JP2010058286A - Method for producing carbon fiber reinforcing thermoplastic resin molded body and carbon fiber reinforcing thermoplastic resin molded body - Google Patents

Method for producing carbon fiber reinforcing thermoplastic resin molded body and carbon fiber reinforcing thermoplastic resin molded body Download PDF

Info

Publication number
JP2010058286A
JP2010058286A JP2008223815A JP2008223815A JP2010058286A JP 2010058286 A JP2010058286 A JP 2010058286A JP 2008223815 A JP2008223815 A JP 2008223815A JP 2008223815 A JP2008223815 A JP 2008223815A JP 2010058286 A JP2010058286 A JP 2010058286A
Authority
JP
Japan
Prior art keywords
carbon fiber
thermoplastic resin
electron beam
irradiation
fiber reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008223815A
Other languages
Japanese (ja)
Other versions
JP5395385B2 (en
Inventor
Yoshitake Nishi
義武 西
Hiroaki Takei
廣明 武井
Keisuke Takada
啓介 高田
Ryuichi Suenaga
竜一 末永
Keisuke Iwata
圭祐 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University
Original Assignee
Tokai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University filed Critical Tokai University
Priority to JP2008223815A priority Critical patent/JP5395385B2/en
Publication of JP2010058286A publication Critical patent/JP2010058286A/en
Application granted granted Critical
Publication of JP5395385B2 publication Critical patent/JP5395385B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon fiber reinforcing thermoplastic resin molded body excellent in mechanical strength and a method for manufacturing the same. <P>SOLUTION: In the method for manufacturing the carbon fiber reinforcing thermoplastic resin body, a carbon fiber and a thermoplastic resin are irradiated with an electron beam in the range of 100-300 keV acceleration voltage. Usually, the carbon fiber and the thermoplastic resin are heated and compounded before and after the irradiation. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、炭素繊維強化熱可塑性樹脂成型体の製造方法および炭素繊維強化熱可塑性樹脂成型体に関する。   The present invention relates to a method for producing a carbon fiber reinforced thermoplastic resin molded body and a carbon fiber reinforced thermoplastic resin molded body.

繊維強化複合材料として、炭素繊維と樹脂とからなる炭素繊維強化樹脂が知られている。炭素繊維強化樹脂は、機械的強度が高いことから、航空、宇宙、スポーツ用品分野、一般産業用途、土木、建築、輸送用機器分野など、広い分野での応用が可能な材料として、開発が進んでいる。   As a fiber reinforced composite material, a carbon fiber reinforced resin composed of a carbon fiber and a resin is known. Since carbon fiber reinforced resin has high mechanical strength, it has been developed as a material that can be applied in a wide range of fields such as aviation, space, sports equipment, general industrial use, civil engineering, architecture, and transportation equipment. It is out.

炭素繊維強化樹脂として、炭素繊維と熱可塑性樹脂とからなる炭素繊維強化熱可塑性樹脂が知られている。炭素繊維強化熱可塑性樹脂は、樹脂として熱硬化性樹脂を用いた場合と比べ、成形性が良好であり、大量生産に好適であるため、繊維強化複合材料の一つとして有用である。   As a carbon fiber reinforced resin, a carbon fiber reinforced thermoplastic resin composed of carbon fiber and a thermoplastic resin is known. The carbon fiber reinforced thermoplastic resin is useful as one of fiber reinforced composite materials because it has better moldability and is suitable for mass production as compared with the case where a thermosetting resin is used as the resin.

しかしながら、従来の炭素繊維強化熱可塑性樹脂においては、炭素繊維が一般に熱可塑性樹脂に対するぬれ性(含浸性)が乏しいため、炭素繊維と熱可塑性樹脂との接着性不良が起こり、充分な物性向上が図れなかった。   However, in the conventional carbon fiber reinforced thermoplastic resin, since carbon fiber generally has poor wettability (impregnation) with respect to the thermoplastic resin, poor adhesion between the carbon fiber and the thermoplastic resin occurs, and sufficient physical properties are improved. I could n’t.

炭素繊維の熱可塑性樹脂に対するぬれ性を改良した、炭素繊維強化熱可塑性樹脂としては、例えば特定の結晶サイズ、炭素と酸素との原子数比(O/C)、および平均短繊維直径を有する炭素繊維を用いた、炭素繊維強化熱可塑性樹脂が提案されている(例えば、特許文献1参照)。また、1価または2価の金属元素の総含有量およびサイズ剤付着量が特定の範囲にある、炭素繊維チョップドストランドを用いた、炭素繊維強化熱可塑性樹脂が提案されている(例えば、特許文献2参照)。さらに、改質した熱可塑性樹脂を用いた炭素繊維強化熱可塑性樹脂が提案されている(例えば、特許文献3参照)。   Examples of the carbon fiber reinforced thermoplastic resin having improved wettability of the carbon fiber to the thermoplastic resin include carbon having a specific crystal size, an atomic ratio of carbon to oxygen (O / C), and an average short fiber diameter. Carbon fiber reinforced thermoplastic resins using fibers have been proposed (see, for example, Patent Document 1). In addition, carbon fiber reinforced thermoplastic resins using carbon fiber chopped strands in which the total content of monovalent or divalent metal elements and the amount of sizing agent attached are in a specific range have been proposed (for example, Patent Documents). 2). Furthermore, a carbon fiber reinforced thermoplastic resin using a modified thermoplastic resin has been proposed (see, for example, Patent Document 3).

上記特許文献1〜3に開示された発明は、炭素繊維の外形(炭素繊維の結晶サイズ、平均短繊維直径等)や、炭素繊維または熱可塑性樹脂の組成を規定することにより、炭素繊維の熱可塑性樹脂に対するぬれ性を改良するものであるが、未だ炭素繊維強化熱可塑性樹脂の機械的強度は充分ではなかった。
特開2003−128799号公報 特開2004−244531号公報 特開2005−325248号公報
The inventions disclosed in Patent Documents 1 to 3 above define the outer shape of the carbon fiber (the crystal size of the carbon fiber, the average short fiber diameter, etc.) and the composition of the carbon fiber or the thermoplastic resin. Although it improves the wettability with respect to the plastic resin, the mechanical strength of the carbon fiber reinforced thermoplastic resin is still insufficient.
JP 2003-128799 A Japanese Patent Application Laid-Open No. 2004-244531 JP 2005-325248 A

本発明は上記従来技術の有する課題に鑑みてなされたものであり、機械的強度に優れた炭素繊維強化熱可塑性樹脂成型体および該成型体の製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a carbon fiber reinforced thermoplastic resin molded article excellent in mechanical strength and a method for producing the molded article.

本発明者らは上記課題を達成するために鋭意研究を重ねた結果、特定の加速電圧の範囲で炭素繊維および熱可塑性樹脂に電子線を照射することにより、機械的強度に優れた炭素繊維強化熱可塑性樹脂成型体が得られることを見出し、本発明を完成させた。   As a result of intensive studies to achieve the above-mentioned problems, the present inventors have reinforced carbon fiber with excellent mechanical strength by irradiating carbon fiber and thermoplastic resin with an electron beam within a specific acceleration voltage range. The present inventors have found that a thermoplastic resin molding can be obtained and completed the present invention.

すなわち、本発明の炭素繊維強化熱可塑性樹脂成型体の製造方法は、加速電圧が100〜300keVの範囲で、炭素繊維および熱可塑性樹脂に電子線を照射することを特徴とする。   That is, the method for producing a molded article of carbon fiber reinforced thermoplastic resin of the present invention is characterized in that an electron beam is irradiated to the carbon fiber and the thermoplastic resin in an acceleration voltage range of 100 to 300 keV.

炭素繊維強化熱可塑性樹脂成型体の製造方法としては、前記照射の後に、電子線が照射された炭素繊維および熱可塑性樹脂を加熱複合化してもよく、前記照射における電子線照射線量が、0.1〜0.9MGyの範囲であることが好ましい。   As a method for producing a carbon fiber reinforced thermoplastic resin molded body, the carbon fiber irradiated with the electron beam and the thermoplastic resin may be heated and combined after the irradiation, and the electron beam irradiation dose in the irradiation is set to 0. It is preferably in the range of 1 to 0.9MGy.

炭素繊維強化熱可塑性樹脂成型体の製造方法としては、前記照射の前に、炭素繊維および熱可塑性樹脂を加熱複合化してもよく、前記照射における電子線照射線量が、0.1〜0.5MGyの範囲であることが好ましい。   As a method for producing a carbon fiber reinforced thermoplastic resin molding, carbon fiber and a thermoplastic resin may be combined by heating before the irradiation, and the electron beam irradiation dose in the irradiation is 0.1 to 0.5 MGy. It is preferable that it is the range of these.

また、本発明には、上記製造方法により得られる炭素繊維強化熱可塑性樹脂成型体が含まれる。   Moreover, the carbon fiber reinforced thermoplastic resin molding obtained by the said manufacturing method is contained in this invention.

本発明の炭素繊維強化熱可塑性樹脂成型体の製造方法により得られる、炭素繊維強化熱可塑性樹脂成型体は、炭素繊維および熱可塑性樹脂の両方に電子線を照射することのない、従来の炭素繊維強化熱可塑性樹脂成型体と比べ、機械的強度に優れる。   The carbon fiber reinforced thermoplastic resin molding obtained by the method for producing a carbon fiber reinforced thermoplastic resin molding of the present invention is a conventional carbon fiber that does not irradiate both the carbon fiber and the thermoplastic resin with an electron beam. Excellent mechanical strength compared to reinforced thermoplastic resin moldings.

また、本発明の炭素繊維強化熱可塑性樹脂成型体の製造方法により得られる、炭素繊維強化熱可塑性樹脂成型体は、航空機、宇宙ロケット、自動車、輸送機器、スポーツ用品、土木建築用品等の各種産業分野における製品や機械部品等として用いることができる。   Further, the carbon fiber reinforced thermoplastic resin molding obtained by the method for producing a carbon fiber reinforced thermoplastic resin molding of the present invention is used in various industries such as aircraft, space rocket, automobile, transportation equipment, sports equipment, civil engineering and building equipment. It can be used as products and machine parts in the field.

次に本発明について具体的に説明する。
本発明の炭素繊維強化熱可塑性樹脂成型体の製造方法は、加速電圧が100〜300keVの範囲で、炭素繊維および熱可塑性樹脂に電子線を照射することを特徴とする。本発明においては、熱可塑性樹脂や炭素繊維の放射線損傷や、X線の発生を防ぐため、また加熱による熱可塑性樹脂や炭素繊維の変形や融解を防ぐため、加速電圧が100〜300keV、好ましくは120〜200keV、より好ましくは150〜180keVの範囲で電子線照射を行う。
Next, the present invention will be specifically described.
The method for producing a molded article of carbon fiber reinforced thermoplastic resin of the present invention is characterized in that an electron beam is irradiated to the carbon fiber and the thermoplastic resin in an acceleration voltage range of 100 to 300 keV. In the present invention, in order to prevent radiation damage of the thermoplastic resin and carbon fiber and generation of X-rays, and to prevent deformation and melting of the thermoplastic resin and carbon fiber due to heating, the acceleration voltage is 100 to 300 keV, preferably Electron beam irradiation is performed in the range of 120 to 200 keV, more preferably 150 to 180 keV.

前記電子線の照射時間は通常0.2〜5.0秒であり、電子線照射時の温度は通常室温〜50℃の範囲である。
本発明の炭素繊維強化熱可塑性樹脂成型体の製造方法では、炭素繊維および熱可塑性樹脂の双方に電子線を照射することを特徴とし、本発明の製造方法により得られる、炭素繊維強化熱可塑性樹脂成型体は、機械的強度に優れる。この理由は明らかではないが、本発明者らは炭素繊維および熱可塑性樹脂の双方に電子線を照射することにより、炭素繊維の熱可塑性樹脂に対するぬれ性および炭素繊維および熱可塑性樹脂間の界面接着性が向上し、機械的強度に優れると推定した。
The irradiation time of the electron beam is usually 0.2 to 5.0 seconds, and the temperature at the time of electron beam irradiation is usually in the range of room temperature to 50 ° C.
In the method for producing a carbon fiber reinforced thermoplastic resin molded body of the present invention, both the carbon fiber and the thermoplastic resin are irradiated with an electron beam, and the carbon fiber reinforced thermoplastic resin obtained by the production method of the present invention is used. The molded body is excellent in mechanical strength. The reason for this is not clear, but the present inventors irradiate both carbon fiber and thermoplastic resin with an electron beam, so that wettability of carbon fiber to thermoplastic resin and interfacial adhesion between carbon fiber and thermoplastic resin. It was estimated that the properties improved and the mechanical strength was excellent.

(炭素繊維)
本発明に用いる炭素繊維としては特に限定はないが、例えばアクリル系繊維、あるいはピッチやレーヨン等を原料にして製造した繊維から、炭化工程を経て製造された炭素繊維が用いられる。前記炭素繊維は、例えばアクリロニトリルを主成分にしたアクリル系繊維を加熱酸化し、さらに不活性雰囲気中で炭化する方法で製造される。また、本発明に用いる炭素繊維としては、アクリル系繊維から製造される炭素繊維が工業的な生産性に優れ、かつ力学的特性にも優れており好ましい。前記アクリル系繊維としては耐炎化反応を促進するモノマー成分を含むものであれば特に限定されず、前記モノマー成分としては例えば
イタコン酸、アクリル酸、メタクリル酸およびそれらのメチルエステル、エチルエステル、プロピルエステル、アルカリ金属塩、アンモニウム塩、あるいはアリルスルホン酸、メタクリルスルホン酸、スチレンスルホン酸、およびそれらのアルカリ金属塩等が挙げられる。なお、原料繊維の紡糸方法は湿式紡糸法や乾湿式紡糸法を適用することが好ましいが特に限定されない。
(Carbon fiber)
The carbon fiber used in the present invention is not particularly limited, and for example, carbon fiber produced through a carbonization process from acrylic fiber or fiber produced from pitch, rayon or the like is used. The carbon fiber is produced, for example, by a method in which an acrylic fiber mainly composed of acrylonitrile is heated and oxidized and further carbonized in an inert atmosphere. In addition, as the carbon fiber used in the present invention, a carbon fiber produced from an acrylic fiber is preferable because of excellent industrial productivity and excellent mechanical properties. The acrylic fiber is not particularly limited as long as it contains a monomer component that accelerates the flameproofing reaction. Examples of the monomer component include itaconic acid, acrylic acid, methacrylic acid and methyl esters, ethyl esters, and propyl esters thereof. , Alkali metal salts, ammonium salts, or allyl sulfonic acid, methacryl sulfonic acid, styrene sulfonic acid, and alkali metal salts thereof. In addition, it is preferable to apply a wet spinning method or a dry and wet spinning method as a spinning method of the raw fiber, but there is no particular limitation.

本発明に用いる炭素繊維は、シランカップリング剤、チタネートカップリング剤等のカップリング剤、ウレタン系樹脂、エポキシ系樹脂、ポリエステル系樹脂等の収束剤で表面処理されていてもよい。   The carbon fiber used in the present invention may be surface-treated with a coupling agent such as a silane coupling agent or a titanate coupling agent, or a sizing agent such as a urethane resin, an epoxy resin, or a polyester resin.

本発明に用いる炭素繊維としては、1〜25mm程度の長さに切断した短繊維をばらばらにして、あるいはそれらを集めた例えばトウ(多数のフィラメントを揃えた束)の形状で使用してもよく、また長繊維ないし連続繊維を幅方向に引き揃えた形状で使用してもよく、更にそれらを織物、編物、不織布の形状に変えてから使用してもよい。   As the carbon fiber used in the present invention, short fibers cut to a length of about 1 to 25 mm may be separated, or may be used in the form of, for example, a tow (a bundle of many filaments). In addition, long fibers or continuous fibers may be used in a shape in which they are aligned in the width direction, and further, they may be used after being changed to a woven fabric, a knitted fabric, or a nonwoven fabric.

また、上記炭素繊維は、一種単独で用いてもよく、二種以上を混合して用いてもよい。
本発明に用いる炭素繊維の量は、本発明の製造方法により得られる炭素繊維強化熱可塑性樹脂成型体中に占める炭素繊維の割合が10〜90体積%、好ましくは、20〜65体積%(ただし、炭素繊維強化熱可塑性樹脂成型体を100体積%とする)の範囲となる量であることが好ましい。前記範囲では、本発明の製造方法により得られる炭素繊維強化熱可塑性樹脂成型体が熱可塑性樹脂の有する柔軟性を保持しつつ、高い機械的強度を有するため好ましい。
Moreover, the said carbon fiber may be used individually by 1 type, and may mix and use 2 or more types.
The amount of carbon fiber used in the present invention is such that the proportion of carbon fiber in the carbon fiber reinforced thermoplastic resin molding obtained by the production method of the present invention is 10 to 90% by volume, preferably 20 to 65% by volume (however, The amount is preferably in the range of 100% by volume of the carbon fiber reinforced thermoplastic resin molding. In the said range, since the carbon fiber reinforced thermoplastic resin molding obtained by the manufacturing method of this invention has the high mechanical strength, maintaining the softness | flexibility which a thermoplastic resin has, it is preferable.

(熱可塑性樹脂)
本発明に用いられる熱可塑性樹脂としては特に限定はなく、汎用樹脂、耐熱性樹脂、エンジニアリング樹脂等様々な熱可塑性樹脂を用いることができる。
(Thermoplastic resin)
There is no limitation in particular as a thermoplastic resin used for this invention, Various thermoplastic resins, such as a general purpose resin, a heat resistant resin, and an engineering resin, can be used.

本発明に用いられる熱可塑性樹脂としては例えば、ポリエチレンやポリプロピレン等のポリオレフィン;ポリスチレン、ポリメタクリル酸メチル、ポリメタクリル酸エチル、ポリアクリル酸メチル、ポリアクリル酸エチル等のポリ(メタ)アクリル酸エステル、アクリルニトリル・ブタジエン・スチレン共重合体、アクリルニトリル・スチレン共重合体等のビニル系重合体;ナイロン6、ナイロン66、ナイロン11、ナイロン12、ナイロン610、ナイロン612、ナイロン61、ナイロン6T、ナイロン9T等のポリアミド、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル、ポリカーボネート、ポリイミド等の縮合系重合体;ポリアセタール;ポリフェニレンオキサイド;ポリフェニレンサルファイド;ポリエーテルスルホン等が挙げられる。   Examples of the thermoplastic resin used in the present invention include polyolefins such as polyethylene and polypropylene; poly (meth) acrylates such as polystyrene, polymethyl methacrylate, polyethyl methacrylate, polymethyl acrylate, and polyethyl acrylate, Vinyl polymers such as acrylonitrile / butadiene / styrene copolymer and acrylonitrile / styrene copolymer; nylon 6, nylon 66, nylon 11, nylon 12, nylon 610, nylon 612, nylon 61, nylon 6T, nylon 9T Such as polyamide, polyethylene terephthalate, polyester such as polybutylene terephthalate, condensation polymers such as polycarbonate, polyimide; polyacetal; polyphenylene oxide; polyphenylene sulfide; Li polyethersulfone and the like.

中でも、ポリプロピレン、ポリカーボネート、ポリアミド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリアセタール、ポリフェニレンオキサイド、ポリフェニレンサルファイド、ポリエーテルスルホンが機械的強度、耐熱性、加工性などの点で好ましい。   Among these, polypropylene, polycarbonate, polyamide, polyethylene terephthalate, polybutylene terephthalate, polyacetal, polyphenylene oxide, polyphenylene sulfide, and polyethersulfone are preferable in terms of mechanical strength, heat resistance, workability, and the like.

また、上記熱可塑性樹脂は一種単独で用いてもよく、二種以上をブレンドして用いてもよい。
本発明に用いる熱可塑性樹脂の量は、本発明の製造方法により得られる炭素繊維強化熱可塑性樹脂成型体中に占める熱可塑性樹脂の割合が10〜90体積%、好ましくは35〜80体積%(ただし、炭素繊維強化熱可塑性樹脂成型体を100体積%とする)の範囲となる量であることが好ましい。前記範囲では、本発明の製造方法により得られる炭素繊維強化熱可塑性樹脂成型体が熱可塑性樹脂の有する柔軟性を保持しつつ、高い機械的強度を有するため好ましい。
Moreover, the said thermoplastic resin may be used individually by 1 type, and may blend and use 2 or more types.
The amount of the thermoplastic resin used in the present invention is such that the proportion of the thermoplastic resin in the carbon fiber reinforced thermoplastic resin molding obtained by the production method of the present invention is 10 to 90% by volume, preferably 35 to 80% by volume ( However, it is preferable that the amount be in the range of 100% by volume of the carbon fiber reinforced thermoplastic resin molding. In the said range, since the carbon fiber reinforced thermoplastic resin molding obtained by the manufacturing method of this invention has the high mechanical strength, maintaining the softness | flexibility which a thermoplastic resin has, it is preferable.

熱可塑性樹脂の形状としては、フィルムまたはシート状であることが、電子線の均一な照射の観点から好ましい。
(添加剤)
本発明においては、上記炭素繊維、熱可塑性樹脂以外の成分として、各種添加剤が含まれていてもよい。
The shape of the thermoplastic resin is preferably a film or a sheet from the viewpoint of uniform electron beam irradiation.
(Additive)
In this invention, various additives may be contained as components other than the said carbon fiber and a thermoplastic resin.

添加剤としては、例えば、充填材、難燃剤、難燃助剤、顔料、染料、滑剤、離型剤、相溶化剤、分散剤、結晶核剤、可塑剤、熱安定剤、酸化防止剤、着色防止剤、紫外線吸収剤、流動性改質剤、発泡剤、抗菌剤、制振剤、防臭剤、摺動性改質剤、導電性付与剤、帯電防止剤、剛性付与剤等の任意の添加剤を使用することができる。   Examples of additives include fillers, flame retardants, flame retardant aids, pigments, dyes, lubricants, mold release agents, compatibilizers, dispersants, crystal nucleating agents, plasticizers, heat stabilizers, antioxidants, Any colorant, UV absorber, fluidity modifier, foaming agent, antibacterial agent, vibration control agent, deodorant, sliding property modifier, conductivity imparting agent, antistatic agent, stiffness imparting agent, etc. Additives can be used.

離型剤としては、例えばポリビニルアルコール(PVA)やワックスが使用できる。
本発明の炭素繊維強化熱可塑性樹脂成型体において、添加剤が含まれる場合には、通常上記熱可塑性樹脂100重量部に対して、0.1〜50重量部、好ましくは0.5〜30重量部含有される。
As the release agent, for example, polyvinyl alcohol (PVA) or wax can be used.
In the carbon fiber reinforced thermoplastic resin molding of the present invention, when an additive is included, it is usually 0.1 to 50 parts by weight, preferably 0.5 to 30 parts by weight, based on 100 parts by weight of the thermoplastic resin. Part contained.

本発明の炭素繊維強化熱可塑性樹脂成型体の製造方法では、通常炭素繊維と熱可塑性樹脂とを加熱複合化等により一体化する。一体化は、炭素繊維と熱可塑性樹脂とに電子線を照射する前に行っても、電子線を照射した後に行ってもよい。   In the method for producing a molded article of carbon fiber reinforced thermoplastic resin of the present invention, the carbon fiber and the thermoplastic resin are usually integrated by heat compounding or the like. The integration may be performed before irradiating the carbon fiber and the thermoplastic resin with the electron beam or after irradiating the electron beam.

なお、炭素繊維と熱可塑性樹脂とを一体化するには、通常加熱複合化により行うことができる。加熱複合化とは、炭素繊維と熱可塑性樹脂とを加熱加圧下で一体化することを意味する。加熱複合化の方法としては、炭素繊維を熱可塑性樹脂のフィルムで挟み込み、加熱加圧下で一体化する方法が挙げられる。また、加熱複合化の条件としては特に限定されないが、好ましくは不活性ガス雰囲気中、熱可塑性樹脂の軟化する温度、あるいは融点以上の温度で、4〜3000kPaの印加圧力下で、0.02〜2分保持することにより、加熱複合化を行うことができる。   In addition, in order to integrate carbon fiber and a thermoplastic resin, it can carry out by normal heating compounding. The heat composite means that the carbon fiber and the thermoplastic resin are integrated under heat and pressure. As a method for heat compounding, there is a method in which carbon fibers are sandwiched between thermoplastic resin films and integrated under heat and pressure. Further, the conditions for the heat compounding are not particularly limited, but preferably 0.02 to 0.02 at an applied gas pressure of 4 to 3000 kPa at a temperature at which the thermoplastic resin softens or a temperature higher than the melting point in an inert gas atmosphere. By holding for 2 minutes, heating and compounding can be performed.

本発明の製造方法は、通常炭素繊維および熱可塑性樹脂を加熱複合化するが、本発明の製造方法は、加熱複合化を電子線を照射する前に行う態様と、照射した後に行う態様の二つの態様に大きく分けることができる。以下、それぞれの態様を説明する。   In the production method of the present invention, the carbon fiber and the thermoplastic resin are usually heat-combined. However, the production method of the present invention has two modes: a mode in which heat-combination is performed before irradiation with an electron beam and a mode in which irradiation is performed after irradiation. It can be roughly divided into one aspect. Each aspect will be described below.

(第一の態様)
本発明の炭素繊維強化熱可塑性樹脂成型体の製造方法における第一の態様は、加速電圧が100〜300keVの範囲で、炭素繊維および熱可塑性樹脂に電子線を照射する炭素繊維強化熱可塑性樹脂成型体の製造方法において、前記照射の後に、電子線が照射された炭素繊維および熱可塑性樹脂を加熱複合化することを特徴とする。
(First aspect)
The first aspect of the method for producing a carbon fiber reinforced thermoplastic resin molding of the present invention is a carbon fiber reinforced thermoplastic resin molding in which an acceleration voltage is in the range of 100 to 300 keV and the carbon fiber and the thermoplastic resin are irradiated with an electron beam. In the method for producing a body, after the irradiation, the carbon fiber irradiated with the electron beam and the thermoplastic resin are combined by heating.

第一の態様では、前記照射における電子線照射線量が、0.1〜0.9MGyの範囲であることが好ましく、0.2〜0.8MGyの範囲であることがより好ましい。
電子線照射線量が上記範囲にあると、得られる炭素繊維強化熱可塑性樹脂成型体の引張強度や曲げ強度さらには衝撃強度等の機械的な物性が、従来の炭素繊維強化熱可塑性樹脂成型体と比べて向上するため好ましい。
In a 1st aspect, it is preferable that the electron beam irradiation dose in the said irradiation is the range of 0.1-0.9MGy, and it is more preferable that it is the range of 0.2-0.8MGy.
When the electron beam irradiation dose is in the above range, the mechanical properties such as tensile strength, bending strength, and impact strength of the obtained carbon fiber reinforced thermoplastic resin molded product can be compared with the conventional carbon fiber reinforced thermoplastic resin molded product. Since it improves compared with it, it is preferable.

第一の態様の具体例としては、加速電圧が100〜300keVの範囲で、炭素繊維および熱可塑性樹脂に電子線を照射する炭素繊維強化熱可塑性樹脂成型体の製造方法において、前記照射が炭素繊維を熱可塑性樹脂で挟み込んだ積層体に行われ、電子線照射後の積層体を、加熱複合化する方法が挙げられる。図2(a)に前記第一の態様の具体例の概念図を示す。なお、図2においてEBは電子線を、CFは炭素繊維を意味する。   As a specific example of the first aspect, in the method for producing a carbon fiber reinforced thermoplastic resin molded body in which an electron beam is irradiated to the carbon fiber and the thermoplastic resin in an acceleration voltage range of 100 to 300 keV, the irradiation is performed using the carbon fiber. Is performed on a laminated body sandwiched between thermoplastic resins, and the laminated body after electron beam irradiation is heated and combined. FIG. 2A shows a conceptual diagram of a specific example of the first aspect. In FIG. 2, EB means an electron beam, and CF means a carbon fiber.

なお、炭素繊維を熱可塑性樹脂で挟み込んだ積層体は、例えばフィルムまたはシート状の熱可塑性樹脂上に、炭素繊維の短繊維を平面的に配置、炭素繊維の長繊維(フィラメント)を引き揃えて平面的に配置、あるいは炭素繊維の織物、編物または不織布を配置し、該炭素繊維上に別のフィルムまたはシート状の熱可塑性樹脂を配置することにより得られる。   In addition, a laminate in which carbon fibers are sandwiched between thermoplastic resins is formed by arranging carbon fiber short fibers in a plane on a film or sheet-like thermoplastic resin and aligning the carbon fiber long fibers (filaments). It is obtained by arranging in a plane, or by arranging a woven fabric, knitted fabric or nonwoven fabric of carbon fiber, and placing another film or sheet-like thermoplastic resin on the carbon fiber.

第一の態様では前述のように、電子線の照射の後に、電子線が照射された炭素繊維および熱可塑性樹脂を加熱複合化する。すなわち、電子線を照射する前には、炭素繊維と熱可塑性樹脂とは加熱複合化されておらず、例えば、炭素繊維と熱可塑性樹脂とが別々に存在していてもよく、前述の積層体として存在していてもよい。炭素繊維と熱可塑性樹脂とが別々に存在する場合には、電子線の照射は、炭素繊維と熱可塑性樹脂とで、異なる電子線照射装置を用いてもよく、同一の電子線照射装置を用いて、順次電子線の照射を行ってもよく、同時に行ってもよい。   In the first aspect, as described above, the carbon fiber irradiated with the electron beam and the thermoplastic resin are combined by heating after the electron beam irradiation. That is, before irradiation with the electron beam, the carbon fiber and the thermoplastic resin are not heat-complexed. For example, the carbon fiber and the thermoplastic resin may exist separately. May exist as When carbon fiber and thermoplastic resin are present separately, electron beam irradiation may be different for carbon fiber and thermoplastic resin, or the same electron beam irradiation device may be used. Then, irradiation with an electron beam may be performed sequentially or simultaneously.

図1に本発明に使用可能な電子線照射装置の一例を示す。該電子線照射装置は、マルチ電子銃7を備えた真空室2と、その下部に炭素繊維および熱可塑性樹脂が供給される筐体1とが設置され、真空室2と筐体1とが接するように構成されている。筐体1の内部は、窒素ガスのような不活性ガス雰囲気に保たれ、駆動ロール3および従動ロール4に懸架されたコンベヤ5が配置されている。該コンベヤ5の上を試料6が搬送される。前記真空室2内には、カソードとなるマルチ電子銃7が配置され、真空室2の下部でかつ筺体1と接する箇所にアノードとなる窓8がチタン膜によって形成され配置されている。真空室2内のマルチ電子銃7から、筐体1中の試料6に向かって電子線が窓8を通して照射されるので、筐体1の内部がプロセス領域9を構成している。   FIG. 1 shows an example of an electron beam irradiation apparatus that can be used in the present invention. In the electron beam irradiation apparatus, a vacuum chamber 2 having a multi-electron gun 7 and a casing 1 to which carbon fiber and a thermoplastic resin are supplied are installed in a lower portion thereof, and the vacuum chamber 2 and the casing 1 are in contact with each other. It is configured as follows. The interior of the housing 1 is maintained in an inert gas atmosphere such as nitrogen gas, and a conveyor 5 suspended from the driving roll 3 and the driven roll 4 is disposed. A sample 6 is conveyed on the conveyor 5. A multi-electron gun 7 serving as a cathode is disposed in the vacuum chamber 2, and a window 8 serving as an anode is formed of a titanium film at a position below the vacuum chamber 2 and in contact with the housing 1. Since the electron beam is irradiated from the multi-electron gun 7 in the vacuum chamber 2 toward the sample 6 in the housing 1 through the window 8, the inside of the housing 1 constitutes the process region 9.

なお、前記試料6とは、電子線が照射される対象であり、具体的には前述の炭素繊維を熱可塑性樹脂で挟み込んだ積層体、炭素繊維および熱可塑性樹脂が挙げられる。
また試料6として積層体を用いる場合には、積層体の厚さが増すと、一般に電子線が内部まで充分に進入しないため、積層体の厚さが100〜270μmであることが好ましい。なお、炭素繊維強化樹脂成型体として厚みのある成形体を製造する場合には、上記範囲の厚さを有する積層体を複数準備して、各積層体に電子線照射を行った後に、それらを積層し一体化することが好ましい。
The sample 6 is an object irradiated with an electron beam, and specifically includes a laminate in which the above-described carbon fiber is sandwiched between thermoplastic resins, carbon fiber, and a thermoplastic resin.
Moreover, when using a laminated body as the sample 6, when the thickness of a laminated body increases, generally an electron beam does not fully enter into an inside, Therefore It is preferable that the thickness of a laminated body is 100-270 micrometers. In addition, when manufacturing a thick molded body as a carbon fiber reinforced resin molded body, after preparing a plurality of laminates having a thickness in the above range and performing electron beam irradiation on each laminate, It is preferable to stack and integrate.

ここで電子線照射量D(MGy)は、I(Irradiation current(mA))、S(Conveyor speed(m/min.))、n(Number of Irradiation)との間の関係式(下記式
1)から算出される。
Here, the electron beam dose D (MGy) is a relational expression between I (Irradiation current (mA)), S (Conveyor speed (m / min.)), And n (Number of Irradiation) (the following formula 1). Is calculated from

D=0.216×(I/S)×n (式1)
なお、加速電圧(V)が170keVで、厚さ25μmのナイロン−6フィルム、および直径6μmの炭素繊維を用いたときに、電子線は100〜270μmの深さへと侵入するので、電子線の進入深さを考慮して、使用素材の密度や厚さ、照射環境等を適宜制御することが必要になる。
D = 0.216 × (I / S) × n (Formula 1)
When an acceleration voltage (V) is 170 keV, a nylon-6 film having a thickness of 25 μm, and a carbon fiber having a diameter of 6 μm are used, the electron beam penetrates to a depth of 100 to 270 μm. In consideration of the depth of penetration, it is necessary to appropriately control the density and thickness of the material used, the irradiation environment, and the like.

前記加熱複合化を行う際に用いる装置としては、電子線が照射された炭素繊維および熱可塑性樹脂を加熱および加圧することができれば特に限定は無く、例えば図3に示す加熱加圧装置が用いられる。   There is no particular limitation on the apparatus used when performing the heat compounding as long as the carbon fiber and the thermoplastic resin irradiated with the electron beam can be heated and pressurized. For example, the heating and pressing apparatus shown in FIG. 3 is used. .

図3に示す加熱加圧装置は、二つの加熱器25の間に、成型容器28が設置され、成型容器28には、容器内部の雰囲気を非酸化状態に保つために不活性ガス、例えば窒素、アルゴン、アルゴン‐水素混合ガスを供給するための吸気口26および排気口27が設けら
れている。成型容器28の内部には、加圧器24が配置されており、保温板23で挟み込まれた、炭素繊維21および熱可塑性樹脂22を加圧することができる。なお、第一の態様においては前記炭素繊維21および熱可塑性樹脂22は、電子線が照射された炭素繊維および熱可塑性樹脂であるが、後述する第二の態様においては、電子線が照射される前の炭素繊維および熱可塑性樹脂が用いられる。
In the heating and pressurizing apparatus shown in FIG. 3, a molding container 28 is installed between two heaters 25. In the molding container 28, an inert gas such as nitrogen is used to keep the atmosphere inside the container in a non-oxidized state. In addition, an intake port 26 and an exhaust port 27 for supplying argon and an argon-hydrogen mixed gas are provided. A pressurizer 24 is disposed inside the molding container 28, and can pressurize the carbon fibers 21 and the thermoplastic resin 22 sandwiched between the heat insulating plates 23. In the first aspect, the carbon fiber 21 and the thermoplastic resin 22 are carbon fiber and thermoplastic resin irradiated with an electron beam, but in the second aspect described later, the electron beam is irradiated. Previous carbon fibers and thermoplastic resins are used.

なお、加熱複合化を行う際に用いる装置としては、図3に示す加熱加圧装置以外にも、例えば、加熱した状態にある、炭素繊維および熱可塑性樹脂からなる積層体を、一対のローラー間に通過させることにより一体化する機能を有する装置等も用いることができる。   In addition to the heating and pressurizing apparatus shown in FIG. 3, for example, a laminated body made of carbon fiber and a thermoplastic resin in a heated state is used as an apparatus used when performing heat-combination. It is also possible to use a device having a function of integrating by passing it through.

なお、第一の態様において加熱複合化は、炭素繊維および熱可塑性樹脂に電子線を照射した後に行われるが、電子線照射後、長時間放置すると、炭素繊維強化熱可塑性樹脂成型体の機械的強度の向上効果が低下する。このため、電子線照射後すみやかに炭素繊維と熱可塑性樹脂とを加熱複合化することが好ましく、具体的には電子線照射後10分以内に炭素繊維と熱可塑性樹脂とを加熱複合化することが好ましい。   In the first embodiment, the heat compounding is performed after irradiating the carbon fiber and the thermoplastic resin with an electron beam. However, if the carbon fiber and the thermoplastic resin are left standing for a long time after the electron beam irradiation, the mechanical property of the carbon fiber reinforced thermoplastic resin molded body is obtained. Strength improvement effect is reduced. For this reason, it is preferable to heat-combine the carbon fiber and the thermoplastic resin immediately after irradiation with the electron beam. Specifically, the carbon fiber and the thermoplastic resin are heat-combined within 10 minutes after the electron beam irradiation. Is preferred.

(第二の態様)
本発明の炭素繊維強化熱可塑性樹脂成型体の製造方法における第二の態様は、加速電圧が100〜300keVの範囲で、炭素繊維および熱可塑性樹脂に電子線を照射する炭素繊維強化熱可塑性樹脂成型体の製造方法において、前記照射の前に、炭素繊維および熱可塑性樹脂を加熱複合化することを特徴とする。
(Second embodiment)
The second aspect of the method for producing a carbon fiber reinforced thermoplastic resin molding of the present invention is a carbon fiber reinforced thermoplastic resin molding in which an acceleration voltage is in the range of 100 to 300 keV and the carbon fiber and the thermoplastic resin are irradiated with an electron beam. In the method for producing a body, before the irradiation, the carbon fiber and the thermoplastic resin are combined by heating.

第二の態様では、前記照射における電子線照射線量が、0.1〜0.5MGyの範囲であることが好ましく、0.2〜0.4MGyの範囲であることがより好ましい。
電子線照射線量が上記範囲にあると、得られる炭素繊維強化熱可塑性樹脂成型体の引張強度や曲げ強度、さらには衝撃強度等の機械的な物性が、従来の炭素繊維強化熱可塑性樹脂成型体と比べて向上するため好ましい。
In a 2nd aspect, it is preferable that the electron beam irradiation dose in the said irradiation is the range of 0.1-0.5MGy, and it is more preferable that it is the range of 0.2-0.4MGy.
When the electron beam irradiation dose is in the above range, the obtained carbon fiber reinforced thermoplastic resin molded article has the conventional mechanical properties such as tensile strength, bending strength, and impact strength, and other conventional carbon fiber reinforced thermoplastic resin molded articles. It is preferable because it improves compared with the above.

第二の態様の具体例としては、加速電圧が100〜300keVの範囲で、炭素繊維および熱可塑性樹脂に電子線を照射する炭素繊維強化熱可塑性樹脂成型体の製造方法において、前記照射が炭素繊維を熱可塑性樹脂で挟み込んだ積層体を、加熱複合化することにより得られる複合体に行われる方法が挙げられる。図2(b)に前記第二の態様の具体例の概念図を示す。   As a specific example of the second aspect, in the method for producing a carbon fiber reinforced thermoplastic resin molded body in which an electron beam is irradiated to the carbon fiber and the thermoplastic resin in an acceleration voltage range of 100 to 300 keV, the irradiation is performed using the carbon fiber. The method performed to the composite_body | complex obtained by heat-combining the laminated body which pinched | interposed with the thermoplastic resin is mentioned. FIG. 2B shows a conceptual diagram of a specific example of the second aspect.

なお、炭素繊維を熱可塑性樹脂で挟み込んだ積層体は、上述の第一の態様で記載した積層体と同様のものを用いることができる。
また、第二の態様においては、積層体を加熱複合化することにより複合体を得るが、加熱複合化を行う際に用いる装置としては、炭素繊維および熱可塑性樹脂を加熱および加圧することができれば特に限定は無く、例えば上述の第一の態様で記載した図3に示す加熱加圧装置が用いられる。
In addition, the laminated body which pinched | interposed the carbon fiber with the thermoplastic resin can use the thing similar to the laminated body described in the above-mentioned 1st aspect.
In the second embodiment, the composite is obtained by heat-combining the laminate, but as an apparatus used for heat-combining, carbon fiber and thermoplastic resin can be heated and pressurized. There is no limitation in particular, For example, the heating-pressing apparatus shown in FIG. 3 described in the 1st aspect mentioned above is used.

第二の態様では前述のように、複合体に電子線の照射を行うが、電子線の照射に用いる電子線照射装置としては、特に限定は無く、例えば上述の第一の態様で記載した図1に示す電子線照射装置等を用いることができる。なお、第二の態様においては、試料6として、前記複合体が用いられる。   In the second aspect, as described above, the composite is irradiated with the electron beam, but the electron beam irradiation apparatus used for the electron beam irradiation is not particularly limited. For example, the figure described in the first aspect described above. 1 or the like can be used. In the second embodiment, the complex is used as the sample 6.

第二の態様には、炭素繊維および熱可塑性樹脂を加熱複合化することにより得られる複合体を用いるが、複合体としては、上述の積層体を加熱複合化することにより得られる複合体以外に、熱可塑性樹脂と炭素繊維(好ましくは短繊維)とを混合し、射出成型や押出成型法により所望の形状に成型された成型品を複合体として用いてもよい。   In the second aspect, a composite obtained by heat-combining carbon fiber and a thermoplastic resin is used. As the composite, other than the composite obtained by heat-combining the above-mentioned laminate. A molded product obtained by mixing a thermoplastic resin and carbon fibers (preferably short fibers) and molding the mixture into a desired shape by injection molding or extrusion molding may be used as a composite.

なお、複合体の厚さが増すと、一般に電子線が内部まで充分に進入しないため、複合体の厚さが100〜270μmであることが好ましい。なお、炭素繊維強化樹脂成型体として厚みのある成形体を製造する場合には、上記範囲の厚さを有する複合体を複数用いて、電子線照射を行った後に、それらを積層することが好ましい。   In addition, when the thickness of a composite increases, generally an electron beam does not fully penetrate into the inside, so that the thickness of the composite is preferably 100 to 270 μm. In addition, when manufacturing a thick molded body as a carbon fiber reinforced resin molded body, it is preferable to laminate a plurality of composites having a thickness in the above range after performing electron beam irradiation. .

なお、上述の炭素繊維熱可塑性樹脂成型体の製造方法においては、一体化した複合体に真空成型や圧空成型等の様々な二次成形を加えてもよい。
本発明の炭素繊維強化熱可塑性樹脂成型体は、上述の炭素繊維強化熱可塑性樹脂の製造方法により得ることができる。本発明の炭素繊維強化熱可塑性樹脂成型体は、機械的強度に優れる。このため本発明の炭素繊維強化熱可塑性樹脂成型体は、航空機、宇宙ロケット、自動車、輸送機器、スポーツ用品、土木建築用品等の各種産業分野における製品や機械部品等として用いることができる。
In the above-described method for producing a carbon fiber thermoplastic resin molded body, various secondary moldings such as vacuum molding and pressure molding may be added to the integrated composite.
The carbon fiber reinforced thermoplastic resin molding of the present invention can be obtained by the above-described method for producing a carbon fiber reinforced thermoplastic resin. The carbon fiber reinforced thermoplastic resin molding of the present invention is excellent in mechanical strength. For this reason, the carbon fiber reinforced thermoplastic resin molding of the present invention can be used as products, machine parts, and the like in various industrial fields such as aircraft, space rockets, automobiles, transportation equipment, sports equipment, and civil engineering and construction equipment.

次に本発明について実施例を示してさらに詳細に説明するが、本発明はこれらによって限定されるものではない。
〔実施例1〕
ポリアミドフィルム(ナイロン−6、ユニチカ製 EMBLEM ON、厚さ25μm、幅15.
0mm、長さ30.0mm)と、一方向性の炭素繊維束(以下、炭素繊維とも記す)(東レ製 T-800HB、直径6μm、長さ40.0mm、本数12000本、厚さ約115μm、表面にサイジング剤処理がなされている)とを準備した。
EXAMPLES Next, although an Example is shown and this invention is demonstrated further in detail, this invention is not limited by these.
[Example 1]
Polyamide film (nylon-6, EMBLEM ON made by Unitika, thickness 25 μm, width 15.
0 mm, length 30.0 mm) and unidirectional carbon fiber bundle (hereinafter also referred to as carbon fiber) (Toray T-800HB, diameter 6 μm, length 40.0 mm, number 12,000, thickness about 115 μm, The surface is treated with a sizing agent).

2枚のポリアミドフィルムの間に炭素繊維を挟み込み積層体を得た。次いで図3に記載した加熱加圧装置を用いて、温度230℃、印加圧力4.4kPa、時間2分、雰囲気Ar−H2ガスの条件で積層体をプレスすることにより加熱複合化を行い、ポリアミド層/
炭素繊維層/ポリアミド層からなる3層を一体化した。この加熱複合化の際に、炭素繊維間にポリアミド樹脂が混入し、長さ23.8mm、幅10.2mm、厚さ150μm、体積36.4mm3のフィルム状の複合体を得た。この時、両端からはみ出した不要な炭素
繊維部分を切除した。この複合体の炭素繊維含有量は、23.3体積%であった。
A carbon fiber was sandwiched between two polyamide films to obtain a laminate. Next, using the heating and pressurizing apparatus described in FIG. 3, the laminated body is pressed under the conditions of a temperature of 230 ° C., an applied pressure of 4.4 kPa, a time of 2 minutes, and an atmosphere of Ar—H 2 gas to perform heating and compounding. Polyamide layer /
Three layers comprising a carbon fiber layer / polyamide layer were integrated. During the heat-combination, a polyamide resin was mixed between the carbon fibers to obtain a film-like composite having a length of 23.8 mm, a width of 10.2 mm, a thickness of 150 μm, and a volume of 36.4 mm 3 . At this time, unnecessary carbon fiber portions protruding from both ends were excised. The carbon fiber content of this composite was 23.3% by volume.

次いで、複合体を図1に示した電子線照射装置にセットし、室温、窒素ガス雰囲気中(1013hPa)で電子線を照射し、フィルム状の炭素繊維強化熱可塑性樹脂成型体(1−1)を得た。照射条件は、Acceleration voltage(加速電圧)が170keV、Irradiation currentがI=2mA、Conveyor speedがS=10m/min、真空室の真空度が3×10-4Pa以下、Ti箔窓の厚さが15μm、窓から試料までの距離が10mm、試料にかかる電圧が約130keVで、1回当たりの照射量は、43.2kGyで、1回当たりの照射時間は0.23秒であった。照射回数は7回で、照射時間は1.61秒、照射量は0.30MGyで行った。 Next, the composite was set in the electron beam irradiation apparatus shown in FIG. 1 and irradiated with an electron beam at room temperature in a nitrogen gas atmosphere (1013 hPa) to form a film-like carbon fiber reinforced thermoplastic resin molding (1-1). Got. The irradiation conditions are as follows: Acceleration voltage is 170 keV, Irradiation current is I = 2 mA, Conveyor speed is S = 10 m / min, the vacuum degree of the vacuum chamber is 3 × 10 −4 Pa or less, and the thickness of the Ti foil window is The distance from the window to the sample was 10 mm, the voltage applied to the sample was about 130 keV, the irradiation dose per time was 43.2 kGy, and the irradiation time per time was 0.23 seconds. The number of irradiations was 7, the irradiation time was 1.61 seconds, and the irradiation amount was 0.30 MGy.

前記炭素繊維強化熱可塑性樹脂成型体(1−1)の引張試験を、JIS K7073に準拠して行った。すなわち、インストロン引張試験機(型番3367)を用い、厚さ150μm、幅10.2mm、長さ23.8mm、炭素繊維含有率23.3体積%の短冊形の試験片を用い、下記式より引張強度を算出し、引張応力と伸び歪との関係を図4に示す。   The carbon fiber reinforced thermoplastic resin molded body (1-1) was subjected to a tensile test according to JIS K7073. That is, using an Instron tensile tester (model number 3367), using a strip-shaped test piece having a thickness of 150 μm, a width of 10.2 mm, a length of 23.8 mm, and a carbon fiber content of 23.3 vol%, the following formula The tensile strength is calculated, and the relationship between tensile stress and elongation strain is shown in FIG.

σ=F/S
(σ:引張強度(MPa)、F:引張荷重(N)、S:試験片の断面積(m2))
また、前述と同様の方法で、厚さ249μm、幅1.93mm、長さ24.0mm、重さ0.01g、炭素繊維含有率43.6体積%のフィルム状の複合体を得た。複合体に電子線を照射し、炭素繊維強化熱可塑性樹脂成型体(1−2)を得た。電子線照射は、同様
の装置を用い、電子線の照射条件を、照射回数10回、照射時間2.3秒、照射線量0.43MGyとして行った。なお、加熱複合化工程で、試験片中に、僅かな空隙が入った為に、予定した厚さよりも厚くなった。
σ = F / S
(Σ: tensile strength (MPa), F: tensile load (N), S: cross-sectional area of test piece (m 2 ))
In addition, a film-like composite having a thickness of 249 μm, a width of 1.93 mm, a length of 24.0 mm, a weight of 0.01 g, and a carbon fiber content of 43.6% by volume was obtained in the same manner as described above. The composite was irradiated with an electron beam to obtain a carbon fiber reinforced thermoplastic resin molding (1-2). The same apparatus was used for the electron beam irradiation, and the irradiation conditions of the electron beam were 10 times, the irradiation time was 2.3 seconds, and the irradiation dose was 0.43 MGy. In the heat compounding step, a slight gap was formed in the test piece, so that it became thicker than planned.

前記炭素繊維強化熱可塑性樹脂成型体(1−2)の曲げ試験を、JIS K7074に準拠して行った。すなわち、3点曲げ試験機を用い、厚さ249μm、幅1.93mm、長
さ24.0mm、重さ0.01g、炭素繊維含有率43.6体積%の試験片を用いて、支点
間距離9.5mmの条件で曲げ試験を行い、下記式に従って曲げ強度を算出し、曲げ応力と曲げ歪との関係を図5に示した。
A bending test of the carbon fiber reinforced thermoplastic resin molded body (1-2) was performed according to JIS K7074. That is, using a three-point bending tester, using a test piece having a thickness of 249 μm, a width of 1.93 mm, a length of 24.0 mm, a weight of 0.01 g, and a carbon fiber content of 43.6% by volume, the distance between fulcrums A bending test was performed under the condition of 9.5 mm, bending strength was calculated according to the following formula, and the relationship between bending stress and bending strain is shown in FIG.

σ=3PL/(2bh2
(σ:曲げ強度(MPa)、P:曲げ荷重(N)、L:ゲージ間距離(m)、b:試験片の幅(m)、h:スパン間距離(m))
〔実施例2〕
実施例1と同様のポリアミドフィルムと、炭素繊維とを準備した。
σ = 3PL / (2bh 2 )
(Σ: bending strength (MPa), P: bending load (N), L: distance between gauges (m), b: width of test piece (m), h: distance between spans (m))
[Example 2]
A polyamide film similar to that in Example 1 and carbon fiber were prepared.

2枚のポリアミドフィルムの間に炭素繊維を挟み込み積層体を得た。
次いで、積層体を図1に示した電子線照射装置にセットし、室温、窒素ガス雰囲気中(1013hPa)で電子線を照射した。照射条件は、Acceleration voltage(加速電圧
)が170keV、Irradiation currentがI=2mA、Conveyor speedがS=10m
/min.、真空室の真空度が3×10-4Pa以下、Ti箔窓の厚さが15μm、窓から試料までの距離が10mm、試料にかかる電圧が約130keVで、1回当たりの照射量
は、43.2kGyで、1回当たりの照射時間は0.23秒であった。照射回数は10回
で、照射時間は2.3秒、照射量は0.432MGyで行った。
A carbon fiber was sandwiched between two polyamide films to obtain a laminate.
Next, the laminate was set in the electron beam irradiation apparatus shown in FIG. 1 and irradiated with an electron beam at room temperature in a nitrogen gas atmosphere (1013 hPa). Irradiation conditions are Acceleration voltage 170 keV, Irradiation current I = 2 mA, Conveyor speed S = 10 m
/ Min. The vacuum degree of the vacuum chamber is 3 × 10 −4 Pa or less, the thickness of the Ti foil window is 15 μm, the distance from the window to the sample is 10 mm, the voltage applied to the sample is about 130 keV, and the irradiation amount per time is The irradiation time per irradiation was 0.23 seconds at 43.2 kGy. The number of irradiations was 10, the irradiation time was 2.3 seconds, and the irradiation amount was 0.432 MGy.

次いで図3に記載した加熱加圧装置を用いて、温度230℃、印加圧力4.4kPa、時間2分、雰囲気Ar−H2ガスの条件で電子線照射後の積層体をプレスすることにより
加熱複合化を行い、ポリアミド層/炭素繊維層/ポリアミド層からなる3層が強固に一体化した、長さ23.8mm、幅10.2mm、厚さ150μm、体積36.4mm3のフ
ィルム状の炭素繊維強化熱可塑性樹脂成型体(2−1)を得た。この時、両端からはみ出した不要な炭素繊維部分を切除した。この炭素繊維強化熱可塑性樹脂成型体(2−1)の炭素繊維含有量は、23.3体積%であった。
Next, using the heating and pressurizing apparatus described in FIG. 3, heating is performed by pressing the laminate after electron beam irradiation under the conditions of a temperature of 230 ° C., an applied pressure of 4.4 kPa, a time of 2 minutes, and an atmosphere of Ar—H 2 gas. performs composite polyamide layer / carbon fiber layer / polyamide layer 3 layers of is firmly integrated, length 23.8 mm, width 10.2 mm, thickness 150 [mu] m, a volume 36.4 mm 3 filmy carbon A fiber-reinforced thermoplastic resin molding (2-1) was obtained. At this time, unnecessary carbon fiber portions protruding from both ends were excised. The carbon fiber content of this carbon fiber reinforced thermoplastic resin molding (2-1) was 23.3% by volume.

実施例1と同様に炭素繊維強化熱可塑性樹脂成型体(2−1)の引張試験を、JIS K7073に準拠して行った。
また、前述と同様の方法で、積層体に電子線を照射し、加熱複合化を行うことにより、厚さ249μm、幅1.93mm、長さ24.0mm、重さ0.01g、炭素繊維含有率43.6体積%の炭素繊維強化熱可塑性樹脂成型体(2−2)を得た。電子線照射は、同様の装置を用い、電子線の照射条件を、照射回数10回、照射時間2.3秒、照射線量0.43MGyとして行った。
In the same manner as in Example 1, a tensile test of the carbon fiber reinforced thermoplastic resin molded body (2-1) was performed according to JIS K7073.
Also, by irradiating the laminated body with an electron beam and performing heating composite in the same manner as described above, the thickness is 249 μm, the width is 1.93 mm, the length is 24.0 mm, the weight is 0.01 g, and the carbon fiber is contained. A carbon fiber reinforced thermoplastic resin molding (2-2) having a rate of 43.6% by volume was obtained. The same apparatus was used for the electron beam irradiation, and the irradiation conditions of the electron beam were 10 times, the irradiation time was 2.3 seconds, and the irradiation dose was 0.43 MGy.

実施例1と同様に、前記炭素繊維強化熱可塑性樹脂成型体(2−2)の曲げ試験を、JIS K7074に準拠して行った。
結果を図6、7に示す。
In the same manner as in Example 1, a bending test of the carbon fiber reinforced thermoplastic resin molded body (2-2) was performed according to JIS K7074.
The results are shown in FIGS.

〔比較例1〕
実施例1と同様のフィルム状の積層体から、電子線を照射することなく試験片を作成し、JIS K7073に準拠した引張試験、およびJIS K7074に準拠した曲げ試験を行った。
[Comparative Example 1]
A test piece was prepared from the same film-like laminate as in Example 1 without irradiating an electron beam, and a tensile test based on JIS K7073 and a bending test based on JIS K7074 were performed.

結果を図4〜7に示す。
比較例1および実施例1、2より、電子線の照射を行わなかった場合(比較例1)と比べ、電子線を照射することにより得た炭素繊維強化熱可塑性樹脂成型体(実施例1、2)は、高い引張強度および高い曲げ弾性率を有することが分かった。
The results are shown in FIGS.
From Comparative Example 1 and Examples 1 and 2, compared to the case where the electron beam was not irradiated (Comparative Example 1), the carbon fiber reinforced thermoplastic resin molded body obtained by irradiating the electron beam (Example 1, 2) was found to have high tensile strength and high flexural modulus.

〔比較例2〕
実施例1と同様のポリアミドフィルムと、炭素繊維とを準備した。
炭素繊維に電子線を照射した。照射条件は、Acceleration voltage(加速電圧)が1
70keV、Irradiation currentがI=2mA、Conveyor speedがS=10m/mi
n.、真空室の真空度が3×10-4Pa以下、Ti箔窓の厚さが15μm、窓から試料までの距離が10mm、試料にかかる電圧が約130keVで、1回当たりの照射量は、4
3.2kGyで、1回当たりの照射時間は0.23秒であった。照射回数は7回で、照射
時間は1.6秒、照射量は0.302MGyで行った。
[Comparative Example 2]
A polyamide film similar to that in Example 1 and carbon fiber were prepared.
The carbon fiber was irradiated with an electron beam. Irradiation conditions are Acceleration voltage 1
70 keV, Irradiation current is I = 2 mA, Conveyor speed is S = 10 m / mi
n. The vacuum degree of the vacuum chamber is 3 × 10 −4 Pa or less, the thickness of the Ti foil window is 15 μm, the distance from the window to the sample is 10 mm, the voltage applied to the sample is about 130 keV, and the irradiation amount per time is 4
At 3.2 kGy, the irradiation time per time was 0.23 seconds. The number of irradiations was 7, the irradiation time was 1.6 seconds, and the irradiation amount was 0.302 MGy.

2枚のポリアミドフィルムの間に電子線照射後の炭素繊維を挟み込み積層体を得た。次いで図3に記載した加熱加圧装置を用いて、温度230℃、印加圧力4.4kPa、時間2分、雰囲気Ar−H2ガスの条件で積層体をプレスすることにより加熱複合化を行い、
ポリアミド層/炭素繊維層/ポリアミド層からなる3層が強固に一体化した、厚さ150μm、幅10.2mm、長さ23.8mm、炭素繊維含有率23.3体積%のフィルム状の炭素繊維強化熱可塑性樹脂成型体(c2−1)を得た。同様の方法で、厚さ249μm、幅1.93mm、長さ24.0mm、重さ0.01g、炭素繊維含有率43.6体積%のフィルム状の炭素繊維強化熱可塑性樹脂成型体(c2−2)を得た。この時、両端からはみ出した不要な炭素繊維部分を切除した。
A carbon fiber-irradiated carbon fiber was sandwiched between two polyamide films to obtain a laminate. Next, using the heating and pressurizing apparatus described in FIG. 3, the laminated body is pressed under the conditions of a temperature of 230 ° C., an applied pressure of 4.4 kPa, a time of 2 minutes, and an atmosphere of Ar—H 2 gas to perform heating and compounding.
A film-like carbon fiber having a thickness of 150 μm, a width of 10.2 mm, a length of 23.8 mm, and a carbon fiber content of 23.3% by volume, in which three layers of polyamide layer / carbon fiber layer / polyamide layer are firmly integrated. A reinforced thermoplastic resin molding (c2-1) was obtained. In the same manner, a film-like carbon fiber reinforced thermoplastic resin molding (c2-) having a thickness of 249 μm, a width of 1.93 mm, a length of 24.0 mm, a weight of 0.01 g, and a carbon fiber content of 43.6% by volume. 2) was obtained. At this time, unnecessary carbon fiber portions protruding from both ends were excised.

実施例1と同様に炭素繊維強化熱可塑性樹脂成型体(c2−1)の引張試験を、JIS
K7073に準拠して行った。
実施例1と同様に、前記炭素繊維強化熱可塑性樹脂成型体(c2−2)の曲げ試験を、JIS K7074に準拠して行った。
In the same manner as in Example 1, the tensile test of the carbon fiber reinforced thermoplastic resin molded body (c2-1) was conducted according to JIS.
Performed in accordance with K7073.
In the same manner as in Example 1, the bending test of the carbon fiber reinforced thermoplastic resin molded body (c2-2) was performed according to JIS K7074.

結果を図4〜7に示す。
比較例2のように、炭素繊維にのみ電子線照射を行い、熱可塑性樹脂には電子線の照射を行わずに得た、炭素繊維強化熱可塑性樹脂成型体は、実施例1および実施例2で得た炭素繊維強化熱可塑性樹脂成型体と比べて引張強度および曲げ弾性率が劣っていた。
The results are shown in FIGS.
As in Comparative Example 2, the carbon fiber reinforced thermoplastic resin moldings obtained by irradiating only the carbon fiber with the electron beam and not irradiating the thermoplastic resin with the electron beam were obtained in Example 1 and Example 2. The tensile strength and flexural modulus were inferior compared with the carbon fiber reinforced thermoplastic resin molding obtained in 1.

〔比較例3、実施例3、4、5、参考例1〕
実施例1において、電子線照射回数を0(比較例3)、3(実施例3)、7(実施例4)、10(実施例5)、15(参考例1)回、照射線量を0(比較例3)、0.130(実施例3)、0.302(実施例4)、0.432(実施例5)、0.648(参考例1)MGy、照射時間を0(比較例3)、0.69(実施例3)、1.61(実施例4)、2.30(実施例5)、3.45(参考例1)秒へと変えた以外は、実施例1と同様に行い、炭素繊維強化熱可塑性樹脂成型体を得た。
[Comparative Example 3, Examples 3, 4, 5, Reference Example 1]
In Example 1, the number of electron beam irradiations was 0 (Comparative Example 3), 3 (Example 3), 7 (Example 4), 10 (Example 5), 15 (Reference Example 1) times, and the irradiation dose was 0. (Comparative Example 3), 0.130 (Example 3), 0.302 (Example 4), 0.432 (Example 5), 0.648 (Reference Example 1) MGy, irradiation time 0 (Comparative Example) 3), 0.69 (Example 3), 1.61 (Example 4), 2.30 (Example 5), 3.45 (Reference Example 1) It carried out similarly and the carbon fiber reinforced thermoplastic resin molding was obtained.

実施例1と同様に炭素繊維強化熱可塑性樹脂成型体から試験片を作成し、JIS K7073に準拠した引張試験を行い、引張強度と電子線照射量と関係を図8(実線)に示した。   A test piece was prepared from a carbon fiber reinforced thermoplastic resin molding in the same manner as in Example 1, a tensile test based on JIS K7073 was performed, and the relationship between tensile strength and electron beam irradiation amount is shown in FIG. 8 (solid line).

〔実施例6、7、8、9、10〕
実施例2において、電子線照射回数を3(実施例6)、7(実施例7)、10(実施例8)、15(実施例9)、20(実施例10)回、照射線量を0.130(実施例6)、0.302(実施例7)、0.432(実施例8)、0.648(実施例9)、0.86
4(実施例10)MGy、照射時間を0.69(実施例6)、1.61(実施例7)、2.30(実施例8)、3.45(実施例9)、4.60(実施例10)秒へと変えた以外は、実施例2と同様に行い、炭素繊維強化熱可塑性樹脂成型体を得た。
[Examples 6, 7, 8, 9, 10]
In Example 2, the number of electron beam irradiations was 3 (Example 6), 7 (Example 7), 10 (Example 8), 15 (Example 9), 20 (Example 10) times, and the irradiation dose was 0. .130 (Example 6), 0.302 (Example 7), 0.432 (Example 8), 0.648 (Example 9), 0.86
4 (Example 10) MGy, irradiation time 0.69 (Example 6), 1.61 (Example 7), 2.30 (Example 8), 3.45 (Example 9), 4.60 (Example 10) A carbon fiber reinforced thermoplastic resin molding was obtained in the same manner as in Example 2 except that the time was changed to seconds.

実施例2と同様に炭素繊維強化熱可塑性樹脂成型体から試験片を作成し、JIS K7073に準拠した引張試験を行い、引張強度と電子線照射量と関係を図8(点線)に示した。   A test piece was prepared from a carbon fiber reinforced thermoplastic resin molded body in the same manner as in Example 2, a tensile test based on JIS K7073 was performed, and the relationship between tensile strength and electron beam irradiation amount is shown in FIG. 8 (dotted line).

〔実施例11〕
実施例1と同様の炭素繊維束を用い、炭素繊維束(本数12,000本)のうち2,000本分を数えて取り除き、10,000本へと調整し、炭素繊維含有量が45.5体積%へと変えた以外は実施例1と同様に行い炭素繊維強化熱可塑性樹脂成型体を得た。
Example 11
Using the same carbon fiber bundle as in Example 1, 2,000 of the carbon fiber bundles (12,000) were counted and adjusted to 10,000, and the carbon fiber content was 45. Except having changed to 5 volume%, it carried out like Example 1 and obtained the carbon fiber reinforced thermoplastic resin molding.

実施例1と同様に炭素繊維強化熱可塑性樹脂成型体から試験片を作成し、JIS K7073に準拠した引張試験を行い、結果を図9に示した。
なお、試験片の形状は炭素繊維含有率45.5体積%:炭素繊維本数10,000本、厚さ323μm、幅4.55mm、長さ30.5mmであった。
A test piece was prepared from a carbon fiber reinforced thermoplastic resin molded body in the same manner as in Example 1, a tensile test based on JIS K7073 was performed, and the result is shown in FIG.
The shape of the test piece was 45.5 vol% carbon fiber content: 10,000 carbon fibers, 323 μm thick, 4.55 mm wide, and 30.5 mm long.

〔比較例4〕
実施例11において、電子線照射を行わなかった以外は実施例11と同様にして、炭素繊維含有率45.5体積%の試験片を作成し、JIS K7073に準拠した引張試験を行い、結果を図9に示した。
[Comparative Example 4]
In Example 11, a test piece having a carbon fiber content of 45.5% by volume was prepared in the same manner as in Example 11 except that no electron beam irradiation was performed, and a tensile test based on JIS K7073 was performed. It is shown in FIG.

比較例4および実施例11より、電子線の照射を行わなかった場合と比べ、電子線を照射することにより得た炭素繊維強化熱可塑性樹脂成型体は、高い引張強度を有することが分かった。   From the comparative example 4 and Example 11, it turned out that the carbon fiber reinforced thermoplastic resin molding obtained by irradiating an electron beam has high tensile strength compared with the case where irradiation of an electron beam is not performed.

電子線照射装置の一例を示す概略図である。It is the schematic which shows an example of an electron beam irradiation apparatus. 炭素繊維強化熱可塑性樹脂成型体の製造方法の第一の態様の具体例を示す概念図(a)および第二の態様の具体例を示す概念図である。It is a conceptual diagram (a) which shows the specific example of the 1st aspect of the manufacturing method of a carbon fiber reinforced thermoplastic resin molding, and the conceptual diagram which shows the specific example of a 2nd aspect. 熱可塑性樹脂と炭素繊維とを加熱複合化するための、加熱加圧装置の一例を示す概略図である。It is the schematic which shows an example of the heating-pressing apparatus for heat-combining a thermoplastic resin and carbon fiber. 実施例1、比較例1、2の炭素繊維強化熱可塑性樹脂成型体における引張応力と伸び歪みとの関係を示す図である。It is a figure which shows the relationship between the tensile stress and the elongation distortion in the carbon fiber reinforced thermoplastic resin molding of Example 1 and Comparative Examples 1 and 2. 実施例1、比較例1、2の炭素繊維強化熱可塑性樹脂成型体における曲げ応力と曲げ歪みとの関係を示す図である。It is a figure which shows the relationship between the bending stress in the carbon fiber reinforced thermoplastic resin molding of Example 1, and Comparative Examples 1 and 2, and a bending distortion. 実施例2、比較例1、2の炭素繊維強化熱可塑性樹脂成型体における引張応力と伸び歪みとの関係を示す図である。It is a figure which shows the relationship between the tensile stress and the elongation distortion in the carbon fiber reinforced thermoplastic resin molding of Example 2 and Comparative Examples 1 and 2. 実施例2、比較例1、2の炭素繊維強化熱可塑性樹脂成型体における曲げ応力と曲げ歪みとの関係を示す図である。It is a figure which shows the relationship between the bending stress in the carbon fiber reinforced thermoplastic resin molding of Example 2, and Comparative Examples 1 and 2, and a bending distortion. 実施例3〜10、比較例3、および参考例1の炭素繊維強化熱可塑性樹脂成型体の引張応力と電子線照射量との関係を示す図である。It is a figure which shows the relationship between the tensile stress of the carbon fiber reinforced thermoplastic resin molding of Examples 3-10, the comparative example 3, and the reference example 1, and an electron beam irradiation amount. 実施例11および比較例4の炭素繊維強化熱可塑性樹脂成型体の引張応力と伸び歪みとの関係を示す図である。It is a figure which shows the relationship between the tensile stress and the elongation distortion of the carbon fiber reinforced thermoplastic resin molding of Example 11 and Comparative Example 4.

符号の説明Explanation of symbols

1・・・筐体
2・・・真空室
3・・・駆動ロール
4・・・従動ロール
5・・・コンベヤ
6・・・試料
7・・・マルチ電子銃(カソード)
8・・・窓(アノード)
9・・・プロセス領域
21・・・炭素繊維
22・・・熱可塑性樹脂
23・・・保温板
24・・・加圧器
25・・・加熱器
26・・・吸気口
27・・・排気口
28・・・成型容器
DESCRIPTION OF SYMBOLS 1 ... Housing 2 ... Vacuum chamber 3 ... Drive roll 4 ... Follower roll 5 ... Conveyor 6 ... Sample 7 ... Multi electron gun (cathode)
8 ... Window (Anode)
DESCRIPTION OF SYMBOLS 9 ... Process area 21 ... Carbon fiber 22 ... Thermoplastic resin 23 ... Insulation board 24 ... Pressurizer 25 ... Heater 26 ... Intake port 27 ... Exhaust port 28 ... Molded containers

Claims (6)

加速電圧が100〜300keVの範囲で、炭素繊維および熱可塑性樹脂に電子線を照射することを特徴とする炭素繊維強化熱可塑性樹脂成型体の製造方法。   A method for producing a carbon fiber reinforced thermoplastic resin molded article, comprising irradiating an electron beam to a carbon fiber and a thermoplastic resin in an acceleration voltage range of 100 to 300 keV. 前記照射の後に、電子線が照射された炭素繊維および熱可塑性樹脂を加熱複合化することを特徴とする請求項1に記載の炭素繊維強化熱可塑性樹脂成型体の製造方法。   2. The method for producing a carbon fiber reinforced thermoplastic resin molded article according to claim 1, wherein after the irradiation, the carbon fiber irradiated with the electron beam and the thermoplastic resin are combined by heating. 前記照射における電子線照射線量が、0.1〜0.9MGyの範囲であることを特徴とする請求項2に記載の炭素繊維強化熱可塑性樹脂成型体の製造方法。   The method for producing a carbon fiber-reinforced thermoplastic resin molded article according to claim 2, wherein an electron beam irradiation dose in the irradiation is in a range of 0.1 to 0.9MGy. 前記照射の前に、炭素繊維および熱可塑性樹脂を加熱複合化することを特徴とする請求項1に記載の炭素繊維強化熱可塑性樹脂成型体の製造方法。   The method for producing a molded article of carbon fiber reinforced thermoplastic resin according to claim 1, wherein the carbon fiber and the thermoplastic resin are combined by heating before the irradiation. 前記照射における電子線照射線量が、0.1〜0.5MGyの範囲であることを特徴とする請求項4に記載の炭素繊維強化熱可塑性樹脂成型体の製造方法。   The method for producing a carbon fiber-reinforced thermoplastic resin molded article according to claim 4, wherein an electron beam irradiation dose in the irradiation is in a range of 0.1 to 0.5 MGy. 請求項1〜5のいずれかに記載の製造方法により得られることを特徴とする炭素繊維強化熱可塑性樹脂成型体。   A carbon fiber reinforced thermoplastic resin molded article obtained by the production method according to claim 1.
JP2008223815A 2008-09-01 2008-09-01 Method for producing carbon fiber reinforced thermoplastic resin molded body and carbon fiber reinforced thermoplastic resin molded body Expired - Fee Related JP5395385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008223815A JP5395385B2 (en) 2008-09-01 2008-09-01 Method for producing carbon fiber reinforced thermoplastic resin molded body and carbon fiber reinforced thermoplastic resin molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008223815A JP5395385B2 (en) 2008-09-01 2008-09-01 Method for producing carbon fiber reinforced thermoplastic resin molded body and carbon fiber reinforced thermoplastic resin molded body

Publications (2)

Publication Number Publication Date
JP2010058286A true JP2010058286A (en) 2010-03-18
JP5395385B2 JP5395385B2 (en) 2014-01-22

Family

ID=42185664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008223815A Expired - Fee Related JP5395385B2 (en) 2008-09-01 2008-09-01 Method for producing carbon fiber reinforced thermoplastic resin molded body and carbon fiber reinforced thermoplastic resin molded body

Country Status (1)

Country Link
JP (1) JP5395385B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112011100928T5 (en) 2010-03-15 2013-01-24 Aisin Seiki Kabushiki Kaisha Pedestrian crossing detection device, pedestrian crossing detection method and program
JP2013018168A (en) * 2011-07-08 2013-01-31 Dainippon Printing Co Ltd Laminate and method for producing the same
JP2019178185A (en) * 2018-03-30 2019-10-17 株式会社Nhvコーポレーション Method for production of polyamide type carbon fiber-reinforced resin
JP2020050801A (en) * 2018-09-28 2020-04-02 学校法人金沢工業大学 Manufacturing method of fiber reinforced polypropylene composite material, and fiber reinforced polypropylene composite material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4875895A (en) * 1972-01-22 1973-10-12
JPS4975896A (en) * 1972-11-29 1974-07-22
JP2002371461A (en) * 2001-06-13 2002-12-26 Tokai Univ Ultra high strength carbon fiber and high strength carbon fiber-reinforced carbon composite material
JP2004123913A (en) * 2002-10-02 2004-04-22 Toyobo Co Ltd Molding material, moldings, and method for preparation thereof
JP2006225453A (en) * 2005-02-16 2006-08-31 Terumo Corp Medical equipment and medical material
WO2008026505A1 (en) * 2006-08-28 2008-03-06 Sumitomo Electric Fine Polymer, Inc. Molding material for bearing, bearing and submersible pump

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4875895A (en) * 1972-01-22 1973-10-12
JPS4975896A (en) * 1972-11-29 1974-07-22
JP2002371461A (en) * 2001-06-13 2002-12-26 Tokai Univ Ultra high strength carbon fiber and high strength carbon fiber-reinforced carbon composite material
JP2004123913A (en) * 2002-10-02 2004-04-22 Toyobo Co Ltd Molding material, moldings, and method for preparation thereof
JP2006225453A (en) * 2005-02-16 2006-08-31 Terumo Corp Medical equipment and medical material
WO2008026505A1 (en) * 2006-08-28 2008-03-06 Sumitomo Electric Fine Polymer, Inc. Molding material for bearing, bearing and submersible pump

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112011100928T5 (en) 2010-03-15 2013-01-24 Aisin Seiki Kabushiki Kaisha Pedestrian crossing detection device, pedestrian crossing detection method and program
JP2013018168A (en) * 2011-07-08 2013-01-31 Dainippon Printing Co Ltd Laminate and method for producing the same
JP2019178185A (en) * 2018-03-30 2019-10-17 株式会社Nhvコーポレーション Method for production of polyamide type carbon fiber-reinforced resin
JP2020050801A (en) * 2018-09-28 2020-04-02 学校法人金沢工業大学 Manufacturing method of fiber reinforced polypropylene composite material, and fiber reinforced polypropylene composite material
JP7209248B2 (en) 2018-09-28 2023-01-20 学校法人金沢工業大学 Manufacturing method of fiber-reinforced polypropylene composite material and fiber-reinforced polypropylene composite material

Also Published As

Publication number Publication date
JP5395385B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
KR101146612B1 (en) Prepreg, preform, molded product, and method for manufacturing prepreg
CN103387709B (en) A kind of thermoplastic composite, preparation method and applications
JP6161108B2 (en) Fiber-reinforced composite material and method for producing the same
JP5551386B2 (en) Fiber / resin composite sheet and FRP molded body
JP5968600B2 (en) Fiber-reinforced thermoplastic resin molded article and method for producing the same, and composite and method for producing the same
US20100218890A1 (en) Methods for preparing nanoparticle-containing thermoplastic composite laminates
JP6197968B1 (en) Manufacturing method of structure
US11584835B2 (en) Laminated substrate and method for manufacturing the same
KR20150114882A (en) Nonwoven interlayers made using polymer-nanoparticle polymers
CA2775053A1 (en) Thermoplastic composites and methods of making and using same
WO2016167349A1 (en) Fiber-reinforced composite material molded article and method for manufacturing same
JP2011241338A (en) Carbon fiber composite material
EP3778174B1 (en) Method for manufacturing molded article
JP2008179808A (en) Method for producing resin prepreg, fiber sheet for resin prepreg, resin prepreg, and composite material comprising the same
JP5395385B2 (en) Method for producing carbon fiber reinforced thermoplastic resin molded body and carbon fiber reinforced thermoplastic resin molded body
JP2013176876A (en) Manufacturing method of molding
TW201545866A (en) Preform, sheet material, and integrated sheet material
JP2010076141A (en) Method for manufacturing different kind of thermoplastic resin molded body and the same
JP2013221040A (en) Chopped strand prepreg, fiber reinforced thermoplastic resin sheet, molded plate using the sheet, and method for manufacturing fiber reinforced thermoplastic resin sheet
KR102284616B1 (en) Hybrid fiber reinforced composite material for car parts
JP2011174057A5 (en) Method for producing carbon fiber reinforced molding material
TW202112917A (en) Fiber-reinforced resin substrate, integrated molded article, and method for manufacturing fiber-reinforced resin substrate
JP2014234427A (en) Fiber assembly for fiber-reinforced resin, fiber-reinforced resin sheet, and fiber-reinforced resin molded body
JP2013010255A (en) Thermoplastic resin composite material
JP7039823B2 (en) Carbon fiber reinforced plastic laminate and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees