50°C in the temperature range of 500 to 700°C.
  • the cooling temperature is controlled to be at least 350° C./sec to a cooling stop temperature of 350° C. or less.
  • the Ac3 point (°C) is determined by cutting out a small piece from a cold-rolled steel plate and from the thermal expansion of the small piece during heating from room temperature to 1000°C at 10°C/sec.
  • a structure mainly composed of martensite for example, full bainite or full martensite.
  • a structure mainly composed of bainite and/or martensite refers to a structure containing at least one of bainite and martensite in a total area ratio of 90% or more
  • full bainite is a structure containing at least one of bainite and martensite in an area ratio of 90% or more.
  • full martensite refers to a structure consisting of 100% martensite in terms of area ratio.
  • a bainite and/or martensitic structure has many different interfaces inside it, compared to a structure such as ferrite. Therefore, by making the metal structure of the steel sheet before the secondary annealing process, that is, the final annealing process, consist of bainite and/or martensite, the metal structure is heated at the stage of secondary annealing. It becomes possible to disperse and generate a large number of carbides that can serve as nucleation sites for austenite.
  • austenite is generated finely and uniformly throughout the steel sheet from these widely dispersed nucleation sites, and then martensite is generated from these austenites, so that in the metal structure obtained after secondary annealing,
  • the average particle spacing of martensite is controlled to be 2.5 ⁇ m or less, and the standard deviation in the area ratio of martensite in the direction perpendicular to the rolling direction and the plate thickness direction is controlled to be 1.5% or less. That is, it becomes possible to achieve a metal structure in which martensite is uniformly dispersed in both micro and macro regions.
  • the metal structure in the steel sheet before the final annealing (secondary annealing) process cannot be composed of a structure mainly composed of bainite and/or martensite.
  • the maximum heating temperature in the primary annealing process is less than 3 points Ac or the holding time is less than 10 seconds, the austenitization will be insufficient, and even if the steel sheet is cooled even after cooling.
  • the metal structure inside cannot be composed of a structure mainly composed of bainite and/or martensite. That is, the total area ratio of bainite and martensite cannot be made 90% or more.
  • the maximum heating temperature in the primary annealing step is set to 950° C. or lower, and the holding time is set to 500 seconds or lower.
  • the average cooling rate in the temperature range of 500 to 700°C in the primary annealing step is less than 50°C/second or the cooling stop temperature is over 350°C, ferrite will be generated during cooling and the The metal structure cannot have a total area ratio of bainite and martensite of 90% or more. Therefore, the average cooling rate needs to be 50°C/second or more, and the upper limit is preferably 300°C/second.
  • the lower limit of the cooling stop temperature is not particularly limited, and may be, for example, room temperature (25°C), and preferably 200°C.
  • the Ac1 point (°C) is determined by cutting out a small piece from a cold-rolled steel sheet and calculating the thermal expansion of the small piece during heating from room temperature to 1000°C at 10°C/sec, as in the case of the Ac3 point.
  • carbides are dispersed on many interfaces contained inside bainite and/or martensite in the metal structure. It can be generated by Next, by holding the maximum heating temperature corresponding to the two-phase region of ferrite and austenite for 10 to 500 seconds, austenite is transferred from the carbides to the entire steel sheet while maintaining the state in which the carbides are dispersed on the interface.
  • the average cooling rate in the temperature range of 500 to 700°C to 30°C/second or more and further controlling the average cooling rate in the temperature range of 200 to 500°C to 40°C/second or more, fine dispersion is achieved.
  • the average particle spacing of martensite can be controlled to 2.5 ⁇ m or less, and the area of martensite in the direction perpendicular to the rolling direction and the plate thickness direction can be appropriately generated.
  • the standard deviation in the ratio is controlled to 1.5% or less. In other words, it is possible to achieve a metal structure in which martensite is uniformly dispersed in both the micro and macro regions.
  • the maximum heating temperature in the secondary annealing step is less than Ac1+20°C or the holding time is less than 10 seconds, the desired metal structure as described above cannot be obtained, and in particular, martensite cannot be properly generated. I can't.
  • the maximum heating temperature exceeds 820° C., the area ratio of austenite becomes too high and the area ratio of ferrite cannot be increased to 80% or more. Furthermore, due to the high temperature, it is no longer possible to maintain the dispersed state of carbides on the interface, and the uniform dispersion of martensite in both the micro and macro regions is prevented in the final metal structure. be unable to achieve it.
  • the holding time exceeds 500 seconds, the austenite grains will become coarse, and the martensite grains obtained by subsequent cooling will also become relatively coarse. In such a case, it is not possible to obtain a fine martensite structure in which the average particle spacing of martensite is controlled to be 2.5 ⁇ m or less.
  • the average cooling rate in the temperature range of 500 to 700°C in the secondary annealing step is less than 30°C/second, the transformation from austenite to bainite etc. will be accelerated, and even if the subsequent cooling is performed appropriately, However, the desired amount of martensite may not be obtained. In this case, the desired strength cannot be achieved and/or a homogeneous distribution of martensite, especially in the microscopic region, cannot be achieved. Therefore, the average cooling rate in the temperature range of 500 to 700°C needs to be 30°C/second or more, and the upper limit is, for example, 200°C/second or less, preferably 60°C/second or less.
  • the average cooling rate in the temperature range of 200 to 500°C is less than 40°C/sec, the transformation from austenite to martensite cannot be promoted, and the formation of other structures such as bainite is similarly inhibited. It ends up being too many. Therefore, the average cooling rate in the temperature range of 200 to 500°C needs to be 40°C/second or more, and the upper limit is, for example, 200°C/second or less, preferably 80°C/second or less.
  • the steel plate according to the embodiment of the present invention is manufactured by two annealing treatments including primary annealing and secondary annealing. It is not necessarily limited to what is manufactured by, for example, it is also possible to manufacture by one annealing treatment. More specifically, by configuring the metal structure of the steel sheet after the hot rolling process to be full bainite or full martensite, it is possible to omit the primary annealing described above. However, in this case, it is necessary to appropriately control the cooling conditions and coiling temperature after hot rolling, and it is also important to control the rolling reduction in the subsequent cold rolling. This is because if the rolling reduction in cold rolling becomes high, recrystallization occurs during heating in the subsequent annealing process, making it impossible to maintain the metal structure formed in the hot rolling process.
  • the surface of the obtained cold rolled steel sheet may be subjected to plating treatment.
  • the plating process may be hot-dip plating, alloyed hot-dip plating, electroplating, or the like.
  • the steel plate may be subjected to hot-dip galvanizing treatment, or alloying treatment may be performed after hot-dip galvanizing treatment.
  • Specific conditions for the plating treatment and alloying treatment are not particularly limited, and may be any suitable conditions known to those skilled in the art.
  • the temperature of the plate immersed in the galvanizing bath ranges from 40°C lower than the hot-dip galvanizing bath temperature (hot-dip galvanizing bath temperature -40°C).
  • a temperature range of up to 50° C. higher than the hot-dip galvanizing bath temperature (hot-dip galvanizing bath temperature + 50° C.) is preferred.
  • alloying the hot-dip galvanized layer it is preferable to heat the steel plate on which the hot-dip galvanized layer is formed to a temperature in the range of 400 to 600°C.
  • steel plates according to embodiments of the present invention were manufactured under various conditions, and the tensile strength, formability, and appearance properties of the obtained steel plates were investigated.
  • molten steel was cast by a continuous casting method to form slabs having various chemical compositions shown in Table 1, and these slabs were heated to a predetermined temperature of 1100 to 1400°C and hot rolled.
  • Hot rolling was carried out by performing rough rolling and finish rolling, and the finish rolling temperature and coiling temperature were as shown in Table 2.
  • the obtained hot rolled steel sheets were pickled and then cold rolled at the rolling reduction ratio shown in Table 2 to obtain cold rolled steel sheets having a thickness of 0.4 mm.
  • the obtained cold rolled steel sheets were subjected to primary annealing and secondary annealing under the conditions shown in Table 2.
  • hot-dip galvanizing was appropriately performed as a plating treatment, and some of them were further alloyed at the alloying temperatures shown in Table 2.
  • the properties of the obtained steel plate were measured and evaluated by the following methods.
  • Tensile strength (TS) and total elongation (El) Tensile strength (TS) and total elongation (El) were determined by a tensile test in accordance with JIS Z 2241:2011 based on a JIS No. 5 test piece taken from a direction in which the longitudinal direction of the test piece was parallel to the rolling direction of the steel plate. It was measured by doing.
  • test piece taken from a specimen with a prestrain of 5% may be evaluated, and similar results can be obtained by such a test method.
  • test piece taken from a steel plate it is possible to evaluate a JIS No. 5 test piece whose longitudinal direction is perpendicular to the rolling direction and the plate thickness direction, with a pre-strain of 5%.
  • a steel plate with a tensile strength (TS) of 400 MPa or more, a total elongation (El) of 20% or more, and a passing evaluation of appearance after forming was evaluated as a steel plate that can achieve both strength, formability, and appearance after forming.
  • the results are shown in Table 3.
  • Comparative Example 16 the TS was too high due to the high C content, and the El was decreased.
  • Comparative Example 17 ferrite transformation was suppressed due to the high Mn content, and El was similarly reduced.
  • Comparative Example 18 the maximum heating temperature in the primary annealing step was low, resulting in insufficient austenitization, and even after subsequent cooling, the metal structure in the steel sheet was composed of a structure mainly composed of bainite and/or martensite. It is thought that it was not possible.
  • the average particle spacing of martensite in the metal structure obtained after secondary annealing is more than 2.5 ⁇ m, and the standard deviation of the area ratio of martensite in the direction perpendicular to the rolling direction and the plate thickness direction is 1.5 ⁇ m. %, and the appearance after molding deteriorated. It is considered that in Comparative Example 19, the cooling stop temperature of the primary annealing step was high, and therefore the transformation from austenite to bainite and/or martensite could not proceed sufficiently. As a result, the average particle spacing of martensite in the metal structure obtained after secondary annealing is more than 2.5 ⁇ m, and the standard deviation of the area ratio of martensite in the direction perpendicular to the rolling direction and the plate thickness direction is 1.
  • Comparative Example 21 since the maximum heating temperature in the secondary annealing step was high, austenitization progressed too much, and the desired amount of ferrite could not be obtained in the metal structure after cooling. Furthermore, a large amount of residual structure was generated, making it impossible to achieve uniform dispersion of martensite in both the micro and macro regions. As a result, both moldability and post-molding appearance deteriorated. It is thought that in Comparative Example 22, the holding time in the secondary annealing step was long, so that the austenite grains became coarse. As a result, the average particle spacing of martensite in the metal structure obtained after secondary annealing was more than 2.5 ⁇ m, and the appearance after molding was deteriorated.
  • the average cooling rate in the temperature range of 500 to 700°C in the secondary annealing step was low, so the transformation from austenite to bainite etc. was promoted, and the desired amount of martensite could not be obtained.
  • the average particle spacing of martensite in the metal structure obtained after secondary annealing was more than 2.5 ⁇ m, and the appearance after molding was deteriorated.
  • the average cooling rate in the temperature range of 200 to 500°C in the secondary annealing step was low, so the transformation from austenite to martensite could not be promoted, and similarly, a large amount of bainite was generated. Ta.
  • the metal structure in the steel sheet before the second annealing step could not be composed of a structure mainly composed of bainite and/or martensite.
  • the average particle spacing of martensite in the metal structure obtained after secondary annealing is more than 2.5 ⁇ m, and the standard deviation of the area ratio of martensite in the direction perpendicular to the rolling direction and the plate thickness direction is 1.5 ⁇ m. %, and the appearance after molding deteriorated.
  • the maximum heating temperature in the secondary annealing step was low, martensite could not be appropriately generated in the metal structure after cooling, and the desired TS could not be obtained.
  • the steel sheets according to all the invention examples have a predetermined chemical composition and furthermore, by appropriately controlling the proportions of ferrite and martensite in the metal structure, the steel sheets have a TS of 400 MPa or more and a TS of 20% or more.
  • the steel sheets have a TS of 400 MPa or more and a TS of 20% or more.
  • an El of By controlling the deviation to 1.5% or less, we were able to suppress the formation of minute irregularities on the steel plate surface and significantly suppress the generation of ghost lines even when strain was applied by press forming. .
  • all of them were composed of martensite with an area ratio of 90% or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

Provided is a steel plate characterized by having a predetermined chemical composition and having a metal structure including, in terms of area percentage, 80-95% of ferrite, 5-20% of martensite, and a total of 0-10% of at least one of bainite, pearlite, and retained austenite, and having the average grain spacing of martensite of 2.5 μm or less, and the standard deviation of 1.5% or less in the area ratio of martensite in the direction perpendicular to the rolling direction and the sheet thickness direction.

Description

鋼板steel plate
 本発明は、鋼板に関し、より詳しくは、例えば自動車の外板部材等が主たる用途の外観性に優れた引張強度400MPa以上の鋼板に関する。 The present invention relates to a steel plate, and more particularly, to a steel plate with an excellent appearance and a tensile strength of 400 MPa or more, which is mainly used as an outer panel member of an automobile, for example.
 自動車からの炭酸ガスの排出量を抑えるために、高強度鋼板を使用して、安全性を確保しながら自動車車体を軽量化する試みが進められている。このような自動車用鋼板の高強度化は、自動車骨格部品で顕著に進んでいるが、ドアやフードなどの外板部材では引張強度で300MPa以下の強度クラスの鋼板が主に使用されており、高強度化が進んでいない。このような外板部材には、高い成形性や外観性が求められる。一般に、鋼板の強度を高めると、成形性や成形後の外観性は低下する。したがって、高強度鋼板において、強度と成形性及び外観性、とりわけ成形後の外観性とを両立させることは困難である。従来、これらの課題を解決するために、いくつかの手段が提案されている。 In order to reduce carbon dioxide emissions from automobiles, attempts are being made to use high-strength steel plates to reduce the weight of automobile bodies while ensuring safety. The strength of automotive steel sheets has been significantly improved in automobile frame parts, but steel sheets with a tensile strength of 300 MPa or less are mainly used for exterior panel parts such as doors and hoods. No progress has been made in increasing strength. Such outer panel members are required to have high moldability and appearance. Generally, when the strength of a steel plate is increased, its formability and appearance after forming are reduced. Therefore, in high-strength steel sheets, it is difficult to achieve both strength, formability, and appearance, especially appearance after forming. Conventionally, several means have been proposed to solve these problems.
 例えば、特許文献1では、質量%で、C:0.02~0.3%、Si:0.1~2.0%、Mn:1.0%未満、Cr:1.0超~3.0%、P:0.02%以下、S:0.02%以下、Al:0.014%以下、N:0.001~0.008%を含有し、且つ、2.5≦1.5Mn%+Cr%、4.1-2.3Mn%-1.2Cr%≦Si%を満足し、残部Feおよび不可避不純物からなることを特徴とする溶融亜鉛めっき用鋼板が記載されている。また、特許文献1では、Mn、Cr、Siの添加量を最適化することによって、引張強度が390MPa以上の溶融亜鉛めっき用鋼板の加工性と加工後の外観を両立できることが教示されている。さらに、特許文献1では、主相であるフェライトの面積率を70%以上とし、マルテンサイトを含む硬質第2相の面積率を30%以下とすることで、強度、降伏強度、降伏比、強度-延性バランスの全てを良好な範囲とすることが可能になると教示されている。 For example, in Patent Document 1, in mass %, C: 0.02 to 0.3%, Si: 0.1 to 2.0%, Mn: less than 1.0%, Cr: more than 1.0 to 3.0%. 0%, P: 0.02% or less, S: 0.02% or less, Al: 0.014% or less, N: 0.001 to 0.008%, and 2.5≦1.5Mn %+Cr%, 4.1-2.3Mn%-1.2Cr%≦Si%, and the steel sheet for hot-dip galvanizing is characterized in that the balance is Fe and unavoidable impurities. Furthermore, Patent Document 1 teaches that by optimizing the amounts of Mn, Cr, and Si added, it is possible to achieve both workability and post-processing appearance of a hot-dip galvanized steel sheet having a tensile strength of 390 MPa or more. Furthermore, in Patent Document 1, by setting the area ratio of ferrite, which is the main phase, to 70% or more and setting the area ratio of the hard second phase containing martensite to 30% or less, strength, yield strength, yield ratio, - It is taught that it is possible to achieve a good range of all ductility balances.
 特許文献2では、mass%で、C:0.0005~0.01%、Si:0.2%以下、Mn:0.1~1.5%、P:0.03%以下、S:0.005~0.03%、Ti:0.02~0.1%、Al:0.01~0.05%、N:0.005%以下、Sb:0.03%以下、Cu:0.005%超0.03%以下であり、かつ、Ti*=(Ti%)-3.4×(N%)-1.5×(S%)-4×(C%)で示されるTi*を0<Ti*<0.02を満たす範囲で、さらに、(Sb%)≧(Cu%)/5を満たす範囲で含有し、残部はFeおよび不可避的不純物からなる成分組成を有し、鋼板両面において、各表面から10μmまでの板厚表層部における大きさ20nm未満の析出物に含まれるTi元素の含有量(mass%)が、鋼板中の全Ti含有量(mass%)の9%以下であることを特徴とする冷延鋼板が記載されている。また、特許文献2では、鋼板両面の各表面から10μmまでの板厚表層部における大きさ20nm未満の析出物に含まれるTi元素の含有量(mass%)を鋼板中の全Ti含有量(mass%)の9%以下とすることで、このような微細なTi系析出物に起因する外観ムラの発生を回避し、表面性状に優れた冷延鋼板が得られること、さらには当該冷延鋼板が自動車の外板を中心に優れた成形後表面品質を必要とする部品に対して好適に使用できることが教示されている。 In Patent Document 2, in mass%, C: 0.0005 to 0.01%, Si: 0.2% or less, Mn: 0.1 to 1.5%, P: 0.03% or less, S: 0 .005 to 0.03%, Ti: 0.02 to 0.1%, Al: 0.01 to 0.05%, N: 0.005% or less, Sb: 0.03% or less, Cu: 0. Ti* that is more than 0.005% and 0.03% or less and is represented by Ti* = (Ti%) - 3.4 x (N%) - 1.5 x (S%) - 4 x (C%) in a range that satisfies 0<Ti*<0.02, and further in a range that satisfies (Sb%)≧(Cu%)/5, with the remainder consisting of Fe and unavoidable impurities; On both sides, the content (mass%) of Ti element contained in precipitates with a size of less than 20 nm in the surface layer part of the plate thickness up to 10 μm from each surface is 9% or less of the total Ti content (mass%) in the steel plate. A cold-rolled steel sheet is described that is characterized by: In addition, in Patent Document 2, the content (mass%) of Ti element contained in precipitates with a size of less than 20 nm in the surface layer part of the plate thickness up to 10 μm from each surface of both sides of the steel plate is calculated as the total Ti content (mass%) in the steel plate. %) to 9% or less, it is possible to avoid appearance unevenness caused by such fine Ti-based precipitates and obtain a cold-rolled steel sheet with excellent surface properties. It has been taught that this method can be suitably used for parts that require excellent post-molding surface quality, mainly automobile outer panels.
特開2009-249737号公報Japanese Patent Application Publication No. 2009-249737 国際公開第2011/142473号International Publication No. 2011/142473
 例えば、特許文献1に記載されるような軟質なフェライトと硬質なマルテンサイトを含む金属組織を有する複合組織鋼の場合には、プレス成形などの加工時に軟質なフェライト及びその周辺が優先的に変形する不均一変形が起こりやすい。このため、このような軟質組織と硬質組織から構成される複合組織鋼を利用した場合には、成形後の鋼板表面に微小な凹凸が生じることで、ゴーストラインと呼ばれる外観不良が発生することがある。これに関連して、例えば、特許文献1では、主に化学組成の観点から成形性と成形後の外観性を向上させることについて検討されているものの、金属組織を適切なものとする観点からは必ずしも十分な検討はなされていない。したがって、従来技術の鋼板では、成形性及び成形後の外観性の向上に関して依然として改善の余地があった。 For example, in the case of composite structure steel having a metal structure containing soft ferrite and hard martensite as described in Patent Document 1, the soft ferrite and its surroundings are preferentially deformed during processing such as press forming. Non-uniform deformation is likely to occur. Therefore, when using a steel with a composite structure consisting of soft and hard structures, minute irregularities may occur on the surface of the steel sheet after forming, resulting in appearance defects called ghost lines. be. In this regard, for example, Patent Document 1 discusses improving formability and appearance after forming mainly from the viewpoint of chemical composition, but from the viewpoint of making the metal structure appropriate, Sufficient consideration has not necessarily been given. Therefore, with the steel sheets of the prior art, there is still room for improvement in terms of formability and improved appearance after forming.
 そこで、本発明は、新規な構成により、強度と成形性及び成形後の外観性とを両立できる鋼板を提供することを目的とする。 Therefore, an object of the present invention is to provide a steel plate that can achieve both strength, formability, and appearance after forming using a novel configuration.
 本発明者らは、上記目的を達成するために、金属組織中の硬質組織であるマルテンサイトの割合を適正化することに加えて、マルテンサイトの分布状態にも着目して検討を行った。その結果、本発明者らは、金属組織において所定の割合で含まれるマルテンサイトを金属組織中のミクロな領域とマクロな領域の両方において均一に分散させることで、このような硬質組織に基づいて所望の高強度化及び成形性を達成するとともに、プレス成形等によってひずみが付与された場合においても、鋼板表面における微小な凹凸の生成が顕著に抑制されることを見出し、本発明を完成させた。 In order to achieve the above object, the present inventors conducted studies focusing on the distribution state of martensite in addition to optimizing the proportion of martensite, which is a hard structure, in the metal structure. As a result, the present inventors were able to uniformly disperse martensite, which is included in a predetermined proportion in the metal structure, in both the micro and macro areas of the metal structure, thereby improving the structure based on such a hard structure. In addition to achieving the desired high strength and formability, the present inventors have discovered that the formation of minute irregularities on the steel plate surface is significantly suppressed even when strain is applied by press forming, etc., and the present invention has been completed. .
 本発明の要旨は以下の通りである。
 (1)質量%で、
 C:0.03~0.08%、
 Si:0.01~1.00%、
 Mn:0.50~3.00%、
 P:0.1000%以下、
 S:0.0200%以下、
 Al:1.000%以下、
 N:0.0200%以下、
 O:0~0.020%、
 Cr:0~2.000%、
 Mo:0~1.000%、
 Ti:0~0.500%、
 Nb:0~0.500%、
 B:0~0.0100%、
 Cu:0~1.000%、
 Ni:0~1.00%、
 W:0~0.100%、
 V:0~1.000%、
 Ta:0~0.100%、
 Co:0~3.000%、
 Sn:0~1.000%、
 Sb:0~0.500%、
 As:0~0.050%、
 Mg:0~0.050%、
 Zr:0~0.050%、
 Ca:0~0.0500%、
 Y:0~0.0500%、
 La:0~0.0500%、
 Ce:0~0.0500%、
 Bi:0~0.0500%、並びに
 残部:Fe及び不純物からなる化学組成を有し、
 面積率で、
 フェライト:80~95%、
 マルテンサイト:5~20%、並びに
 ベイナイト、パーライト及び残留オーステナイトの少なくとも1種:合計で0~10%からなり、
 マルテンサイトの平均粒子間隔が2.5μm以下であり、
 圧延方向及び板厚方向に垂直な方向のマルテンサイトの面積率における標準偏差が1.5%以下である金属組織を有することを特徴とする、鋼板。
 (2)前記化学組成が、質量%で、
 Cr:0.001~2.000%、
 Mo:0.001~1.000%、
 Ti:0.001~0.500%、
 Nb:0.001~0.500%、
 B:0.0001~0.0100%、
 Cu:0.001~1.000%、
 Ni:0.001~1.00%、
 W:0.001~0.100%、
 V:0.001~1.000%、
 Ta:0.001~0.100%、
 Co:0.001~3.000%、
 Sn:0.001~1.000%、
 Sb:0.001~0.500%、
 As:0.001~0.050%、
 Mg:0.0001~0.050%、
 Zr:0.0001~0.050%、
 Ca:0.0001~0.0500%、
 Y:0.0001~0.0500%、
 La:0.0001~0.0500%、
 Ce:0.0001~0.0500%、及び
 Bi:0.0001~0.0500%
のうち少なくとも1種を含むことを特徴とする、上記(1)に記載の鋼板。
The gist of the invention is as follows.
(1) In mass%,
C: 0.03-0.08%,
Si: 0.01-1.00%,
Mn: 0.50-3.00%,
P: 0.1000% or less,
S: 0.0200% or less,
Al: 1.000% or less,
N: 0.0200% or less,
O: 0 to 0.020%,
Cr: 0-2.000%,
Mo: 0-1.000%,
Ti: 0 to 0.500%,
Nb: 0 to 0.500%,
B: 0 to 0.0100%,
Cu: 0 to 1.000%,
Ni: 0 to 1.00%,
W: 0-0.100%,
V: 0-1.000%,
Ta: 0-0.100%,
Co: 0-3.000%,
Sn: 0-1.000%,
Sb: 0 to 0.500%,
As: 0 to 0.050%,
Mg: 0 to 0.050%,
Zr: 0 to 0.050%,
Ca: 0-0.0500%,
Y: 0 to 0.0500%,
La: 0 to 0.0500%,
Ce: 0 to 0.0500%,
Has a chemical composition consisting of Bi: 0 to 0.0500%, and the balance: Fe and impurities,
In area ratio,
Ferrite: 80-95%,
Martensite: 5 to 20%, and at least one of bainite, pearlite, and retained austenite: 0 to 10% in total,
The average particle spacing of martensite is 2.5 μm or less,
A steel sheet having a metal structure in which the standard deviation in the area ratio of martensite in the direction perpendicular to the rolling direction and the sheet thickness direction is 1.5% or less.
(2) the chemical composition is in mass%;
Cr: 0.001-2.000%,
Mo: 0.001 to 1.000%,
Ti: 0.001 to 0.500%,
Nb: 0.001-0.500%,
B: 0.0001 to 0.0100%,
Cu: 0.001 to 1.000%,
Ni: 0.001 to 1.00%,
W: 0.001-0.100%,
V: 0.001-1.000%,
Ta: 0.001 to 0.100%,
Co: 0.001 to 3.000%,
Sn: 0.001 to 1.000%,
Sb: 0.001 to 0.500%,
As: 0.001 to 0.050%,
Mg: 0.0001-0.050%,
Zr: 0.0001 to 0.050%,
Ca: 0.0001-0.0500%,
Y: 0.0001-0.0500%,
La: 0.0001 to 0.0500%,
Ce: 0.0001 to 0.0500%, and Bi: 0.0001 to 0.0500%
The steel plate described in (1) above, characterized by containing at least one of the following.
 本発明によれば、強度と成形性及び成形後の外観性とを両立できる鋼板を提供することができる。 According to the present invention, it is possible to provide a steel plate that can achieve both strength, formability, and appearance after forming.
<鋼板>
 本発明の実施形態に係る鋼板は、質量%で、
 C:0.03~0.08%、
 Si:0.01~1.00%、
 Mn:0.50~3.00%、
 P:0.1000%以下、
 S:0.0200%以下、
 Al:1.000%以下、
 N:0.0200%以下、
 O:0~0.020%、
 Cr:0~2.000%、
 Mo:0~1.000%、
 Ti:0~0.500%、
 Nb:0~0.500%、
 B:0~0.0100%、
 Cu:0~1.000%、
 Ni:0~1.00%、
 W:0~0.100%、
 V:0~1.000%、
 Ta:0~0.100%、
 Co:0~3.000%、
 Sn:0~1.000%、
 Sb:0~0.500%、
 As:0~0.050%、
 Mg:0~0.050%、
 Zr:0~0.050%、
 Ca:0~0.0500%、
 Y:0~0.0500%、
 La:0~0.0500%、
 Ce:0~0.0500%、
 Bi:0~0.0500%、並びに
 残部:Fe及び不純物からなる化学組成を有し、
 面積率で、
 フェライト:80~95%、
 マルテンサイト:5~20%、並びに
 ベイナイト、パーライト及び残留オーステナイトの少なくとも1種:合計で0~10%からなり、
 マルテンサイトの平均粒子間隔が2.5μm以下であり、
 圧延方向及び板厚方向に垂直な方向のマルテンサイトの面積率における標準偏差が1.5%以下である金属組織を有することを特徴としている。
<Steel plate>
The steel plate according to the embodiment of the present invention has, in mass%,
C: 0.03-0.08%,
Si: 0.01-1.00%,
Mn: 0.50-3.00%,
P: 0.1000% or less,
S: 0.0200% or less,
Al: 1.000% or less,
N: 0.0200% or less,
O: 0 to 0.020%,
Cr: 0-2.000%,
Mo: 0-1.000%,
Ti: 0-0.500%,
Nb: 0 to 0.500%,
B: 0 to 0.0100%,
Cu: 0-1.000%,
Ni: 0 to 1.00%,
W: 0-0.100%,
V: 0-1.000%,
Ta: 0-0.100%,
Co: 0-3.000%,
Sn: 0-1.000%,
Sb: 0 to 0.500%,
As: 0 to 0.050%,
Mg: 0 to 0.050%,
Zr: 0 to 0.050%,
Ca: 0-0.0500%,
Y: 0 to 0.0500%,
La: 0 to 0.0500%,
Ce: 0 to 0.0500%,
Has a chemical composition consisting of Bi: 0 to 0.0500%, and the balance: Fe and impurities,
In area ratio,
Ferrite: 80-95%,
Martensite: 5 to 20%, and at least one of bainite, pearlite, and retained austenite: 0 to 10% in total,
The average particle spacing of martensite is 2.5 μm or less,
It is characterized by having a metal structure in which the standard deviation in the area ratio of martensite in the direction perpendicular to the rolling direction and the plate thickness direction is 1.5% or less.
 ドアやフード等の外板部材においては、プレス成形等の際に生じる面ひずみと呼ばれる面欠陥を回避する観点から、降伏強度が比較的低い複合組織鋼(DP鋼)が用いられる場合が多い。しかしながら、フェライトからなる軟質組織とマルテンサイトからなる硬質組織が混在するDP鋼の場合、プレス成形などの加工時に軟質組織及びその周辺が優先的に変形する不均一変形が起こりやすく、成形後の鋼板表面に微小な凹凸が生じることで、ゴーストラインと呼ばれる外観不良が発生することがある。より詳しく説明すると、プレス成形などの加工時には、フェライトからなる軟質組織は変形量が大きく凹む一方で、マルテンサイトからなる硬質組織は変形量が小さい。それゆえ硬質組織は軟質組織と比較して凹まず、凸となるように盛り上がる。その結果、特に鋼板の幅方向において変形量のばらつきが発生してゴーストラインがバンド状(縞状)に生じる。一方で、鋼板の高強度化に伴い、鋼板の焼入れ性を改善するためにMn等の元素が比較的多く添加される場合がある。Mnは鋼板中で筋状に偏析しやすい元素であり、より詳しくは鋳造時に中心偏析やミクロ偏析といったMn濃化領域が形成され、熱間圧延や冷間圧延によって当該濃化領域が圧延方向に延ばされることでMnは筋状に偏析する。このため、このようなMnの偏析に起因して、鋼板中に焼入れ性が高い領域と低い領域が存在することとなる。その結果として、焼入れ後の鋼板の金属組織において縞状の硬質組織が比較的多く生成する。この場合には、ゴーストラインの発生が特に顕著となる。これに対し、仮に鋼板中のMn偏析を十分に抑制することができれば、このような縞状の硬質組織の生成を低減して当該硬質組織を金属組織中により均一に分散させることが可能となる。この場合には、プレス成形等によってひずみが付与された場合においても、鋼板表面における微小な凹凸の生成を十分に低減することができ、ゴーストラインの発生を抑制することが可能になると考えられる。しかしながら、高強度化の要求に伴い、特に鋼板中のMn添加量が多くなる場合には、実際のところ、Mn偏析を確実かつ十分に抑制することは非常に困難である。加えて、このような高強度化に伴い、成形性自体も低下することから、強度と成形性及び成形後の外観性とを両立することは一般に非常に困難である。 For exterior panel members such as doors and hoods, composite structure steel (DP steel), which has a relatively low yield strength, is often used in order to avoid surface defects called surface strain that occur during press forming. However, in the case of DP steel, in which a soft structure consisting of ferrite and a hard structure consisting of martensite coexist, non-uniform deformation occurs where the soft structure and its surroundings are preferentially deformed during processing such as press forming, and the steel plate after forming The appearance of minute irregularities on the surface may cause appearance defects called ghost lines. To explain in more detail, during processing such as press molding, the soft tissue made of ferrite is greatly deformed and dented, while the hard tissue made of martensite is deformed small. Therefore, compared to soft tissues, hard tissues do not become depressed, but swell up in a convex manner. As a result, variations in the amount of deformation occur, particularly in the width direction of the steel plate, resulting in band-like (striped) ghost lines. On the other hand, as the strength of steel sheets increases, a relatively large amount of elements such as Mn may be added in order to improve the hardenability of the steel sheets. Mn is an element that tends to segregate in the form of streaks in steel sheets. More specifically, during casting, Mn-enriched regions such as center segregation and micro-segregation are formed, and during hot rolling and cold rolling, Mn enriched regions are formed in the rolling direction. By being stretched, Mn segregates into streaks. Therefore, due to such segregation of Mn, there are regions with high hardenability and regions with low hardenability in the steel sheet. As a result, a relatively large number of striped hard structures are generated in the metal structure of the steel sheet after quenching. In this case, the occurrence of ghost lines becomes particularly noticeable. On the other hand, if Mn segregation in the steel sheet could be sufficiently suppressed, it would be possible to reduce the formation of such striped hard structures and to disperse the hard structures more uniformly in the metal structure. . In this case, even when strain is applied by press forming or the like, it is possible to sufficiently reduce the generation of minute irregularities on the surface of the steel sheet, and it is considered possible to suppress the generation of ghost lines. However, with the demand for higher strength, it is actually very difficult to reliably and sufficiently suppress Mn segregation, especially when the amount of Mn added in the steel sheet increases. In addition, as the strength increases, the moldability itself also decreases, so it is generally very difficult to achieve both strength, moldability, and appearance after molding.
 そこで、まず、本発明者らは、鋼板の化学組成を適正化するとともに、金属組織中の軟質組織であるフェライトと硬質組織であるマルテンサイトの割合を適正化することで所望の高強度化と成形性を実現する一方で、さらに成形後の外観性を改善する手段について検討を行った。具体的には、本発明者らは、金属組織中の硬質組織であるマルテンサイトの分布状態に着目し、より詳しくはマルテンサイトの分布をMn偏析の低減とは異なる別の観点から制御することについて検討を行った。その結果として、鋼板の製造方法について後で詳しく説明されるように、本発明者らは、最終焼鈍前の鋼板中の金属組織をベイナイト及び/又はマルテンサイトによって構成し、次いでこのような金属組織を有する鋼板を所定の条件下で最終焼鈍することにより、Mn偏析の有無や程度に必ずしも依存することなく、最終的に得られる金属組織中でマルテンサイトをミクロな領域とマクロな領域の両方において均一に分散させることができることを見出した。より具体的には、本発明者らは、ベイナイト及び/又はマルテンサイトからなる金属組織を有する鋼板を所定の条件下で最終焼鈍することにより、ミクロな領域ではマルテンサイトの平均粒子間隔を2.5μm以下に制御することができ、マクロな領域では圧延方向及び板厚方向に垂直な方向のマルテンサイトの面積率における標準偏差を1.5%以下に制御することができることを見出した。マルテンサイトの平均粒子間隔を2.5μm以下に制御することでミクロな領域において硬質組織を密にかつ均一に分散させることができる。圧延方向及び板厚方向に垂直な方向のマルテンサイトの面積率における標準偏差を1.5%以下に制御することで、マクロな領域における硬質組織のばらつきを顕著に低減することができる。これら両方の要件を満足することで、硬質組織であるマルテンサイトが鋼板全体において微細かつ均一に分散した金属組織を形成することができる。その結果として、本発明の実施形態に係る鋼板によれば、プレス成形等の成形時においても鋼板の変形量をとりわけ幅方向においてより均一にすることができ、ゴーストライン等の外観不良が顕著に抑制された優れた成形後外観を達成することが可能となる。例えば、ミクロな領域でのマルテンサイトの均一性が確保されていても、マクロな領域でのマルテンサイトの均一性が確保されていなければ、マルテンサイトが鋼板全体において微細かつ均一に分散した金属組織を形成することはできない。同様に、マクロな領域でのマルテンサイトの均一性が確保されていても、ミクロな領域でのマルテンサイトの均一性が確保されていなければ、局所的にはマルテンサイトが不均一に存在し得ることになるため、マルテンサイトが鋼板全体において微細かつ均一に分散した金属組織を形成することはできない。したがって、本発明の実施形態に係る鋼板において、ゴーストライン等の外観不良が顕著に抑制された優れた成形後外観を達成するためには、マルテンサイトの平均粒子間隔を2.5μm以下に制御することと、圧延方向及び板厚方向に垂直な方向のマルテンサイトの面積率における標準偏差を1.5%以下に制御することの両方の要件を満足することが必要となる。 Therefore, the present inventors first achieved the desired high strength by optimizing the chemical composition of the steel sheet and optimizing the ratio of ferrite, which is a soft structure, and martensite, which is a hard structure, in the metal structure. We investigated ways to improve the appearance after molding while achieving moldability. Specifically, the present inventors focused on the distribution state of martensite, which is a hard structure in the metal structure, and more specifically, controlled the distribution of martensite from a different perspective than reducing Mn segregation. We examined the following. As a result, as will be explained in detail later regarding the method of manufacturing the steel sheet, the present inventors configure the metal structure in the steel sheet before final annealing with bainite and/or martensite, and then add such metal structure to the steel sheet. By final annealing a steel plate having a It has been found that uniform dispersion can be achieved. More specifically, the present inventors finally annealed a steel plate having a metal structure consisting of bainite and/or martensite under predetermined conditions, thereby reducing the average particle spacing of martensite to 2.0 mm in the microscopic region. It has been found that the standard deviation in the area ratio of martensite in the direction perpendicular to the rolling direction and the sheet thickness direction can be controlled to be 1.5% or less in the macro region. By controlling the average particle spacing of martensite to 2.5 μm or less, the hard structure can be densely and uniformly dispersed in the micro region. By controlling the standard deviation in the area ratio of martensite in the direction perpendicular to the rolling direction and the plate thickness direction to 1.5% or less, variations in the hard structure in the macro region can be significantly reduced. By satisfying both of these requirements, it is possible to form a metal structure in which martensite, which is a hard structure, is finely and uniformly dispersed throughout the steel sheet. As a result, according to the steel plate according to the embodiment of the present invention, the amount of deformation of the steel plate can be made more uniform especially in the width direction even during forming such as press forming, and appearance defects such as ghost lines are significantly reduced. It becomes possible to achieve a suppressed and excellent appearance after molding. For example, even if the uniformity of martensite is ensured in the microscopic area, if the uniformity of martensite is not ensured in the macroscopic area, martensite will be dispersed finely and uniformly throughout the steel sheet. cannot be formed. Similarly, even if the uniformity of martensite is ensured in the macroscopic area, if the uniformity of martensite is not ensured in the microscopic area, martensite may exist locally unevenly. Therefore, it is impossible to form a metal structure in which martensite is finely and uniformly dispersed throughout the steel sheet. Therefore, in order to achieve an excellent post-forming appearance in which appearance defects such as ghost lines are significantly suppressed in the steel sheet according to the embodiment of the present invention, the average particle spacing of martensite should be controlled to 2.5 μm or less. It is necessary to satisfy both the requirements of controlling the standard deviation in the area ratio of martensite in the direction perpendicular to the rolling direction and the plate thickness direction to 1.5% or less.
 何ら特定の理論に束縛されることを意図するものではないが、最終的に得られる鋼板の金属組織においてマルテンサイトを鋼板全体で微細かつ均一に分散させるためには、最終焼鈍における加熱時に多数のオーステナイト核生成サイトを高分散に形成しておくことが極めて重要であると考えられる。これに関連して、マルテンサイト組織は、旧オーステナイト粒の中にさらにパケット、ブロック、ラス等の下部組織を有しており、それゆえフェライト等の組織と比較して内部に多くの様々な界面を有している組織である。ベイナイトもマルテンサイトの場合と同様に内部に多くの様々な界面を有している組織である。したがって、最終焼鈍前の鋼板における金属組織をベイナイト及び/又はマルテンサイトによって構成することで、このような金属組織を最終焼鈍において加熱していく段階でこれらの界面上にオーステナイトの核生成サイトとなり得る炭化物を非常に多く分散して生成させることが可能となる。したがって、界面上に多くの炭化物を生成した後、さらに温度をフェライトとオーステナイトの2相域まで加熱することで、鋼板全体にオーステナイトを微細かつ均一に生成させることが可能になると考えられる。最後に、このような金属組織を有する鋼板を急冷することで、これらのオーステナイトからマルテンサイトが生成するため、最終的に得られる金属組織において、マルテンサイトの平均粒子間隔が2.5μm以下に制御されるとともに、圧延方向及び板厚方向に垂直な方向のマルテンサイトの面積率における標準偏差が1.5%以下に制御される。すなわちマルテンサイトがミクロな領域とマクロな領域の両方において均一に分散した金属組織を得ることができるものと考えられる。このような熱処理を施すことでMn偏析の影響を打ち消すほどにマルテンサイトを鋼板全体にわたって微細かつ均一に分散させることが可能になると考えられる。従来、Mn偏析自体を低減するという観点から硬質組織の分布制御を検討するのが一般的と考えられることから、Mn偏析の有無や程度に必ずしも依存することなく、最終的に得られる金属組織中でマルテンサイトをミクロな領域とマクロな領域の両方において均一に分散させることができるという事実は極めて意外であり、また驚くべきことである。 Although we do not intend to be bound by any particular theory, in order to finely and uniformly disperse martensite throughout the steel sheet in the metallographic structure of the final steel sheet, it is necessary to It is considered extremely important to form austenite nucleation sites in a highly dispersed manner. In this regard, the martensitic structure further has substructures such as packets, blocks, and laths within the prior austenite grains, and therefore has many different internal interfaces compared to structures such as ferrite. It is an organization that has Like martensite, bainite is also a structure that has many various interfaces inside. Therefore, by configuring the metal structure of the steel sheet before final annealing with bainite and/or martensite, when such metal structure is heated during final annealing, the interface between these can become a nucleation site for austenite. It becomes possible to disperse and generate a very large amount of carbide. Therefore, it is considered possible to generate austenite finely and uniformly over the entire steel plate by generating a large amount of carbide on the interface and then heating the temperature to a two-phase region of ferrite and austenite. Finally, by rapidly cooling a steel sheet with such a metal structure, martensite is generated from these austenites, so the average particle spacing of martensite is controlled to 2.5 μm or less in the final metal structure. At the same time, the standard deviation in the area ratio of martensite in the direction perpendicular to the rolling direction and the plate thickness direction is controlled to be 1.5% or less. In other words, it is considered that a metal structure in which martensite is uniformly dispersed in both micro and macro regions can be obtained. It is thought that by performing such heat treatment, it becomes possible to disperse martensite finely and uniformly throughout the steel sheet to the extent that the influence of Mn segregation is negated. Conventionally, it has been common to consider the distribution control of hard structures from the perspective of reducing Mn segregation itself, so it is not necessary to depend on the presence or degree of Mn segregation. The fact that martensite can be uniformly dispersed in both the micro and macro regions is quite surprising and surprising.
 本発明の実施形態に係る鋼板によれば、上記の知見に加えて、軟質組織であるフェライトの面積率を80~95%に制御することで良好な成形性を確保するとともに、硬質組織であるマルテンサイトの面積率を5~20%に制御し、さらに鋼板の化学組成を所定の範囲内に制御することで引張強度が400MPa以上の高強度を確保することができる。その結果として強度と成形性及び成形後の外観性との両立を高いレベルで実現することが可能となる。以下、本発明の実施形態に係る鋼板の各構成要素についてより詳しく説明する。 According to the steel sheet according to the embodiment of the present invention, in addition to the above findings, good formability is ensured by controlling the area ratio of ferrite, which is a soft structure, to 80 to 95%, and at the same time, good formability is ensured, and the area ratio of ferrite, which is a soft structure, is controlled to 80 to 95%. By controlling the area ratio of martensite to 5 to 20% and further controlling the chemical composition of the steel plate within a predetermined range, a high tensile strength of 400 MPa or more can be ensured. As a result, it becomes possible to achieve a high level of both strength, moldability, and appearance after molding. Hereinafter, each component of the steel plate according to the embodiment of the present invention will be explained in more detail.
 まず、本発明の実施形態に係る鋼板の金属組織について説明する。以下、組織分率は面積率で表示するので、組織分率の単位「%」は面積%を意味する。また、後述するように、金属組織は鋼板の板厚1/4部において制御される。鋼板の板厚1/4部とは、鋼板の圧延面から板厚の1/8深さの面と3/8深さの面との間の領域を意味する。以下、特段の断りがない限り、組織分率は、全て板厚1/4部における値を意味する。 First, the metal structure of the steel plate according to the embodiment of the present invention will be explained. Hereinafter, the tissue fraction will be expressed as an area ratio, so the unit of tissue fraction "%" means area %. Furthermore, as will be described later, the metallographic structure is controlled in the 1/4th part of the thickness of the steel plate. The 1/4th part of the thickness of the steel plate means the area between the plane at a depth of 1/8 of the thickness of the steel plate and the plane at a depth of 3/8 of the thickness from the rolling surface of the steel plate. Hereinafter, unless otherwise specified, all tissue fractions mean values at 1/4 part of the plate thickness.
[フェライト:80~95%]
 フェライトは、軟質な組織であるので変形し易く、伸びの向上に寄与する。フェライトの面積率が80%以上であると、十分な成形性を得ることができる。成形性向上の観点からは、フェライトの面積率は高いほど好ましく、例えば82%以上、85%以上、87%以上又は90%以上であってもよい。一方で、フェライトを過度に含むと、鋼板において所望の強度を達成できない場合がある。したがって、フェライトの面積率は95%以下とする。フェライトの面積率は94%以下又は92%以下であってもよい。
[Ferrite: 80-95%]
Since ferrite has a soft structure, it is easily deformed and contributes to improving elongation. When the area ratio of ferrite is 80% or more, sufficient formability can be obtained. From the viewpoint of improving formability, the higher the area ratio of ferrite is, the more preferable it is, and may be, for example, 82% or more, 85% or more, 87% or more, or 90% or more. On the other hand, if too much ferrite is contained, the steel sheet may not be able to achieve the desired strength. Therefore, the area ratio of ferrite is set to 95% or less. The area ratio of ferrite may be 94% or less or 92% or less.
[マルテンサイト:5~20%]
 マルテンサイトは、転位密度が高く硬質な組織であるので、引張強度の向上に寄与する組織である。マルテンサイトの面積率を5%以上とすることで、400MPa以上の引張強度を確保することができる。強度向上の観点からは、マルテンサイトの面積率は高いほど好ましく、例えば7%以上、10%以上又は13%以上であってもよい。一方で、マルテンサイトの面積率が20%以下であると、成形性と外観性を確保することができる。マルテンサイトの面積率は17%以下又は15%以下であってもよい。本発明において、「マルテンサイト」とは、焼入れままマルテンサイト(いわゆるフレッシュマルテンサイト)だけでなく、焼戻しマルテンサイトをも包含するものである。
[Martensite: 5-20%]
Martensite has a high dislocation density and is a hard structure, so it is a structure that contributes to improving tensile strength. By setting the area ratio of martensite to 5% or more, a tensile strength of 400 MPa or more can be ensured. From the viewpoint of improving strength, the higher the martensite area ratio is, the more preferable it is, and may be, for example, 7% or more, 10% or more, or 13% or more. On the other hand, when the area ratio of martensite is 20% or less, moldability and appearance can be ensured. The area ratio of martensite may be 17% or less or 15% or less. In the present invention, "martensite" includes not only as-quenched martensite (so-called fresh martensite) but also tempered martensite.
[ベイナイト、パーライト及び残留オーステナイトの少なくとも1種:合計で0~10%]
 フェライト及びマルテンサイト以外の残部組織は、面積率で0%であってもよいが、残部組織が存在する場合には、当該残部組織はベイナイト、パーライト及び残留オーステナイトの少なくとも1種である。フェライト及びマルテンサイトに基づく上記の効果を確保する観点から、残部組織すなわちベイナイト、パーライト及び残留オーステナイトの少なくとも1種の面積率は、合計で10%以下とし、例えば8%以下、6%以下、4%以下、3%以下又は2%以下であってもよい。とりわけ、残留オーステナイトの面積率は0~3%であってもよい。例えば、残留オーステナイトの面積率は2%以下、1%以下、0.5%以下、0.3%以下又は0.1%以下であってもよい。一方で、残部組織の面積率を0%とするには、鋼板の製造過程において高度な制御を要するため、歩留まりの低下を招く場合がある。したがって、残部組織の面積率は0.5%以上又は1%以上であってもよい。
[At least one of bainite, pearlite, and retained austenite: 0 to 10% in total]
The residual structure other than ferrite and martensite may have an area ratio of 0%, but when the residual structure exists, the residual structure is at least one of bainite, pearlite, and retained austenite. From the viewpoint of ensuring the above-mentioned effects based on ferrite and martensite, the area ratio of at least one of residual structures, ie, bainite, pearlite, and retained austenite, is set to be 10% or less in total, for example, 8% or less, 6% or less, 4% or less. % or less, 3% or less, or 2% or less. In particular, the area percentage of retained austenite may be between 0 and 3%. For example, the area percentage of retained austenite may be 2% or less, 1% or less, 0.5% or less, 0.3% or less, or 0.1% or less. On the other hand, setting the area ratio of the remaining structure to 0% requires sophisticated control in the manufacturing process of the steel plate, which may lead to a decrease in yield. Therefore, the area ratio of the remaining tissue may be 0.5% or more or 1% or more.
[金属組織の同定及び面積率の算出]
 金属組織の同定及び面積率の算出は、ナイタール試薬又はレペラ液を用いた腐食後のFE-SEM(電界放射型走査型電子顕微鏡、例えばJEOL社製 JSM-7200F、加速電圧15kVにて測定)及び光学顕微鏡並びにX線回折法により行われる。FE-SEM及び光学顕微鏡による組織観察は、圧延方向に平行かつ板面に垂直な方向の鋼板断面における100μm×100μmの領域に対して1000~50000倍の倍率で行われる。いずれの金属組織についても測定箇所を3か所とし、それらの測定値の平均値を算出することによって面積率を決定する。例えば、測定対象の鋼板の板厚が薄いために、板厚方向に100μmの測定領域を確保できない場合には、板厚方向の長さを減少させつつ、測定領域10000μm2を確保することとする。例えば、板厚方向に20μm、圧延方向に500μmの測定領域を観察対象としても良い。ただし、板厚方向に含まれる結晶粒の数が少なくなりすぎると測定精度が低下する場合があるため、板厚方向の測定長さは10μm以上、好ましくは50μm以上とする。以下の説明中の「100μm×100μmの領域」についても同様である。
[Identification of metallographic structure and calculation of area ratio]
Identification of metal structure and calculation of area ratio are performed using FE-SEM (measured using a field emission scanning electron microscope, e.g., JEOL JSM-7200F, accelerating voltage 15 kV) after corrosion using nital reagent or Repeller liquid. This is carried out using an optical microscope and X-ray diffraction method. Structure observation using FE-SEM and an optical microscope is performed at a magnification of 1,000 to 50,000 times on a 100 μm×100 μm area in a steel plate cross section parallel to the rolling direction and perpendicular to the plate surface. For each metal structure, measurement points are set at three locations, and the area ratio is determined by calculating the average value of the measured values. For example, if it is not possible to secure a measurement area of 100 μm in the thickness direction because the steel plate to be measured is thin, a measurement area of 10,000 μm 2 will be secured while reducing the length in the thickness direction. . For example, a measurement area of 20 μm in the plate thickness direction and 500 μm in the rolling direction may be observed. However, if the number of crystal grains included in the plate thickness direction is too small, measurement accuracy may decrease, so the measurement length in the plate thickness direction is set to 10 μm or more, preferably 50 μm or more. The same applies to the "100 μm x 100 μm area" in the following description.
 フェライトの面積率は、FE-SEM(電界放射型走査型電子顕微鏡)による電子チャンネリングコントラスト像において、板厚1/4位置を中心とする板厚1/8位置~3/8位置の範囲内で100μm×100μmの領域を観察することにより求める。より具体的には、画像解析ソフトウェアImage Jを用いて画像解析により算出することができる。 The area ratio of ferrite is within the range of 1/8th position to 3/8th position of the plate thickness, centered at the 1/4th position of the plate thickness, in an electron channeling contrast image by FE-SEM (field emission scanning electron microscope). It is determined by observing a 100 μm x 100 μm area. More specifically, it can be calculated by image analysis using image analysis software Image J.
 マルテンサイトの面積率は以下の手順で求める。まず、試料の観察面をレペラ液でエッチングし、次いで板厚1/4位置を中心とする板厚1/8位置~3/8位置の範囲内で100μm×100μmの領域をFE-SEMで観察する。レペラ腐食では、マルテンサイト及び残留オーステナイトは腐食されないため、腐食されていない領域の面積率は、マルテンサイト及び残留オーステナイトの合計面積率に対応する。具体的には、画像解析ソフトウェアImage Jを用いて、金属組織を輝度の違いにより二値化し、画像データの黒色部分がフェライトであり、レペラで腐食されていない白色部分がマルテンサイトと残留オーステナイトの合計組織である。したがって、この腐食されていない領域の面積率から、後で説明するX線回折法により測定した残留オーステナイトの面積率を引算することでマルテンサイトの面積率を算出する。この方法で求めたマルテンサイト面積率には、焼戻しマルテンサイト面積率も含まれる。 The area ratio of martensite is determined by the following procedure. First, the observation surface of the sample is etched with repeller liquid, and then an area of 100 μm x 100 μm is observed using FE-SEM within the range of 1/8 to 3/8 of the plate thickness, centered at the 1/4 plate thickness position. do. In repeller corrosion, martensite and retained austenite are not corroded, so the area ratio of the uncorroded region corresponds to the total area ratio of martensite and retained austenite. Specifically, the image analysis software Image J was used to binarize the metal structure based on differences in brightness.The black part of the image data is ferrite, and the white part that has not been corroded by the repeller is martensite and retained austenite. Total organization. Therefore, the area ratio of martensite is calculated by subtracting the area ratio of retained austenite measured by the X-ray diffraction method, which will be described later, from the area ratio of this uncorroded region. The area ratio of martensite determined by this method also includes the area ratio of tempered martensite.
 残留オーステナイトの面積率はX線回折法により算出される。まず、試料の板面から板厚方向に深さ1/4位置までを機械研磨及び化学研磨により除去する。次いで、板厚1/4位置において、MoKα線を用いて得られたbcc相の(200)及び(211)並びにfcc相の(200)、(220)及び(311)の回折ピークの積分強度比から、残留オーステナイトの組織分率を算出する。この算出方法として一般的な5ピーク法が利用される。算出された残留オーステナイトの組織分率を残留オーステナイトの面積率として決定する。 The area ratio of retained austenite is calculated by X-ray diffraction method. First, the sample is removed by mechanical polishing and chemical polishing from the surface of the sample to a depth of 1/4 in the thickness direction. Next, the integrated intensity ratio of the diffraction peaks of (200) and (211) of the bcc phase and (200), (220) and (311) of the fcc phase obtained using MoKα rays at a position of 1/4 of the plate thickness. From this, the tissue fraction of retained austenite is calculated. A general 5-peak method is used as this calculation method. The calculated microstructure fraction of retained austenite is determined as the area fraction of retained austenite.
 ベイナイトの同定及び面積率の算出は以下の手順で行う。まず、試料の観察面をナイタール試薬で腐食し、次いで板厚1/4位置を中心とする板厚1/8位置~3/8位置の範囲内で100μm×100μmの領域をFE-SEMで観察する。この観察領域において組織内部に含まれるセメンタイトの位置及びセメンタイトの配列から、以下のようにしてベイナイトを同定する。ベイナイトは、上部ベイナイトと下部ベイナイトに分類され、上部ベイナイトは、ラス状のベイニティックフェライトの界面にセメンタイト又は残留オーステナイトが存在する。下部ベイナイトは、ラス状のベイニティックフェライトの内部にセメンタイトが存在し、ベイニティックフェライトとセメンタイトの結晶方位関係が1種類であり、セメンタイトが同一のバリアントを持つ。これらの特徴点に基づき、上部ベイナイトと下部ベイナイトをそれぞれ同定することができる。本発明においてはこれらを合わせてベイナイトと呼び、同定されたベイナイトの面積率を画像解析に基づいて算出する。なお、セメンタイトは、SEM画像上、輝度が高い領域として観察される。セメンタイトは、エネルギー分散型X線分光法(Energy Dispersive X-ray Spectroscopy: EDS)を用いて、化学組成を分析することで、鉄主体の炭窒化物であることを確認することができる。 Identification of bainite and calculation of area ratio are performed in the following steps. First, the observation surface of the sample is corroded with a nital reagent, and then an area of 100 μm x 100 μm is observed using FE-SEM within the range of 1/8 to 3/8 of the plate thickness, centered at the 1/4 plate thickness position. do. Bainite is identified in the following manner from the position and arrangement of cementite contained within the tissue in this observation region. Bainite is classified into upper bainite and lower bainite, and in upper bainite, cementite or retained austenite exists at the interface of lath-shaped bainitic ferrite. In lower bainite, cementite exists inside lath-like bainitic ferrite, and the crystal orientation relationship between bainitic ferrite and cementite is one type, and cementite has the same variant. Based on these characteristic points, upper bainite and lower bainite can be respectively identified. In the present invention, these are collectively referred to as bainite, and the area ratio of the identified bainite is calculated based on image analysis. Note that cementite is observed as a region with high brightness on the SEM image. By analyzing the chemical composition of cementite using energy dispersive X-ray spectroscopy (EDS), it can be confirmed that cementite is a carbonitride mainly composed of iron.
 パーライトの同定及び面積率の算出は以下の手順で行う。まず、試料の観察面をナイタール試薬で腐食し、次いで板厚1/4位置を中心とする板厚1/8位置~3/8位置の範囲を光学顕微鏡で観察する。光学顕微鏡の観察像を輝度の違いにより二値化し、黒色部と白色部がラメラ状に分散する領域をパーライトと同定し、この領域の面積率を画像解析に基づいて算出する。より具体的には、画像解析ソフトウェアImage Jを用いて輝度の違いにより二値化し、100μm×100μmの撮像範囲を含む測定倍率500倍で撮像した画像を用いて、ポイントカウンティング法によってパーライトの面積分率を求める。上記撮像範囲において、圧延方向に平行に等間隔に8本、圧延方向に垂直に等間隔に8本の線を引き、それらの線からなる64個の交点のうち、パーライトが占める割合をパーライトの面積分率として算出することができる。 Identification of pearlite and calculation of area ratio are performed in the following steps. First, the observation surface of the sample is corroded with a nital reagent, and then a range from 1/8 to 3/8 of the plate thickness, centered at the 1/4 plate thickness position, is observed using an optical microscope. Images observed with an optical microscope are binarized based on differences in brightness, and areas where black and white areas are dispersed in a lamellar manner are identified as pearlite, and the area ratio of this area is calculated based on image analysis. More specifically, the image analysis software Image J was used to binarize the difference in brightness, and an image captured at a measurement magnification of 500 times including an imaging range of 100 μm x 100 μm was used to calculate the area of pearlite using a point counting method. Find the rate. In the above imaging range, draw 8 lines parallel to the rolling direction at equal intervals and 8 lines perpendicular to the rolling direction at equal intervals, and calculate the proportion of pearlite among the 64 intersections of these lines. It can be calculated as an area fraction.
[マルテンサイトの平均粒子間隔:2.5μm以下]
 本発明の実施形態においては、硬質組織であるマルテンサイトの平均粒子間隔は2.5μm以下に制御される。マルテンサイトの平均粒子間隔は、ミクロ領域における硬質組織分布の均一性を表す指標である。マルテンサイトの平均粒子間隔が小さいほど、硬質組織が密にかつ均一に分散していることを意味し、よって均一性が高いといえる。プレス成形後の鋼板の外観性は、プレス成形時の鋼板の変形量がとりわけ鋼板の幅方向において均一であるほど良好なものとなる。鋼板の変形量は、硬質組織の分布状態の影響を強く受けるため、鋼板の変形量を鋼板の幅方向で均一にするためには、金属組織中の硬質組織の分布を均一にする必要がある。後で説明するマルテンサイトの面積率における標準偏差の制御に加えて、マルテンサイトの平均粒子間隔を2.5μm以下に制御することで、プレス成形等の成形時においても鋼板の変形量を幅方向においてより均一にすることができ、結果として良好な成形後外観を達成することができる。マルテンサイトの平均粒子間隔は、好ましくは2.4μm以下、より好ましくは2.2μm以下、最も好ましくは2.0μm以下又は1.8μm以下である。下限は特に限定されないが、例えば、マルテンサイトの平均粒子間隔は0.5μm以上、0.8μm以上又は1.0μm以上であってもよい。
[Average particle spacing of martensite: 2.5 μm or less]
In an embodiment of the present invention, the average particle spacing of martensite, which is a hard structure, is controlled to be 2.5 μm or less. The average particle spacing of martensite is an index representing the uniformity of hard structure distribution in the micro region. The smaller the average particle spacing of martensite, the more densely and uniformly the hard structure is dispersed, and therefore, it can be said that the uniformity is higher. The appearance of the steel plate after press forming becomes better as the amount of deformation of the steel plate during press forming is more uniform, especially in the width direction of the steel plate. The amount of deformation of a steel plate is strongly influenced by the distribution of the hard structure, so in order to make the amount of deformation of the steel plate uniform in the width direction of the steel plate, it is necessary to make the distribution of the hard structure in the metal structure uniform. . In addition to controlling the standard deviation in the area ratio of martensite, which will be explained later, by controlling the average particle spacing of martensite to 2.5 μm or less, the amount of deformation of the steel plate in the width direction can be reduced even during forming such as press forming. As a result, a good appearance after molding can be achieved. The average particle spacing of martensite is preferably 2.4 μm or less, more preferably 2.2 μm or less, most preferably 2.0 μm or less or 1.8 μm or less. Although the lower limit is not particularly limited, for example, the average particle spacing of martensite may be 0.5 μm or more, 0.8 μm or more, or 1.0 μm or more.
[マルテンサイトの平均粒子間隔の測定]
 マルテンサイトの平均粒子間隔は、以下のようにして決定される。まず、圧延方向に平行かつ板面に垂直な方向の鋼板断面を有する試料を採取し、当該断面を観察面とする。この観察面のうち板厚1/4位置を中心とする板厚1/8位置~3/8位置の範囲内で100μm×100μmの領域を観察領域とし、FE-SEMを用いてマルテンサイトを同定する。具体的には、画像解析ソフトウェアImage Jを用いて、金属組織を輝度の違いにより二値化し、マルテンサイトを同定する。レペラ液を用いた場合は、画像データの黒色部分がフェライトであり、レペラで腐食されていない白色部分がマルテンサイトと残留オーステナイトの合計組織である。しかしながら、本発明の実施形態に係る鋼板では、残留オーステナイトの面積率はマルテンサイトの面積率と比較して十分に低いため、白色組織をマルテンサイトとみなすことができる。次に、同定されたマルテンサイトのうち、全ての隣り合うマルテンサイト粒の中心(重心)間の距離を粒子間隔として画像解析に基づいて算出し、算出された粒子間隔の平均値をマルテンサイト(厳密にはマルテンサイト及び/又は残留オーステナイトを含む粒子)の平均粒子間隔として決定する。
[Measurement of average particle spacing of martensite]
The average particle spacing of martensite is determined as follows. First, a sample having a steel plate cross section in a direction parallel to the rolling direction and perpendicular to the plate surface is taken, and this cross section is used as an observation surface. On this observation surface, an area of 100 μm x 100 μm within the range of 1/8 to 3/8 of the plate thickness centered at the 1/4 position of the plate thickness was set as the observation area, and martensite was identified using FE-SEM. do. Specifically, using image analysis software Image J, the metal structure is binarized based on the difference in brightness, and martensite is identified. When using repeller liquid, the black part of the image data is ferrite, and the white part not corroded by repeller is the total structure of martensite and retained austenite. However, in the steel sheet according to the embodiment of the present invention, the area ratio of retained austenite is sufficiently low compared to the area ratio of martensite, so the white structure can be regarded as martensite. Next, among the identified martensite grains, the distance between the centers (centers of gravity) of all adjacent martensite grains is calculated based on image analysis as the grain spacing, and the average value of the calculated grain spacing is Strictly speaking, it is determined as the average particle spacing of particles containing martensite and/or retained austenite.
[圧延方向及び板厚方向に垂直な方向のマルテンサイトの面積率における標準偏差が1.5%以下]
 本発明の実施形態においては、圧延方向及び板厚方向に垂直な方向のマルテンサイトの面積率における標準偏差は1.5%以下に制御される。当該標準偏差は、マクロ領域における硬質組織の均一性を表す指標である。プレス成形時に課題となる外観性は、鋼板の幅方向における変形量の差に起因した鋼板表面の微小な凹凸に依存している。このため、圧延方向及び板厚方向に垂直な方向の板厚内に含まれる硬質組織の面積率におけるばらつきが大きいと、鋼板の幅方向における変形量に差が生じ、その結果として鋼板表面に微小な凹凸が生成することとなる。したがって、圧延方向及び板厚方向に垂直な方向すなわち鋼板の幅方向のマルテンサイトの面積率における標準偏差を低減することが有効である。より具体的には、先に述べたマルテンサイトの平均粒子間隔の制御に加えて、当該標準偏差を1.5%以下に制御することで、プレス成形等の成形時においても鋼板の幅方向における変形量のばらつきをより小さくすることができ、結果として良好な成形後外観を達成することができる。圧延方向及び板厚方向に垂直な方向のマルテンサイトの面積率における標準偏差は、好ましくは1.4%以下、より好ましくは1.2%以下、最も好ましくは1.0%以下である。下限は特に限定されないが、例えば、当該標準偏差は0.1%以上、0.3%以上又は0.5%以上であってもよい。
[The standard deviation in the area ratio of martensite in the direction perpendicular to the rolling direction and the plate thickness direction is 1.5% or less]
In the embodiment of the present invention, the standard deviation in the area ratio of martensite in the direction perpendicular to the rolling direction and the plate thickness direction is controlled to be 1.5% or less. The standard deviation is an index representing the uniformity of the hard tissue in the macro region. Appearance, which is an issue during press forming, depends on minute irregularities on the surface of the steel sheet due to differences in the amount of deformation in the width direction of the steel sheet. Therefore, if there is a large variation in the area ratio of hard structures included in the sheet thickness in the direction perpendicular to the rolling direction and the sheet thickness direction, a difference will occur in the amount of deformation in the width direction of the steel sheet, resulting in minute This results in unevenness. Therefore, it is effective to reduce the standard deviation in the area ratio of martensite in the direction perpendicular to the rolling direction and the sheet thickness direction, that is, the width direction of the steel sheet. More specifically, in addition to controlling the average particle spacing of martensite as described above, by controlling the standard deviation to 1.5% or less, the width of the steel plate can be improved even during forming such as press forming. Variations in the amount of deformation can be further reduced, and as a result, a good appearance after molding can be achieved. The standard deviation in the area ratio of martensite in the direction perpendicular to the rolling direction and the plate thickness direction is preferably 1.4% or less, more preferably 1.2% or less, and most preferably 1.0% or less. Although the lower limit is not particularly limited, for example, the standard deviation may be 0.1% or more, 0.3% or more, or 0.5% or more.
[圧延方向及び板厚方向に垂直な方向のマルテンサイトの面積率における標準偏差の測定]
 圧延方向及び板厚方向に垂直な方向のマルテンサイトの面積率における標準偏差は、以下のようにして決定される。まず、圧延方向に対して垂直な方向に50mmの領域の鋼板断面における金属組織画像を取得する。10mm又はそれよりも小さい画像の場合、複数枚の画像を取得し、それらをつなぎ合わせて50mmとしてもよい。次に、取得した画像を圧延方向に対して垂直な方向に100μm(0.1mm)毎に分割して、分割した各範囲で板厚全体におけるマルテンサイトの面積率を算出する。合計500個の各分割画像から算出したマルテンサイト面積率に基づいて、マルテンサイトの面積率における標準偏差を算出する。この操作を圧延方向の位置が異なる3領域に対して行い、それぞれで求めた標準偏差の平均値を圧延方向及び板厚方向に垂直な方向のマルテンサイトの面積率における標準偏差として決定する。
[Measurement of standard deviation in the area ratio of martensite in the direction perpendicular to the rolling direction and the plate thickness direction]
The standard deviation in the area ratio of martensite in the direction perpendicular to the rolling direction and the plate thickness direction is determined as follows. First, a metallographic image in a cross section of a steel plate in a 50 mm area in a direction perpendicular to the rolling direction is obtained. In the case of an image of 10 mm or smaller, multiple images may be acquired and stitched together to form a 50 mm image. Next, the acquired image is divided into every 100 μm (0.1 mm) in the direction perpendicular to the rolling direction, and the area ratio of martensite in the entire plate thickness is calculated for each divided range. The standard deviation of the martensite area ratio is calculated based on the martensite area ratio calculated from each of the 500 divided images in total. This operation is performed for three regions having different positions in the rolling direction, and the average value of the standard deviations determined for each region is determined as the standard deviation in the area ratio of martensite in the direction perpendicular to the rolling direction and the plate thickness direction.
 鋼板の圧延方向が明らかでない場合には、鋼板の圧延方向を特定する方法として、例えば以下の方法が採用される。鋼板の板厚断面を鏡面研磨で仕上げた後、電子プローブマイクロアナライザ(EPMA、Electron Probe Micro Analyzer)にてS濃度を測定する。測定条件は加速電圧を15kVとし、測定ピッチを1μmとして板厚中心部の500μm角の範囲の分布像を測定する。このとき、S濃度が高い延伸した領域をMnS等の介在物と判定する。観察の際は複数の視野で観察してもよい。次に、上記方法により初めに観察した板厚断面を基準として、板厚方向を軸に0°~180°の範囲において5°刻みで回転させた面と平行となる面を上記の方法で断面観察する。得られた各断面における複数の介在物の長軸の長さの平均値を各断面ごとに算出し、介在物の長軸の長さの平均値が最大となる断面を特定する。その断面における介在物の長軸方向と平行な方向を圧延方向と判別する。なお、例えば、測定対象の鋼板の板厚が薄いために、500μm角の測定領域を確保できない場合には、板厚方向の長さを減少させつつ、測定領域250000μm2を確保することとする。 When the rolling direction of the steel plate is not clear, the following method, for example, is adopted as a method for specifying the rolling direction of the steel plate. After finishing the thickness section of the steel plate by mirror polishing, the S concentration is measured using an electron probe micro analyzer (EPMA). The measurement conditions are an accelerating voltage of 15 kV, a measurement pitch of 1 μm, and a distribution image in a 500 μm square range at the center of the plate thickness. At this time, the stretched region with a high S concentration is determined to be an inclusion such as MnS. When observing, you may observe from multiple fields of view. Next, using the plate thickness cross section first observed using the above method as a reference, rotate the plate thickness direction in 5° increments in the range of 0° to 180° as an axis, and then take a cross section using the above method. Observe. The average value of the lengths of the long axes of the plurality of inclusions in each of the obtained cross sections is calculated for each cross section, and the cross section in which the average value of the lengths of the long axes of the inclusions is maximum is identified. A direction parallel to the longitudinal direction of the inclusion in the cross section is determined as the rolling direction. For example, if a measurement area of 500 μm square cannot be secured because the steel plate to be measured is thin, a measurement area of 250,000 μm 2 is secured while reducing the length in the thickness direction.
 次に、本発明の実施形態に係る鋼板の化学組成の限定理由について説明する。以下、化学組成に係る%は質量%を意味する。 Next, the reason for limiting the chemical composition of the steel plate according to the embodiment of the present invention will be explained. Hereinafter, % in chemical composition means mass %.
[C:0.03~0.08%]
 Cは、所定量のマルテンサイトを確保し、鋼板の強度を向上させる元素である。このような効果を十分に得るために、C含有量は0.03%以上とする。C含有量は0.04%以上又は0.05%以上であってもよい。一方、Cを過度に含有すると、強度が高くなりすぎてしまい、伸び性が低下する場合がある。このため、C含有量は0.08%以下とする。C含有量は0.07%以下又は0.06%以下であってもよい。
[C:0.03-0.08%]
C is an element that secures a predetermined amount of martensite and improves the strength of the steel plate. In order to sufficiently obtain such effects, the C content is set to 0.03% or more. The C content may be 0.04% or more or 0.05% or more. On the other hand, if too much C is contained, the strength may become too high and the elongation may decrease. Therefore, the C content is set to 0.08% or less. The C content may be 0.07% or less or 0.06% or less.
[Si:0.01~1.00%]
 Siは、固溶強化により鋼板の強度を向上させる元素である。このような効果を十分に得るために、Si含有量は0.01%以上とする。Si含有量は0.05%以上、0.10%以上、0.20%以上、0.30%以上又は0.40%以上であってもよい。一方、Siを過度に含有すると、熱間圧延で生成したスケール除去が困難となり、外観性の劣化を招く場合がある。このため、Si含有量は1.00%以下とする。Si含有量は0.90%以下、0.80%以下、0.70%以下又は0.60%以下であってもよい。
[Si: 0.01 to 1.00%]
Si is an element that improves the strength of steel sheets through solid solution strengthening. In order to sufficiently obtain such effects, the Si content is set to 0.01% or more. The Si content may be 0.05% or more, 0.10% or more, 0.20% or more, 0.30% or more, or 0.40% or more. On the other hand, if Si is contained excessively, it becomes difficult to remove scale generated during hot rolling, which may lead to deterioration in appearance. Therefore, the Si content is set to 1.00% or less. The Si content may be 0.90% or less, 0.80% or less, 0.70% or less, or 0.60% or less.
[Mn:0.50~3.00%]
 Mnは、焼入れ性を高め、鋼板強度の向上に寄与する元素である。このような効果を十分に得るために、Mn含有量は0.50%以上とする。Mn含有量は0.70%以上、1.00%以上、1.20%以上又は1.50%以上であってもよい。後で説明する鋼板の好ましい製造方法では、最終的に得られる金属組織中でマルテンサイトをミクロな領域とマクロな領域の両方において均一に分散させるために、最終焼鈍前の鋼板中の金属組織をベイナイト及び/又はマルテンサイトによって構成する必要がある。このため、Mn添加による焼入れ性の向上は成形後の外観性を改善する上でも重要といえる。一方、Mnを過度に含有すると、フェライト変態が過度に抑制され、所望量のフェライトを確保することができず、伸び性が低下する場合がある。そのため、Mn含有量は3.00%以下とする。Mn含有量は2.80%以下、2.50%以下、2.20%以下又は2.00%以下であってもよい。
[Mn: 0.50-3.00%]
Mn is an element that improves hardenability and contributes to improving steel sheet strength. In order to sufficiently obtain such effects, the Mn content is set to 0.50% or more. The Mn content may be 0.70% or more, 1.00% or more, 1.20% or more, or 1.50% or more. In a preferred manufacturing method for steel sheets, which will be explained later, the metal structure in the steel sheet before final annealing is changed in order to uniformly disperse martensite in both the micro and macro regions in the final metal structure. It must be composed of bainite and/or martensite. Therefore, improving hardenability by adding Mn is also important in improving the appearance after molding. On the other hand, when Mn is contained excessively, ferrite transformation is excessively suppressed, a desired amount of ferrite cannot be secured, and elongation properties may decrease. Therefore, the Mn content is set to 3.00% or less. The Mn content may be 2.80% or less, 2.50% or less, 2.20% or less, or 2.00% or less.
[P:0.1000%以下]
 Pは、不純物元素であり、溶接部の脆化やめっき性を劣化させる元素である。このため、P含有量は0.1000%以下とする。P含有量は0.0600%以下、0.0200%以下、0.0150%以下又は0.0100%以下であってもよい。P含有量は少ないほど好ましく、下限は特に限定されず0%であってもよい。一方、実用鋼板でP含有量を0.0001%未満に低減すると、製造コストが大幅に上昇し、経済的に不利になる。そのため、P含有量は0.0001%以上、0.0002%以上又は0.0005%以上であってもよい。
[P: 0.1000% or less]
P is an impurity element, and is an element that causes embrittlement of the welded portion and deteriorates the plating properties. Therefore, the P content is set to 0.1000% or less. The P content may be 0.0600% or less, 0.0200% or less, 0.0150% or less, or 0.0100% or less. The lower the P content, the better, and the lower limit is not particularly limited and may be 0%. On the other hand, if the P content is reduced to less than 0.0001% in a practical steel plate, the manufacturing cost will significantly increase, resulting in an economic disadvantage. Therefore, the P content may be 0.0001% or more, 0.0002% or more, or 0.0005% or more.
[S:0.0200%以下]
 Sは、不純物元素であり、溶接性を阻害し、また、鋳造時と熱延時の製造性を阻害する元素である。このため、S含有量は0.0200%以下とする。S含有量は0.0150%以下、0.0120%以下、0.0100%以下又は0.0080%以下であってもよい。S含有量は少ないほど好ましく、下限は特に限定されず0%であってもよい。一方、実用鋼板でS含有量を0.0001%未満に低減すると、製造コストが大幅に上昇し、経済的に不利になる。そのため、S含有量は0.0001%以上、0.0002%以上又は0.0005%以上であってもよい。
[S: 0.0200% or less]
S is an impurity element that inhibits weldability and also inhibits manufacturability during casting and hot rolling. Therefore, the S content is set to 0.0200% or less. The S content may be 0.0150% or less, 0.0120% or less, 0.0100% or less, or 0.0080% or less. The lower the S content, the better, and the lower limit is not particularly limited and may be 0%. On the other hand, if the S content is reduced to less than 0.0001% in a practical steel plate, the manufacturing cost will significantly increase, resulting in an economic disadvantage. Therefore, the S content may be 0.0001% or more, 0.0002% or more, or 0.0005% or more.
[Al:1.000%以下]
 Alは、脱酸剤として機能する元素であり、鋼の強度を高めるのに有効な元素である。Al含有量は0%であってもよいが、これらの効果を十分に得るためには、Al含有量は0.001%以上であることが好ましい。Al含有量は0.005%以上、0.010%以上、0.025%以上又は0.050%以上であってもよい。一方、Alを過度に含有すると、粗大な酸化物が形成し、靭性を低下させる場合がある。したがって、Al含有量は1.000%以下とする。Al含有量は0.800%以下、0.600%以下又は0.300%以下であってもよい。
[Al: 1.000% or less]
Al is an element that functions as a deoxidizing agent and is an effective element for increasing the strength of steel. Although the Al content may be 0%, in order to fully obtain these effects, the Al content is preferably 0.001% or more. The Al content may be 0.005% or more, 0.010% or more, 0.025% or more, or 0.050% or more. On the other hand, when Al is contained excessively, coarse oxides are formed, which may reduce toughness. Therefore, the Al content is set to 1.000% or less. The Al content may be 0.800% or less, 0.600% or less, or 0.300% or less.
[N:0.0200%以下]
 Nは、溶接時のブローホールの発生原因となる元素である。このため、N含有量は0.0200%以下とする。N含有量は0.0180%以下、0.0150%以下、0.0100%以下、0.0080%以下又は0.0060%以下であってもよい。N含有量は少ないほど好ましく、下限は特に限定されず0%であってもよい。一方、実用鋼板でNを0.0001%未満に低減すると、製造コストが大幅に上昇し、経済的に不利になる。そのため、N含有量は0.0001%以上、0.0002%以上又は0.0005%以上であってもよい。
[N: 0.0200% or less]
N is an element that causes blowholes to occur during welding. Therefore, the N content is set to 0.0200% or less. The N content may be 0.0180% or less, 0.0150% or less, 0.0100% or less, 0.0080% or less, or 0.0060% or less. The lower the N content, the better, and the lower limit is not particularly limited and may be 0%. On the other hand, if N is reduced to less than 0.0001% in a practical steel plate, the manufacturing cost will significantly increase, resulting in an economic disadvantage. Therefore, the N content may be 0.0001% or more, 0.0002% or more, or 0.0005% or more.
[O:0~0.020%]
 Oは、溶接時のブローホールの発生原因となる元素である。このため、O含有量は0.020%以下とする。O含有量は0.018%以下、0.015%以下、0.010%以下又は0.008%以下であってもよい。O含有量は少ないほど好ましく、下限は特に限定されず0%であってもよい。一方、実用鋼板でOを0.0001%未満に低減すると、製造コストが大幅に上昇し、経済的に不利になる。そのため、O含有量は0.0001%以上、0.0002%以上又は0.0005%以上であってもよい。
[O: 0-0.020%]
O is an element that causes blowholes to occur during welding. Therefore, the O content is set to 0.020% or less. The O content may be 0.018% or less, 0.015% or less, 0.010% or less, or 0.008% or less. The lower the O content, the better, and the lower limit is not particularly limited and may be 0%. On the other hand, if O is reduced to less than 0.0001% in a practical steel plate, the manufacturing cost will significantly increase, resulting in an economic disadvantage. Therefore, the O content may be 0.0001% or more, 0.0002% or more, or 0.0005% or more.
 本発明の実施形態に係る鋼板の基本化学組成は上記のとおりである。さらに、当該鋼板は、必要に応じて特性向上を目的として、残部のFeの一部に代えて以下の任意選択元素のうち少なくとも1種を含有してもよい。例えば、鋼板は、Cr:0~2.000%、Mo:0~1.000%、Ti:0~0.500%、Nb:0~0.500%、B:0~0.0100%、Cu:0~1.000%、Ni:0~1.00%、W:0~0.100%、V:0~1.000%、Ta:0~0.100%、Co:0~3.000%、Sn:0~1.000%、Sb:0~0.500%、As:0~0.050%、Mg:0~0.050%、Zr:0~0.050%、Ca:0~0.0500%、Y:0~0.0500%、La:0~0.0500%、Ce:0~0.0500%及びBi:0~0.0500%のうち少なくとも1種を含んでもよい。以下、これらの任意選択元素について詳しく説明する。 The basic chemical composition of the steel plate according to the embodiment of the present invention is as described above. Furthermore, the steel plate may contain at least one of the following optional elements in place of a portion of the remaining Fe for the purpose of improving properties, if necessary. For example, the steel plate has Cr: 0 to 2.000%, Mo: 0 to 1.000%, Ti: 0 to 0.500%, Nb: 0 to 0.500%, B: 0 to 0.0100%, Cu: 0-1.000%, Ni: 0-1.00%, W: 0-0.100%, V: 0-1.000%, Ta: 0-0.100%, Co: 0-3 .000%, Sn: 0-1.000%, Sb: 0-0.500%, As: 0-0.050%, Mg: 0-0.050%, Zr: 0-0.050%, Ca Contains at least one of: 0 to 0.0500%, Y: 0 to 0.0500%, La: 0 to 0.0500%, Ce: 0 to 0.0500%, and Bi: 0 to 0.0500%. But that's fine. These optional elements will be explained in detail below.
[Cr:0~2.000%]
 Crは、Mnと同様に焼入れ性を高め、鋼板強度の向上に寄与する元素である。Cr含有量は0%でもよいが、上記効果を得るためには、Cr含有量は0.001%以上であることが好ましい。Cr含有量は0.010%以上、0.100%以上又は0.200%以上であってもよい。一方、Crを過度に含有しても効果が飽和し、製造コストの上昇を招く虞がある。したがって、Cr含有量は2.000%以下であることが好ましく、1.500%以下、1.000%以下又は0.500%以下であってもよい。
[Cr: 0-2.000%]
Cr, like Mn, is an element that improves hardenability and contributes to improving the strength of the steel sheet. The Cr content may be 0%, but in order to obtain the above effects, the Cr content is preferably 0.001% or more. The Cr content may be 0.010% or more, 0.100% or more, or 0.200% or more. On the other hand, even if Cr is contained excessively, the effect may be saturated, leading to an increase in manufacturing costs. Therefore, the Cr content is preferably 2.000% or less, and may be 1.500% or less, 1.000% or less, or 0.500% or less.
[Mo:0~1.000%]
 Moは、Crと同様に鋼板の高強度化に寄与する元素である。この効果は微量であっても得ることができる。Mo含有量は0%でもよいが、上記効果を得るためには、Mo含有量は0.001%以上であることが好ましい。Mo含有量は0.010%以上、0.020%以上、0.050%以上又は0.100%以上であってもよい。一方、Moを過度に含有すると、熱間加工性が低下して生産性が低下する場合がある。このため、Mo含有量は1.000%以下であることが好ましい。Mo含有量は0.800%以下、0.400%以下又は0.200%以下であってもよい。
[Mo: 0-1.000%]
Mo, like Cr, is an element that contributes to increasing the strength of the steel sheet. This effect can be obtained even with a small amount. Although the Mo content may be 0%, in order to obtain the above effects, the Mo content is preferably 0.001% or more. The Mo content may be 0.010% or more, 0.020% or more, 0.050% or more, or 0.100% or more. On the other hand, if Mo is contained excessively, hot workability may be reduced and productivity may be reduced. Therefore, the Mo content is preferably 1.000% or less. The Mo content may be 0.800% or less, 0.400% or less, or 0.200% or less.
[Ti:0~0.500%]
 Tiは、炭化物の形態制御に有効な元素である。Tiによってフェライトの強度増加が促され得る。Ti含有量は0%でもよいが、これらの効果を得るためには、Ti含有量は0.001%以上であることが好ましい。Ti含有量は0.002%以上、0.010%以上、0.020%以上又は0.050%以上であってもよい。一方、Tiを過度に含有しても効果が飽和し、製造コストの上昇を招く虞がある。したがって、Ti含有量は0.500%以下であることが好ましく、0.400%以下、0.200%以下又は0.100%以下であってもよい。
[Ti: 0 to 0.500%]
Ti is an element effective in controlling the morphology of carbides. Ti can help increase the strength of ferrite. Although the Ti content may be 0%, in order to obtain these effects, the Ti content is preferably 0.001% or more. The Ti content may be 0.002% or more, 0.010% or more, 0.020% or more, or 0.050% or more. On the other hand, even if Ti is contained excessively, the effect may be saturated and the manufacturing cost may increase. Therefore, the Ti content is preferably 0.500% or less, and may be 0.400% or less, 0.200% or less, or 0.100% or less.
[Nb:0~0.500%]
 Nbは、Tiと同様に炭化物の形態制御に有効な元素であり、組織を微細化して鋼板の靭性の向上にも効果的な元素である。これらの効果は微量であっても得ることができる。Nb含有量は0%でもよいが、上記効果を得るためには、Nb含有量は0.001%以上であることが好ましい。Nb含有量は0.005%以上又は0.010%以上であってもよい。一方、Nbを過度に含有すると、鋼中に粗大な炭化物等が生成して鋼板の靭性を低下させる場合がある。このため、Nb含有量は0.500%以下であることが好ましい。Nb含有量は0.200%以下、0.100%以下又は0.060%以下であってもよい。
[Nb: 0 to 0.500%]
Like Ti, Nb is an element effective in controlling the morphology of carbides, and is also effective in improving the toughness of steel sheets by refining the structure. These effects can be obtained even in minute amounts. Although the Nb content may be 0%, in order to obtain the above effects, the Nb content is preferably 0.001% or more. The Nb content may be 0.005% or more or 0.010% or more. On the other hand, when Nb is contained excessively, coarse carbides and the like are generated in the steel, which may reduce the toughness of the steel sheet. For this reason, the Nb content is preferably 0.500% or less. The Nb content may be 0.200% or less, 0.100% or less, or 0.060% or less.
[B:0~0.0100%]
 Bは、オーステナイトからの冷却過程においてフェライト及びパーライトの生成を抑え、マルテンサイトの生成を促す元素である。また、Bは、鋼の高強度化に有益な元素である。これらの効果は微量であっても得ることができる。B含有量は0%でもよいが、上記効果を得るためには、B含有量は0.0001%以上であることが好ましい。B含有量は0.0005%以上又は0.0010%以上であってもよい。一方、Bを過度に含有すると、靭性及び/又は溶接性が低下する場合がある。このため、B含有量は0.0100%以下であることが好ましい。B含有量は0.0080%以下、0.0050%以下、0.0030%以下又は0.0020%以下であってもよい。
[B: 0 to 0.0100%]
B is an element that suppresses the formation of ferrite and pearlite and promotes the formation of martensite in the cooling process from austenite. Further, B is an element useful for increasing the strength of steel. These effects can be obtained even in minute amounts. The B content may be 0%, but in order to obtain the above effects, the B content is preferably 0.0001% or more. The B content may be 0.0005% or more or 0.0010% or more. On the other hand, if B is contained excessively, toughness and/or weldability may deteriorate. Therefore, the B content is preferably 0.0100% or less. The B content may be 0.0080% or less, 0.0050% or less, 0.0030% or less, or 0.0020% or less.
[Cu:0~1.000%]
 Cuは、鋼板の強度の向上に寄与する元素である。この効果は微量であっても得ることができる。Cu含有量は0%でもよいが、上記効果を得るためには、Cu含有量は0.001%以上であることが好ましい。Cu含有量は0.005%以上、0.010%以上又は0.050%以上であってもよい。一方、Cuを過度に含有すると、赤熱脆性を招いて熱間圧延での生産性を低下させる虞がある。このため、Cu含有量は1.000%以下であることが好ましい。Cu含有量は0.800%以下、0.600%以下、0.300%以下又は0.100%以下であってもよい。
[Cu: 0-1.000%]
Cu is an element that contributes to improving the strength of steel sheets. This effect can be obtained even with a small amount. The Cu content may be 0%, but in order to obtain the above effects, the Cu content is preferably 0.001% or more. The Cu content may be 0.005% or more, 0.010% or more, or 0.050% or more. On the other hand, if Cu is contained excessively, red-hot brittleness may occur and productivity in hot rolling may be reduced. Therefore, the Cu content is preferably 1.000% or less. The Cu content may be 0.800% or less, 0.600% or less, 0.300% or less, or 0.100% or less.
[Ni:0~1.00%]
 Niは、鋼板の強度の向上に有効な元素である。Niの含有量は0%でもよいが、上記効果を得るためには、Ni含有量は0.001%以上であることが好ましい。Ni含有量は0.005%以上又は0.010%以上であってもよい。一方、Niを過度に含有すると、鋼板の溶接性が低下する場合がある。このため、Ni含有量は1.00%以下であることが好ましい。Ni含有量は0.80%以下、0.40%以下又は0.20%以下であってもよい。
[Ni: 0-1.00%]
Ni is an element effective in improving the strength of steel sheets. Although the Ni content may be 0%, in order to obtain the above effects, the Ni content is preferably 0.001% or more. The Ni content may be 0.005% or more or 0.010% or more. On the other hand, if Ni is contained excessively, the weldability of the steel plate may deteriorate. For this reason, the Ni content is preferably 1.00% or less. The Ni content may be 0.80% or less, 0.40% or less, or 0.20% or less.
[W:0~0.100%]
 Wは、炭化物の形態制御と鋼板の強度向上に有効な元素である。W含有量は0%でもよいが、これらの効果を得るためには、W含有量は0.001%以上であることが好ましい。W含有量は0.005%以上又は0.010%以上であってもよい。一方、Wを過度に含有すると、溶接性が低下する場合がある。このため、W含有量は0.100%以下であることが好ましい。W含有量は0.080%以下、0.040%以下又は0.020%以下であってもよい。
[W: 0-0.100%]
W is an element effective in controlling the morphology of carbides and improving the strength of steel sheets. Although the W content may be 0%, in order to obtain these effects, the W content is preferably 0.001% or more. The W content may be 0.005% or more or 0.010% or more. On the other hand, if W is contained excessively, weldability may deteriorate. Therefore, the W content is preferably 0.100% or less. The W content may be 0.080% or less, 0.040% or less, or 0.020% or less.
[V:0~1.000%]
 Vは、TiやNbと同様に炭化物の形態制御に有効な元素であり、組織を微細化して鋼板の靭性の向上にも効果的な元素である。V含有量は0%でもよいが、上記効果を得るためには、V含有量は0.001%以上であることが好ましい。V含有量は0.005%以上、0.010%以上又は0.050%以上であってもよい。一方、Vを過度に含有すると、多量の析出物が生成して靭性を低下させる場合がある。このため、V含有量は1.000%以下であることが好ましい。V含有量は0.400%以下、0.200%以下又は0.100%以下であってもよい。
[V: 0-1.000%]
Like Ti and Nb, V is an element effective in controlling the morphology of carbides, and is also effective in improving the toughness of steel sheets by refining the structure. Although the V content may be 0%, in order to obtain the above effects, the V content is preferably 0.001% or more. The V content may be 0.005% or more, 0.010% or more, or 0.050% or more. On the other hand, if V is contained excessively, a large amount of precipitates may be generated, which may reduce toughness. Therefore, the V content is preferably 1.000% or less. The V content may be 0.400% or less, 0.200% or less, or 0.100% or less.
[Ta:0~0.100%]
 Taは、Wと同様に炭化物の形態制御と鋼板強度の向上に有効な元素である。Ta含有量は0%でもよいが、これらの効果を得るためには、Ta含有量は0.001%以上であることが好ましい。Ta含有量は0.005%以上又は0.010%以上であってもよい。一方、Taを過度に含有しても効果が飽和し、必要以上に鋼板中に含有させることは製造コストの上昇を招く。このため、Ta含有量は0.100%以下であることが好ましい。Ta含有量は0.080%以下、0.040%以下又は0.020%以下であってもよい。
[Ta: 0-0.100%]
Ta, like W, is an element effective in controlling the morphology of carbides and improving the strength of steel sheets. The Ta content may be 0%, but in order to obtain these effects, the Ta content is preferably 0.001% or more. The Ta content may be 0.005% or more or 0.010% or more. On the other hand, even if Ta is contained excessively, the effect will be saturated, and if Ta is contained in the steel sheet more than necessary, the manufacturing cost will increase. Therefore, the Ta content is preferably 0.100% or less. The Ta content may be 0.080% or less, 0.040% or less, or 0.020% or less.
[Co:0~3.000%]
 Coは、Niと同様に鋼板の強度の向上に有効な元素である。Co含有量は0%でもよいが、上記効果を得るためには、Co含有量は0.001%以上であることが好ましい。Co含有量は0.005%以上、0.010%以上又は0.100%以上であってもよい。一方、Coを過度に含有すると、熱間加工性が低下する場合があり、原料コストの増加にも繋がる。このため、Co含有量は3.000%以下であることが好ましい。Co含有量は2.000%以下、1.000%以下、0.500%以下又は0.200%以下であってもよい。
[Co: 0-3.000%]
Co, like Ni, is an element effective in improving the strength of steel sheets. Although the Co content may be 0%, in order to obtain the above effects, the Co content is preferably 0.001% or more. The Co content may be 0.005% or more, 0.010% or more, or 0.100% or more. On the other hand, if Co is contained excessively, hot workability may decrease, leading to an increase in raw material cost. For this reason, the Co content is preferably 3.000% or less. The Co content may be 2.000% or less, 1.000% or less, 0.500% or less, or 0.200% or less.
[Sn:0~1.000%]
 Snは、鋼板の原料としてスクラップを用いた場合に、鋼板に含有され得る元素である。また、Snはフェライトの脆化を引き起こす虞がある。このため、Sn含有量は少ないほど好ましく、1.000%以下であることが好ましい。Sn含有量は0.100%以下、0.040%以下又は0.020%以下であってもよい。Sn含有量は0%であってもよいが、Sn含有量を0.001%未満に低減することは精錬コストの過度な増加を招く。このため、Sn含有量は0.001%以上、0.005%以上又は0.010%以上であってもよい。
[Sn: 0 to 1.000%]
Sn is an element that can be contained in a steel plate when scrap is used as a raw material for the steel plate. Furthermore, Sn may cause embrittlement of ferrite. Therefore, the Sn content is preferably as low as possible, and is preferably 1.000% or less. The Sn content may be 0.100% or less, 0.040% or less, or 0.020% or less. Although the Sn content may be 0%, reducing the Sn content to less than 0.001% causes an excessive increase in refining cost. Therefore, the Sn content may be 0.001% or more, 0.005% or more, or 0.010% or more.
[Sb:0~0.500%]
 Sbは、Snと同様に、鋼板の原料としてスクラップを用いた場合に鋼板に含有され得る元素である。また、Sbは粒界に強く偏析して粒界の脆化を招く虞がある。このため、Sb含有量は少ないほど好ましく、0.500%以下であることが好ましい。Sb含有量は0.100%以下、0.040%以下又は0.020%以下であってもよい。Sb含有量は0%であってもよいが、Sb含有量を0.001%未満に低減することは精錬コストの過度な増加を招く。このため、Sb含有量は0.001%以上、0.005%以上又は0.010%以上であってもよい。
[Sb: 0 to 0.500%]
Sb, like Sn, is an element that can be contained in a steel plate when scrap is used as a raw material for the steel plate. Furthermore, Sb strongly segregates at grain boundaries and may cause embrittlement of the grain boundaries. Therefore, the Sb content is preferably as low as possible, and is preferably 0.500% or less. The Sb content may be 0.100% or less, 0.040% or less, or 0.020% or less. Although the Sb content may be 0%, reducing the Sb content to less than 0.001% causes an excessive increase in refining cost. Therefore, the Sb content may be 0.001% or more, 0.005% or more, or 0.010% or more.
[As:0~0.050%]
 Asは、Sn及びSbと同様に、鋼板の原料としてスクラップを用いた場合に鋼板に含有され得る元素である。また、Asは、粒界に強く偏析する元素であり、As含有量は少ないほど好ましい。As含有量は0.050%以下であることが好ましく、0.040%以下又は0.020%以下であってもよい。As含有量は0%であってもよいが、As含有量を0.001%未満に低減することは精錬コストの過度な増加を招く。このため、As含有量は0.001%以上、0.005%以上又は0.010%以上であってもよい。
[As: 0 to 0.050%]
As, like Sn and Sb, is an element that can be contained in a steel plate when scrap is used as a raw material for the steel plate. Furthermore, As is an element that strongly segregates at grain boundaries, and the smaller the As content, the more preferable it is. The As content is preferably 0.050% or less, and may be 0.040% or less or 0.020% or less. Although the As content may be 0%, reducing the As content to less than 0.001% causes an excessive increase in refining cost. Therefore, the As content may be 0.001% or more, 0.005% or more, or 0.010% or more.
[Mg:0~0.050%]
 Mgは、硫化物や酸化物の形態を制御し、鋼板の曲げ成形性の向上に寄与する。この効果は微量であっても得ることができる。Mg含有量は0%でもよいが、上記効果を得るためには、Mg含有量は0.0001%以上であることが好ましい。Mg含有量は0.0005%以上、0.001%以上又は0.005%であってもよい。一方、Mgを過度に含有しても効果が飽和し、必要以上に鋼板中に含有させることは製造コストの上昇を招く。このため、Mg含有量は0.050%以下であることが好ましい。Mg含有量は0.040%以下、0.020%以下又は0.010%以下であってもよい。
[Mg: 0 to 0.050%]
Mg controls the morphology of sulfides and oxides and contributes to improving the bending formability of the steel sheet. This effect can be obtained even with a small amount. The Mg content may be 0%, but in order to obtain the above effects, the Mg content is preferably 0.0001% or more. The Mg content may be 0.0005% or more, 0.001% or more, or 0.005%. On the other hand, even if Mg is contained excessively, the effect will be saturated, and if Mg is contained in the steel sheet more than necessary, the manufacturing cost will increase. Therefore, the Mg content is preferably 0.050% or less. The Mg content may be 0.040% or less, 0.020% or less, or 0.010% or less.
[Zr:0~0.050%]
 Zrは、微量で硫化物の形態を制御できる元素である。Zr含有量は0%でもよいが、上記効果を得るためには、Zr含有量は0.0001%以上であることが好ましい。Zr含有量は0.0005%以上、0.001%以上又は0.005%以上であってもよい。一方、Zrを過度に含有しても効果が飽和し、必要以上に鋼板中に含有させることは製造コストの上昇を招く。このため、Zr含有量は0.050%以下であることが好ましい。Zr含有量は0.040%以下、0.020%以下又は0.010%以下であってもよい。
[Zr: 0 to 0.050%]
Zr is an element that can control the form of sulfide in trace amounts. The Zr content may be 0%, but in order to obtain the above effects, the Zr content is preferably 0.0001% or more. The Zr content may be 0.0005% or more, 0.001% or more, or 0.005% or more. On the other hand, even if Zr is contained excessively, the effect will be saturated, and containing Zr in the steel sheet more than necessary will lead to an increase in manufacturing costs. Therefore, the Zr content is preferably 0.050% or less. The Zr content may be 0.040% or less, 0.020% or less, or 0.010% or less.
[Ca:0~0.0500%]
[Y:0~0.0500%]
[La:0~0.0500%]
[Ce:0~0.0500%]
 Ca、Y、La及びCeは、微量で硫化物の形態を制御できる元素である。Ca、Y、La及びCe含有量は0%でもよいが、上記効果を得るためには、Ca、Y、La及びCe含有量はそれぞれ0.0001%以上であることが好ましく、0.0005%以上、0.0010%以上、0.0020%以上又は0.0030%以上であってもよい。一方、これらの元素を過度に含有しても効果が飽和し、必要以上に鋼板中に含有させることは製造コストの上昇を招く。したがって、Ca、Y、La及びCe含有量はそれぞれ0.0500%以下であることが好ましく、0.0200%以下、0.0100%以下又は0.0060%以下であってもよい。
[Ca: 0-0.0500%]
[Y: 0 to 0.0500%]
[La: 0 to 0.0500%]
[Ce: 0 to 0.0500%]
Ca, Y, La, and Ce are elements that can control the form of sulfide in trace amounts. The Ca, Y, La, and Ce contents may be 0%, but in order to obtain the above effects, it is preferable that the Ca, Y, La, and Ce contents are each 0.0001% or more, and 0.0005%. The content may be 0.0010% or more, 0.0020% or more, or 0.0030% or more. On the other hand, even if these elements are contained in excess, the effect will be saturated, and if they are contained in the steel sheet in excess of necessary, manufacturing costs will increase. Therefore, the Ca, Y, La, and Ce contents are each preferably 0.0500% or less, and may be 0.0200% or less, 0.0100% or less, or 0.0060% or less.
[Bi:0~0.0500%]
 Biは、凝固組織を微細化することにより成形性を高める作用を有する元素である。Bi含有量は0%でもよいが、このような効果を得るためには、Bi含有量は0.0001%以上であることが好ましく、0.0005%以上、0.0010%以上又は0.0050%以上であってもよい。一方、Biを過度に含有しても効果が飽和し、必要以上に鋼板中に含有させることは製造コストの上昇を招く。したがって、Bi含有量は0.0500%以下であることが好ましく、0.0400%以下、0.0200%以下又は0.0100%以下であってもよい。
[Bi:0 to 0.0500%]
Bi is an element that has the effect of improving formability by making the solidified structure finer. The Bi content may be 0%, but in order to obtain such an effect, the Bi content is preferably 0.0001% or more, 0.0005% or more, 0.0010% or more, or 0.0050%. % or more. On the other hand, even if Bi is contained excessively, the effect will be saturated, and if Bi is contained in the steel sheet more than necessary, the manufacturing cost will increase. Therefore, the Bi content is preferably 0.0500% or less, and may be 0.0400% or less, 0.0200% or less, or 0.0100% or less.
 本発明の実施形態に係る鋼板において、上記元素を除く残部は、Fe及び不純物からなる。不純物は、鋼原料から及び/又は製鋼過程で混入し、本発明の実施形態に係る鋼板の特性を阻害しない範囲で存在が許容される元素である。 In the steel sheet according to the embodiment of the present invention, the remainder other than the above elements consists of Fe and impurities. Impurities are elements that are mixed in from steel raw materials and/or during the steel manufacturing process and are allowed to exist within a range that does not impede the properties of the steel sheet according to the embodiment of the present invention.
 本発明の実施形態に係る鋼板の化学組成は、一般的な分析方法によって測定すればよい。例えば、当該鋼板の化学組成は、誘導結合プラズマ発光分光分析(ICP-AES:Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。C及びSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用い、Oは不活性ガス融解-非分散型赤外線吸収法を用いて測定すればよい。 The chemical composition of the steel plate according to the embodiment of the present invention may be measured by a general analysis method. For example, the chemical composition of the steel plate may be measured using inductively coupled plasma-atomic emission spectrometry (ICP-AES). C and S may be measured using a combustion-infrared absorption method, N using an inert gas melting-thermal conductivity method, and O using an inert gas melting-non-dispersive infrared absorption method.
[板厚]
 本発明の実施形態に係る鋼板は、特に限定されないが、例えば0.2~2.0mmの板厚を有する。このような板厚を有する鋼板は、自動車のドアやフード等の蓋物部材の素材として用いる場合に好適である。板厚は0.3mm以上又は0.4mm以上であってもよい。同様に、板厚は1.8mm以下、1.5mm以下、1.2mm以下又は1.0mm以下であってもよい。鋼板の板厚はマイクロメータによって測定される。
[Plate thickness]
The steel plate according to the embodiment of the present invention has a thickness of, for example, 0.2 to 2.0 mm, although it is not particularly limited. A steel plate having such a thickness is suitable for use as a material for lid members such as automobile doors and hoods. The plate thickness may be 0.3 mm or more or 0.4 mm or more. Similarly, the plate thickness may be 1.8 mm or less, 1.5 mm or less, 1.2 mm or less, or 1.0 mm or less. The thickness of the steel plate is measured with a micrometer.
[めっき]
 本発明の実施形態に係る鋼板は、耐食性の向上等を目的として、表面にめっき層をさらに有していてもよい。めっき層は、任意の適切なめっき層であってよく、例えば溶融めっき層及び電気めっき層のいずれでもよい。溶融めっき層は、例えば、溶融亜鉛めっき層、溶融亜鉛合金めっき層(亜鉛と、Si及びAl等の追加元素との合金から構成される溶融めっき層)、又はこれらのめっきを合金化した合金化溶融亜鉛めっき層(合金化めっき層)であってもよい。溶融亜鉛めっき層及び溶融亜鉛合金めっき層は、Feを7質量%未満含有するめっき層であることが好ましく、また、合金化めっき層は、Feを7質量%以上15質量%以下含有するめっき層であることが好ましい。溶融亜鉛めっき層、溶融亜鉛合金めっき層、及び合金化めっき層において、亜鉛及びFe以外の成分は特に限定されず、通常の範囲内で種々の構成を採用することができる。また、めっき層は、例えばアルミめっき層等であってもよい。また、めっき層の付着量は、特に制限されず一般的な付着量であってよい。
[Plating]
The steel plate according to the embodiment of the present invention may further have a plating layer on the surface for the purpose of improving corrosion resistance. The plating layer may be any suitable plating layer, such as a hot-dip plating layer or an electroplating layer. The hot-dip plating layer may be, for example, a hot-dip galvanized layer, a hot-dip zinc alloy plating layer (a hot-dip plating layer composed of an alloy of zinc and additional elements such as Si and Al), or an alloy formed by alloying these platings. It may be a hot dip galvanized layer (alloyed plating layer). The hot-dip galvanized layer and the hot-dip zinc alloy plated layer are preferably plating layers containing less than 7% by mass of Fe, and the alloyed plating layer is a plating layer containing 7% by mass or more and 15% by mass or less of Fe. It is preferable that In the hot-dip galvanized layer, the hot-dip zinc alloy plated layer, and the alloyed plating layer, components other than zinc and Fe are not particularly limited, and various configurations can be adopted within a normal range. Furthermore, the plating layer may be, for example, an aluminum plating layer. Further, the amount of the plating layer to be deposited is not particularly limited and may be a general amount to be deposited.
[機械特性]
 本発明の実施形態に係る鋼板によれば、高い引張強度、具体的には400MPa以上の引張強度を達成することができる。引張強度は、好ましくは440MPa以上又は480MPa以上、より好ましくは540MPa以上又は600MPa以上である。上限は特に限定されないが、例えば、引張強度は980MPa以下又は900MPa以下であってもよい。同様に、本発明の実施形態に係る鋼板によれば、優れた成形性を達成することができ、より具体的には20%以上の全伸びを達成することができる。全伸びは、好ましくは22%以上、より好ましくは25%以上又は30%以上である。上限は特に限定されないが、例えば、全伸びは50%以下又は45%以下であってもよい。引張強度及び全伸びは、試験片の長手方向が鋼板の圧延直角方向と平行になる向きから採取したJIS5号試験片に基づいてJIS Z 2241:2011に準拠した引張試験を行うことで測定される。
[Mechanical properties]
According to the steel plate according to the embodiment of the present invention, high tensile strength, specifically, a tensile strength of 400 MPa or more can be achieved. The tensile strength is preferably 440 MPa or more or 480 MPa or more, more preferably 540 MPa or more or 600 MPa or more. Although the upper limit is not particularly limited, for example, the tensile strength may be 980 MPa or less or 900 MPa or less. Similarly, according to the steel sheet according to the embodiment of the present invention, excellent formability can be achieved, and more specifically, a total elongation of 20% or more can be achieved. The total elongation is preferably 22% or more, more preferably 25% or more or 30% or more. Although the upper limit is not particularly limited, for example, the total elongation may be 50% or less or 45% or less. Tensile strength and total elongation are measured by conducting a tensile test in accordance with JIS Z 2241:2011 based on a JIS No. 5 test piece taken from a direction in which the longitudinal direction of the test piece is parallel to the rolling direction of the steel plate. .
 本発明の実施形態に係る鋼板は、高強度、具体的には400MPa以上の引張強度を有するにもかかわらず、成形性及びプレス成形等の成形後においても優れた外観を維持することができる。このため、本発明の実施形態に係る鋼板は、例えば、自動車において高い意匠性が求められるルーフ、フード、フェンダー及びドア等の外板部材として使用するのに非常に有用である。 Although the steel plate according to the embodiment of the present invention has high strength, specifically, a tensile strength of 400 MPa or more, it can maintain excellent formability and appearance even after forming such as press forming. Therefore, the steel sheet according to the embodiment of the present invention is very useful for use as outer panel members of automobiles, such as roofs, hoods, fenders, and doors, which require a high level of design, for example.
<鋼板の製造方法>
 次に、本発明の実施形態に係る鋼板の好ましい製造方法について説明する。以下の説明は、本発明の実施形態に係る鋼板を製造するための特徴的な方法の例示を意図するものであって、当該鋼板を以下に説明するような製造方法によって製造されるものに限定することを意図するものではない。
<Manufacturing method of steel plate>
Next, a preferred method for manufacturing a steel plate according to an embodiment of the present invention will be described. The following description is intended to illustrate a characteristic method for manufacturing a steel plate according to an embodiment of the present invention, and is limited to those manufactured by the manufacturing method described below. It is not intended to.
 本発明の実施形態に係る鋼板の製造方法は、
 鋼板に関連して上で説明した化学組成を有するスラブを1100~1400℃の温度に加熱して仕上げ圧延し、次いで500~700℃の温度で巻き取ることを含む熱間圧延工程であって、前記仕上げ圧延の終了温度が800~1350℃である熱間圧延工程、
 得られた熱延鋼板を酸洗する酸洗工程、
 酸洗された熱延鋼板を20~90%の圧下率で冷間圧延する冷間圧延工程、
 得られた冷延鋼板を1次焼鈍する工程であって、前記1次焼鈍は、前記冷延鋼板を加熱してAc3~950℃の最高加熱温度にて10~500秒間保持し、次いで500~700℃の温度域の平均冷却速度を50℃/秒以上に制御して350℃以下の冷却停止温度まで冷却することを含む1次焼鈍工程、及び
 1次焼鈍後の冷延鋼板を2次焼鈍する工程であって、前記2次焼鈍は、前記冷延鋼板を加熱して(Ac1+20)~820℃の最高加熱温度にて10~500秒間保持し、次いで500~700℃の温度域の平均冷却速度を30℃/秒以上に制御し、さらに200~500℃の温度域の平均冷却速度を40℃/秒以上に制御することを含む2次焼鈍工程
を含むことを特徴としている。以下、各工程について詳しく説明する。
The method for manufacturing a steel plate according to an embodiment of the present invention includes:
A hot rolling process comprising heating a slab having the chemical composition described above in connection with a steel plate to a temperature of 1100 to 1400°C for finish rolling and then winding at a temperature of 500 to 700°C, a hot rolling step in which the finishing temperature of the finish rolling is 800 to 1350°C;
A pickling process of pickling the obtained hot rolled steel sheet,
A cold rolling process in which pickled hot rolled steel sheets are cold rolled at a reduction rate of 20 to 90%;
The step of primary annealing the obtained cold-rolled steel sheet, the primary annealing is to heat the cold-rolled steel sheet and hold it at a maximum heating temperature of 3 to 950°C for 10 to 500 seconds, and then to 500 to 950°C. A primary annealing process that includes cooling to a cooling stop temperature of 350°C or less by controlling the average cooling rate in a temperature range of 700°C to 50°C/sec or more, and a secondary annealing of the cold rolled steel plate after the primary annealing. The secondary annealing is a step of heating the cold-rolled steel sheet and holding it at a maximum heating temperature of (Ac1+20) to 820°C for 10 to 500 seconds, followed by average cooling in a temperature range of 500 to 700°C. It is characterized by including a secondary annealing step in which the cooling rate is controlled at 30° C./second or higher, and the average cooling rate in the temperature range of 200 to 500° C. is controlled to 40° C./second or higher. Each step will be explained in detail below.
[熱間圧延工程]
[スラブの加熱]
 まず、鋼板に関連して上で説明した化学組成を有するスラブが加熱される。使用するスラブは、生産性の観点から連続鋳造法において鋳造することが好ましいが、造塊法又は薄スラブ鋳造法によって製造してもよい。使用されるスラブは、高強度鋼板を得るために合金元素を比較的多く含有している。このため、スラブを熱間圧延に供する前に加熱して合金元素をスラブ中に固溶させる必要がある。加熱温度が1100℃未満であると、合金元素がスラブ中に十分に固溶せずに粗大な合金炭化物が残り、熱間圧延中に脆化割れを生じる場合がある。このため、加熱温度は1100℃以上であることが好ましい。加熱温度の上限は、特に限定されないが、加熱設備の能力や生産性の観点から1400℃以下であることが好ましい。
[Hot rolling process]
[Slab heating]
First, a slab having the chemical composition described above in connection with steel plate is heated. The slab used is preferably cast by a continuous casting method from the viewpoint of productivity, but may be manufactured by an ingot casting method or a thin slab casting method. The slabs used contain relatively high amounts of alloying elements in order to obtain high strength steel sheets. For this reason, it is necessary to heat the slab to dissolve the alloying elements in the slab before hot rolling. If the heating temperature is less than 1100° C., the alloying elements will not be fully dissolved in the slab, leaving coarse alloy carbides, which may cause embrittlement cracking during hot rolling. For this reason, the heating temperature is preferably 1100°C or higher. The upper limit of the heating temperature is not particularly limited, but is preferably 1400° C. or lower from the viewpoint of the capacity of the heating equipment and productivity.
[粗圧延]
 本方法では、例えば、加熱されたスラブに対し、板厚調整等のために、仕上げ圧延の前に粗圧延を施してもよい。粗圧延は、所望のシートバー寸法が確保できればよく、その条件は特に限定されない。
[Rough rolling]
In this method, for example, the heated slab may be subjected to rough rolling before finish rolling in order to adjust the plate thickness or the like. The conditions for rough rolling are not particularly limited as long as the desired sheet bar dimensions can be ensured.
[仕上げ圧延・巻き取り]
 加熱されたスラブ又はそれに加えて必要に応じて粗圧延されたスラブは、次に仕上げ圧延を施される。上記のように使用されるスラブは合金元素を比較的多く含有しているため、熱間圧延の際に圧延荷重を大きくする必要がある。このため、熱間圧延は高温で行われることが好ましい。特に仕上げ圧延の終了温度は、鋼板の金属組織の制御の点で重要である。仕上げ圧延の終了温度が低いと、金属組織が不均一となり、成形性が低下する場合がある。このため、仕上げ圧延の終了温度は800℃以上とする。一方で、オーステナイトの粗大化を抑制するため、仕上げ圧延の終了温度は1350℃以下とする。次に、仕上げ圧延された熱延鋼板は、500~700℃の巻き取り温度で巻き取られる。巻き取り温度を500~700℃とすることで酸化スケールの成長を抑制することができる。
[Final rolling/winding]
The heated slab, or the optionally rough rolled slab, is then subjected to finish rolling. Since the slab used as described above contains a relatively large amount of alloying elements, it is necessary to increase the rolling load during hot rolling. For this reason, hot rolling is preferably performed at a high temperature. In particular, the finishing temperature of finish rolling is important in terms of controlling the metallographic structure of the steel sheet. If the finishing temperature of finish rolling is low, the metal structure may become non-uniform and formability may deteriorate. For this reason, the finishing temperature of finish rolling is set to 800°C or higher. On the other hand, in order to suppress coarsening of austenite, the finishing temperature of finish rolling is set to 1350° C. or lower. Next, the finish-rolled hot rolled steel sheet is wound up at a winding temperature of 500 to 700°C. The growth of oxide scale can be suppressed by setting the winding temperature to 500 to 700°C.
[酸洗工程]
 次に、得られた熱延鋼板は、当該熱延鋼板の表面に形成された酸化スケールを除去するために酸洗される。酸洗は、酸化スケールを除去するのに適切な条件下で実施すればよく、一回でもよいし、あるいは酸化スケールを確実に取り除くために複数回に分けて実施してもよい。
[Acid washing process]
Next, the obtained hot-rolled steel sheet is pickled to remove oxidized scale formed on the surface of the hot-rolled steel sheet. Pickling may be carried out under conditions suitable for removing oxide scale, and may be carried out once or in multiple steps to ensure removal of oxide scale.
[冷間圧延工程]
 酸洗された熱延鋼板は、冷間圧延工程において20~90%の圧下率で冷延圧延される。冷間圧延の圧下率を20%以上とすることで冷延鋼板の形状を平坦に保ち、最終製品における延性の低下を抑制することができる。一方で、冷間圧延の圧下率を90%以下とすることにより、圧延荷重が過大になって圧延が困難となることを防ぐことができる。圧延パスの回数及びパス毎の圧下率は、特に限定されず、冷間圧延全体の圧下率が上記範囲となるように適宜設定すればよい。
[Cold rolling process]
The pickled hot rolled steel sheet is cold rolled at a rolling reduction of 20 to 90% in a cold rolling process. By setting the rolling reduction ratio in cold rolling to 20% or more, the shape of the cold rolled steel sheet can be kept flat and a decrease in ductility in the final product can be suppressed. On the other hand, by setting the rolling reduction ratio in cold rolling to 90% or less, it is possible to prevent the rolling load from becoming excessive and making rolling difficult. The number of rolling passes and the rolling reduction rate for each pass are not particularly limited, and may be appropriately set so that the rolling reduction rate of the entire cold rolling falls within the above range.
[1次焼鈍工程]
 得られた冷延鋼板は、次の1次焼鈍工程において加熱され、Ac3~950℃の最高加熱温度にて10~500秒間保持され、次いで500~700℃の温度域の平均冷却速度を50℃/秒以上に制御して350℃以下の冷却停止温度まで冷却される。ここで、Ac3点(℃)は、冷延鋼板から小片を切り出し、当該小片における室温から10℃/秒で1000℃への加熱中の熱膨張から求められる。Ac3点以上の温度で十分な時間保持することで、オーステナイト化を促進してその後の急冷により350℃以下の温度まで冷却することで、冷却後の鋼板中の金属組織を確実にベイナイト及び/又はマルテンサイトを主体とする組織、例えばフルベイナイト又はフルマルテンサイトによって構成することが可能となる。ここで、ベイナイト及び/又はマルテンサイトを主体とする組織とは、ベイナイト及びマルテンサイトの少なくとも1種を合計の面積率で90%以上含む組織をいうものであり、フルベイナイトとは、面積率で100%のベイナイトからなる組織をいうものであり、フルマルテンサイトとは、面積率で100%のマルテンサイトからなる組織をいうものである。ベイナイト及び/又はマルテンサイト組織は、フェライト等の組織と比較して内部に多くの様々な界面を有している組織である。このため、2次焼鈍工程すなわち最終焼鈍工程前の鋼板における金属組織をベイナイト及び/又はマルテンサイトによって構成することで、このような金属組織を2次焼鈍において加熱していく段階でこれらの界面上にオーステナイトの核生成サイトとなり得る炭化物を非常に多く分散して生成させることが可能となる。その結果として、このように多く分散された核生成サイトから鋼板全体にオーステナイトを微細かつ均一に生成させ、次いでこれらのオーステナイトからマルテンサイトを生成させることで、2次焼鈍後に得られる金属組織において、マルテンサイトの平均粒子間隔が2.5μm以下に制御されるとともに、圧延方向及び板厚方向に垂直な方向のマルテンサイトの面積率における標準偏差が1.5%以下に制御される。すなわちマルテンサイトがミクロな領域とマクロな領域の両方において均一に分散した金属組織を達成することが可能となる。
[Primary annealing process]
The obtained cold-rolled steel sheet is heated in the next primary annealing step, held at a maximum heating temperature of 3 to 950°C for 10 to 500 seconds, and then reduced to an average cooling rate of 50°C in the temperature range of 500 to 700°C. The cooling temperature is controlled to be at least 350° C./sec to a cooling stop temperature of 350° C. or less. Here, the Ac3 point (°C) is determined by cutting out a small piece from a cold-rolled steel plate and from the thermal expansion of the small piece during heating from room temperature to 1000°C at 10°C/sec. By holding the temperature at Ac3 point or higher for a sufficient period of time to promote austenitization, and then rapidly cooling it to a temperature of 350°C or lower, the metal structure in the steel sheet after cooling is reliably changed to bainite and/or It is possible to construct a structure mainly composed of martensite, for example, full bainite or full martensite. Here, a structure mainly composed of bainite and/or martensite refers to a structure containing at least one of bainite and martensite in a total area ratio of 90% or more, and full bainite is a structure containing at least one of bainite and martensite in an area ratio of 90% or more. It refers to a structure consisting of 100% bainite, and full martensite refers to a structure consisting of 100% martensite in terms of area ratio. A bainite and/or martensitic structure has many different interfaces inside it, compared to a structure such as ferrite. Therefore, by making the metal structure of the steel sheet before the secondary annealing process, that is, the final annealing process, consist of bainite and/or martensite, the metal structure is heated at the stage of secondary annealing. It becomes possible to disperse and generate a large number of carbides that can serve as nucleation sites for austenite. As a result, austenite is generated finely and uniformly throughout the steel sheet from these widely dispersed nucleation sites, and then martensite is generated from these austenites, so that in the metal structure obtained after secondary annealing, The average particle spacing of martensite is controlled to be 2.5 μm or less, and the standard deviation in the area ratio of martensite in the direction perpendicular to the rolling direction and the plate thickness direction is controlled to be 1.5% or less. That is, it becomes possible to achieve a metal structure in which martensite is uniformly dispersed in both micro and macro regions.
 1次焼鈍工程を行わない場合には、当然ながら最終焼鈍(2次焼鈍)工程前の鋼板中の金属組織をベイナイト及び/又はマルテンサイトを主体とする組織によって構成することができない。また、1次焼鈍工程を行っても当該1次焼鈍工程における最高加熱温度がAc3点未満であるか又は保持時間が10秒未満であると、オーステナイト化が不十分となり、その後の冷却によっても鋼板中の金属組織をベイナイト及び/又はマルテンサイトを主体とする組織によって構成することができない。すなわちベイナイト及びマルテンサイトの面積率の合計を90%以上にすることができない。一方で、より高温及びより長時間での加熱保持は生産性を低下させることから、1次焼鈍工程における最高加熱温度は950℃以下とし、保持時間は500秒以下とする。 If the primary annealing process is not performed, the metal structure in the steel sheet before the final annealing (secondary annealing) process cannot be composed of a structure mainly composed of bainite and/or martensite. In addition, even if the primary annealing process is performed, if the maximum heating temperature in the primary annealing process is less than 3 points Ac or the holding time is less than 10 seconds, the austenitization will be insufficient, and even if the steel sheet is cooled even after cooling. The metal structure inside cannot be composed of a structure mainly composed of bainite and/or martensite. That is, the total area ratio of bainite and martensite cannot be made 90% or more. On the other hand, since heating and holding at a higher temperature and for a longer time reduces productivity, the maximum heating temperature in the primary annealing step is set to 950° C. or lower, and the holding time is set to 500 seconds or lower.
 また、1次焼鈍工程における500~700℃の温度域の平均冷却速度が50℃/秒未満であるか又は冷却停止温度が350℃超であると、冷却中にフェライトが生成し、鋼板中の金属組織をベイナイト及びマルテンサイトの面積率の合計を90%以上にすることができない。したがって、当該平均冷却速度は50℃/秒以上とする必要があり、上限は好ましくは300℃/秒である。一方、冷却停止温度の下限は、特に限定されず、例えば室温(25℃)であってもよいし、好ましくは200℃である。 In addition, if the average cooling rate in the temperature range of 500 to 700°C in the primary annealing step is less than 50°C/second or the cooling stop temperature is over 350°C, ferrite will be generated during cooling and the The metal structure cannot have a total area ratio of bainite and martensite of 90% or more. Therefore, the average cooling rate needs to be 50°C/second or more, and the upper limit is preferably 300°C/second. On the other hand, the lower limit of the cooling stop temperature is not particularly limited, and may be, for example, room temperature (25°C), and preferably 200°C.
[2次焼鈍工程(最終焼鈍工程)]
 1次焼鈍後の冷延鋼板は、次の2次焼鈍工程において再び加熱され、(Ac1+20)~820℃の最高加熱温度にて10~500秒間保持され、次いで500~700℃の温度域の平均冷却速度を30℃/秒以上に制御し、さらに200~500℃の温度域の平均冷却速度を40℃/秒以上に制御することによって冷却される。ここで、Ac1点(℃)は、Ac3点の場合と同様に、冷延鋼板から小片を切り出し、当該小片における室温から10℃/秒で1000℃への加熱中の熱膨張から求められる。まず、1次冷却後の鋼板を(Ac1+20)~820℃の最高加熱温度まで加熱していく段階で、金属組織中のベイナイト及び/又はマルテンサイトの内部に含まれる多くの界面上に炭化物を分散して生成させることができる。次に、フェライトとオーステナイトの2相域に対応する当該最高加熱温度にて10~500秒間保持することで、界面上に炭化物が分散された状態を維持しつつ、当該炭化物からオーステナイトを鋼板全体に微細かつ均一に生成させることができる。最後に、500~700℃の温度域の平均冷却速度を30℃/秒以上に制御し、さらに200~500℃の温度域の平均冷却速度を40℃/秒以上に制御することで、微細分散されたオーステナイトからマルテンサイトを適切に生成させることができ、その結果としてマルテンサイトの平均粒子間隔が2.5μm以下に制御されるとともに、圧延方向及び板厚方向に垂直な方向のマルテンサイトの面積率における標準偏差が1.5%以下に制御される。すなわちマルテンサイトがミクロな領域とマクロな領域の両方において均一に分散した金属組織を達成することが可能となる。
[Secondary annealing process (final annealing process)]
The cold-rolled steel sheet after the primary annealing is heated again in the next secondary annealing step, held at the maximum heating temperature of (Ac1+20) ~ 820°C for 10 ~ 500 seconds, and then heated at the average temperature in the temperature range of 500 ~ 700°C. Cooling is achieved by controlling the cooling rate to 30°C/second or more, and further controlling the average cooling rate in the temperature range of 200 to 500°C to 40°C/second or more. Here, the Ac1 point (°C) is determined by cutting out a small piece from a cold-rolled steel sheet and calculating the thermal expansion of the small piece during heating from room temperature to 1000°C at 10°C/sec, as in the case of the Ac3 point. First, in the step of heating the steel plate after primary cooling to the maximum heating temperature of (Ac1+20) to 820°C, carbides are dispersed on many interfaces contained inside bainite and/or martensite in the metal structure. It can be generated by Next, by holding the maximum heating temperature corresponding to the two-phase region of ferrite and austenite for 10 to 500 seconds, austenite is transferred from the carbides to the entire steel sheet while maintaining the state in which the carbides are dispersed on the interface. It can be produced finely and uniformly. Finally, by controlling the average cooling rate in the temperature range of 500 to 700°C to 30°C/second or more, and further controlling the average cooling rate in the temperature range of 200 to 500°C to 40°C/second or more, fine dispersion is achieved. As a result, the average particle spacing of martensite can be controlled to 2.5 μm or less, and the area of martensite in the direction perpendicular to the rolling direction and the plate thickness direction can be appropriately generated. The standard deviation in the ratio is controlled to 1.5% or less. In other words, it is possible to achieve a metal structure in which martensite is uniformly dispersed in both the micro and macro regions.
 2次焼鈍工程における最高加熱温度がAc1+20℃未満であるか又は保持時間が10秒未満であると、上記のような所望の金属組織を得ることができず、特にはマルテンサイトを適切に生成させることができない。一方で、最高加熱温度が820℃超の場合には、オーステナイトの面積率が高くなりすぎて、フェライトの面積率を80%以上にすることができない。さらに、高温に起因して界面上に炭化物が分散された状態を維持することができなくなり、最終的に得られる金属組織において、ミクロな領域とマクロな領域の両方でのマルテンサイトの均一分散を達成することができなくなる。また、保持時間が500秒超であると、オーステナイト粒が粗大化してしまい、その後の冷却によって得られるマルテンサイト粒も比較的粗大なものとなる。このような場合には、マルテンサイトの平均粒子間隔が2.5μm以下に制御された微細なマルテンサイト組織を得ることができない。 If the maximum heating temperature in the secondary annealing step is less than Ac1+20°C or the holding time is less than 10 seconds, the desired metal structure as described above cannot be obtained, and in particular, martensite cannot be properly generated. I can't. On the other hand, when the maximum heating temperature exceeds 820° C., the area ratio of austenite becomes too high and the area ratio of ferrite cannot be increased to 80% or more. Furthermore, due to the high temperature, it is no longer possible to maintain the dispersed state of carbides on the interface, and the uniform dispersion of martensite in both the micro and macro regions is prevented in the final metal structure. be unable to achieve it. Moreover, if the holding time exceeds 500 seconds, the austenite grains will become coarse, and the martensite grains obtained by subsequent cooling will also become relatively coarse. In such a case, it is not possible to obtain a fine martensite structure in which the average particle spacing of martensite is controlled to be 2.5 μm or less.
 また、2次焼鈍工程における500~700℃の温度域の平均冷却速度が30℃/秒未満であると、オーステナイトからベイナイト等への変態が促進されてしまい、その後の冷却を適切に行ったとしても、所望量のマルテンサイトが得られない場合がある。この場合には、所望の強度が達成できなくなるか及び/又は特にミクロな領域でのマルテンサイトの均一分散が達成できなくなる。したがって、500~700℃の温度域の平均冷却速度は30℃/秒以上とする必要があり、上限は例えば200℃/秒以下であり、好ましくは60℃/秒以下である。一方で、200~500℃の温度域の平均冷却速度が40℃/秒未満であると、オーステナイトからマルテンサイトへの変態を促進させることができず、同様にベイナイト等の他の組織の生成が多くなってしまう。したがって、200~500℃の温度域の平均冷却速度は40℃/秒以上とする必要があり、上限は例えば200℃/秒以下であり、好ましくは80℃/秒以下である。 Furthermore, if the average cooling rate in the temperature range of 500 to 700°C in the secondary annealing step is less than 30°C/second, the transformation from austenite to bainite etc. will be accelerated, and even if the subsequent cooling is performed appropriately, However, the desired amount of martensite may not be obtained. In this case, the desired strength cannot be achieved and/or a homogeneous distribution of martensite, especially in the microscopic region, cannot be achieved. Therefore, the average cooling rate in the temperature range of 500 to 700°C needs to be 30°C/second or more, and the upper limit is, for example, 200°C/second or less, preferably 60°C/second or less. On the other hand, if the average cooling rate in the temperature range of 200 to 500°C is less than 40°C/sec, the transformation from austenite to martensite cannot be promoted, and the formation of other structures such as bainite is similarly inhibited. It ends up being too many. Therefore, the average cooling rate in the temperature range of 200 to 500°C needs to be 40°C/second or more, and the upper limit is, for example, 200°C/second or less, preferably 80°C/second or less.
 上記の方法は、1次焼鈍と2次焼鈍を含む2回の焼鈍処理によって本発明の実施形態に係る鋼板を製造するものであるが、本発明の実施形態に係る鋼板は、このような方法によって製造されるものに必ずしも限定されず、例えば1回の焼鈍処理によって製造することも可能である。より具体的には、熱間圧延工程後の鋼板の金属組織をフルベイナイト又はフルマルテンサイトによって構成することで、先に説明した1次焼鈍を省略することが可能である。しかしながら、この場合には、熱間圧延後の冷却条件や巻取温度などを適切に制御する必要があり、また、その後の冷間圧延における圧下率の制御も重要となる。というのも、冷間圧延における圧下率が高くなると、その後の焼鈍工程における加熱時に再結晶が生じてしまい、熱間圧延工程において形成した金属組織を維持することができなくなるからである。 In the above method, the steel plate according to the embodiment of the present invention is manufactured by two annealing treatments including primary annealing and secondary annealing. It is not necessarily limited to what is manufactured by, for example, it is also possible to manufacture by one annealing treatment. More specifically, by configuring the metal structure of the steel sheet after the hot rolling process to be full bainite or full martensite, it is possible to omit the primary annealing described above. However, in this case, it is necessary to appropriately control the cooling conditions and coiling temperature after hot rolling, and it is also important to control the rolling reduction in the subsequent cold rolling. This is because if the rolling reduction in cold rolling becomes high, recrystallization occurs during heating in the subsequent annealing process, making it impossible to maintain the metal structure formed in the hot rolling process.
[めっき工程]
 耐食性の向上等を目的として、得られた冷延鋼板の表面にめっき処理を施してもよい。めっき処理は、溶融めっき、合金化溶融めっき、電気めっき等の処理であってよい。例えば、めっき処理として鋼板に溶融亜鉛めっき処理を行ってもよく、溶融亜鉛めっき処理後に合金化処理を行ってもよい。めっき処理及び合金化処理の具体的な条件は特に限定されず、当業者に公知の任意の適切な条件であってよい。例えば、溶融亜鉛めっき処理では、めっき浴浸漬板温度(溶融亜鉛めっき浴に浸漬する際の鋼板の温度)は、溶融亜鉛めっき浴温度より40℃低い温度(溶融亜鉛めっき浴温度-40℃)から溶融亜鉛めっき浴温度より50℃高い温度(溶融亜鉛めっき浴温度+50℃)までの温度範囲が好ましい。溶融亜鉛めっき層に合金化処理を施す場合には、溶融亜鉛めっき層を形成した鋼板を400~600℃の温度範囲に加熱することが好ましい。
[Plating process]
For the purpose of improving corrosion resistance, etc., the surface of the obtained cold rolled steel sheet may be subjected to plating treatment. The plating process may be hot-dip plating, alloyed hot-dip plating, electroplating, or the like. For example, the steel plate may be subjected to hot-dip galvanizing treatment, or alloying treatment may be performed after hot-dip galvanizing treatment. Specific conditions for the plating treatment and alloying treatment are not particularly limited, and may be any suitable conditions known to those skilled in the art. For example, in hot-dip galvanizing, the temperature of the plate immersed in the galvanizing bath (temperature of the steel plate when immersed in the hot-dip galvanizing bath) ranges from 40°C lower than the hot-dip galvanizing bath temperature (hot-dip galvanizing bath temperature -40°C). A temperature range of up to 50° C. higher than the hot-dip galvanizing bath temperature (hot-dip galvanizing bath temperature + 50° C.) is preferred. When alloying the hot-dip galvanized layer, it is preferable to heat the steel plate on which the hot-dip galvanized layer is formed to a temperature in the range of 400 to 600°C.
 以下、実施例によって本発明をより詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。 Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples in any way.
 以下の実施例では、本発明の実施形態に係る鋼板を種々の条件下で製造し、得られた鋼板の引張強度、成形性及び成形後外観の特性について調べた。 In the following examples, steel plates according to embodiments of the present invention were manufactured under various conditions, and the tensile strength, formability, and appearance properties of the obtained steel plates were investigated.
 まず、溶鋼を連続鋳造法にて鋳造して表1に示す種々の化学組成を有するスラブを形成し、これらのスラブを1100~1400℃の所定の温度に加熱して熱間圧延を行った。熱間圧延は、粗圧延と仕上げ圧延を行うことにより実施し、仕上げ圧延の終了温度及び巻取温度は表2に示すとおりであった。次に、得られた熱延鋼板に酸洗を施し、次いで表2に示す圧下率にて冷間圧延を施して0.4mmの板厚を有する冷延鋼板を得た。次に、得られた冷延鋼板に対し、表2に示す条件下で1次焼鈍及び2次焼鈍を施した。最後に、めっき処理として溶融亜鉛めっきを適宜施し、さらにそのうちの幾つかについて表2に示す合金化温度にて合金化処理を施した。 First, molten steel was cast by a continuous casting method to form slabs having various chemical compositions shown in Table 1, and these slabs were heated to a predetermined temperature of 1100 to 1400°C and hot rolled. Hot rolling was carried out by performing rough rolling and finish rolling, and the finish rolling temperature and coiling temperature were as shown in Table 2. Next, the obtained hot rolled steel sheets were pickled and then cold rolled at the rolling reduction ratio shown in Table 2 to obtain cold rolled steel sheets having a thickness of 0.4 mm. Next, the obtained cold rolled steel sheets were subjected to primary annealing and secondary annealing under the conditions shown in Table 2. Finally, hot-dip galvanizing was appropriately performed as a plating treatment, and some of them were further alloyed at the alloying temperatures shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 得られた鋼板の特性は以下の方法によって測定及び評価した。 The properties of the obtained steel plate were measured and evaluated by the following methods.
[引張強度(TS)及び全伸び(El)]
 引張強度(TS)及び全伸び(El)は、試験片の長手方向が鋼板の圧延直角方向と平行になる向きから採取したJIS5号試験片に基づいてJIS Z 2241:2011に準拠した引張試験を行うことで測定した。
[Tensile strength (TS) and total elongation (El)]
Tensile strength (TS) and total elongation (El) were determined by a tensile test in accordance with JIS Z 2241:2011 based on a JIS No. 5 test piece taken from a direction in which the longitudinal direction of the test piece was parallel to the rolling direction of the steel plate. It was measured by doing.
[成形後外観]
 成形後外観は、プレス成形により約5%のひずみが付与されたドアアウタ部材の表面に発生するゴーストラインの程度により評価した。プレス成形後の表面を砥石掛けし、表面に生じた圧延方向にほぼ平行に延びる直線状の筋模様を、ゴーストラインと判断して評価した。100mm×100mmの任意の領域を目視で確認し、筋模様が全く確認されなかった場合を合格(〇)と判定し、筋模様が確認された場合を不合格(×)と判定した。今回の試験では、実際にドアアウタ部材をプレス成形することにより成形後外観を評価したが、プレス成形により約5%のひずみが付与されたものと推定可能な成形部材を評価対象としてもよく、鋼板から採取した試験片に対して同様に5%の予ひずみを付与したものを評価対象としてもよく、このような試験方法によっても同等の結果が得られる。なお、鋼板から採取した試験片の場合、圧延方向及び板厚方向に直交する方向を長手方向とするJIS5号試験片に対し、5%の予ひずみを与えたものについて評価することができる。
[Appearance after molding]
The appearance after molding was evaluated based on the degree of ghost lines generated on the surface of the door outer member to which approximately 5% strain was applied by press molding. The surface after press molding was ground with a grindstone, and the linear striped pattern that appeared on the surface and extending substantially parallel to the rolling direction was determined to be a ghost line and evaluated. An arbitrary area of 100 mm x 100 mm was visually confirmed, and when no streak pattern was observed, it was determined to be passed (〇), and when a streak pattern was observed, it was determined to be failed (×). In this test, we evaluated the appearance after forming by actually press forming the door outer member, but the evaluation target may also be a formed member that can be estimated to have been subjected to approximately 5% strain due to press forming. Similarly, a test piece taken from a specimen with a prestrain of 5% may be evaluated, and similar results can be obtained by such a test method. In addition, in the case of a test piece taken from a steel plate, it is possible to evaluate a JIS No. 5 test piece whose longitudinal direction is perpendicular to the rolling direction and the plate thickness direction, with a pre-strain of 5%.
 引張強度(TS)が400MPa以上、全伸び(El)が20%以上、及び成形後外観の評価が合格の場合を、強度と成形性及び成形後の外観性とを両立できる鋼板として評価した。その結果を表3に示す。 A steel plate with a tensile strength (TS) of 400 MPa or more, a total elongation (El) of 20% or more, and a passing evaluation of appearance after forming was evaluated as a steel plate that can achieve both strength, formability, and appearance after forming. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1~3を参照すると、比較例16は、C含有量が高かったためにTSが高くなりすぎてしまい、Elが低下した。比較例17は、Mn含有量が高かったためにフェライト変態が抑制され、同様にElが低下した。比較例18は、1次焼鈍工程の最高加熱温度が低かったためにオーステナイト化が不十分となり、その後の冷却によっても鋼板中の金属組織をベイナイト及び/又はマルテンサイトを主体とする組織によって構成することができなかったと考えられる。その結果として、2次焼鈍後に得られる金属組織においてマルテンサイトの平均粒子間隔が2.5μm超となり、また圧延方向及び板厚方向に垂直な方向のマルテンサイトの面積率における標準偏差が1.5%超となってしまい、成形後外観が低下した。比較例19は、1次焼鈍工程の冷却停止温度が高かったために、オーステナイトからベイナイト及び/又はマルテンサイトへの変態を十分に進行させることができなかったと考えられる。その結果として、同様に2次焼鈍後に得られる金属組織においてマルテンサイトの平均粒子間隔が2.5μm超となり、また圧延方向及び板厚方向に垂直な方向のマルテンサイトの面積率における標準偏差が1.5%超となってしまい、成形後外観が低下した。比較例20は、1次焼鈍工程における500~700℃の温度域の平均冷却速度が遅かったために、同様にオーステナイトからベイナイト及び/又はマルテンサイトへの変態を十分に進行させることができなかったと考えられる。その結果として、2次焼鈍後に得られる金属組織においてマルテンサイトの平均粒子間隔が2.5μm超となり、また圧延方向及び板厚方向に垂直な方向のマルテンサイトの面積率における標準偏差が1.5%超となってしまい、成形後外観が低下した。比較例21は、2次焼鈍工程の最高加熱温度が高かったために、オーステナイト化が進行しすぎてしまい、冷却後の金属組織において所望量のフェライトが得られなかった。また、残部組織も多く生成して、ミクロな領域とマクロな領域の両方でのマルテンサイトの均一分散を達成することができなかった。その結果として成形性及び成形後外観の両方が低下した。比較例22は、2次焼鈍工程における保持時間が長かったために、オーステナイト粒が粗大化してしまったと考えられる。その結果として2次焼鈍後に得られる金属組織においてマルテンサイトの平均粒子間隔が2.5μm超となり、成形後外観が低下した。比較例23は、2次焼鈍工程における500~700℃の温度域の平均冷却速度が低かったために、オーステナイトからベイナイト等への変態が促進されてしまい、所望量のマルテンサイトが得られなかった。その結果として2次焼鈍後に得られる金属組織においてマルテンサイトの平均粒子間隔が2.5μm超となり、成形後外観が低下した。比較例24は、2次焼鈍工程における200~500℃の温度域の平均冷却速度が低かったために、オーステナイトからマルテンサイトへの変態を促進させることができず、同様にベイナイトが多く生成してしまった。その結果として、同様に2次焼鈍後に得られる金属組織においてマルテンサイトの平均粒子間隔が2.5μm超となり、成形後外観が低下した。比較例22~24では、圧延方向及び板厚方向に垂直な方向のマルテンサイトの面積率における標準偏差は1.5%以下であったものの、マルテンサイトの平均粒子間隔が2.5μm超であり、すなわちマクロな領域でのマルテンサイトの均一性は確保されていたが、ミクロな領域でのマルテンサイトの均一性が確保されていなかった。このため、これらの比較例では、局所的に不均一なマルテンサイトの存在に起因して成形後外観が低下したものと考えられる。比較例25は、1次焼鈍工程を行わなかったために、2次焼鈍工程前の鋼板中の金属組織をベイナイト及び/又はマルテンサイトを主体とする組織によって構成することができなかった。その結果として、2次焼鈍後に得られる金属組織においてマルテンサイトの平均粒子間隔が2.5μm超となり、また圧延方向及び板厚方向に垂直な方向のマルテンサイトの面積率における標準偏差が1.5%超となってしまい、成形後外観が低下した。比較例26は、2次焼鈍工程における最高加熱温度が低かったために、冷却後の金属組織においてマルテンサイトを適切に生成させることができず、所望のTSを得ることができなかった。 Referring to Tables 1 to 3, in Comparative Example 16, the TS was too high due to the high C content, and the El was decreased. In Comparative Example 17, ferrite transformation was suppressed due to the high Mn content, and El was similarly reduced. In Comparative Example 18, the maximum heating temperature in the primary annealing step was low, resulting in insufficient austenitization, and even after subsequent cooling, the metal structure in the steel sheet was composed of a structure mainly composed of bainite and/or martensite. It is thought that it was not possible. As a result, the average particle spacing of martensite in the metal structure obtained after secondary annealing is more than 2.5 μm, and the standard deviation of the area ratio of martensite in the direction perpendicular to the rolling direction and the plate thickness direction is 1.5 μm. %, and the appearance after molding deteriorated. It is considered that in Comparative Example 19, the cooling stop temperature of the primary annealing step was high, and therefore the transformation from austenite to bainite and/or martensite could not proceed sufficiently. As a result, the average particle spacing of martensite in the metal structure obtained after secondary annealing is more than 2.5 μm, and the standard deviation of the area ratio of martensite in the direction perpendicular to the rolling direction and the plate thickness direction is 1. The content exceeded .5%, and the appearance after molding deteriorated. In Comparative Example 20, the average cooling rate in the temperature range of 500 to 700 ° C. in the primary annealing step was slow, so it is thought that the transformation from austenite to bainite and/or martensite could not proceed sufficiently. It will be done. As a result, the average particle spacing of martensite in the metal structure obtained after secondary annealing is more than 2.5 μm, and the standard deviation of the area ratio of martensite in the direction perpendicular to the rolling direction and the plate thickness direction is 1.5 μm. %, and the appearance after molding deteriorated. In Comparative Example 21, since the maximum heating temperature in the secondary annealing step was high, austenitization progressed too much, and the desired amount of ferrite could not be obtained in the metal structure after cooling. Furthermore, a large amount of residual structure was generated, making it impossible to achieve uniform dispersion of martensite in both the micro and macro regions. As a result, both moldability and post-molding appearance deteriorated. It is thought that in Comparative Example 22, the holding time in the secondary annealing step was long, so that the austenite grains became coarse. As a result, the average particle spacing of martensite in the metal structure obtained after secondary annealing was more than 2.5 μm, and the appearance after molding was deteriorated. In Comparative Example 23, the average cooling rate in the temperature range of 500 to 700°C in the secondary annealing step was low, so the transformation from austenite to bainite etc. was promoted, and the desired amount of martensite could not be obtained. As a result, the average particle spacing of martensite in the metal structure obtained after secondary annealing was more than 2.5 μm, and the appearance after molding was deteriorated. In Comparative Example 24, the average cooling rate in the temperature range of 200 to 500°C in the secondary annealing step was low, so the transformation from austenite to martensite could not be promoted, and similarly, a large amount of bainite was generated. Ta. As a result, similarly, in the metal structure obtained after secondary annealing, the average particle spacing of martensite exceeded 2.5 μm, and the appearance after molding deteriorated. In Comparative Examples 22 to 24, although the standard deviation in the area ratio of martensite in the direction perpendicular to the rolling direction and the plate thickness direction was 1.5% or less, the average particle spacing of martensite was more than 2.5 μm. That is, although the uniformity of martensite was ensured in the macro area, the uniformity of martensite was not ensured in the micro area. Therefore, in these comparative examples, it is considered that the appearance after molding deteriorated due to the presence of locally non-uniform martensite. In Comparative Example 25, since the first annealing step was not performed, the metal structure in the steel sheet before the second annealing step could not be composed of a structure mainly composed of bainite and/or martensite. As a result, the average particle spacing of martensite in the metal structure obtained after secondary annealing is more than 2.5 μm, and the standard deviation of the area ratio of martensite in the direction perpendicular to the rolling direction and the plate thickness direction is 1.5 μm. %, and the appearance after molding deteriorated. In Comparative Example 26, since the maximum heating temperature in the secondary annealing step was low, martensite could not be appropriately generated in the metal structure after cooling, and the desired TS could not be obtained.
 これとは対照的に、全ての発明例に係る鋼板において、所定の化学組成を有し、さらに金属組織中のフェライト及びマルテンサイトの割合を適切に制御することで400MPa以上のTSと20%以上のElを達成するとともに、ミクロな領域ではマルテンサイトの平均粒子間隔を2.5μm以下に制御し、一方でマクロな領域では圧延方向及び板厚方向に垂直な方向のマルテンサイトの面積率における標準偏差を1.5%以下に制御することで、プレス成形によってひずみが付与された場合においても、鋼板表面における微小な凹凸の生成を抑制してゴーストラインの発生を顕著に抑制することができた。全ての発明例に係る2次焼鈍前の冷延鋼板における金属組織を断面観察したところ、いずれも面積率で90%以上のマルテンサイトによって構成されていた。 In contrast, the steel sheets according to all the invention examples have a predetermined chemical composition and furthermore, by appropriately controlling the proportions of ferrite and martensite in the metal structure, the steel sheets have a TS of 400 MPa or more and a TS of 20% or more. In addition to achieving an El of By controlling the deviation to 1.5% or less, we were able to suppress the formation of minute irregularities on the steel plate surface and significantly suppress the generation of ghost lines even when strain was applied by press forming. . When cross-sectional observation of the metallographic structure of the cold-rolled steel sheets before secondary annealing according to all the invention examples, all of them were composed of martensite with an area ratio of 90% or more.

Claims (2)

  1.  質量%で、
     C:0.03~0.08%、
     Si:0.01~1.00%、
     Mn:0.50~3.00%、
     P:0.1000%以下、
     S:0.0200%以下、
     Al:1.000%以下、
     N:0.0200%以下、
     O:0~0.020%、
     Cr:0~2.000%、
     Mo:0~1.000%、
     Ti:0~0.500%、
     Nb:0~0.500%、
     B:0~0.0100%、
     Cu:0~1.000%、
     Ni:0~1.00%、
     W:0~0.100%、
     V:0~1.000%、
     Ta:0~0.100%、
     Co:0~3.000%、
     Sn:0~1.000%、
     Sb:0~0.500%、
     As:0~0.050%、
     Mg:0~0.050%、
     Zr:0~0.050%、
     Ca:0~0.0500%、
     Y:0~0.0500%、
     La:0~0.0500%、
     Ce:0~0.0500%、
     Bi:0~0.0500%、並びに
     残部:Fe及び不純物からなる化学組成を有し、
     面積率で、
     フェライト:80~95%、
     マルテンサイト:5~20%、並びに
     ベイナイト、パーライト及び残留オーステナイトの少なくとも1種:合計で0~10%からなり、
     マルテンサイトの平均粒子間隔が2.5μm以下であり、
     圧延方向及び板厚方向に垂直な方向のマルテンサイトの面積率における標準偏差が1.5%以下である金属組織を有することを特徴とする、鋼板。
    In mass%,
    C: 0.03-0.08%,
    Si: 0.01-1.00%,
    Mn: 0.50-3.00%,
    P: 0.1000% or less,
    S: 0.0200% or less,
    Al: 1.000% or less,
    N: 0.0200% or less,
    O: 0 to 0.020%,
    Cr: 0-2.000%,
    Mo: 0-1.000%,
    Ti: 0 to 0.500%,
    Nb: 0 to 0.500%,
    B: 0 to 0.0100%,
    Cu: 0 to 1.000%,
    Ni: 0 to 1.00%,
    W: 0-0.100%,
    V: 0-1.000%,
    Ta: 0-0.100%,
    Co: 0-3.000%,
    Sn: 0-1.000%,
    Sb: 0 to 0.500%,
    As: 0 to 0.050%,
    Mg: 0 to 0.050%,
    Zr: 0 to 0.050%,
    Ca: 0-0.0500%,
    Y: 0 to 0.0500%,
    La: 0 to 0.0500%,
    Ce: 0 to 0.0500%,
    Has a chemical composition consisting of Bi: 0 to 0.0500%, and the balance: Fe and impurities,
    In area ratio,
    Ferrite: 80-95%,
    Martensite: 5 to 20%, and at least one of bainite, pearlite, and retained austenite: 0 to 10% in total,
    The average particle spacing of martensite is 2.5 μm or less,
    A steel sheet having a metal structure in which the standard deviation in the area ratio of martensite in the direction perpendicular to the rolling direction and the sheet thickness direction is 1.5% or less.
  2.  前記化学組成が、質量%で、
     Cr:0.001~2.000%、
     Mo:0.001~1.000%、
     Ti:0.001~0.500%、
     Nb:0.001~0.500%、
     B:0.0001~0.0100%、
     Cu:0.001~1.000%、
     Ni:0.001~1.00%、
     W:0.001~0.100%、
     V:0.001~1.000%、
     Ta:0.001~0.100%、
     Co:0.001~3.000%、
     Sn:0.001~1.000%、
     Sb:0.001~0.500%、
     As:0.001~0.050%、
     Mg:0.0001~0.050%、
     Zr:0.0001~0.050%、
     Ca:0.0001~0.0500%、
     Y:0.0001~0.0500%、
     La:0.0001~0.0500%、
     Ce:0.0001~0.0500%、及び
     Bi:0.0001~0.0500%
    のうち少なくとも1種を含むことを特徴とする、請求項1に記載の鋼板。
    The chemical composition is in mass%,
    Cr: 0.001-2.000%,
    Mo: 0.001 to 1.000%,
    Ti: 0.001 to 0.500%,
    Nb: 0.001-0.500%,
    B: 0.0001 to 0.0100%,
    Cu: 0.001 to 1.000%,
    Ni: 0.001 to 1.00%,
    W: 0.001-0.100%,
    V: 0.001-1.000%,
    Ta: 0.001 to 0.100%,
    Co: 0.001 to 3.000%,
    Sn: 0.001 to 1.000%,
    Sb: 0.001 to 0.500%,
    As: 0.001 to 0.050%,
    Mg: 0.0001-0.050%,
    Zr: 0.0001 to 0.050%,
    Ca: 0.0001-0.0500%,
    Y: 0.0001-0.0500%,
    La: 0.0001 to 0.0500%,
    Ce: 0.0001 to 0.0500%, and Bi: 0.0001 to 0.0500%
    The steel plate according to claim 1, characterized in that it contains at least one of the following.
PCT/JP2023/032812 2022-09-09 2023-09-08 Steel plate WO2024053729A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022143742 2022-09-09
JP2022-143742 2022-09-09

Publications (1)

Publication Number Publication Date
WO2024053729A1 true WO2024053729A1 (en) 2024-03-14

Family

ID=90191413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032812 WO2024053729A1 (en) 2022-09-09 2023-09-08 Steel plate

Country Status (1)

Country Link
WO (1) WO2024053729A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123561A1 (en) * 2007-03-30 2008-10-16 Jfe Steel Corporation High-strength hot-dip zinc-coated steel sheet
WO2014162680A1 (en) * 2013-04-04 2014-10-09 Jfeスチール株式会社 Hot-rolled steel sheet and method for manufacturing same
JP2017088944A (en) * 2015-11-06 2017-05-25 新日鐵住金株式会社 High strength steel sheet and manufacturing method therefor
WO2018147211A1 (en) * 2017-02-13 2018-08-16 Jfeスチール株式会社 Cold rolled steel sheet and method for manufacturing same
WO2019107042A1 (en) * 2017-11-29 2019-06-06 Jfeスチール株式会社 High-strength cold-rolled steel sheet and method for manufacturing same
WO2021230079A1 (en) * 2020-05-11 2021-11-18 Jfeスチール株式会社 Steel sheet, member, and method for manufacturing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123561A1 (en) * 2007-03-30 2008-10-16 Jfe Steel Corporation High-strength hot-dip zinc-coated steel sheet
WO2014162680A1 (en) * 2013-04-04 2014-10-09 Jfeスチール株式会社 Hot-rolled steel sheet and method for manufacturing same
JP2017088944A (en) * 2015-11-06 2017-05-25 新日鐵住金株式会社 High strength steel sheet and manufacturing method therefor
WO2018147211A1 (en) * 2017-02-13 2018-08-16 Jfeスチール株式会社 Cold rolled steel sheet and method for manufacturing same
WO2019107042A1 (en) * 2017-11-29 2019-06-06 Jfeスチール株式会社 High-strength cold-rolled steel sheet and method for manufacturing same
WO2021230079A1 (en) * 2020-05-11 2021-11-18 Jfeスチール株式会社 Steel sheet, member, and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP5983895B2 (en) High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
KR100760593B1 (en) High-strength steel sheet having excellent deep drawability and process for producing the same
US9322091B2 (en) Galvanized steel sheet
US10329638B2 (en) High strength galvanized steel sheet and production method therefor
JP5971434B2 (en) High-strength hot-dip galvanized steel sheet excellent in stretch flangeability, in-plane stability and bendability of stretch flangeability, and manufacturing method thereof
KR101375413B1 (en) High-strength molten zinc-plated steel sheet and process for production thereof
JP4790639B2 (en) High-strength cold-rolled steel sheet excellent in stretch flange formability and impact absorption energy characteristics, and its manufacturing method
KR20110105404A (en) High-strength hot-dip galvanized steel sheet and manufacturing method therefor
WO2016021198A1 (en) High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
WO2013046476A1 (en) High strength steel plate and manufacturing method thereof
JP2011047038A (en) High-strength cold-rolled steel sheet and method for manufacturing the same
JP2009035815A (en) High-strength hot-dip galvanized steel sheet with low yield strength and with less material quality fluctuation and process for producing the same
KR20120023129A (en) High-strength steel sheet and manufacturing method therefor
US11225701B2 (en) Hot dip galvanized steel sheet and hot dip galvannealed steel sheet
CN114207169B (en) Steel sheet and method for producing same
KR20040091751A (en) Process for producing high tensile hot-dip zinc-coated steel sheet of excellent ductility and antifatigue properties
WO2017131054A1 (en) High strength zinc plated steel sheet, high strength member, and production method for high strength zinc plated steel sheet
KR20200101980A (en) High-strength cold-rolled steel sheet, high-strength plated steel sheet and their manufacturing method
KR20230109161A (en) Steel plate, member and manufacturing method thereof
JP5659604B2 (en) High strength steel plate and manufacturing method thereof
JP4858004B2 (en) High-strength steel sheet with excellent ductility and deep drawability and method for producing the same
JP7006849B1 (en) Steel sheets, members and their manufacturing methods
JP7006848B1 (en) Steel sheets, members and their manufacturing methods
JP7020594B2 (en) Steel sheets, members and their manufacturing methods
JP2004323925A (en) Strain aging hardening type steel sheet having excellent cold elongation deterioration resistance, cold delayed aging property and low temperature bake hardenability, and its production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23863267

Country of ref document: EP

Kind code of ref document: A1