JP2010054210A - Method of manufacturing capacitance type semiconductor physical quantity sensor and capacitance-type semiconductor physical quantity sensor - Google Patents

Method of manufacturing capacitance type semiconductor physical quantity sensor and capacitance-type semiconductor physical quantity sensor Download PDF

Info

Publication number
JP2010054210A
JP2010054210A JP2008216407A JP2008216407A JP2010054210A JP 2010054210 A JP2010054210 A JP 2010054210A JP 2008216407 A JP2008216407 A JP 2008216407A JP 2008216407 A JP2008216407 A JP 2008216407A JP 2010054210 A JP2010054210 A JP 2010054210A
Authority
JP
Japan
Prior art keywords
physical quantity
quantity sensor
manufacturing
semiconductor physical
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008216407A
Other languages
Japanese (ja)
Other versions
JP5130151B2 (en
Inventor
Hideki Enomoto
英樹 榎本
Nobuyuki Ibara
伸行 茨
Koji Sakai
浩司 境
Masatoshi Nomura
昌利 野村
Katsumi Kakimoto
勝己 垣本
Ryosuke Meshii
良介 飯井
Sumihisa Fukuda
純久 福田
Shoichi Kobayashi
昌一 小林
Aiko Kashibata
亜依子 樫畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2008216407A priority Critical patent/JP5130151B2/en
Publication of JP2010054210A publication Critical patent/JP2010054210A/en
Application granted granted Critical
Publication of JP5130151B2 publication Critical patent/JP5130151B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent troubles such as deposition without increasing manufacturing cost. <P>SOLUTION: After making the potential of a movable electrode 4 and the potential of a fixed electrode 5 the same by electrically connecting a through-hole conductor 6 and a through-hole conductor 7 with a potential equalization conductor 8, and performing anodic bonding, the movable electrode 4 and the fixed electrode 5 are cut off by cutting the equalization conductor 8 when pressure sensors are obtained by cutting a semiconductor wafer 1. As a result, an electrostatic attractive force is generated between the movable electrode 4 and the fixed electrode 5 by a voltage applied when the anodic bonding is performed, so that the troubles such as deposition are prevented. Moreover, the equalization conductor 8 is cut when the pressure sensors are obtained by cutting the semiconductor wafer 1, thereby the equalization conductor 8 can be cut without using any special device or process and without increasing the manufacturing cost. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、固定電極と可動電極との間の静電容量を検出することにより圧力や加速度等の物理量を検出する静電容量型半導体物理量センサの製造方法に関する。   The present invention relates to a method of manufacturing a capacitive semiconductor physical quantity sensor that detects a physical quantity such as pressure or acceleration by detecting a capacitance between a fixed electrode and a movable electrode.

従来より、圧力や加速度等の物理量が加わることによって変位する可動電極を有する半導体基板と、可動電極と対向する位置に固定電極が設けられた絶縁基板とを備え、可動電極の変位に伴う固定電極と可動電極間の静電容量の変化を検出することにより、可動電極に加わる物理量を検出する静電容量型半導体物理量センサが知られている。
特開2006−200920号公報 特開平9−196700号公報
Conventionally, a semiconductor substrate having a movable electrode that is displaced when a physical quantity such as pressure or acceleration is applied, and an insulating substrate provided with a fixed electrode at a position facing the movable electrode, the fixed electrode accompanying the displacement of the movable electrode. A capacitance type semiconductor physical quantity sensor that detects a physical quantity applied to a movable electrode by detecting a change in capacitance between the movable electrode and the movable electrode is known.
JP 2006-200920 A JP-A-9-196700

従来の静電容量型半導体物理量センサの製造方法によれば、半導体基板と絶縁基板を陽極接合する際、印加電圧によって可動電極と固定電極との間に静電吸引力が発生することにより、溶着等の不具合が発生することがある。なおこのような問題を解決するために、特許文献1,2には、静電吸引力が発生しないように可動電極と固定電極とを電気的に接続することにより可動電極と固定電極を同電位にして陽極接合を行った後、電気的に接続された可動電極と固定電極を切り離す製造方法が記載されている。しかしながら特許文献1,2記載の製造方法では、レーザ照射や電流による加熱等の特別な装置や工程を利用して可動電極と固定電極を切り離すために、静電容量型半導体物理量センサを安価に製造することが困難になる。   According to the conventional method of manufacturing a capacitance type semiconductor physical quantity sensor, when anodic bonding of a semiconductor substrate and an insulating substrate, an electrostatic attraction force is generated between a movable electrode and a fixed electrode by an applied voltage, so that welding is performed. Such a problem may occur. In order to solve such a problem, Patent Documents 1 and 2 disclose that the movable electrode and the fixed electrode have the same potential by electrically connecting the movable electrode and the fixed electrode so as not to generate an electrostatic attraction force. Thus, after the anodic bonding, a manufacturing method is described in which the electrically connected movable electrode and the fixed electrode are separated. However, in the manufacturing methods described in Patent Documents 1 and 2, a capacitive semiconductor physical quantity sensor is manufactured at low cost in order to separate the movable electrode and the fixed electrode by using a special device or process such as laser irradiation or heating by current. It becomes difficult to do.

本発明は、上記課題を解決するためになされたものであり、製造コストを増加させることなく溶着等の不具合が発生することを防止可能な静電容量型半導体物理量センサの製造方法を提供することにある。   The present invention has been made to solve the above problems, and provides a method for manufacturing a capacitance type semiconductor physical quantity sensor capable of preventing occurrence of defects such as welding without increasing the manufacturing cost. It is in.

本発明に係る静電容量型半導体物理量センサの製造方法は、絶縁基板と半導体基板の互いに対向する周辺領域を接触させた後に基板間に電圧を印加することにより陽極接合することにより形成され、絶縁基板の接合面側には固定電極が設けられ、半導体基板の接合面側には可動電極が設けられた静電容量型半導体物理量センサの製造方法において、半導体ウェハの面内方向に形成される少なくとも2つの静電容量型半導体物理量センサ間の可動電極と固定電極とを同電位配線により絶縁基板の内部又は裏面側の領域で電気的に接続する第1工程と、絶縁基板と半導体基板との間に電圧を印加することにより絶縁基板と半導体基板とを陽極接合して半導体ウェハの面内方向に静電容量型半導体物理量センサを形成する第2工程と、半導体ウェハより静電容量型半導体物理量センサを切り出す際に同電位配線を切断する第3工程とを有する。   The manufacturing method of a capacitance type semiconductor physical quantity sensor according to the present invention is formed by bringing a peripheral region of an insulating substrate and a semiconductor substrate into contact with each other and then anodically bonding them by applying a voltage between the substrates. In a manufacturing method of a capacitance type semiconductor physical quantity sensor, in which a fixed electrode is provided on the bonding surface side of the substrate and a movable electrode is provided on the bonding surface side of the semiconductor substrate, at least formed in the in-plane direction of the semiconductor wafer. A first step of electrically connecting the movable electrode and the fixed electrode between the two capacitance type semiconductor physical quantity sensors in the region inside the insulating substrate or the back surface side by the same potential wiring; and between the insulating substrate and the semiconductor substrate A second step of forming a capacitance type semiconductor physical quantity sensor in an in-plane direction of the semiconductor wafer by anodically bonding the insulating substrate and the semiconductor substrate by applying a voltage to the semiconductor wafer; and a semiconductor wafer And a third step of cutting the equipotential lines when cutting the Riseiden capacitive semiconductor physical quantity sensor.

なお、絶縁基板は接合面以外の領域に形成された感度調整用の参照電極を有し、第1工程において、少なくとも2つの静電容量型半導体物理量センサ間の可動電極及び固定電極と参照電極とを同電位配線により電気的に接続することが望ましい。また、絶縁基板は接合面以外の領域に形成されたダミー電極を有し、第1工程において、少なくとも2つの静電容量型半導体物理量センサ間の可動電極及び固定電極とダミー電極とを電気的に接続することが望ましい。また可動電極の絶縁基板との対向表面領域のうち、固定電極、参照電極、及びダミー電極と対向しない表面領域に凹部を形成するとよい。   The insulating substrate has a reference electrode for sensitivity adjustment formed in a region other than the bonding surface. In the first step, the movable electrode, the fixed electrode, and the reference electrode between at least two capacitive semiconductor physical quantity sensors Are preferably electrically connected by the same potential wiring. The insulating substrate has a dummy electrode formed in a region other than the bonding surface. In the first step, the movable electrode, the fixed electrode, and the dummy electrode are electrically connected between at least two capacitance type semiconductor physical quantity sensors. It is desirable to connect. In addition, a concave portion may be formed in a surface region of the movable electrode facing the insulating substrate that does not face the fixed electrode, the reference electrode, and the dummy electrode.

また絶縁基板としては、LTCC基板や電極埋込ガラス基板を用いるとよい。また第1工程において、半導体チップの面内方向に存在する全ての静電容量型半導体物理量センサの可動電極と固定電極とを同電位配線により電気的に接続することが望ましい。また第3工程においては、ダイジング,ドリルを用いた穴加工,又は絶縁基板若しくは半導体基板の表面に切り欠き部を形成し、切り欠き部に沿って半導体ウェハを割ることにより静電容量型半導体物理量センサの切り出し及び同電位配線の切断を行うとよい。   As the insulating substrate, an LTCC substrate or an electrode-embedded glass substrate may be used. In the first step, it is desirable that the movable electrodes and the fixed electrodes of all the capacitive semiconductor physical quantity sensors existing in the in-plane direction of the semiconductor chip are electrically connected by the same potential wiring. In the third step, capacitance semiconductor physical quantity is obtained by dicing, drilling with a drill, or forming a notch on the surface of the insulating substrate or semiconductor substrate, and dividing the semiconductor wafer along the notch. It is preferable to cut out the sensor and the same potential wiring.

本発明に係る静電容量型半導体物理量センサの製造方法によれば、製造コストを増加させることなく溶着等の不具合が発生することを防止できる。   According to the method for manufacturing a capacitive semiconductor physical quantity sensor of the present invention, it is possible to prevent the occurrence of defects such as welding without increasing the manufacturing cost.

以下、図1,図2を参照して、本発明の実施形態となる圧力センサの製造方法について説明する。なお図1は本発明の実施形態となる圧力センサの断面図であり、図2は本発明の実施形態となる圧力センサの上面図である。また図1では、半導体ウェハの面内方向において隣接する2つの圧力センサC1,C2が図示され、図2では、圧力センサの上面側にあるガラス基板が透明な部材であることから固定電極等が透視して図示されている。   Hereinafter, with reference to FIG. 1 and FIG. 2, the manufacturing method of the pressure sensor which becomes embodiment of this invention is demonstrated. 1 is a cross-sectional view of a pressure sensor according to an embodiment of the present invention, and FIG. 2 is a top view of the pressure sensor according to an embodiment of the present invention. In FIG. 1, two pressure sensors C1 and C2 adjacent in the in-plane direction of the semiconductor wafer are shown. In FIG. 2, the glass substrate on the upper surface side of the pressure sensor is a transparent member. It is shown in perspective.

本発明の実施形態となる圧力センサの製造方法では、始めに、シリコンウェハ等の半導体ウェハ1の表面側及び裏面側をエッチング加工することにより厚膜部3及び可動電極(感圧部)4を形成する。次に、低温同時焼成セラミックス(Low-Temperature Co-fired Ceramics : LTCC)基板2表面の可動電極4と対向する位置に蒸着又はスパッタにより固定電極5を形成し、固定電極5と電気的に接続する貫通孔配線6と可動電極4に電気的に接続する貫通孔配線7とをLTCC基板2に形成する。次に、2つの圧力センサ領域C1,C2の間の分断代領域R1において2つの圧力センサ間の貫通孔配線6と貫通孔配線7とを電気的に接続する同電位配線8,9をLTCC基板2に形成する。なおこの同電位配線8,9は、半導体ウェハ1とLTCC基板2とを陽極接合した際に可動電極4と固定電極5との間に形成される気密空間の気密性を確保するために、LTCC基板2の半導体ウェハ1との接合面以外の領域に形成する。   In the pressure sensor manufacturing method according to the embodiment of the present invention, first, the thick film portion 3 and the movable electrode (pressure-sensitive portion) 4 are formed by etching the front surface side and the back surface side of the semiconductor wafer 1 such as a silicon wafer. Form. Next, the fixed electrode 5 is formed by vapor deposition or sputtering at a position facing the movable electrode 4 on the surface of the low-temperature co-fired ceramics (LTC) substrate 2 and electrically connected to the fixed electrode 5. A through-hole wiring 6 and a through-hole wiring 7 electrically connected to the movable electrode 4 are formed on the LTCC substrate 2. Next, equipotential wirings 8 and 9 for electrically connecting the through-hole wiring 6 and the through-hole wiring 7 between the two pressure sensors in the dividing margin region R1 between the two pressure sensor regions C1 and C2 are disposed on the LTCC substrate. 2 to form. The equipotential wirings 8 and 9 are arranged in order to ensure the airtightness of the airtight space formed between the movable electrode 4 and the fixed electrode 5 when the semiconductor wafer 1 and the LTCC substrate 2 are anodically bonded. The substrate 2 is formed in a region other than the bonding surface with the semiconductor wafer 1.

次に、可動電極4と固定電極5が対向するように半導体ウェハ1の表面とLTCC基板2の表面とをその相対位置を合わせて接触させる。次に、半導体ウェハ1に陽極接合用電源の陽極を接続すると共にLTCC基板2に陽極接合用電源の負極を接続し、半導体ウェハ1とLTCC基板2との間に電圧を印加することにより、半導体ウェハ1とLTCC基板2との間に電流を流して両者の接触部分、本実施形態では厚膜部3領域を陽極接合により一体化する。そして最後に、分断代領域R1において同電位配線8を含む接合体を切断することにより半導体ウェハ1から圧力センサを切り出す。このようにして製造された圧力センサは、可動電極4に加わった圧力を可動電極4と固定電極5間のギャップ長の変化に伴う可動電極4と固定電極5間の静電容量の変化として出力することができる。   Next, the surface of the semiconductor wafer 1 and the surface of the LTCC substrate 2 are brought into contact with each other so that the movable electrode 4 and the fixed electrode 5 face each other. Next, the anode of the anodic bonding power source is connected to the semiconductor wafer 1 and the negative electrode of the anodic bonding power source is connected to the LTCC substrate 2, and a voltage is applied between the semiconductor wafer 1 and the LTCC substrate 2. A current is passed between the wafer 1 and the LTCC substrate 2 to integrate the contact portion between them, in this embodiment, the thick film portion 3 region by anodic bonding. Finally, the pressure sensor is cut out from the semiconductor wafer 1 by cutting the joined body including the equipotential wiring 8 in the dividing margin region R1. The pressure sensor manufactured in this way outputs the pressure applied to the movable electrode 4 as a change in capacitance between the movable electrode 4 and the fixed electrode 5 due to a change in the gap length between the movable electrode 4 and the fixed electrode 5. can do.

以上の説明から明らかなように、本発明の実施形態となる圧力センサの製造方法では、同電位配線8によって貫通孔配線6と貫通孔配線7とを電気的に接続することにより可動電極4と固定電極5を同電位にして陽極接合を行った後、半導体ウェハ1から圧力センサを切り出す際に同電位配線8を切断することにより可動電極4と固定電極5を切り離すので、陽極接合を行う際に印加電圧によって可動電極4と固定電極5との間に静電吸引力が発生することにより、溶着等の不具合が発生することを防止できる。また本発明の実施形態となる圧力センサの製造方法によれば、同電位配線8は半導体ウェハ1から圧力センサを切り出す際に切断されるので、特別な装置や工程を利用せずに製造コストを増加させることなく同電位配線8を切断することができる。   As is clear from the above description, in the pressure sensor manufacturing method according to the embodiment of the present invention, the through-hole wiring 6 and the through-hole wiring 7 are electrically connected by the same potential wiring 8 to the movable electrode 4. After performing anodic bonding with the fixed electrode 5 set to the same potential, the movable electrode 4 and the fixed electrode 5 are separated by cutting the same potential wiring 8 when cutting out the pressure sensor from the semiconductor wafer 1. In addition, since an electrostatic attraction force is generated between the movable electrode 4 and the fixed electrode 5 by the applied voltage, it is possible to prevent problems such as welding. Further, according to the pressure sensor manufacturing method according to the embodiment of the present invention, the equipotential wiring 8 is cut when the pressure sensor is cut out from the semiconductor wafer 1, so that the manufacturing cost can be reduced without using a special device or process. The equipotential wiring 8 can be cut without increasing it.

なお本実施形態では、固定電極5はLTCC基板2に形成したが、本発明は本実施形態に限定されることはなく、例えば図3に示すような電極埋込ガラス基板に固定電極5を形成するようにしてもよい。但しこの場合、固定電極5は、金属やシリコン等の導体により形成する。また図4に示すように、LTCC基板2表面に感度調整用の参照電極10を形成し、同電位配線8によって参照電極10と電気的に接続する貫通孔配線11を隣接する圧力センサの貫通孔配線6及び貫通孔配線7と電気的に接続することにより、参照電極10と可動電極4及び固定電極5とを同電位にするようにしてもよい。   In this embodiment, the fixed electrode 5 is formed on the LTCC substrate 2, but the present invention is not limited to this embodiment. For example, the fixed electrode 5 is formed on an electrode-embedded glass substrate as shown in FIG. You may make it do. However, in this case, the fixed electrode 5 is formed of a conductor such as metal or silicon. Further, as shown in FIG. 4, a reference electrode 10 for sensitivity adjustment is formed on the surface of the LTCC substrate 2, and a through hole wiring 11 electrically connected to the reference electrode 10 by the same potential wiring 8 is connected to the through hole of the adjacent pressure sensor. The reference electrode 10, the movable electrode 4, and the fixed electrode 5 may be set to the same potential by being electrically connected to the wiring 6 and the through-hole wiring 7.

また図5に示すように、LTCC基板2表面にダミー電極12を形成し、同電位配線8によってダミー電極12と電気的に接続する貫通孔配線13を隣接する圧力センサの貫通孔配線6及び貫通孔配線7と電気的に接続することにより、ダミー電極12と可動電極4及び固定電極5とを同電位にするようにしてもよい。このような構成によれば、半導体ウェハ1との接合領域以外のLTCC基板2の表面領域をダミー電極12によって可能な限り広い範囲被覆しておくことにより、半導体ウェハ1との接合領域以外の表面領域を同電位に保つことができ、溶着等の不具合が発生することをより確実に防止できる。   Further, as shown in FIG. 5, a dummy electrode 12 is formed on the surface of the LTCC substrate 2, and the through-hole wiring 13 electrically connected to the dummy electrode 12 by the same potential wiring 8 is connected to the through-hole wiring 6 and the through-hole of the adjacent pressure sensor. The dummy electrode 12, the movable electrode 4, and the fixed electrode 5 may be set to the same potential by being electrically connected to the hole wiring 7. According to such a configuration, the surface area of the LTCC substrate 2 other than the bonding area with the semiconductor wafer 1 is covered by the dummy electrode 12 as wide as possible, so that the surface other than the bonding area with the semiconductor wafer 1 is covered. The region can be kept at the same potential, and it is possible to more reliably prevent the occurrence of defects such as welding.

また図6に示すように、LTCC基板2との可動電極4の対向表面領域のうち、固定電極5,参照電極、及びダミー電極12と対向しない表面領域に凹部14を形成するようにしてもよい。このような構成によれば、可動電極4と固定電極5の絶縁性を確保しなければならない領域等、センサ構造の理由から同電位配線8を形成できない領域であっても、可動電極4と固定電極5間のギャップ長が長くなることにより、溶着等の不具合が発生することを防止できる。また図7に示すように、半導体ウェハ1の面内方向に存在する全ての圧力センサの可動電極4と固定電極5とを同電位配線8により電気的に接続することが望ましい。このような製造方法によれば、全ての圧力センサチップに対して可動電極4が固定電極5に貼り付くことを防止できる。   Further, as shown in FIG. 6, in the surface area of the movable electrode 4 facing the LTCC substrate 2, the recess 14 may be formed in the surface area not facing the fixed electrode 5, the reference electrode, and the dummy electrode 12. . According to such a configuration, the movable electrode 4 and the fixed electrode 5 are fixed to the movable electrode 4 even in a region where the equipotential wiring 8 cannot be formed due to the sensor structure, such as a region where the insulation between the movable electrode 4 and the fixed electrode 5 must be ensured. By increasing the gap length between the electrodes 5, it is possible to prevent problems such as welding. Further, as shown in FIG. 7, it is desirable to electrically connect the movable electrodes 4 and the fixed electrodes 5 of all the pressure sensors existing in the in-plane direction of the semiconductor wafer 1 by the same potential wiring 8. According to such a manufacturing method, it is possible to prevent the movable electrode 4 from sticking to the fixed electrode 5 with respect to all the pressure sensor chips.

また本実施形態は、本発明を圧力センサの製造方法に適用したものであるが、本発明は本実施形態に限定されることはなく、図8に示すような絶縁基板2a,2bにより半導体ウェハ1を挟持した構成を有し、半導体ウェハ1に形成された可動電極(重り部)15に加わる加速度を検出する加速度センサの製造方法にも適用することができる。なお図8に示す加速度センサでは、可動電極15が下方のガラス基板2bと接触することを防止するために、ガラス基板2b表面に凹部16が形成されている。また圧力センサの切り出し及び同電位配線8の切断は、(1)図9(a)に示すように分断代領域R1をダイジングにより切断する、(2)図9(b)に示すようにドリルを用いて分断代領域R1に穴を形成する、又は、(3)図10(a),(b)に示すようにLTCC基板2又は半導体ウェハ1の表面に切り欠き部17a,17bを形成し、切り欠き部17a,17bに沿って接合体を割ることにより、特別な装置を用いることなく行うことができる。   In the present embodiment, the present invention is applied to a manufacturing method of a pressure sensor. However, the present invention is not limited to the present embodiment, and a semiconductor wafer is formed by insulating substrates 2a and 2b as shown in FIG. 1 can be applied to a method of manufacturing an acceleration sensor that detects acceleration applied to the movable electrode (weight portion) 15 formed on the semiconductor wafer 1. In the acceleration sensor shown in FIG. 8, a concave portion 16 is formed on the surface of the glass substrate 2b in order to prevent the movable electrode 15 from coming into contact with the lower glass substrate 2b. The pressure sensor is cut out and the equipotential wiring 8 is cut by (1) cutting the dividing margin region R1 by dicing as shown in FIG. 9 (a), and (2) drilling as shown in FIG. 9 (b). Or a hole is formed in the dividing margin region R1, or (3) the notches 17a and 17b are formed on the surface of the LTCC substrate 2 or the semiconductor wafer 1 as shown in FIGS. By dividing the joined body along the notches 17a and 17b, it is possible to carry out without using a special device.

以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、この実施の形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。すなわち、上記実施の形態に基づいて当業者等によりなされる他の実施の形態、実施例及び運用技術等は全て本発明の範疇に含まれる。   As mentioned above, although embodiment which applied the invention made by the present inventors was described, this invention is not limited by description and drawing which make a part of indication of this invention by this embodiment. That is, all other embodiments, examples, operational techniques, and the like made by those skilled in the art based on the above-described embodiments are all included in the scope of the present invention.

本発明の実施形態となる圧力センサの構成を示す断面図である。It is sectional drawing which shows the structure of the pressure sensor used as embodiment of this invention. 図1に示す圧力センサの構成を示す上面図である。It is a top view which shows the structure of the pressure sensor shown in FIG. 図1に示す圧力センサの変形例の構成を示す断面図である。It is sectional drawing which shows the structure of the modification of the pressure sensor shown in FIG. 図1に示す圧力センサの変形例の構成を示す上面図である。It is a top view which shows the structure of the modification of the pressure sensor shown in FIG. 図1に示す圧力センサの変形例の構成を示す上面図である。It is a top view which shows the structure of the modification of the pressure sensor shown in FIG. 図5に示す圧力センサの変形例の構成を示す上面図である。It is a top view which shows the structure of the modification of the pressure sensor shown in FIG. 本発明の実施形態となる圧力センサの製造方法の応用例を説明するための図である。It is a figure for demonstrating the application example of the manufacturing method of the pressure sensor used as embodiment of this invention. 本発明の実施形態となる加速度センサの構成を示す断面図である。It is sectional drawing which shows the structure of the acceleration sensor used as embodiment of this invention. 本発明の実施形態となる圧力センサの製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the pressure sensor used as embodiment of this invention. 本発明の実施形態となる圧力センサの製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the pressure sensor used as embodiment of this invention.

符号の説明Explanation of symbols

1:半導体ウェハ
2:低温同時焼成セラミックス(Low-Temperature Co-fired Ceramics : LTCC)基板
3:厚膜部
4:可動電極
5:固定電極
6,7:貫通孔配線
8,9:同電位配線
C1,C2:圧力センサ領域
R1:分断代領域
1: Semiconductor wafer 2: Low-temperature co-fired ceramics (LTC) substrate 3: Thick film part 4: Movable electrode 5: Fixed electrode 6, 7: Through-hole wiring 8, 9: Equipotential wiring C1 , C2: Pressure sensor region R1: Dividing margin region

Claims (13)

絶縁基板と半導体基板の互いに対向する周辺領域を接触させた後に基板間に電圧を印加することにより陽極接合することにより形成され、前記絶縁基板の接合面側には固定電極が設けられ、前記半導体基板の接合面側には可動電極が設けられた静電容量型半導体物理量センサの製造方法において、
半導体ウェハの面内方向に形成される少なくとも2つの静電容量型半導体物理量センサ間の可動電極と固定電極とを同電位配線により前記絶縁基板の内部又は裏面側の領域で電気的に接続する第1工程と、前記絶縁基板と前記半導体基板との間に電圧を印加することにより絶縁基板と半導体基板とを陽極接合して半導体ウェハの面内方向に静電容量型半導体物理量センサを形成する第2工程と、前記半導体ウェハより静電容量型半導体物理量センサを切り出す際に前記同電位配線を切断する第3工程とを有すること
を特徴とする静電容量型半導体物理量センサの製造方法。
The insulating substrate and the semiconductor substrate are formed by contacting the peripheral regions facing each other and then anodic bonding by applying a voltage between the substrates, and a fixed electrode is provided on the bonding surface side of the insulating substrate, and the semiconductor In the manufacturing method of the capacitance type semiconductor physical quantity sensor in which the movable electrode is provided on the bonding surface side of the substrate,
A movable electrode and a fixed electrode between at least two capacitance-type semiconductor physical quantity sensors formed in the in-plane direction of the semiconductor wafer are electrically connected to each other in the region on the inside or back side of the insulating substrate by the same potential wiring. And forming a capacitive semiconductor physical quantity sensor in an in-plane direction of the semiconductor wafer by anodically bonding the insulating substrate and the semiconductor substrate by applying a voltage between the insulating substrate and the semiconductor substrate. A method of manufacturing a capacitive semiconductor physical quantity sensor, comprising: two processes; and a third process of cutting the equipotential wiring when the capacitive semiconductor physical quantity sensor is cut out from the semiconductor wafer.
請求項1に記載の静電容量型半導体物理量センサの製造方法において、
前記絶縁基板は前記接合面以外の領域に形成された感度調整用の参照電極を有し、前記第1工程において、少なくとも2つの静電容量型半導体物理量センサ間の可動電極及び固定電極と参照電極とを同電位配線により電気的に接続することを特徴とする静電容量型半導体物理量センサの製造方法。
In the manufacturing method of the capacitance type semiconductor physical quantity sensor according to claim 1,
The insulating substrate includes a reference electrode for sensitivity adjustment formed in a region other than the bonding surface, and in the first step, a movable electrode, a fixed electrode, and a reference electrode between at least two capacitive semiconductor physical quantity sensors. Are electrically connected by the same potential wiring. A method of manufacturing a capacitance type semiconductor physical quantity sensor.
請求項1又は請求項2に記載の静電容量型半導体物理量センサの製造方法において、
前記絶縁基板は前記接合面以外の領域に形成されたダミー電極を有し、前記第1工程において、少なくとも2つの静電容量型半導体物理量センサ間の可動電極及び固定電極とダミー電極とを電気的に接続することを特徴とする静電容量型半導体物理量センサの製造方法。
In the manufacturing method of the capacitance type semiconductor physical quantity sensor according to claim 1 or 2,
The insulating substrate has a dummy electrode formed in a region other than the bonding surface. In the first step, the movable electrode, the fixed electrode, and the dummy electrode are electrically connected between at least two capacitive semiconductor physical quantity sensors. A method of manufacturing a capacitance type semiconductor physical quantity sensor, characterized by comprising:
請求項1乃至請求項3のうち、いずれか1項に記載の静電容量型半導体物理量センサの製造方法において、
前記可動電極の前記絶縁基板との対向表面領域のうち、前記固定電極、前記参照電極、及び前記ダミー電極と対向しない表面領域に凹部を形成する工程を有することを特徴とする静電容量型半導体物理量センサの製造方法。
In the manufacturing method of the capacitive semiconductor physical quantity sensor according to any one of claims 1 to 3,
And forming a recess in a surface region of the movable electrode facing the insulating substrate, the surface region not facing the fixed electrode, the reference electrode, and the dummy electrode. Manufacturing method of physical quantity sensor.
請求項1乃至請求項4のうち、いずれか1項に記載の静電容量型半導体物理量センサの製造方法において、
前記絶縁基板としてLTCC基板を用いることを特徴とする静電容量型半導体物理量センサの製造方法。
In the manufacturing method of the capacitance type semiconductor physical quantity sensor according to any one of claims 1 to 4,
A manufacturing method of a capacitance type semiconductor physical quantity sensor, wherein an LTCC substrate is used as the insulating substrate.
請求項1乃至請求項4のうち、いずれか1項に記載の静電容量型半導体物理量センサの製造方法において、
前記絶縁基板として電極埋込ガラス基板を用いることを特徴とする静電容量型半導体物理量センサの製造方法。
In the manufacturing method of the capacitance type semiconductor physical quantity sensor according to any one of claims 1 to 4,
A method of manufacturing a capacitance type semiconductor physical quantity sensor, wherein an electrode-embedded glass substrate is used as the insulating substrate.
請求項1乃至請求項6のうち、いずれか1項に記載の静電容量型半導体物理量センサの製造方法において、
前記第1工程において、半導体チップの面内方向に存在する全ての静電容量型半導体物理量センサの可動電極と固定電極とを同電位配線により電気的に接続することを特徴とする静電容量型半導体物理量センサの製造方法。
In the manufacturing method of the capacitance type semiconductor physical quantity sensor according to any one of claims 1 to 6,
In the first step, the movable electrode and the fixed electrode of all the capacitive semiconductor physical quantity sensors existing in the in-plane direction of the semiconductor chip are electrically connected by the same potential wiring. Manufacturing method of semiconductor physical quantity sensor.
請求項1乃至請求項7のうち、いずれか1項に記載の静電容量型半導体物理量センサの製造方法において、
静電容量型半導体物理量センサは前記可動電極に加わる圧力を検出する圧力センサであることを特徴とする静電容量型半導体物理量センサの製造方法。
The method of manufacturing a capacitance type semiconductor physical quantity sensor according to any one of claims 1 to 7,
The method of manufacturing a capacitance type semiconductor physical quantity sensor, wherein the capacitance type semiconductor physical quantity sensor is a pressure sensor that detects a pressure applied to the movable electrode.
請求項1乃至請求項7のうち、いずれか1項に記載の静電容量型半導体物理量センサの製造方法において、
静電容量型半導体物理量センサは前記可動電極に加わる加速度を検出する加速度センサであることを特徴とする静電容量型半導体物理量センサの製造方法。
The method of manufacturing a capacitance type semiconductor physical quantity sensor according to any one of claims 1 to 7,
The method of manufacturing a capacitance type semiconductor physical quantity sensor, wherein the capacitance type semiconductor physical quantity sensor is an acceleration sensor that detects an acceleration applied to the movable electrode.
請求項1乃至請求項9のうち、いずれか1項に記載の静電容量型半導体物理量センサの製造方法において、
前記第3工程において、ダイジングにより静電容量型半導体物理量センサの切り出し及び前記同電位配線の切断を行うことを特徴とする静電容量型半導体物理量センサの製造方法。
The method of manufacturing a capacitance type semiconductor physical quantity sensor according to any one of claims 1 to 9,
In the third step, the capacitive semiconductor physical quantity sensor is cut out by dicing and the equipotential wiring is cut.
請求項1乃至請求項9のうち、いずれか1項に記載の静電容量型半導体物理量センサの製造方法において、
前記第3工程において、ドリルを用いた穴加工により静電容量型半導体物理量センサの切り出し及び前記同電位配線の切断を行うことを特徴とする静電容量型半導体物理量センサの製造方法。
The method of manufacturing a capacitance type semiconductor physical quantity sensor according to any one of claims 1 to 9,
In the third step, the capacitive semiconductor physical quantity sensor is cut out and the equipotential wiring is cut out by drilling with a drill.
請求項1乃至請求項9のうち、いずれか1項に記載の静電容量型半導体物理量センサの製造方法において、
前記第3工程において、絶縁基板又は半導体基板の表面に切り欠き部を形成し、当該切り欠き部に沿って半導体ウェハを割ることにより静電容量型半導体物理量センサの切り出し及び前記同電位配線の切断を行うことを特徴とする静電容量型半導体物理量センサの製造方法。
The method of manufacturing a capacitance type semiconductor physical quantity sensor according to any one of claims 1 to 9,
In the third step, a notch is formed on the surface of the insulating substrate or the semiconductor substrate, and the semiconductor wafer is cut along the notch to cut out the capacitive semiconductor physical quantity sensor and cut the equipotential wiring. A method for manufacturing a capacitance type semiconductor physical quantity sensor, characterized in that:
請求項1乃至請求項12のうち、いずれか1項に記載の静電容量型半導体物理量センサの製造方法ににより製造された静電容量型半導体物理量センサ。   A capacitance-type semiconductor physical quantity sensor manufactured by the method for manufacturing a capacitance-type semiconductor physical quantity sensor according to any one of claims 1 to 12.
JP2008216407A 2008-08-26 2008-08-26 Capacitive semiconductor physical quantity sensor manufacturing method and capacitive semiconductor physical quantity sensor Expired - Fee Related JP5130151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008216407A JP5130151B2 (en) 2008-08-26 2008-08-26 Capacitive semiconductor physical quantity sensor manufacturing method and capacitive semiconductor physical quantity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008216407A JP5130151B2 (en) 2008-08-26 2008-08-26 Capacitive semiconductor physical quantity sensor manufacturing method and capacitive semiconductor physical quantity sensor

Publications (2)

Publication Number Publication Date
JP2010054210A true JP2010054210A (en) 2010-03-11
JP5130151B2 JP5130151B2 (en) 2013-01-30

Family

ID=42070315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008216407A Expired - Fee Related JP5130151B2 (en) 2008-08-26 2008-08-26 Capacitive semiconductor physical quantity sensor manufacturing method and capacitive semiconductor physical quantity sensor

Country Status (1)

Country Link
JP (1) JP5130151B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012102292A1 (en) * 2011-01-27 2012-08-02 パナソニック株式会社 Method for producing electrostatic capacitance device
JP2013250133A (en) * 2012-05-31 2013-12-12 Seiko Epson Corp Electronic device, method of manufacturing electronic device, and electronic apparatus
JP2017146312A (en) * 2017-06-01 2017-08-24 セイコーエプソン株式会社 Sensor element, electronic apparatus, and moving body

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08279444A (en) * 1995-04-07 1996-10-22 Nec Corp Microstructure and manufacturing method thereof
JPH09196700A (en) * 1996-01-13 1997-07-31 Omron Corp Capacitance-type semiconductor dynamic-quantity sensor and its manufacture
JPH1082709A (en) * 1996-09-05 1998-03-31 Nagano Keiki Seisakusho Ltd Pressure sensor and manufacture thereof
JP2003168755A (en) * 2001-11-30 2003-06-13 Tamagawa Seiki Co Ltd Packaging method of semiconductor element
JP2004012408A (en) * 2002-06-11 2004-01-15 Hiroaki Niitsuma Manufacturing method of physical quantity detector
JP2004325361A (en) * 2003-04-25 2004-11-18 Fujikura Ltd Electrostatic capacity type pressure sensor and its manufacturing method
JP2004537156A (en) * 2000-12-19 2004-12-09 ハリス コーポレイション Method of manufacturing electronic device including silicon and LTCC and electronic device manufactured thereby
JP2007057348A (en) * 2005-08-24 2007-03-08 Seiko Epson Corp Pressure sensor and method of manufacturing same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08279444A (en) * 1995-04-07 1996-10-22 Nec Corp Microstructure and manufacturing method thereof
JPH09196700A (en) * 1996-01-13 1997-07-31 Omron Corp Capacitance-type semiconductor dynamic-quantity sensor and its manufacture
JPH1082709A (en) * 1996-09-05 1998-03-31 Nagano Keiki Seisakusho Ltd Pressure sensor and manufacture thereof
JP2004537156A (en) * 2000-12-19 2004-12-09 ハリス コーポレイション Method of manufacturing electronic device including silicon and LTCC and electronic device manufactured thereby
JP2003168755A (en) * 2001-11-30 2003-06-13 Tamagawa Seiki Co Ltd Packaging method of semiconductor element
JP2004012408A (en) * 2002-06-11 2004-01-15 Hiroaki Niitsuma Manufacturing method of physical quantity detector
JP2004325361A (en) * 2003-04-25 2004-11-18 Fujikura Ltd Electrostatic capacity type pressure sensor and its manufacturing method
JP2007057348A (en) * 2005-08-24 2007-03-08 Seiko Epson Corp Pressure sensor and method of manufacturing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012102292A1 (en) * 2011-01-27 2012-08-02 パナソニック株式会社 Method for producing electrostatic capacitance device
JP2013250133A (en) * 2012-05-31 2013-12-12 Seiko Epson Corp Electronic device, method of manufacturing electronic device, and electronic apparatus
US9520812B2 (en) 2012-05-31 2016-12-13 Seiko Epson Corporation Electronic device, electronic apparatus, and method of manufacturing electronic device
JP2017146312A (en) * 2017-06-01 2017-08-24 セイコーエプソン株式会社 Sensor element, electronic apparatus, and moving body

Also Published As

Publication number Publication date
JP5130151B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
US7382599B2 (en) Capacitive pressure sensor
US7527997B2 (en) MEMS structure with anodically bonded silicon-on-insulator substrate
JP5175152B2 (en) MEMS sensor
TWI634069B (en) Hybrid integrated component and process for its production
JPWO2010032820A1 (en) MEMS sensor
JP5237733B2 (en) MEMS sensor
JP2006349563A (en) Inertial force sensor
JP5130151B2 (en) Capacitive semiconductor physical quantity sensor manufacturing method and capacitive semiconductor physical quantity sensor
US9688532B2 (en) Method of manufacturing electronic device
JP4539413B2 (en) Structure of capacitive sensor
JP2009052899A (en) Inertial force sensor and its manufacturing method
US10048286B2 (en) Wafer level package of MEMS sensor and method for manufacturing the same
JP2009250874A (en) Physical quantity sensor and method for manufacturing the same
JP5095930B2 (en) MEMS device and manufacturing method thereof
JP5314979B2 (en) MEMS sensor
JP6687197B2 (en) Pressure sensor
JP4817287B2 (en) Method for manufacturing mechanical quantity sensor
JP6237440B2 (en) Physical quantity sensor and manufacturing method thereof
JP2008170271A (en) External force detection sensor
WO2014208043A1 (en) Physical quantity sensor
JP3646980B2 (en) Capacitance type sensor and manufacturing method thereof
JP2009198327A (en) Mems sensor
JP2007205858A (en) Capacitive pressure sensor
JP2010032220A (en) Electrode removing structure for semiconductor device
JP2008172011A (en) Piezoresistive structure and external force detection sensor using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110113

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5130151

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees