JP2010055989A - Negative electrode material for lithium-ion battery - Google Patents

Negative electrode material for lithium-ion battery Download PDF

Info

Publication number
JP2010055989A
JP2010055989A JP2008221148A JP2008221148A JP2010055989A JP 2010055989 A JP2010055989 A JP 2010055989A JP 2008221148 A JP2008221148 A JP 2008221148A JP 2008221148 A JP2008221148 A JP 2008221148A JP 2010055989 A JP2010055989 A JP 2010055989A
Authority
JP
Japan
Prior art keywords
lithium
vanadium
negative electrode
ion battery
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008221148A
Other languages
Japanese (ja)
Inventor
Toru Inagaki
徹 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2008221148A priority Critical patent/JP2010055989A/en
Priority to KR1020090014373A priority patent/KR20100026952A/en
Publication of JP2010055989A publication Critical patent/JP2010055989A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode material for a lithium-ion battery capable of attaining high charge and discharge capacity and high charge and discharge efficiency at a well-repeatable state. <P>SOLUTION: The negative electrode material for the lithium-ion battery is made from hexagonal system lithium vanadium complex oxide wherein an average oxidation number of vanadium is +3.15 to +3.35. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、高い充放電容量及び充放電効率が再現性良く得られるリチウムイオン電池用負極材料に関するものである。   The present invention relates to a negative electrode material for a lithium ion battery in which high charge / discharge capacity and charge / discharge efficiency are obtained with good reproducibility.

従来、リチウムイオン電池の負極活物質としては、リチウムの挿入/離脱が可能であることより、人造黒鉛、天然黒鉛、ハードカーボン等の種々の炭素材料が用いられており、リチウムイオン電池を高容量化するために、これら炭素材料の利用率向上、電極体積当たりの充填密度向上による性能の改善が図られてきた。しかし、実用量が黒鉛の理論容量(372mAh/g)に近づき、また充填密度向上も限界に近づいてきたため、現行の炭素材料を用いた電池の高容量化は困難になりつつある。   Conventionally, various carbon materials such as artificial graphite, natural graphite, and hard carbon have been used as negative electrode active materials for lithium ion batteries because lithium can be inserted / removed. In order to achieve this, improvement in performance has been achieved by improving the utilization rate of these carbon materials and increasing the packing density per electrode volume. However, since the practical amount has approached the theoretical capacity (372 mAh / g) of graphite, and the improvement in packing density has also approached the limit, it is becoming difficult to increase the capacity of batteries using current carbon materials.

このため、負極活物質として金属リチウムやシリコン合金材料の検討が盛んに行なわれているが、これらの材料は電極の膨張収縮に伴うストレスが大きく実用化には至っていない。   For this reason, metal lithium and silicon alloy materials have been actively studied as negative electrode active materials, but these materials are not put into practical use because of the stress associated with the expansion and contraction of the electrodes.

これに対して、電極の膨張収縮のストレスが小さく、高容量な負極活物質として、リチウムバナジウム複合酸化物が注目されている(特許文献1及び特許文献2)。そして、バナジウムと、バナジウムに対して過剰に存在するリチウムと、酸素と(必要に応じて、更に添加元素と)からなる層と、その層間にリチウムイオンが存在する六方晶系の構造をとるリチウムバナジウム複合酸化物を負極活物質として用いたリチウムイオン電池では、リチウムイオンの挿入脱離に伴う酸化還元反応によってバナジウムの酸化数が変化することにより充放電容量が発現する。
特開2002−216753 特開2003−68305
On the other hand, lithium vanadium composite oxides have attracted attention as negative electrode active materials with low expansion and contraction stress of electrodes (Patent Document 1 and Patent Document 2). Lithium having a hexagonal structure in which vanadium, lithium existing in excess with respect to vanadium, oxygen (and, if necessary, additional elements), and lithium ions are present between the layers. In a lithium ion battery using a vanadium composite oxide as a negative electrode active material, a charge / discharge capacity is developed by changing the oxidation number of vanadium by an oxidation-reduction reaction associated with insertion / extraction of lithium ions.
JP 2002-216753 A JP 2003-68305 A

これに対して、特許文献1に記載のリチウムバナジウム複合酸化物の構造は六方晶系ではなく平衡電位が0.7V付近であるため負極活物質としては適さない。また、特許文献2にはバナジウムの酸化数が開示されていないので、特許文献2に記載のリチウムバナジウム複合酸化物を負極活物質として用いても、リチウムイオン電池の充放電容量や充放電効率を安定して再現することができない。   On the other hand, the structure of the lithium vanadium composite oxide described in Patent Document 1 is not a hexagonal system and is not suitable as a negative electrode active material because the equilibrium potential is around 0.7V. Moreover, since the oxidation number of vanadium is not disclosed in Patent Document 2, even if the lithium vanadium composite oxide described in Patent Document 2 is used as the negative electrode active material, the charge / discharge capacity and charge / discharge efficiency of the lithium ion battery are reduced. It cannot be reproduced stably.

そこで本発明は、上記現状に鑑み、高い充放電容量及び充放電効率が再現性良く得られるリチウムイオン電池用負極材料を提供することを課題とする。   Then, this invention makes it a subject to provide the negative electrode material for lithium ion batteries in which high charging / discharging capacity | capacitance and charging / discharging efficiency are obtained with sufficient reproducibility in view of the said present condition.

本発明者は、鋭意検討の結果、六方晶系のリチウムバナジウム複合酸化物中のバナジウムの平均酸化数が+3.15〜+3.35であると、それを負極活物質とした電池が高充放電容量を発現することを見出し、この知見に基づいて本発明を完成した。   As a result of intensive studies, the present inventor has found that when the average oxidation number of vanadium in the hexagonal lithium-vanadium composite oxide is +3.15 to +3.35, a battery using this as a negative electrode active material is highly charged and discharged. Based on this finding, the present invention was completed.

すなわち本発明に係るリチウムイオン電池用負極材料は、バナジウムの平均酸化数が+3.15〜+3.35である六方晶系のリチウムバナジウム複合酸化物からなることを特徴とする。   That is, the negative electrode material for a lithium ion battery according to the present invention is characterized by comprising a hexagonal lithium vanadium composite oxide having an average oxidation number of vanadium of +3.15 to +3.35.

前記リチウムバナジウム複合酸化物は、リチウムとバナジウムのモル比が1.15≦Li/V≦1.35であることが好ましい。   The lithium vanadium composite oxide preferably has a molar ratio of lithium to vanadium of 1.15 ≦ Li / V ≦ 1.35.

前記リチウムバナジウム複合酸化物は、更に、長周期型周期表における2〜14族の元素からなる群より選ばれる少なくとも1種の元素を含有していてもよい。このような元素としては、例えば、Mg、Ti、Zr、Mo、Al等が挙げられる。   The lithium vanadium composite oxide may further contain at least one element selected from the group consisting of elements of groups 2 to 14 in the long-period periodic table. Examples of such elements include Mg, Ti, Zr, Mo, and Al.

このような本発明に係るリチウムイオン電池用負極材料を含有する負極を備えているリチウムイオン電池もまた、本発明の1つである。   The lithium ion battery provided with the negative electrode containing the negative electrode material for lithium ion batteries according to the present invention is also one aspect of the present invention.

本発明に係るリチウムイオン電池用負極材料を製造するには、例えば、
バナジウムの酸化数が+3であるバナジウム酸化物及び+4以上であるバナジウム酸化物、並びに、リチウム化合物(リチウム源)を含有する原料粉末を乾式混合する工程と、乾式混合された前記原料粉末を不活性雰囲気下にて焼成する工程と、を備えた方法を用いることができる。当該方法において、前記原料粉末は、更に、長周期型周期表における2〜14族の元素からなる群より選ばれる少なくとも1種の元素を含有する化合物(添加元素源)を含有していてもよい。このようなリチウムイオン電池用負極材料の製造方法もまた、本発明の1つである。
To produce a negative electrode material for a lithium ion battery according to the present invention, for example,
A step of dry-mixing a vanadium oxide whose vanadium oxidation number is +3, a vanadium oxide of +4 or more, and a raw material powder containing a lithium compound (lithium source), and the dry-mixed raw material powder is inert And a step of firing in an atmosphere. In the method, the raw material powder may further contain a compound (additive element source) containing at least one element selected from the group consisting of elements of groups 2 to 14 in the long-period periodic table. . Such a method for producing a negative electrode material for a lithium ion battery is also one aspect of the present invention.

本発明におけるリチウムバナジウム複合酸化物を負極材料として使用すれば、リチウムイオン電池の充放電容量及び充放電効率を向上することができる。   If the lithium vanadium composite oxide in the present invention is used as the negative electrode material, the charge / discharge capacity and charge / discharge efficiency of the lithium ion battery can be improved.

以下に本発明の一実施形態に係るリチウムイオン電池について説明する。   A lithium ion battery according to an embodiment of the present invention will be described below.

本実施形態に係るリチウムイオン電池は、例えば、コイン、ボタン、シート、シリンダー、偏平、角形等の形態をとり、正極、負極、電解質、セパレータ等から構成されている。   The lithium ion battery according to the present embodiment takes, for example, a coin, a button, a sheet, a cylinder, a flat shape, a square shape, and the like, and includes a positive electrode, a negative electrode, an electrolyte, a separator, and the like.

本実施形態に係るリチウムイオン電池の負極は、六方晶系のリチウムバナジウム複合酸化物を活物質とする。当該リチウムバナジウム複合酸化物のバナジウムの平均酸化数は+3.15〜+3.35であり、好ましくは+3.20〜+3.30であり、より好ましくは+3.25〜+3.30である。バナジウムの平均酸化数がこの範囲外であると、充分な充放電容量及び充放電効率を発現することができない。   The negative electrode of the lithium ion battery according to this embodiment uses a hexagonal lithium vanadium composite oxide as an active material. The average oxidation number of vanadium in the lithium vanadium composite oxide is +3.15 to +3.35, preferably +3.20 to +3.30, and more preferably +3.25 to +3.30. When the average oxidation number of vanadium is outside this range, sufficient charge / discharge capacity and charge / discharge efficiency cannot be exhibited.

前記リチウムバナジウム複合酸化物は、リチウムとバナジウムのモル比が1.15≦Li/V≦1.35であることが好ましい。この範囲外であると、リチウムイオンの挿入・脱離反応が起こりにくくなるので得られたリチウムバナジウム複合酸化物を負極活物質として使用することが困難である。   The lithium vanadium composite oxide preferably has a molar ratio of lithium to vanadium of 1.15 ≦ Li / V ≦ 1.35. Outside this range, lithium ion insertion / elimination reactions are unlikely to occur, so that it is difficult to use the obtained lithium vanadium composite oxide as the negative electrode active material.

前記リチウムバナジウム複合酸化物は、更に、長周期型周期表における2〜14族の元素を含有していてもよい。このような元素としては、例えば、Mg、Ti、Zr、Mo、Al等が挙げられる。これらの元素は単独で用いられてもよく、2種以上が併用されていてもよい。前記リチウムバナジウム複合酸化物はこれらの元素を含有することにより、充放電サイクル時の容量低下を抑制してサイクル特性を向上することができる。   The lithium vanadium composite oxide may further contain a group 2-14 element in the long-period periodic table. Examples of such elements include Mg, Ti, Zr, Mo, and Al. These elements may be used independently and 2 or more types may be used together. When the lithium vanadium composite oxide contains these elements, it is possible to improve the cycle characteristics by suppressing the capacity decrease during the charge / discharge cycle.

上記の元素の配合量としては、元素(Me)とバナジウムのモル比が、Me/V≦0.04であることが好ましい。添加する元素の配合量が多すぎると、結晶構造が過度に安定化してリチウムの挿入・脱離反応ができなくなり、充分な容量が得られなくなる。   As a blending amount of the above elements, the molar ratio of the element (Me) to vanadium is preferably Me / V ≦ 0.04. If the amount of the element to be added is too large, the crystal structure is excessively stabilized and lithium insertion / extraction reaction cannot be performed, and a sufficient capacity cannot be obtained.

前記リチウムバナジウム複合酸化物の製造方法としては、例えば、V等のバナジウムの酸化数が+3であるバナジウム酸化物と、V、V等のバナジウムの酸化数が+4以上であるバナジウム酸化物と、LiCO等のリチウム源と、必要に応じて、添加元素源として、MgO、Al、TiO、ZrO、MoO等の2〜14族の元素を含有する酸化物や炭酸化合物等と、を所定量秤量して、これらを乾式混合した後、ルツボ内で、窒素雰囲気下、1000〜1300℃で数時間焼成する方法が挙げられる。 As a method for producing the lithium vanadium composite oxide, for example, vanadium oxide such as V 2 O 3 whose oxidation number is +3 and vanadium oxidation number such as V 2 O 5 and V 2 O 4 are +4. The above vanadium oxide, a lithium source such as Li 2 CO 3, and, if necessary, as an additive element source, a group 2-14 such as MgO, Al 2 O 3 , TiO 2 , ZrO 2 , MoO 3, etc. Examples include a method in which a predetermined amount of an element-containing oxide, a carbonate compound, and the like are weighed and dry-mixed, and then fired in a crucible at 1000 to 1300 ° C. for several hours in a nitrogen atmosphere.

前記正極としては、例えば、Liを含有するTi、Mo、W、Nb、V、Mn、Fe、Cr、Ni、Co等の遷移金属の酸化物や硫化物、バナジウム酸化物、共役系ポリマー等の有機導電性材料、シェブレル相化合物等を活物質とするものが挙げられる。   Examples of the positive electrode include Li-containing Ti, Mo, W, Nb, V, Mn, Fe, Cr, Ni, Co, and other transition metal oxides, sulfides, vanadium oxides, conjugated polymers, and the like. The thing which uses an organic electroconductive material, a chevrel phase compound, etc. as an active material is mentioned.

前記負極及び正極は、前記の活物質からなる粉末に、例えば、導電剤、結着剤、フィラー、分散剤、イオン導電剤等の添加剤が、適宜選択され配合されていてもよい。   For the negative electrode and the positive electrode, additives such as a conductive agent, a binder, a filler, a dispersant, and an ionic conductive agent may be appropriately selected and blended with the powder made of the active material.

前記導電剤としては、例えば、黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維、金属粉等が挙げられ、前記結着剤としては、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリエチレン等が挙げられる。   Examples of the conductive agent include graphite, carbon black, acetylene black, ketjen black, carbon fiber, and metal powder. Examples of the binder include polytetrafluoroethylene, polyvinylidene fluoride, and polyethylene. Is mentioned.

前記正極又は負極を製造するには、例えば、前記の活物質と各種添加剤との混合物を水や有機溶媒等の溶媒に添加してスラリー又はペースト化し、得られたスラリー又はペーストをドクターブレード法等を用いて電極支持基板に塗布し、乾燥し、圧延ロール等で圧密化して、正極又は負極とする。   In order to produce the positive electrode or the negative electrode, for example, a mixture of the active material and various additives is added to a solvent such as water or an organic solvent to form a slurry or paste, and the obtained slurry or paste is used as a doctor blade method. Etc. are applied to the electrode support substrate, dried, and consolidated with a rolling roll or the like to obtain a positive electrode or a negative electrode.

前記電極支持基板としては、例えば、銅、ニッケル、ステンレス鋼等からなる箔、シートやネット:炭素繊維からなるシートやネット等から構成されたものが挙げられる。なお、電極支持基板を用いずに、ペレット状に圧密化成形して負極としてもよい。   Examples of the electrode support substrate include a foil, a sheet or a net made of copper, nickel, stainless steel, or the like: a sheet or a net made of carbon fiber. Instead of using the electrode support substrate, the negative electrode may be formed by compacting into a pellet.

前記電解質としては、例えば、有機溶媒にリチウム塩を溶解させた非水電解液、ポリマー電解質、無機固体電解質、ポリマー電解質と無機固体電解質との材等が挙げられる。   Examples of the electrolyte include a nonaqueous electrolytic solution in which a lithium salt is dissolved in an organic solvent, a polymer electrolyte, an inorganic solid electrolyte, a material of a polymer electrolyte and an inorganic solid electrolyte, and the like.

前記非水電解液の溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等の鎖状エステル類:γ−ブチルラクトン等のγ−ラクトン類:1,2−ジメトキシエタン、1,2−ジエトキシエタン、エトキシメトキシエタン等の鎖状エーテル類:テトラヒドロフラン類の環状エーテル類:アセトニトリル等のニトリル類等が挙げられる。   Examples of the solvent for the non-aqueous electrolyte include chain esters such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate: γ-lactones such as γ-butyllactone: 1,2-dimethoxy Chain ethers such as ethane, 1,2-diethoxyethane, and ethoxymethoxyethane: Cyclic ethers of tetrahydrofuran: Nitriles such as acetonitrile.

前記非水電解液の溶質であるリチウム塩としては、例えば、LiAsF、LiBF、LiPF、LiAlCl、LiClO、LiCFSO、LiSbF、LiSCN、LiCl、LiCSO、LiN(CFSO、LiC(CFSO、LiCSO等が挙げられる。 Examples of the lithium salt that is a solute of the non-aqueous electrolyte include LiAsF 6 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiClO 4 , LiCF 3 SO 3 , LiSbF 6 , LiSCN, LiCl, LiC 6 H 5 SO 3 , Examples thereof include LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC 4 P 9 SO 3 .

前記セパレータとしては、例えば、ポリプロピレンやポリエチレン等のポリオレフィンからなる多孔質膜や、ガラスフィルター、不織布等の多孔性材が使用できる。   As the separator, for example, a porous film made of a polyolefin such as polypropylene or polyethylene, or a porous material such as a glass filter or a nonwoven fabric can be used.

以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれら実施例のみに限定されるものではない。   The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.

<リチウムバナジウム複合酸化物の製造>
(実施例1〜6)
、V、LiCOを、下記表1に示す割合で秤量して、これらを自動乳鉢にて1時間混合した後、アルミナルツボ内で、窒素気流中、1100℃で5時間焼成することによって、実施例1〜6のリチウムバナジウム複合酸化物を得た。
<Production of lithium vanadium composite oxide>
(Examples 1-6)
V 2 O 3 , V 2 O 4 , and Li 2 CO 3 were weighed at the ratios shown in Table 1 below, and mixed in an automatic mortar for 1 hour, and then in an alumina crucible at 1100 ° C. in a nitrogen stream. Were fired for 5 hours to obtain lithium vanadium composite oxides of Examples 1 to 6.

(実施例7〜11)
、V、LiCOに、更に添加元素源としてMgO、Al、TiO2、ZrO、又はMoOを加えて、下記表1に示す割合で秤量した後、実施例1〜6と同様な工程を経て、実施例7〜11のリチウムバナジウム複合酸化物を得た。
(Examples 7 to 11)
MgO, Al 2 O 3 , TiO 2, ZrO 2 , or MoO 3 was further added to V 2 O 3 , V 2 O 4 , Li 2 CO 3 as an additional element source, and weighed at the ratio shown in Table 1 below. Then, the lithium vanadium complex oxide of Examples 7-11 was obtained through the process similar to Examples 1-6.

(比較例1〜4)
、V、LiCOを、下記表1に示す割合で秤量した後、実施例1〜6と同様な工程を経て、比較例1〜4のリチウムバナジウム複合酸化物を得た。
(Comparative Examples 1-4)
After weighing V 2 O 3 , V 2 O 4 and Li 2 CO 3 at the ratios shown in Table 1 below, the lithium vanadium composite oxides of Comparative Examples 1 to 4 were subjected to the same steps as in Examples 1 to 6. Got.

<バナジウムの平均酸化数の測定>
各実施例及び比較例において得られたリチウムバナジウム複合酸化物を酸に溶解した後、酸化還元滴定を行い、バナジウムの平均酸化数を測定した。
<Measurement of the average oxidation number of vanadium>
After dissolving the lithium vanadium composite oxide obtained in each Example and Comparative Example in an acid, oxidation-reduction titration was performed to measure the average oxidation number of vanadium.

<電池特性の評価>
また、各実施例及び比較例において得られたリチウムバナジウム複合酸化物の電池特性は以下のように評価した。リチウムバナジウム複合酸化物を最大粒径が75μm以下になるように分級し、得られた粉末90wt%にデンカブラック(登録商標、電気化学工業製)6wt%、ポリフッ化ビニリデン4wt%を加え、更に溶媒としてN−メチルピロリドンを加えてスラリー状にして混合した。これを厚さ15μmの銅箔に10mg/cmとなるように塗布し、130℃で乾燥後、直径13mmの円板に打ち抜き、所定の厚みになるようにプレスして電極を作製した。この電極を用いて金属リチウムを対極としたコインセルを作製し、電池特性の評価を行った。コインセルには、セパレータとして厚さ20μmのポリエチレン多孔膜を、電解液としてエチレンカーボネート(EC)/ジエチルカーボネート(DEC)=3/7 LiPF 1.2Mを使用した。
<Evaluation of battery characteristics>
Moreover, the battery characteristics of the lithium vanadium composite oxide obtained in each of the examples and comparative examples were evaluated as follows. Lithium vanadium composite oxide is classified so that the maximum particle size is 75 μm or less, and 6 wt% of Denka Black (registered trademark, manufactured by Denki Kagaku Kogyo) and 4 wt% of polyvinylidene fluoride are added to the obtained powder of 90 wt%. N-methylpyrrolidone was added as a slurry and mixed. This was applied to a copper foil having a thickness of 15 μm so as to be 10 mg / cm 2 , dried at 130 ° C., punched into a disk having a diameter of 13 mm, and pressed to a predetermined thickness to produce an electrode. Using this electrode, a coin cell using metallic lithium as a counter electrode was produced, and the battery characteristics were evaluated. In the coin cell, a polyethylene porous film having a thickness of 20 μm was used as a separator, and ethylene carbonate (EC) / diethyl carbonate (DEC) = 3/7 LiPF 6 1.2M was used as an electrolytic solution.

作製したコインセルを、定電流(0.5C)−定電圧(4.2V)で充電した後、放電終始電圧2.75Vまで0.5C放電を実施して、1サイクル目の放電容量を測定した。また、得られた放電容量を充電容量で除することにより、1サイクル目の充放電効率を算出した。結果を下記の表1及び図1に示した。   The manufactured coin cell was charged at a constant current (0.5 C) -constant voltage (4.2 V), and then 0.5 C discharge was performed to a discharge starting voltage of 2.75 V, and the discharge capacity at the first cycle was measured. . Further, the charge / discharge efficiency in the first cycle was calculated by dividing the obtained discharge capacity by the charge capacity. The results are shown in Table 1 below and FIG.

表1に示すように、バナジウムの平均酸化数が+3.15〜+3.35である実施例の方が、バナジウムの平均酸化数が当該範囲外である比較例より、リチウムイオン電池の初期放電容量が大きく、充放電効率も高かった。また、実施例3と、実施例3のリチウムバナジウム複合酸化物のバナジウムの一部をMg、Al、Ti、Zr又はMoによって置換した実施例7〜11と、を比較すると、バナジウムの一部をMg、Al、Ti、Zr又はMoによって置換した方が初期放電容量が増大することが判明した。   As shown in Table 1, the example in which the average oxidation number of vanadium is +3.15 to +3.35 is higher than the comparative example in which the average oxidation number of vanadium is out of the range. The charge / discharge efficiency was also high. Further, when Example 3 is compared with Examples 7 to 11 in which a part of vanadium of the lithium vanadium composite oxide of Example 3 was replaced with Mg, Al, Ti, Zr or Mo, a part of vanadium was compared. It has been found that the initial discharge capacity is increased by substitution with Mg, Al, Ti, Zr or Mo.

リチウムバナジウム複合酸化物中のバナジウムの平均酸化数と初期放電容量の関係を示すグラフ。The graph which shows the relationship between the average oxidation number of vanadium in lithium vanadium complex oxide, and initial stage discharge capacity.

Claims (6)

バナジウムの平均酸化数が+3.15〜+3.35である六方晶系のリチウムバナジウム複合酸化物からなるリチウムイオン電池用負極材料。   A negative electrode material for a lithium ion battery comprising a hexagonal lithium vanadium composite oxide having an average oxidation number of vanadium of +3.15 to +3.35. 前記リチウムバナジウム複合酸化物は、リチウムとバナジウムのモル比が1.15≦Li/V≦1.35である請求項1記載のリチウムイオン電池用負極材料。   2. The negative electrode material for a lithium ion battery according to claim 1, wherein the lithium vanadium composite oxide has a lithium to vanadium molar ratio of 1.15 ≦ Li / V ≦ 1.35. 前記リチウムバナジウム複合酸化物は、長周期型周期表における2〜14族の元素からなる群より選ばれる少なくとも1種の元素を含有している請求項1又は2記載のリチウムイオン電池用負極材料。   The negative electrode material for a lithium ion battery according to claim 1 or 2, wherein the lithium vanadium composite oxide contains at least one element selected from the group consisting of elements of groups 2 to 14 in the long-period periodic table. 請求項1、2又は3記載のリチウムイオン電池用負極材料を含有する負極を備えているリチウムイオン電池。   The lithium ion battery provided with the negative electrode containing the negative electrode material for lithium ion batteries of Claim 1, 2, or 3. バナジウムの平均酸化数が+3.15〜+3.35である六方晶系のリチウムバナジウム複合酸化物からなるリチウムイオン電池用負極材料の製造方法であって、
バナジウムの酸化数が+3であるバナジウム酸化物及び+4以上であるバナジウム酸化物、並びに、リチウム化合物を含有する原料粉末を乾式混合する工程と、
乾式混合された前記原料粉末を不活性雰囲気下にて焼成する工程と、を備えているリチウムイオン電池用負極材料の製造方法。
A method for producing a negative electrode material for a lithium ion battery comprising a hexagonal lithium vanadium composite oxide having an average oxidation number of vanadium of +3.15 to +3.35,
A step of dry-mixing a vanadium oxide whose vanadium oxidation number is +3 and a vanadium oxide which is +4 or more, and a raw material powder containing a lithium compound;
Baking the raw material powder that has been dry mixed in an inert atmosphere, and a method for producing a negative electrode material for a lithium ion battery.
前記原料粉末は、長周期型周期表における2〜14族の元素からなる群より選ばれる少なくとも1種の元素を含有する化合物を含有している請求項5記載のリチウムイオン電池用負極材料の製造方法。   The said raw material powder contains the compound containing the at least 1 sort (s) of element chosen from the group which consists of a 2-14 group element in a long-period-type periodic table, The manufacture of the negative electrode material for lithium ion batteries of Claim 5 Method.
JP2008221148A 2008-08-29 2008-08-29 Negative electrode material for lithium-ion battery Pending JP2010055989A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008221148A JP2010055989A (en) 2008-08-29 2008-08-29 Negative electrode material for lithium-ion battery
KR1020090014373A KR20100026952A (en) 2008-08-29 2009-02-20 Negative active material for lithium ion battery, method of preparing the same, and lithium ion battery including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008221148A JP2010055989A (en) 2008-08-29 2008-08-29 Negative electrode material for lithium-ion battery

Publications (1)

Publication Number Publication Date
JP2010055989A true JP2010055989A (en) 2010-03-11

Family

ID=42071674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008221148A Pending JP2010055989A (en) 2008-08-29 2008-08-29 Negative electrode material for lithium-ion battery

Country Status (2)

Country Link
JP (1) JP2010055989A (en)
KR (1) KR20100026952A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015159331A1 (en) * 2014-04-14 2015-10-22 株式会社日立製作所 Solid-state battery, electrode for solid-state battery, and production processes therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068305A (en) * 2001-03-01 2003-03-07 Sumitomo Metal Ind Ltd Negative material for secondary lithium battery and its manufacturing method
JP2005072008A (en) * 2003-08-21 2005-03-17 Samsung Sdi Co Ltd Negative electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery including it
JP2007173096A (en) * 2005-12-22 2007-07-05 Samsung Sdi Co Ltd Method of manufacturing cathode active substance for lithium secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068305A (en) * 2001-03-01 2003-03-07 Sumitomo Metal Ind Ltd Negative material for secondary lithium battery and its manufacturing method
JP2005072008A (en) * 2003-08-21 2005-03-17 Samsung Sdi Co Ltd Negative electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery including it
JP2007173096A (en) * 2005-12-22 2007-07-05 Samsung Sdi Co Ltd Method of manufacturing cathode active substance for lithium secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015159331A1 (en) * 2014-04-14 2015-10-22 株式会社日立製作所 Solid-state battery, electrode for solid-state battery, and production processes therefor

Also Published As

Publication number Publication date
KR20100026952A (en) 2010-03-10

Similar Documents

Publication Publication Date Title
EP3208870B1 (en) Negative electrode for potassium ion secondary batteries, negative electrode for potassium ion capacitors, potassium ion secondary battery, potassium ion capacitor, and binder for negative electrodes of potassium ion secondary batteries or negative electrodes of potassium ion capacitors
JP5259268B2 (en) Nonaqueous electrolyte secondary battery
JP5808073B2 (en) Positive electrode active material and positive electrode and lithium battery employing the same
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP5662132B2 (en) Lithium ion secondary battery
JP5611453B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP2008181850A (en) Nonaqueous electrolyte secondary battery
JP2010267540A (en) Nonaqueous electrolyte secondary battery
JP2004063321A (en) Composite graphitic particle, its manufacturing method, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5477472B2 (en) Electrode active material and non-aqueous electrolyte secondary battery equipped with the same
KR102517419B1 (en) Electrode for lithium secondary battery
JP2015065165A (en) Lithium ion secondary battery and manufacturing method
JP2016042461A (en) Positive electrode material, positive electrode including the same and lithium battery including the positive electrode
JPWO2018179934A1 (en) Anode material and non-aqueous electrolyte secondary battery
KR101666796B1 (en) Positive electrode active material for rechargable lithium battery, method for synthesis the same, and rechargable lithium battery including the same
JP7133776B2 (en) Non-aqueous electrolyte secondary battery
JP5586116B2 (en) Positive electrode mixture for lithium secondary battery and use thereof
JP6146947B2 (en) Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery
JP7289064B2 (en) Non-aqueous electrolyte secondary battery
JP5279362B2 (en) Nonaqueous electrolyte secondary battery
JP5209944B2 (en) Anode material for lithium ion batteries
JP5189466B2 (en) Lithium secondary battery
JP2001297750A (en) Power-generating element for lithium secondary battery and lithium secondary battery using same
JP2015187929A (en) Nonaqueous electrolyte secondary battery
KR102320977B1 (en) Anode Active Material including Silicon Composite and Lithium Secondary Battery Comprising the Same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130702