JP2006225453A - Medical equipment and medical material - Google Patents

Medical equipment and medical material Download PDF

Info

Publication number
JP2006225453A
JP2006225453A JP2005038584A JP2005038584A JP2006225453A JP 2006225453 A JP2006225453 A JP 2006225453A JP 2005038584 A JP2005038584 A JP 2005038584A JP 2005038584 A JP2005038584 A JP 2005038584A JP 2006225453 A JP2006225453 A JP 2006225453A
Authority
JP
Japan
Prior art keywords
medical
aliphatic polyester
polyester resin
ionizing radiation
nanocarbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005038584A
Other languages
Japanese (ja)
Other versions
JP4616029B2 (en
Inventor
Tomoka Kurita
朋香 栗田
Hiromasa Kohama
弘昌 小濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP2005038584A priority Critical patent/JP4616029B2/en
Publication of JP2006225453A publication Critical patent/JP2006225453A/en
Application granted granted Critical
Publication of JP4616029B2 publication Critical patent/JP4616029B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Biological Depolymerization Polymers (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Materials For Medical Uses (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide medical equipment and a medical material using an aliphatic polyester resin composition whose mechanical strengths such as tensile modulus and bending modulus sre improved by irradiation with an ionizing radiation and which has excellent biodegradability. <P>SOLUTION: The medical equipment and the medical material involve a resin composition obtained by irradiating the mixture of a biodegradable aliphatic polyester resin and a nanocarbon material with an ionizing radiation. Specifically, the ionizing radiation is electron beams or γ rays and the nanocarbon material has a spiral cylindrical structure with a 6 membered carbon ring as the main structure. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高い機械的強度を有する生分解性脂肪族ポリエステル樹脂組成物を用いた医療用具および医療用材料に関する。   The present invention relates to a medical device and a medical material using a biodegradable aliphatic polyester resin composition having high mechanical strength.

医療用具および医療用材料は、血液や尿などの体液が付着する環境で使用されるため、プラスチック製の単回使用の使い捨て物品とし、その廃棄物は焼却処理等の慎重な処分を行って、ウイルスや細菌による感染を防止する必要がある。しかしながら、このような使い捨て行為は、廃棄物量の増加につながり、その焼却処理によって排出される二酸化炭素量を増加させる原因となっている。
一方、生分解性樹脂は、製品のライフサイクルを終えた後、自然界に存在する微生物等により炭酸ガスと水に分解することから、環境への負荷が小さい材料として、農業資材や土木建設用資材、産業用資材など様々な分野への用途拡大が期待されている。中でも、植物由来の原料から製造される生分解性樹脂は、廃棄処分時に排出される二酸化炭素が植物の生長時に吸収されるため、全体として二酸化炭素量が変化しない(カーボン・ニュートラル)という特徴を有しており、地球温暖化抑制の観点からも注目されている。
前記植物由来の生分解性樹脂の例としては、生分解性脂肪族ポリエステル樹脂が挙げられ、より具体的には、比較的硬質なものとしてポリ乳酸系樹脂、柔軟性を有するものとしてポリブチレンサクシネート系樹脂、およびこれらの共重合やブレンド、アロイ等が挙げられる。
使い捨てが一般化している医療用具および医療用材料に使用する樹脂にこれらの生分解性樹脂を用いることは、環境への負荷を低減させることができ、非常に有用である。
しかしながら、これらの生分解性脂肪族ポリエステル樹脂は、ポリエチレンやポリプロピレンのような汎用樹脂と比較して、耐熱性や機械的強度、成型加工性が低く、本格的な応用展開のためには、樹脂設計や改質剤添加等による物性の改良が不可欠である。特に機械的強度の向上は、前記生分解性脂肪族ポリエステル樹脂を医療用具の筐体として使用する場合には重要な検討課題である。
従来より、樹脂の耐熱性や機械的強度を向上させる手段として、電離放射線照射による樹脂の分子間架橋が利用されている。生分解性脂肪族ポリエステル樹脂においても、ポリ(ε−カプロラクトン)で電離放射線によって分子間架橋が起きることが知られており、耐熱性が改善できる技術が開示されている(例えば、特許文献1参照)。また、ポリ乳酸のように単独では分子間架橋が起こらない、あるいはポリブチレンサクシネートとその共重合体のように分子間架橋が起こりにくい生分解性脂肪族ポリエステル樹脂では、反応性の高いモノマーや無機化合物などの架橋促進剤を添加することで、架橋率を向上させる技術が開示されている(例えば、特許文献2、特許文献3参照)。
電離放射線を用いてこれらの樹脂の高い架橋率を得るために、電離放射線の照射量を多くする方法や、架橋促進剤の添加量を多くするなどの方法がある。しかしながら、電離放射線の照射量が多くなると、ラジカルによる高分子鎖の切断が過剰に起こり、期待する機械的強度の向上効果が得られない場合があるだけでなく、臭気の発生や照射時間の延長による製造効率の低下などの問題も生ずる。一方、架橋促進剤の添加量を多くした場合には、未反応モノマーの残留量の増加、コストの上昇、生分解性の低下などの問題点が生ずる。また、架橋率の向上が直接強度の向上に寄与するとは限らない。
特開2003−051215号公報。 特開2003−277593号公報。 特開2003−313214号公報。
Since medical devices and medical materials are used in an environment where body fluid such as blood and urine adheres, they should be single-use plastic disposable items, and the waste should be carefully disposed of by incineration, It is necessary to prevent infection by viruses and bacteria. However, such a disposable action leads to an increase in the amount of waste and causes an increase in the amount of carbon dioxide discharged by the incineration process.
Biodegradable resins, on the other hand, are decomposed into carbon dioxide and water by microorganisms that exist in nature after the product life cycle, and as a material with low environmental impact, agricultural materials and civil engineering construction materials Applications are expected to expand into various fields such as industrial materials. Above all, biodegradable resin produced from plant-derived raw materials is characterized by the fact that the amount of carbon dioxide does not change as a whole (carbon neutral) because carbon dioxide discharged during disposal is absorbed during plant growth. It has attracted attention from the viewpoint of suppressing global warming.
Examples of the plant-derived biodegradable resin include a biodegradable aliphatic polyester resin, more specifically, a polylactic acid resin as a relatively hard resin, and a polybutylene succin as a flexible resin. Examples thereof include nate-based resins, and copolymers, blends, and alloys of these.
The use of these biodegradable resins as resins used for medical devices and medical materials that are commonly used for disposables is very useful because it can reduce the burden on the environment.
However, these biodegradable aliphatic polyester resins have lower heat resistance, mechanical strength, and molding processability than general-purpose resins such as polyethylene and polypropylene. It is essential to improve physical properties by design and addition of modifiers. In particular, improvement of mechanical strength is an important examination subject when the biodegradable aliphatic polyester resin is used as a housing of a medical device.
Conventionally, as a means for improving the heat resistance and mechanical strength of a resin, intermolecular crosslinking of the resin by irradiation with ionizing radiation has been used. Also in biodegradable aliphatic polyester resins, it is known that intermolecular crosslinking occurs with poly (ε-caprolactone) by ionizing radiation, and a technique capable of improving heat resistance is disclosed (for example, see Patent Document 1). ). In addition, biodegradable aliphatic polyester resins that do not cause intermolecular crosslinking alone, such as polylactic acid, or that do not easily cause intermolecular crosslinking, such as polybutylene succinate and copolymers thereof, are highly reactive monomers and Techniques for improving the crosslinking rate by adding a crosslinking accelerator such as an inorganic compound have been disclosed (see, for example, Patent Document 2 and Patent Document 3).
In order to obtain a high crosslinking rate of these resins using ionizing radiation, there are a method of increasing the irradiation amount of ionizing radiation and a method of increasing the addition amount of a crosslinking accelerator. However, when the amount of ionizing radiation is increased, the polymer chain may be excessively cleaved by radicals, and the expected improvement in mechanical strength may not be obtained. Problems such as a decrease in manufacturing efficiency due to the occurrence of such a problem also occur. On the other hand, when the addition amount of the crosslinking accelerator is increased, problems such as an increase in the residual amount of unreacted monomer, an increase in cost, and a decrease in biodegradability occur. Moreover, the improvement in the crosslinking rate does not always contribute directly to the improvement in strength.
JP2003-051215A. JP2003-277593. JP2003-313214A.

本発明は、このような問題点に鑑みてなされ、電離放射線照射により引張弾性率、曲げ弾性率等の機械的強度が向上し、生分解性に優れた脂肪族ポリエステル樹脂組成物を用いた医療用具および医療用材料を提供することを目的とする。   The present invention has been made in view of such problems, medical treatment using an aliphatic polyester resin composition excellent in biodegradability by improving mechanical strength such as tensile elastic modulus and bending elastic modulus by irradiation with ionizing radiation. The object is to provide tools and medical materials.

本発明者らが鋭意検討した結果、ナノ炭素材料を含む生分解性脂肪族ポリエステル樹脂に電離放射線を照射して架橋させると、生分解性脂肪族ポリエステル樹脂とナノ炭素材料との間に相互作用が生じることにより、ナノ炭素素材を含まない場合と比較して、該生分解性脂肪族ポリエステル樹脂組成物の機械的強度の向上効果が大きいことを見出し、本発明を完成するに至った。   As a result of intensive studies by the present inventors, when biodegradable aliphatic polyester resin containing nanocarbon material is cross-linked by irradiation with ionizing radiation, interaction between biodegradable aliphatic polyester resin and nanocarbon material occurs. As a result of this, it was found that the effect of improving the mechanical strength of the biodegradable aliphatic polyester resin composition was greater than when no nanocarbon material was contained, and the present invention was completed.

このような目的は、下記(1)から(9)の本発明により達成される。
(1) 生分解性脂肪族ポリエステル樹脂と炭素6員環を主構造とする黒鉛層を有するナノ炭素材料との混合物に電離放射線が照射されてなる樹脂組成物を有することを特徴とする。
Such an object is achieved by the present inventions (1) to (9) below.
(1) It has a resin composition obtained by irradiating a mixture of a biodegradable aliphatic polyester resin and a nanocarbon material having a graphite layer having a carbon 6-membered ring as a main structure with ionizing radiation.

(2) 前記電離放射線が、電子線またはγ線であることを特徴とする。   (2) The ionizing radiation is an electron beam or γ-ray.

(3) 前記ナノ炭素材料が炭素6員環を主構造とする黒鉛シートよりなるらせん円筒構造を有することを特徴とする。   (3) The nanocarbon material has a helical cylindrical structure made of a graphite sheet having a carbon 6-membered ring as a main structure.

(4) 前記ナノ炭素材料の長さが0.01μm〜2000μmであることを特徴とする。   (4) The nano carbon material has a length of 0.01 μm to 2000 μm.

(5) 前記ナノ炭素材料の外径が0.4nm〜300nmであることを特徴とする。   (5) The outer diameter of the nanocarbon material is 0.4 nm to 300 nm.

(6) 前記電離放射線の線量が、1〜100kGyであることを特徴とする。   (6) The dose of the ionizing radiation is 1 to 100 kGy.

(7) 前記生分解性脂肪族ポリエステル樹脂が、ポリブチレンサクシネート、ポリブチレンサクシネートを含む共重合体、および前記重合体の少なくとも1つを含有するポリマーブレンド、またはポリマーアロイであることを特徴とする。   (7) The biodegradable aliphatic polyester resin is polybutylene succinate, a copolymer containing polybutylene succinate, and a polymer blend or polymer alloy containing at least one of the polymers. And

(8) 前記ナノ炭素材料のナノ炭素材料含有率が0.1重量%〜50重量%であることを特徴とする。   (8) The nanocarbon material content of the nanocarbon material is 0.1 wt% to 50 wt%.

(9) 生分解性脂肪族ポリエステル樹脂とナノ炭素材料を混合し、次いで該混合物を所望の形状に成型し、必要により該成型物を用いて組立て、次いで該組立て体に電離放射線を照射することを特徴とする。   (9) Mixing a biodegradable aliphatic polyester resin and a nanocarbon material, then molding the mixture into a desired shape, assembling the molded product as necessary, and then irradiating the assembly with ionizing radiation. It is characterized by.

本発明の生分解性脂肪族ポリエステル樹脂組成物を有する医療用具および医療用材料は、強度向上のための無機混合物の含量をより低くすることができ、また、架橋促進剤の少ない添加量で、電離放射線照射により機械的強度を大きく向上させることができる。   The medical device and the medical material having the biodegradable aliphatic polyester resin composition of the present invention can further reduce the content of the inorganic mixture for improving the strength, and with a small addition amount of the crosslinking accelerator, The mechanical strength can be greatly improved by irradiation with ionizing radiation.

以下、本発明の医療用具および医療用材料について詳細に説明する。
医療用具とは、人体または動物の手術、治療、診断に用いられる機械器具を意味し、具体的には、商標法施行規則別表(平成13年経済産業省令第202号)の第十類に掲載されている範囲のものがある。また、医療用材料とは、医薬品や医療用具の包装材料、付属品等、上記医薬品や医療用具の流通、使用のために用いられるものであって、上記医薬品や医療用具の使用に伴って廃棄されるものを意味する。医薬品とは、人体または動物の手術、治療、診断に用いられる薬剤を意味し、具体的には、同別表の第五類に掲載されている範囲のものがある。特に、高い強度が求められる、注射針、穿刺針、包装用トレイなどには好適である。また、一般家庭においても使用され、使い捨てされる血液検査具や尿検査具などの体液検査具に好適である。
Hereinafter, the medical device and medical material of the present invention will be described in detail.
A medical device means a machine / equipment used for surgery, treatment, or diagnosis of the human body or animal. Specifically, it is listed in Class 10 of the Trademark Law Enforcement Regulations Schedule (Ministry of Economy, Trade and Industry Ordinance No. 202) There are things that are in the range. In addition, medical materials are used for the distribution and use of pharmaceuticals and medical devices such as packaging materials and accessories for pharmaceuticals and medical devices, and are discarded along with the use of the pharmaceuticals and medical devices. Means what will be done. The drug means a drug used for surgery, treatment, or diagnosis of a human body or an animal, and specifically, there are those listed in the fifth category of the same table. It is particularly suitable for injection needles, puncture needles, packaging trays, and the like that require high strength. Further, it is also used in general households and is suitable for body fluid testing tools such as disposable blood testing tools and urine testing tools.

本発明の医療用具および医療材料は、生分解性脂肪族ポリエステル樹脂とナノ炭素材料とから構成される組成物を有するものであり、電離放射線照射時に形成される架橋構造とナノ炭素材料との相互作用により、ナノ炭素材料を含まない場合と比較して、前記樹脂組成物の機械的強度の向上効果が大きいことを特徴とする。すなわち、電離放射線照射量が等しいとき、本発明の組成物の機械的強度はナノ炭素材料を含まない生分解性脂肪族ポリエステル樹脂組成物の強度より大きくなる。その結果、要求される機械的強度を得るために必要な電離放射線量や架橋促進剤の添加量を少なくすることができる。   The medical device and the medical material of the present invention have a composition composed of a biodegradable aliphatic polyester resin and a nanocarbon material, and the cross-linked structure formed at the time of ionizing radiation irradiation and the nanocarbon material Compared with the case where it does not contain a nanocarbon material, the effect of improving the mechanical strength of the resin composition is large. That is, when the ionizing radiation dose is equal, the mechanical strength of the composition of the present invention is greater than the strength of the biodegradable aliphatic polyester resin composition not containing the nanocarbon material. As a result, it is possible to reduce the amount of ionizing radiation necessary for obtaining the required mechanical strength and the amount of crosslinking accelerator added.

本発明の医療用具および医療用材料で用いられるナノ炭素材料は、基本的に炭素原子のみで構成されているため生物学的に安全であり、生分解性脂肪族ポリエステル樹脂組成物が分解した後でも、土壌汚染や生物成育阻害などの悪影響を与える毒性物質や重金属を含むものではなく、環境に負荷を与えることがない。さらに、ナノ炭素材料を混合するだけでも、ある程度樹脂を補強することができるので、より大きな機械的強度を得ることができ、また組成物の成型加工性も向上する。   The nanocarbon material used in the medical device and medical material of the present invention is basically biologically safe because it is composed of only carbon atoms, and after the biodegradable aliphatic polyester resin composition is decomposed. However, it does not contain toxic substances and heavy metals that have adverse effects such as soil contamination and biological growth inhibition, and it does not burden the environment. Furthermore, since the resin can be reinforced to some extent by simply mixing the nanocarbon material, greater mechanical strength can be obtained, and the moldability of the composition can be improved.

本発明に使用することができる生分解性脂肪族ポリエステル樹脂は、特に限定されないが、好ましくは、ポリブチレンサクシネート、ポリブチレンサクシネート・アジペート共重合体、ポリブチレンサクシネート・カーボネート共重合体、ポリブチレンサクシネート・ポリ乳酸共重合体、ポリ(ε−カプロラクトン)、ポリ乳酸、ポリ(3−ヒドロキシブチレート)とその共重合体、ポリエチレンサクシネート・ポリブチレンサクシネート・テレフタレート共重合体、ポリブチレンアジペート・テレフタレート共重合体、ポリテトラメチレンアジペート・テレフタレート共重合体、ポリブチレンサクシネート・アジペート・テレフタレート共重合体、およびこれらのポリマーブレンド、あるいはポリマーアロイ等である。   The biodegradable aliphatic polyester resin that can be used in the present invention is not particularly limited, but preferably a polybutylene succinate, a polybutylene succinate-adipate copolymer, a polybutylene succinate-carbonate copolymer, Polybutylene succinate / polylactic acid copolymer, poly (ε-caprolactone), polylactic acid, poly (3-hydroxybutyrate) and its copolymer, polyethylene succinate / polybutylene succinate / terephthalate copolymer, poly Examples thereof include a butylene adipate / terephthalate copolymer, a polytetramethylene adipate / terephthalate copolymer, a polybutylene succinate / adipate / terephthalate copolymer, and a polymer blend or a polymer alloy thereof.

本発明に使用することができるナノ炭素材料とは、炭素6員環構造を主構造とする黒鉛層を有する炭素繊維を意味する。このような構造を有する炭素繊維は、一般的にカーボンファイバーやカーボンナノチューブ等と呼ばれており、針状、らせん状、円筒状等の任意の形状をとることができる。また、上記ナノ炭素材料は単独で分散しているものだけでなく、数本で集合体を形成しているものでもよい。   The nanocarbon material that can be used in the present invention means a carbon fiber having a graphite layer having a carbon 6-membered ring structure as a main structure. The carbon fiber having such a structure is generally called a carbon fiber, a carbon nanotube, or the like, and can take any shape such as a needle shape, a spiral shape, and a cylindrical shape. Further, the nanocarbon material is not limited to being dispersed alone, but may be an aggregate formed of several.

上記炭素6員環を主構造とする黒鉛層を有する炭素繊維として、具体的には、炭素6員環構造を主構造とする黒鉛シートよりなるらせん円筒構造を有する炭素繊維(一般的に「カーボンナノチューブ」とも言う。)と、炭素6員環構造を主構造とする黒鉛よりなるらせん構造で形成された多重構造を有する黒鉛繊維であって、その繊維の先端が円錐形状で終わる角状の円筒構造を有する黒鉛繊維(一般的に「カーボンナノホーン」とも言う。)が例示される。上記カーボンナノチューブは単層の円筒構造を有するもの(例えば、特許第2526782号公報明細書等に記載の炭素繊維)でもよく、らせん構造で形成された円筒形状が同心円状に配置された多重構造のもの(例えば、Nature,354,56(1991)、特許第2687794号公報明細書等に記載の炭素繊維)でもよい。上記炭素繊維としてカーボンナノチューブを用いると、後述する炭素繊維の好ましい外径の範囲を満たすことができ、本発明の炭素繊維として好ましい。   Specifically, the carbon fiber having a graphite layer having a carbon 6-membered ring as a main structure, specifically, a carbon fiber having a helical cylindrical structure made of a graphite sheet having a carbon 6-membered ring structure as a main structure (generally “carbon” A carbon fiber having a multiple structure formed of a helical structure made of graphite having a carbon 6-membered ring structure as a main structure, and the end of the fiber ends in a conical shape. Examples thereof include graphite fibers having a structure (generally also referred to as “carbon nanohorn”). The carbon nanotube may have a single-layered cylindrical structure (for example, a carbon fiber described in Japanese Patent No. 2526782) or the like, and has a multiple structure in which cylindrical shapes formed in a spiral structure are arranged concentrically. (For example, carbon fiber described in Nature, 354, 56 (1991), Japanese Patent No. 2687794, etc.) may be used. When a carbon nanotube is used as the carbon fiber, a range of a preferable outer diameter of the carbon fiber described later can be satisfied, which is preferable as the carbon fiber of the present invention.

上記カーボンナノホーンは、1層または2層以上の層を重ね合わせた多重構造のもの(例えば、特許第2705447号公報明細書等に記載の炭素繊維)であってもよい。また、角状の円筒構造が角の先端を外側に向けた集合体のもの(例えば、特開2002−159851号公報等)でもよい。これらのカーボンナノホーンも上記カーボンナノチューブと同様、本発明の炭素繊維として好ましい。   The carbon nanohorn may have a multi-layer structure in which one layer or two or more layers are stacked (for example, carbon fiber described in Japanese Patent No. 2705447). Moreover, the thing of the aggregate | assembly (for example, Unexamined-Japanese-Patent No. 2002-159851 etc.) with the square cylindrical structure turned toward the outer side may be sufficient. These carbon nanohorns are also preferable as the carbon fibers of the present invention, like the carbon nanotubes.

上記炭素繊維は、長さが0.01μm〜2000μmであることが好ましい。このような長さの範囲であると、炭素繊維同士の絡まりによる二次凝集がなく、組成物中で上記生分解性脂肪族ポリエステル樹脂とともに均一に分散することができる。特に、上記炭素繊維の長さが1μm〜50μmであると、電離放射線の照射により上記生分解性脂肪族ポリエステル樹脂が形成する架橋構造に該炭素繊維が適度に絡み合うことにより、機械的強度が向上するのでより好ましい。   The carbon fiber preferably has a length of 0.01 μm to 2000 μm. Within such a length range, there is no secondary aggregation due to the entanglement of the carbon fibers, and it can be uniformly dispersed together with the biodegradable aliphatic polyester resin in the composition. In particular, when the length of the carbon fiber is 1 μm to 50 μm, the carbon fiber is appropriately entangled with the crosslinked structure formed by the biodegradable aliphatic polyester resin by irradiation with ionizing radiation, thereby improving the mechanical strength. Therefore, it is more preferable.

上記炭素繊維の外径は、0.4nm〜300nmであることが好ましい。より好ましくは0.4nm〜200nmである。この範囲の外径を有する炭素繊維は、公知の製造方法において高い収率で得ることができるので商業的にも入手し易く、適度な柔軟性を有しているので、例えばポリブチレンサクシネートとその共重合体のような柔軟性が高い生分解性脂肪族ポリエステル樹脂を使用した場合でも、もとの樹脂が有する柔軟性を適度に保持したまま機械的強度を向上することができ、好適である。   The outer diameter of the carbon fiber is preferably 0.4 nm to 300 nm. More preferably, it is 0.4 nm to 200 nm. Since carbon fibers having an outer diameter in this range can be obtained in a high yield in a known production method, they are easily available commercially and have appropriate flexibility. For example, polybutylene succinate and Even when a highly biodegradable aliphatic polyester resin such as a copolymer is used, the mechanical strength can be improved while maintaining the flexibility of the original resin appropriately, which is preferable. is there.

上述した炭素繊維は、公知の炭素繊維製造方法により製造することができる(例えば、吉田隆著,「カーボンナノチューブの基礎と工業化の最前線」,初版,株式会社エヌ・ティー・エス,2002年1月11日,p.6−18、特開2003−238130号公報参照。)。一般には、アーク放電法(特開平6−157016号公報、特開2000−95509号公報)、レーザー蒸発法(特開平10−273308号公報など)、触媒気相成長法(特開2000−86217号公報)、水熱合成法(非特許文献Carbon Vol.36,No.7−8,pp.937−942,1988(Yury G. Gogotsi et al.、非特許文献Jounal of Materials Research Society,Vol.15,No.12,pp.2591−2594,2000(Yury G. Gogotsi et al.)、Journal of American Chemical Society Vol.123,No.4,pp.741−742,2001(Jose Maria Calderon et al.)、特開2003−221217号公報、特開2002−37614号公報)等がよく用いられる。   The above-described carbon fiber can be produced by a known carbon fiber production method (for example, Takashi Yoshida, “Basics of Carbon Nanotubes and Forefront of Industrialization”, first edition, NTS Corporation, 2002 1). 11th, p. 6-18, JP 2003-238130 A). In general, arc discharge methods (JP-A-6-157016, JP-A-2000-95509), laser evaporation methods (JP-A-10-273308, etc.), catalytic vapor phase growth methods (JP-A-2000-86217). Gazette), hydrothermal synthesis method (Non-Patent Document Carbon Vol. 36, No. 7-8, pp. 937-942, 1988 (Yury G. Gogotsi et al., Non-Patent Document Journal of Materials Research Society, Vol. 15). No. 12, pp. 2591-2594, 2000 (Yury G. Gogotsi et al.), Journal of American Chemical Society Vol. 123, No. 4, pp. 741-742, 2001 (Jose Maria) Calderon et al.), JP2003-221217A, JP2002-37614A) and the like are often used.

また、上記ナノ炭素材料として、60個以上の炭素原子が強く結合して球状あるいはチューブ状に閉じた構造を形成した、フラーレンと呼ばれる物質も用いることができる。
上記ナノ炭素材料は必ずしも製造時のままである必要はなく、熱処理、分断処理、酸化処理、化学修飾処理等の処理を施したものでもよい。これらの処理を施すことにより、ナノ炭素材料を構成する炭素5員環または6員環構造に欠陥が生じ、外表面や内表面に官能基を導入したり、ナノ炭素材料の有する内部空間に金属や有機化合物等の物質を内包することができる。これらの処理が施されたナノ炭素材料を用いると、該ナノ炭素材料と生分解性脂肪族ポリエステル樹脂との密着性が強くなり、得られる生分解性脂肪族ポリエステル樹脂組成物の機械的強度がさらに大きくなるので好ましい。また、電離放射線照射時における生分解性脂肪族ポリエステル樹脂との相互作用が強くなるので、好ましい。
In addition, as the nanocarbon material, a substance called fullerene in which a structure in which 60 or more carbon atoms are strongly bonded to form a spherical shape or a tube shape can be used.
The nanocarbon material does not necessarily have to be as manufactured, and may be subjected to treatment such as heat treatment, fragmentation treatment, oxidation treatment, chemical modification treatment, and the like. By applying these treatments, defects occur in the carbon 5-membered ring or 6-membered ring structure constituting the nanocarbon material, and functional groups are introduced into the outer surface or inner surface, or metal is introduced into the inner space of the nanocarbon material. And can contain substances such as organic compounds. When a nanocarbon material subjected to these treatments is used, the adhesion between the nanocarbon material and the biodegradable aliphatic polyester resin is increased, and the mechanical strength of the resulting biodegradable aliphatic polyester resin composition is increased. It is preferable because it becomes larger. Moreover, since interaction with a biodegradable aliphatic polyester resin at the time of ionizing radiation irradiation becomes strong, it is preferable.

本発明の生分解性脂肪族ポリエステル樹脂組成物には、架橋構造を形成させるために架橋促進剤が添加されていてもよい。架橋促進剤の例としては、トリアリルシアヌレート、トリメタアリルシアヌレート、トリアリルイソシアヌレート、トリメタアリルイソシアヌレート、ジアリルアジペート、ジアリルサクシネート、ジアリルマロネート、ジアリルカーボネート、ジアリルオキサレート、ジアリルフマレート、ジアリルマレート、ジアリルフタレート、ジアリルイソフタレート、ジアリルテレフタレート、ペンタエリスリトールトリアクリレート、エチレングリコールジメタクリレート等が挙げられる。好ましい架橋促進剤は、トリアリルシアヌレートおよびトリアリルイソシアヌレートである。   A cross-linking accelerator may be added to the biodegradable aliphatic polyester resin composition of the present invention in order to form a cross-linked structure. Examples of crosslinking accelerators include triallyl cyanurate, trimethallyl cyanurate, triallyl isocyanurate, trimethallyl isocyanurate, diallyl adipate, diallyl succinate, diallyl malonate, diallyl carbonate, diallyl oxalate, diallyl fumarate Examples thereof include rate, diallyl malate, diallyl phthalate, diallyl isophthalate, diallyl terephthalate, pentaerythritol triacrylate, ethylene glycol dimethacrylate, and the like. Preferred crosslinking accelerators are triallyl cyanurate and triallyl isocyanurate.

架橋促進剤の生分解性脂肪族ポリエステル樹脂組成物中の濃度は、10重量%以下であり、好ましくは、0.1重量%〜5重量%である。さらに好ましくは、0.1重量%〜3重量%である。   The concentration of the crosslinking accelerator in the biodegradable aliphatic polyester resin composition is 10% by weight or less, and preferably 0.1% by weight to 5% by weight. More preferably, it is 0.1 to 3% by weight.

本発明の生分解性脂肪族ポリエステル樹脂組成物には、必要に応じて抗酸化剤、顔料、軟化剤、可塑剤、滑剤、帯電防止剤、防曇剤、着色剤、酸化防止剤(老化防止剤)、熱安定剤、光安定剤、紫外線吸収剤等の各種添加剤の1種類または2種類以上を含んでいてもよい。   In the biodegradable aliphatic polyester resin composition of the present invention, an antioxidant, a pigment, a softener, a plasticizer, a lubricant, an antistatic agent, an antifogging agent, a coloring agent, an antioxidant (anti-aging) Agent), a heat stabilizer, a light stabilizer, an ultraviolet absorber and the like, and may contain one kind or two or more kinds.

本発明の生分解性脂肪族ポリエステル樹脂組成物は、生分解性脂肪族ポリエステル樹脂とナノ炭素材料を混合し、組成物を調製する第1工程、前記第1工程で得られた組成物を所望の形状に成形する第2工程によって製造される。   The biodegradable aliphatic polyester resin composition of the present invention is a first step in which a biodegradable aliphatic polyester resin and a nanocarbon material are mixed to prepare a composition, and the composition obtained in the first step is desired. It is manufactured by the second step of forming into a shape.

上記第1工程は、上記生分解性脂肪族ポリエステル樹脂と上記ナノ炭素材料、必要に応じてその他の添加剤等を、乾式または湿式条件で混合する工程(混合工程)と、必要により該混合物を溶融混練押出等によって成形する工程(調製工程)からなる。
上記第1工程で、混合する方法は公知の方法を使用することができ、乾式または湿式で均質に混合されることが望ましい。例えば、分散混合攪拌機等の混合装置を用いて、混合する方法等が挙げられる。
The first step includes a step of mixing the biodegradable aliphatic polyester resin and the nanocarbon material, if necessary, other additives and the like under dry or wet conditions (mixing step), and, if necessary, mixing the mixture. It consists of the process (preparation process) shape | molded by melt-kneading extrusion etc.
In the first step, a known method can be used as the mixing method, and it is desirable that the mixing is performed uniformly in a dry or wet manner. For example, a method of mixing using a mixing device such as a dispersion mixing stirrer can be used.

上記混合工程で、使用する生分解性脂肪族ポリエステル樹脂は、粉体であることが好ましい。上記混合工程において、生分解性脂肪族ポリエステル樹脂が粉体であると、ナノ炭素材料を均一に分散させることができ、放射線照射時の架橋が起こりやすく、機械的強度を向上させることができる。前記粉体の平均粒径が、1μm〜150μmであると製造も比較的容易で、ナノ炭素材料が均一に分散しやすく、生分解性脂肪族ポリエステル樹脂とナノ炭素材料との絡み合いが適度に起こるため、好適である。   In the mixing step, the biodegradable aliphatic polyester resin used is preferably a powder. In the mixing step, when the biodegradable aliphatic polyester resin is a powder, the nanocarbon material can be uniformly dispersed, crosslinking during radiation irradiation is likely to occur, and mechanical strength can be improved. When the average particle size of the powder is 1 μm to 150 μm, the production is relatively easy, the nanocarbon material is easily dispersed uniformly, and the biodegradable aliphatic polyester resin and the nanocarbon material are appropriately entangled. Therefore, it is preferable.

上記生分解性脂肪族ポリエステル樹脂を粉状の生分解性脂肪族ポリエステル樹脂に調製する方法としては、特に限定はされないが、メカニカル粉砕法またはケミカル粉砕法により調製されることが好ましい。本明細書において、メカニカル粉砕法としては、例えば、ポリマーを液化窒素で冷却し、衝撃式凍結粉砕装置等を用いて機械的に粉砕した粉体を適度な目開きのふるいにて分級し、所定の粒径範囲の粉体を得る方法等が挙げられる。ケミカル粉砕法とは、一般にスピノーダル分解と呼ばれる原理を用いる方法(例えば、特開平4−339828号公報参照。)であり、例えば、生分解性脂肪族ポリエステル樹脂を適当な溶剤に加熱溶解混合させた後、冷却して析出した粉末を洗浄、乾燥、解砕、分級等を行い、所定の粒径範囲の粉体を得る方法等が挙げられる。また、この方法によって得られた粉状生分解性樹脂は、表面が滑らかで球状形態であるため、ナノ炭素材料と絡み合いやすく、得られる組成物が適度な機械的強度を実現するのに都合がよい。これらの粉砕法を用いると、多くの生分解性樹脂について、本発明の好ましい平均粒径である1μm〜150μmの粉状生分解性樹脂を調製することができる。   A method for preparing the biodegradable aliphatic polyester resin into a powdery biodegradable aliphatic polyester resin is not particularly limited, but it is preferably prepared by a mechanical pulverization method or a chemical pulverization method. In the present specification, as the mechanical pulverization method, for example, the polymer is cooled with liquefied nitrogen, and the mechanically pulverized powder is classified using a shock freezing pulverizer, etc. And a method of obtaining a powder having a particle size range of The chemical pulverization method is a method using a principle generally called spinodal decomposition (for example, see JP-A-4-339828). For example, a biodegradable aliphatic polyester resin is heated and dissolved and mixed in an appropriate solvent. Thereafter, the powder deposited by cooling is washed, dried, crushed, classified, and the like to obtain a powder having a predetermined particle size range. In addition, the powdery biodegradable resin obtained by this method has a smooth surface and a spherical shape. Therefore, the powdery biodegradable resin is easily entangled with the nanocarbon material, and it is convenient for the resulting composition to achieve an appropriate mechanical strength. Good. When these pulverization methods are used, a powdery biodegradable resin having a preferable average particle diameter of 1 μm to 150 μm of the present invention can be prepared for many biodegradable resins.

本発明の組成物中の生分解性脂肪族ポリエステル樹脂と前記ナノ炭素材料の合計重量に対するナノ炭素材料の含有率(以下、単に「ナノ炭素材料含有率」とも言う。)は、0.1重量%〜50重量%であることが好ましい。ナノ炭素材料含有率が0.1重量%未満であると、上記生分解性脂肪族ポリエステル樹脂組成物の電離放射線照射時に生成する分子間架橋とナノ炭素材料との相互作用が不十分となり、機械的強度の向上ができず、50重量%より大きいと、目的形状への成形が困難となる場合がある。さらに好ましくは、0.1重量%〜40重量%である。
上記調製工程は、特に限定されないが、例えば、上記混合工程で混合したものを二軸混練機を用いて溶融混練し、生分解性脂肪族ポリエステル樹脂、ナノ炭素材料、およびその他の添加剤等を含有する組成物をペレット形状に調製する工程である。組成物の形状としては、ペレットに限られず、上記混合工程で得られるものを直接用いてもよいし、粉体としてもよい。
The content of the nanocarbon material relative to the total weight of the biodegradable aliphatic polyester resin and the nanocarbon material in the composition of the present invention (hereinafter, also simply referred to as “nanocarbon material content”) is 0.1 weight. % To 50% by weight is preferred. When the nanocarbon material content is less than 0.1% by weight, the interaction between the intermolecular crosslinks generated during the ionizing radiation irradiation of the biodegradable aliphatic polyester resin composition and the nanocarbon material becomes insufficient, and the machine If the mechanical strength cannot be improved and is greater than 50% by weight, it may be difficult to form the target shape. More preferably, it is 0.1 to 40% by weight.
The preparation step is not particularly limited. For example, the mixture mixed in the mixing step is melt-kneaded using a biaxial kneader to obtain a biodegradable aliphatic polyester resin, a nanocarbon material, and other additives. It is a step of preparing the contained composition into a pellet shape. The shape of the composition is not limited to pellets, and those obtained in the mixing step may be used directly or may be powders.

上記第2工程は、上記第1工程で得られた生分解性脂肪族ポリエステル樹脂およびナノ炭素材料を含有する組成物を目的形状を有する成形物に成形する工程である。成形方法としては、特に限定されないが、例えば、圧縮成形法、射出成形法、押出成形法、ブロー成形法等が挙げられる。
上記第2工程は、必要により上記成形物を同じまたは他の材料からなる他の成形物と組合わせて医療用具または医療用材料の組立て体とする組立て工程を含んでもよい。組立て方法としては、特に限定されないが、嵌合、接着、融着等が挙げられる。
The second step is a step of molding the composition containing the biodegradable aliphatic polyester resin and the nanocarbon material obtained in the first step into a molded product having a target shape. The molding method is not particularly limited, and examples thereof include a compression molding method, an injection molding method, an extrusion molding method, and a blow molding method.
The second step may include an assembly step in which the molded product is combined with another molded product made of the same or other material as necessary to form a medical device or an assembly of medical materials. The assembling method is not particularly limited, and examples thereof include fitting, adhesion, and fusion.

上記第2工程によって得られた成形物に電離放射線を照射することにより、成形物内での架橋が起こり、機械的強度が向上する。特に引張弾性率、曲げ弾性率が向上することで、本発明の生分解性脂肪族ポリエステル樹脂組成物を医療用具の筐体などとして使用することが可能となる。   By irradiating the molded product obtained in the second step with ionizing radiation, cross-linking occurs in the molded product, and the mechanical strength is improved. In particular, the tensile modulus and the flexural modulus are improved, so that the biodegradable aliphatic polyester resin composition of the present invention can be used as a housing for medical devices.

照射する電離放射線の線量は、特に限定されないが、1〜500kGy、好ましくは、5kGy〜100kGyである。電離放射線の線量が10kGy〜70kGyであると、滅菌と機械的強度の向上を同時に行うことができ、製造上都合がよく、さらに好ましい。この範囲の線量で目的の機械的強度が得られるよう、架橋促進剤の選定と添加量の設定を行うことが望ましい。   The dose of the ionizing radiation to be irradiated is not particularly limited, but is 1 to 500 kGy, preferably 5 kGy to 100 kGy. When the dose of ionizing radiation is 10 kGy to 70 kGy, sterilization and mechanical strength can be improved at the same time, which is convenient in production and is more preferable. It is desirable to select a crosslinking accelerator and set the addition amount so that the desired mechanical strength can be obtained with a dose in this range.

照射する電離放射線の種類は、電子線、γ線、またはエックス線などを用いることができるが、工業的生産が容易であることから、電子加速器による電子線とコバルト−60からのγ線が好ましい。より好ましくは、電子線を用いる。電子加速器は、厚さを有する成形物への照射を可能とするために、加速電圧1MeV以上の中エネルギーから高エネルギー電子加速器を用いることが好ましい。   As the type of ionizing radiation to be irradiated, an electron beam, γ-ray, X-ray, or the like can be used. However, since industrial production is easy, an electron beam by an electron accelerator and γ-ray from cobalt-60 are preferable. More preferably, an electron beam is used. The electron accelerator is preferably a medium energy to high energy electron accelerator having an acceleration voltage of 1 MeV or higher in order to enable irradiation of a molded product having a thickness.

電離放射線の照射雰囲気は、特に限定されないが、空気を除いた不活性雰囲気下や真空下で行ってもよい。不活性雰囲気下や真空下で照射することにより、照射によって生成した活性種が空気中の酸素と結合してと失活し、架橋効率が低下するのを抑制することができる。また、照射時の温度はいずれであってもよいが、典型的には室温で行う。
本発明の生分解性脂肪族ポリエステル樹脂組成物中における架橋構造は、生分解性脂肪族ポリエステル樹脂どうしの間でもよいし、生分解性脂肪族ポリエステル樹脂とナノ炭素材料との間にあってもよい。
The irradiation atmosphere of ionizing radiation is not particularly limited, but may be performed under an inert atmosphere or air except for air. By irradiating under an inert atmosphere or under vacuum, it is possible to suppress the active species generated by the irradiation from being deactivated when combined with oxygen in the air, thereby reducing the crosslinking efficiency. Moreover, although the temperature at the time of irradiation may be any, it is typically performed at room temperature.
The crosslinked structure in the biodegradable aliphatic polyester resin composition of the present invention may be between the biodegradable aliphatic polyester resins or between the biodegradable aliphatic polyester resin and the nanocarbon material.

以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these Examples.

(1)ポリブチレンサクシネートシートの作製
ポリブチレンサクシネートペレット(ビオノーレ #1001、昭和高分子(株)製)をメカニカル粉砕法によって粉砕し、ポリブチレンサクシネート粉体を調製した。具体的には、ポリブチレンサクシネートペレットを液化窒素で冷却し、衝撃式凍結粉砕装置(日本酸素(株)製)にて粉砕したパウダー状のポリブチレンサクシネートを適度な目開きのふるいにて分級し、平均粒径100μmのポリブチレンサクシネート粉体を得た。
このポリブチレンサクシネート粉体4.5kgと、多層円筒構造のナノ炭素繊維(VGCF、昭和電工(株)製、平均長さ約20μm、平均外径約100nm)0.5kgを、分散混合攪拌機を用いて混合し、これらが均一に混合した組成物粉末(ナノ炭素材料含有率10重量%)を得た。これを二軸混練機(S1KRCニーダー、(株)栗本鐵鋼製)を用いて、温度200℃、回転数60rpmにて溶融混練し、組成物ペレットを得た。得られた組成物ペレットを卓上型熱プレス機(SA−303、テスター産業(株)製)を用いて、温度200℃、圧力20MPaにて加圧した後急冷し、横150mm、縦150mm、厚さ0.5mmのシート状に成形した。
(1) Production of polybutylene succinate sheet Polybutylene succinate pellets (Bionore # 1001, manufactured by Showa Polymer Co., Ltd.) were pulverized by a mechanical pulverization method to prepare polybutylene succinate powder. Specifically, the polybutylene succinate pellets were cooled with liquefied nitrogen and the powdered polybutylene succinate pulverized with an impact-type freeze pulverizer (manufactured by Nippon Oxygen Co., Ltd.) was sieved with an appropriate opening sieve. Classification was performed to obtain a polybutylene succinate powder having an average particle size of 100 μm.
4.5 kg of this polybutylene succinate powder and 0.5 kg of multi-layered cylindrical carbon fiber (VGCF, Showa Denko KK, average length of about 20 μm, average outer diameter of about 100 nm) And mixed to obtain a composition powder (nanocarbon material content of 10% by weight) in which these were uniformly mixed. This was melt kneaded at a temperature of 200 ° C. and a rotation speed of 60 rpm using a biaxial kneader (S1KRC kneader, manufactured by Kurimoto Steel Co., Ltd.) to obtain composition pellets. The obtained composition pellets were pressed at a temperature of 200 ° C. and a pressure of 20 MPa using a desktop heat press machine (SA-303, manufactured by Tester Sangyo Co., Ltd.) and then rapidly cooled, 150 mm wide, 150 mm long, thick The sheet was formed into a sheet having a thickness of 0.5 mm.

(2)電離放射線の照射
上記(1)で得られたシートに、空気中、室温にて、10MeV電子加速器による電子線66kGyを照射し、包装トレイの材料シートとした。
(2) Irradiation of ionizing radiation The sheet obtained in (1) above was irradiated with an electron beam of 66 kGy using a 10 MeV electron accelerator in air at room temperature to obtain a material sheet for a packaging tray.

実施例1(1)と同様の方法で作製したシートに、空気中、室温にて、コバルト−60によるγ線50kGyを照射し、包装トレイの材料シートとした。   A sheet produced by the same method as in Example 1 (1) was irradiated with γ-rays of 50 kGy from cobalt-60 at room temperature in the air to obtain a material sheet for a packaging tray.

ナノ炭素材料含有率を30重量%とした以外は、実施例1と同様の方法で包装トレイの材料シートを作製した。   A material sheet for the packaging tray was prepared in the same manner as in Example 1 except that the nanocarbon material content was 30% by weight.

ナノ炭素材料含有率を30重量%とした以外は、実施例2と同様の方法で包装トレイの材料シートを作製した。   A material sheet for the packaging tray was produced in the same manner as in Example 2 except that the nanocarbon material content was 30% by weight.

(比較例1)電離放射線を照射しないこと以外は実施例1と同様の方法で、包装トレイの材料シートを作製した。
(比較例2)電離放射線を照射しないこと以外は実施例3と同様の方法で、包装トレイの材料シートを作製した。
(比較例3)ナノ炭素材料を用いないこと以外は実施例1と同様の方法で、包装トレイの材料シートを作製した。
(比較例4)ナノ炭素材料を用いないこと以外は実施例2と同様の方法で、包装トレイの材料シートを作製した。
(Comparative Example 1) A material sheet for a packaging tray was prepared in the same manner as in Example 1 except that no ionizing radiation was applied.
(Comparative Example 2) A material sheet for a packaging tray was prepared in the same manner as in Example 3 except that no ionizing radiation was applied.
(Comparative Example 3) A material sheet for a packaging tray was produced in the same manner as in Example 1 except that the nanocarbon material was not used.
(Comparative Example 4) A material sheet for a packaging tray was produced in the same manner as in Example 2 except that the nanocarbon material was not used.

(比較例5)ポリブチレンサクシネート粉末3.5kgと、ナノ炭素材料の代わりにタルク1.5kg(タルク含有率30重量%)を用いた以外は、実施例1と同様の方法で包装トレイの材料シートを作製した。
(比較例6)ポリブチレンサクシネート粉末3.5kgと、ナノ炭素材料の代わりにタルク1.5kg(タルク含有率30重量%)を用いた以外は、実施例2と同様の方法で包装トレイの材料シートを作製した。
(比較例7)ナノ炭素材料含有率を70重量%とした以外は、実施例1と同様の方法でシートの作製を試みたが、組成物ペレットを調製することができず、シートの作製ができなかった。
(Comparative Example 5) A packaging tray was prepared in the same manner as in Example 1 except that 3.5 kg of polybutylene succinate powder and 1.5 kg of talc (talc content of 30% by weight) were used instead of the nanocarbon material. A material sheet was prepared.
(Comparative Example 6) A packaging tray was prepared in the same manner as in Example 2 except that 3.5 kg of polybutylene succinate powder and 1.5 kg of talc (talc content 30 wt%) were used instead of the nanocarbon material. A material sheet was prepared.
(Comparative Example 7) A sheet was prepared in the same manner as in Example 1 except that the nanocarbon material content was set to 70% by weight. However, the composition pellets could not be prepared, and the sheet was manufactured. could not.

ポリ乳酸シートの作製
ポリ乳酸ペレット(ラクティ #9010、(株)島津製作所製)をケミカル粉砕法によって粉砕し、ポリ乳酸粉体を調製した。具体的には、ポリ乳酸ペレットとキシレン(国産化学特級I158791)を、ポリ乳酸が5重量%になるように溶解槽に入れ、緩速で攪拌しながら80〜120℃で加熱溶解させた。溶液が透明になったところで加熱を中止し、室温まで徐冷することでポリ乳酸微粒子を析出させた。この溶液をろ過してポリ乳酸微粒子を回収し水洗浄を行った後、攪拌真空乾燥機にて65℃以下で完全に溶剤を揮発させた。得られた粉状のポリ乳酸を適度な目のふるいにて分級し、平均粒径100μmの粉状のポリ乳酸粉体を得た。
Preparation of polylactic acid sheet Polylactic acid pellets (Lacty # 9010, manufactured by Shimadzu Corporation) were pulverized by a chemical pulverization method to prepare polylactic acid powder. Specifically, polylactic acid pellets and xylene (domestic chemical special grade I158791) were placed in a dissolution tank so that polylactic acid was 5% by weight, and heated and dissolved at 80 to 120 ° C. while stirring slowly. When the solution became transparent, heating was stopped, and the solution was gradually cooled to room temperature to precipitate polylactic acid fine particles. This solution was filtered to collect polylactic acid fine particles and washed with water, and then the solvent was completely volatilized at 65 ° C. or lower with a stirring vacuum dryer. The obtained powdery polylactic acid was classified with an appropriate sieve, and powdery polylactic acid powder having an average particle size of 100 μm was obtained.

このポリ乳酸粉体4.75kgと、ナノ炭素材料として単層円筒構造のカーボンナノチューブ0.25kg(Single Walled carbon nanotubes、ストレムケミカル(株)製、平均長さ約1μm、外径4〜30nm)、およびトリアリルシアヌレート0.05kgを、分散混合攪拌機を用いて混合し、これらが均一に混合した組成物粉末(ナノ炭素材料含有率5重量%)を得た。これを二軸混練機(S1KRCニーダー、(株)栗本鐵鋼製)を用いて、温度180℃、回転数80rpmにて溶融混練し、組成物ペレットを得た。得られた組成物ペレットを卓上型熱プレス機(SA−303、テスター産業(株)製)を用いて、温度220℃、圧力20MPaにて加圧した後急冷し、横150mm、縦150mm、厚さ0.5mmのシート状に成形した。
得られたシートに、実施例1と同様の方法で電子線を照射し、包装トレイの材料シートとした。
4.75 kg of this polylactic acid powder and 0.25 kg of carbon nanotubes having a single-layer cylindrical structure as a nanocarbon material (Single Walled carbon nanotubes, manufactured by Strem Chemical Co., Ltd., average length of about 1 μm, outer diameter of 4 to 30 nm) And 0.05 kg of triallyl cyanurate were mixed using a dispersion mixing stirrer to obtain a composition powder (nanocarbon material content 5% by weight) in which these were uniformly mixed. This was melt kneaded at a temperature of 180 ° C. and a rotation speed of 80 rpm using a biaxial kneader (S1KRC kneader, manufactured by Kurimoto Steel Co., Ltd.) to obtain composition pellets. The obtained composition pellets were pressed at a temperature of 220 ° C. and a pressure of 20 MPa using a desktop heat press machine (SA-303, manufactured by Tester Sangyo Co., Ltd.) and then rapidly cooled, 150 mm wide, 150 mm long, thick The sheet was formed into a sheet having a thickness of 0.5 mm.
The obtained sheet was irradiated with an electron beam in the same manner as in Example 1 to obtain a material sheet for a packaging tray.

(比較例8)電子線を照射しないこと以外は実施例5と同様の方法で、包装トレイの材料シートを作製した。
(比較例9)ナノ炭素材料を用いないこと以外は実施例5と同様の方法で、包装トレイの材料シートを作製した。
(Comparative Example 8) A material sheet for a packaging tray was produced in the same manner as in Example 5 except that the electron beam was not irradiated.
(Comparative Example 9) A material sheet for a packaging tray was produced in the same manner as in Example 5 except that the nanocarbon material was not used.

(評価)
(架橋率(ゲル分率)の測定)実施例1と3、比較例3と5で作製した包装トレイの材料シートについて、所定量を200メッシュのステンレス製金網に包み、クロロホルム(特級、関東化学(株)製)100mLで24時間ソックスレー抽出を行った。金網内に残存した不溶性分(架橋により生成したゲル)を取出し、オーブンを用いて50℃で24時間乾燥した後、その重量を求めた。以下の式を使用してゲル分率を算出した。
ゲル分率(%)=(溶解成分を除いたゲル重量)/(初期乾燥重量)×100
各シートのゲル分率を表1に示す。ナノ炭素材料を添加したことによる架橋率の増加はないことが確認された。
(Evaluation)
(Measurement of cross-linking ratio (gel fraction)) About the material sheets of the packaging trays prepared in Examples 1 and 3 and Comparative Examples 3 and 5, a predetermined amount was wrapped in a 200-mesh stainless steel wire mesh and chloroform (special grade, Kanto Chemical) Soxhlet extraction was performed with 100 mL for 24 hours. The insoluble matter (gel formed by crosslinking) remaining in the wire net was taken out and dried at 50 ° C. for 24 hours using an oven, and then its weight was determined. The gel fraction was calculated using the following formula:
Gel fraction (%) = (gel weight excluding dissolved components) / (initial dry weight) × 100
Table 1 shows the gel fraction of each sheet. It was confirmed that there was no increase in the crosslinking rate due to the addition of the nanocarbon material.

(引張試験)実施例1〜5、比較例1〜6、8、9で作製した包装トレイの材料シートを使用して、ISO 527−2に示す5B型ダンベル試験片を抜き型により作製した後、オートグラフ(AG−10、(株)島津製作所製)を用いて試験速度1mm/minで引張試験を実施し、引張弾性率を測定した。 (Tensile test) After using the material sheet of the packaging tray produced in Examples 1-5 and Comparative Examples 1-6, 8, 9 to produce a 5B type dumbbell test piece shown in ISO 527-2 with a punching die A tensile test was carried out using an autograph (AG-10, manufactured by Shimadzu Corporation) at a test speed of 1 mm / min, and the tensile modulus was measured.

(曲げ試験)実施例1〜5、比較例1〜6、8、9で作製した包装トレイの材料シートを、長さ50.8mm、幅12.7mmに切断した後、オートグラフ(AG−10、(株)島津製作所製)を用いて、支持台直径5mm、圧子直径10.7mm、支点間距離25.4mm、試験速度2mm/minの条件で3点曲げ試験を実施し、曲げ弾性率を測定した。
評価結果を表2に示した。実施例1〜5のナノ炭素材料を含む生分解性脂肪族ポリエステル組成物では、ナノ炭素材料含有率の増加に伴って、電離放射線照射による組成物の機械的強度、特に引張弾性率と曲げ弾性率の向上が認められた。
(Bending test) After the material sheet of the packaging tray produced in Examples 1-5 and Comparative Examples 1-6, 8, and 9 was cut into a length of 50.8 mm and a width of 12.7 mm, Autograph (AG-10) , Manufactured by Shimadzu Corporation), a three-point bending test was performed under the conditions of a support base diameter of 5 mm, an indenter diameter of 10.7 mm, a distance between fulcrums of 25.4 mm, and a test speed of 2 mm / min. It was measured.
The evaluation results are shown in Table 2. In the biodegradable aliphatic polyester compositions containing the nanocarbon materials of Examples 1 to 5, as the nanocarbon material content increases, the mechanical strength of the compositions by ionizing radiation irradiation, particularly tensile modulus and flexural elasticity An increase in rate was observed.

Figure 2006225453
Figure 2006225453

Figure 2006225453
Figure 2006225453

Claims (9)

生分解性脂肪族ポリエステル樹脂と炭素6員環を主構造とする黒鉛層を有するナノ炭素材料との混合物に電離放射線が照射されてなる樹脂組成物を有することを特徴とする医療用具または医療用材料。 A medical device or medical device comprising a resin composition obtained by irradiating a mixture of a biodegradable aliphatic polyester resin and a nanocarbon material having a graphite layer having a carbon 6-membered ring as a main structure with ionizing radiation material. 前記電離放射線が、電子線またはγ線である請求項1に記載の医療用具または医療用材料。 The medical device or medical material according to claim 1, wherein the ionizing radiation is an electron beam or a γ-ray. 前記ナノ炭素材料が炭素6員環を主構造とする黒鉛シートよりなるらせん円筒構造を有する請求項1または2に記載の医療用具または医療用材料。 The medical device or medical material according to claim 1 or 2, wherein the nanocarbon material has a helical cylindrical structure made of a graphite sheet having a carbon 6-membered ring as a main structure. 前記ナノ炭素材料の長さが0.01μm〜2000μmである請求項1〜3に記載の医療用具または医療用材料。 The medical device or medical material according to claim 1, wherein a length of the nanocarbon material is 0.01 μm to 2000 μm. 前記ナノ炭素材料の外径が0.4nm〜300nmである請求項1〜4に記載の医療用具または医療用材料。 The medical device or medical material according to claim 1, wherein an outer diameter of the nanocarbon material is 0.4 nm to 300 nm. 前記電離放射線の線量が、1〜100kGyである請求項1〜5に記載の医療用具または医療用材料。 The medical device or medical material according to claim 1, wherein a dose of the ionizing radiation is 1 to 100 kGy. 前記生分解性脂肪族ポリエステル樹脂が、ポリブチレンサクシネート、ポリブチレンサクシネートを含む共重合体、および前記重合体の少なくとも1つを含有するポリマーブレンド、またはポリマーアロイである請求項1〜6に記載の医療用具または医療用材料。 The biodegradable aliphatic polyester resin is polybutylene succinate, a copolymer containing polybutylene succinate, and a polymer blend containing at least one of the polymers, or a polymer alloy. The medical device or medical material described. 前記ナノ炭素材料のナノ炭素材料含有率が0.1重量%〜50重量%である請求項1〜7に記載の医療用具または医療材料。 The medical device or medical material according to claim 1, wherein the nanocarbon material has a nanocarbon material content of 0.1 wt% to 50 wt%. 生分解性脂肪族ポリエステル樹脂とナノ炭素材料を混合し、次いで該混合物を所望の形状に成形物を成型し、必要により該成型物を用いて組立て体を組立て、次いで該成型物または該組立て体に電離放射線を照射することを特徴とする医療用具または医療用材料の製造方法。

A biodegradable aliphatic polyester resin and a nanocarbon material are mixed, and then a molded product is formed into a desired shape from the mixture, and an assembly is assembled using the molded product as necessary, and then the molded product or the assembled product is assembled. Irradiating ionizing radiation to a medical device or method for producing a medical material

JP2005038584A 2005-02-16 2005-02-16 Medical tools and materials Expired - Fee Related JP4616029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005038584A JP4616029B2 (en) 2005-02-16 2005-02-16 Medical tools and materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005038584A JP4616029B2 (en) 2005-02-16 2005-02-16 Medical tools and materials

Publications (2)

Publication Number Publication Date
JP2006225453A true JP2006225453A (en) 2006-08-31
JP4616029B2 JP4616029B2 (en) 2011-01-19

Family

ID=36987107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005038584A Expired - Fee Related JP4616029B2 (en) 2005-02-16 2005-02-16 Medical tools and materials

Country Status (1)

Country Link
JP (1) JP4616029B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195900A (en) * 2007-02-15 2008-08-28 Japan Atomic Energy Agency Method for producing highly heat-resistant and biodegradable aromatic polyester, and the highly heat-resistant and biodegradable aromatic polyester
JP2010058286A (en) * 2008-09-01 2010-03-18 Tokai Univ Method for producing carbon fiber reinforcing thermoplastic resin molded body and carbon fiber reinforcing thermoplastic resin molded body
JP2011153392A (en) * 2010-01-28 2011-08-11 Osaka Prefecture Carbon nanotube twisted yarn, and method for producing the same
JP5616217B2 (en) * 2008-03-27 2014-10-29 テルモ株式会社 Medical device manufacturing method and medical device assembly

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997003130A1 (en) * 1995-07-10 1997-01-30 Daicel Chemical Industries, Ltd. Cross-linkable or curable polylactone composition, cross-linked or cured molding made therefrom and process for the production thereof
JPH11279391A (en) * 1998-03-31 1999-10-12 Japan Atom Energy Res Inst Degradable thick-wall vessel
JP2003034734A (en) * 2001-07-23 2003-02-07 Sony Corp Method of controlling decomposition speed of biodegradable resin and biodegradable resin having controlled decomposition speed
JP2003277593A (en) * 2002-03-25 2003-10-02 Japan Atom Energy Res Inst Aliphatic polyester resin composition having high biodegradability
JP2004092769A (en) * 2002-08-30 2004-03-25 Nsk Ltd Rolling bearing
WO2004070349A2 (en) * 2002-11-27 2004-08-19 William Marsh Rice University Functionalized carbon nanotube-polymer composites and interactions with radiation
JP2007502246A (en) * 2003-07-28 2007-02-08 ウィリアム・マーシュ・ライス・ユニバーシティ Side wall functionalization of carbon nanotubes with organosilanes to obtain polymer composites

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997003130A1 (en) * 1995-07-10 1997-01-30 Daicel Chemical Industries, Ltd. Cross-linkable or curable polylactone composition, cross-linked or cured molding made therefrom and process for the production thereof
JPH11279391A (en) * 1998-03-31 1999-10-12 Japan Atom Energy Res Inst Degradable thick-wall vessel
JP2003034734A (en) * 2001-07-23 2003-02-07 Sony Corp Method of controlling decomposition speed of biodegradable resin and biodegradable resin having controlled decomposition speed
JP2003277593A (en) * 2002-03-25 2003-10-02 Japan Atom Energy Res Inst Aliphatic polyester resin composition having high biodegradability
JP2004092769A (en) * 2002-08-30 2004-03-25 Nsk Ltd Rolling bearing
WO2004070349A2 (en) * 2002-11-27 2004-08-19 William Marsh Rice University Functionalized carbon nanotube-polymer composites and interactions with radiation
JP2006511434A (en) * 2002-11-27 2006-04-06 ウィリアム・マーシュ・ライス・ユニバーシティ Functionalized carbon nanotube polymer composite and interaction with radiation
JP2007502246A (en) * 2003-07-28 2007-02-08 ウィリアム・マーシュ・ライス・ユニバーシティ Side wall functionalization of carbon nanotubes with organosilanes to obtain polymer composites

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195900A (en) * 2007-02-15 2008-08-28 Japan Atomic Energy Agency Method for producing highly heat-resistant and biodegradable aromatic polyester, and the highly heat-resistant and biodegradable aromatic polyester
JP5616217B2 (en) * 2008-03-27 2014-10-29 テルモ株式会社 Medical device manufacturing method and medical device assembly
JP2010058286A (en) * 2008-09-01 2010-03-18 Tokai Univ Method for producing carbon fiber reinforcing thermoplastic resin molded body and carbon fiber reinforcing thermoplastic resin molded body
JP2011153392A (en) * 2010-01-28 2011-08-11 Osaka Prefecture Carbon nanotube twisted yarn, and method for producing the same

Also Published As

Publication number Publication date
JP4616029B2 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
Moustafa et al. PLA/PBAT bionanocomposites with antimicrobial natural rosin for green packaging
Ferreira et al. How do cellulose nanocrystals affect the overall properties of biodegradable polymer nanocomposites: A comprehensive review
Jayanth et al. A review on biodegradable polymeric materials striving towards the attainment of green environment
Lizundia et al. Synergic effect of nanolignin and metal oxide nanoparticles into Poly (l-lactide) bionanocomposites: material properties, antioxidant activity, and antibacterial performance
Zych et al. Super tough polylactic acid plasticized with epoxidized soybean oil methyl ester for flexible food packaging
Basu et al. Poly (lactic acid)‐based nanocomposites
Muthuraj et al. Carbon dioxide–derived poly (propylene carbonate) as a matrix for composites and nanocomposites: performances and applications
CN102164620B (en) Medical device, medical material and methods for producing same
JP6073347B2 (en) Recycled resin composition and disposable medical device manufactured therefrom
Díez-Pascual et al. Multifunctional poly (glycolic acid-co-propylene fumarate) electrospun fibers reinforced with graphene oxide and hydroxyapatite nanorods
KR102357948B1 (en) Biodegradable composition containing illite and method for manufacturing product using the same
JP5496083B2 (en) MEDICAL TOOL, MEDICAL MATERIAL AND METHOD FOR PRODUCING THEM
Wu et al. Antibacterial properties of biobased polyester composites achieved through modification with a thermally treated waste scallop shell
JP4616029B2 (en) Medical tools and materials
Xu et al. Smart design of rapid crystallizing and nonleaching antibacterial poly (lactide) nanocomposites by sustainable aminolysis grafting and in situ interfacial stereocomplexation
Jacob et al. Poly (lactic acid)/polyethylenimine functionalized mesoporous silica biocomposite films for food packaging
Mohamed Haneef et al. Recent advancement in polymer/halloysite nanotube nanocomposites for biomedical applications
Kim et al. Toward sustaining bioplastics: add a pinch of seasoning
Mansor et al. Recent advances in polyethylene-based biocomposites
JP2002114921A (en) Biodegradable polymer composition excellent in heat decomposability
JP5497483B2 (en) Fiber molded body and method for producing the same
Rocha et al. Biodegradable composites: properties and uses
Rastogi et al. Polymer Matrix Nanocomposites: Recent Advancements and Applications
Ul‐Islam et al. Structure, chemistry and pharmaceutical applications of biodegradable polymers
Sharifiana et al. The study of mechanical, thermal, and antibacterial properties of pla/graphene oxide/tio2 hybrid nanocomposites

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101021

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees