JP2010052000A - Internal chilling method - Google Patents

Internal chilling method Download PDF

Info

Publication number
JP2010052000A
JP2010052000A JP2008218735A JP2008218735A JP2010052000A JP 2010052000 A JP2010052000 A JP 2010052000A JP 2008218735 A JP2008218735 A JP 2008218735A JP 2008218735 A JP2008218735 A JP 2008218735A JP 2010052000 A JP2010052000 A JP 2010052000A
Authority
JP
Japan
Prior art keywords
cast
wear
resistant ring
metal
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008218735A
Other languages
Japanese (ja)
Inventor
Nobuyuki Fujiwara
信幸 藤原
Tadashi Watanabe
匡 渡辺
Hidetaka Shirai
英崇 白井
Toru Yokose
徹 横瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANSHIN DENSHI KK
Art Metal Manufacturing Co Ltd
Original Assignee
SANSHIN DENSHI KK
Art Metal Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANSHIN DENSHI KK, Art Metal Manufacturing Co Ltd filed Critical SANSHIN DENSHI KK
Priority to JP2008218735A priority Critical patent/JP2010052000A/en
Publication of JP2010052000A publication Critical patent/JP2010052000A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an internal chilling method where, in the case the member to be internally chilled and a casting metal internally chilling the same are different kinds of materials, the member to be internally chilled is satisfactory and easily internally chilled. <P>SOLUTION: A wear resistant ring 1 is preheated and held into a casting mold 2, and, in a state where ultrasonic vibration is applied to the wear resistant ring 1 from a plurality of directions in such a manner that the whole of the wear resistant ring 1 is uniformly vibrated, an aluminum molten metal 20 is cast into the casting mold 2. Further, at least one selected from the frequency, amplitude and application time of the ultrasonic vibration is regulated in such a manner that the joined layer 1A of the wear resistant ring 1 and the aluminum molten metal 20 is made into a prescribed thickness. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、被鋳ぐるみ部材を鋳型内に保持した状態で鋳造金属を鋳型内に鋳込み、被鋳ぐるみ部材が接合された鋳造品を成型する鋳ぐるみ方法に関する。   The present invention relates to a cast-in method for casting a cast metal into a mold in a state where the cast-in member is held in a mold, and molding a cast product to which the cast-in member is joined.

例えば、ディーゼルエンジンのピストンは、高圧縮の状態で燃焼を行うため、ピストンリングを装着するリング溝に凝着、摩耗が発生する。このため、リング溝の耐凝着性、耐摩耗性を向上させるために、ピストンを鋳造する際に、高い耐凝着性、耐摩耗性を有するリング(以下、「耐摩環」という)を鋳ぐるみ、この耐摩環にリング溝を形成している。例えば、アルミニウム製のピストンの場合、まず、耐熱鋳鉄(高Niのオーステナイト鋳鉄)製などの耐摩環をアルミナイジングする。すなわち、溶融したアルミニウムまたはアルミニウム合金の中に耐摩環を浸漬させ、耐摩環の表面層にアルミニウムを拡散浸透させる。次に、耐摩環を鋳造金型(鋳型)内に保持し、アルミニウムの溶湯を鋳造金型内に鋳込んで、耐摩環をアルミニウムで鋳ぐるむ。このとき、先のアルミナイジングによって耐摩環の表面層がアルミニウムに富んでいるため、耐摩環の表面層とアルミニウム溶湯とが良好に接合(融着結合)し、耐摩環が良好に接合、鋳ぐるまれた鋳造品が成型される。   For example, since a piston of a diesel engine burns in a highly compressed state, adhesion and wear occur in a ring groove in which a piston ring is mounted. For this reason, in order to improve the adhesion resistance and wear resistance of the ring groove, when casting the piston, a ring having high adhesion resistance and wear resistance (hereinafter referred to as “wear ring”) is cast. A ring groove is formed in this wear-resistant ring. For example, in the case of an aluminum piston, first, a wear-resistant ring made of heat-resistant cast iron (high Ni austenitic cast iron) or the like is aluminized. That is, the wear-resistant ring is immersed in molten aluminum or an aluminum alloy, and aluminum is diffused and penetrated into the surface layer of the wear-resistant ring. Next, the wear-resistant ring is held in a casting mold (mold), a molten aluminum is cast into the casting mold, and the wear-resistant ring is cast with aluminum. At this time, since the surface layer of the wear-resistant ring is rich in aluminum due to the previous aluminizing, the surface layer of the wear-resistant ring and the molten aluminum are bonded (fusion-bonded) well, and the wear-resistant ring is bonded and cast well. The rare casting is molded.

また、耐摩環などの被鋳ぐるみ部材を保持具から取外しすることが容易で、被鋳ぐるみ部材を鋳型内に正確かつ容易に保持することを可能にするアルミナイジング処理方法および鋳ぐるみ方法が知られている(例えば、特許文献1参照。)。
特開平11−179521号公報
Also known are an aluminizing method and a cast-in method that makes it easy to remove a cast-in member such as a wear-resistant ring from the holder and that allows the cast-in member to be accurately and easily held in the mold. (For example, refer to Patent Document 1).
JP-A-11-179521

ところで、アルミナイジングを行うには、専用の溶解炉、溶湯炉を要するばかりでなく、アルミナイジング後の処理も煩雑で時間と労力とを要する。例えば、アルミナイジングした耐摩環を鋳造金型内に保持する場合、高温でしかも溶融したアルミニウムで濡れている耐摩環を鋳造金型内に保持するため、細心の注意、措置を施して作業性、安全性を確保しなければならず、自動化も困難なのが実情である。   By the way, in order to perform aluminizing, not only a dedicated melting furnace and a molten metal furnace are required, but also the processing after aluminizing is complicated and requires time and labor. For example, when holding an aluminized wear-resistant ring in the casting mold, the wear-resistant ring that is wet with molten aluminum at a high temperature is held in the casting mold. In fact, safety must be ensured and automation is difficult.

さらに、アルミナイジングによるアルミニウムの拡散浸透層は、鉄とアルミニウムとの拡散結合によって熱伝導性や機械的強度が向上するが、衝撃などに対する強度、つまり靭性は高くなく、脆くなるおそれがあるという欠点を有する。このため、拡散浸透層が厚くなると、脆弱な領域も大きくなり、アルミニウムなどの鋳造金属との接合が破壊される(剥離する)おそれがある。このため、アルミナイジングによる拡散浸透層の厚みを適正に制御、管理することが必要となり、製造管理に多大な時間と労力とを要する。   Furthermore, the diffusion and permeation layer of aluminum by aluminizing improves the thermal conductivity and mechanical strength due to the diffusion bond between iron and aluminum, but it has the disadvantage that it is not strong in impact, that is, toughness and may become brittle. Have For this reason, when the diffusion-penetrating layer becomes thick, the fragile region also becomes large, and there is a possibility that the bond with a cast metal such as aluminum is broken (peeled). For this reason, it is necessary to appropriately control and manage the thickness of the diffusion and permeation layer by aluminizing, and manufacturing management requires a great deal of time and labor.

そこでこの発明は、被鋳ぐるみ部材とこれを鋳ぐるむ鋳造金属とが異種材である場合に、良好かつ容易に被鋳ぐるみ部材を鋳ぐるむことが可能な鋳ぐるみ方法を提供することを目的とする。   Therefore, the present invention provides a cast-in method capable of casting a cast-in member in a good and easy manner when the cast-in member and the cast metal for casting the same are different materials. Objective.

上記目的を達成するために請求項1に記載の発明は、被鋳ぐるみ部材とこれを鋳ぐるむ鋳造金属とが異種材である鋳ぐるみ方法であって、前記被鋳ぐるみ部材を予熱して鋳型内に保持し、前記被鋳ぐるみ部材全体が均一に振動するように複数の方向から前記被鋳ぐるみ部材に超音波振動を付与した状態で前記鋳造金属を鋳型内に鋳込む、ことを特徴とする。   In order to achieve the above object, the invention according to claim 1 is a cast-in method in which a cast-in member and a cast metal in which the cast-in member is cast are different materials, and preheating the cast-in member. The cast metal is cast into the mold in a state where ultrasonic vibration is applied to the cast walnut member from a plurality of directions so that the entire cast walnut member vibrates uniformly. And

この発明によれば、被鋳ぐるみ部材に超音波振動を与えた状態で鋳造金属を鋳込むため、超音波による振動エネルギーによって鋳造金属が被鋳ぐるみ部材の表面に拡散浸透し、鋳造金属の凝固に伴って被鋳ぐるみ部材と鋳造金属とが接合される。   According to the present invention, since the cast metal is cast in a state where ultrasonic vibration is applied to the cast walnut member, the cast metal diffuses and penetrates into the surface of the cast walnut member by vibration energy due to ultrasonic waves, and the cast metal is solidified. Along with this, the to-be-cast member and the cast metal are joined.

請求項2に記載の発明は、請求項1に記載の鋳ぐるみ方法において、少なくとも対向する2つの方向から前記被鋳ぐるみ部材に超音波振動を付与する、ことを特徴とする。   According to a second aspect of the present invention, in the cast-in method according to the first aspect, ultrasonic vibration is applied to the cast-in member from at least two opposing directions.

請求項3に記載の発明は、請求項1または2に記載の鋳ぐるみ方法において、前記被鋳ぐるみ部材と鋳造金属との接合層が所定の厚みになるように、前記超音波振動の周波数、振幅および付与時間の少なくともひとつを調整する、ことを特徴とする。   The invention according to claim 3 is the cast-in method according to claim 1 or 2, wherein the frequency of the ultrasonic vibration is set so that the bonding layer between the cast-in member and the cast metal has a predetermined thickness. It is characterized in that at least one of the amplitude and the application time is adjusted.

請求項4に記載の発明は、請求項3に記載の鋳ぐるみ方法において、前記被鋳ぐるみ部材が耐熱鋳鉄製で、前記鋳造金属がアルミニウムまたはアルミニウム合金の場合に、前記接合層の厚みを1μm以上15μm未満とする、ことを特徴とする。   According to a fourth aspect of the present invention, in the cast-in method according to the third aspect, when the cast walnut member is made of heat-resistant cast iron and the cast metal is aluminum or an aluminum alloy, the thickness of the bonding layer is 1 μm. It is characterized by being less than 15 micrometers above.

請求項5に記載の発明は、請求項1から4に記載の鋳ぐるみ方法において、前記鋳造金属が内燃機関のピストンを構成し、前記被鋳ぐるみ部材がピストンリングを装着するリング溝部を構成する、ことを特徴とする。   According to a fifth aspect of the present invention, in the cast-in method according to any one of the first to fourth aspects, the cast metal constitutes a piston of an internal combustion engine, and the cast-down walnut member constitutes a ring groove portion in which a piston ring is mounted. It is characterized by that.

請求項1に記載の発明によれば、鋳造金属が被鋳ぐるみ部材の表面に拡散浸透し、被鋳ぐるみ部材の表面に拡散浸透層(接合層)が形成されるため、被鋳ぐるみ部材と鋳造金属とが良好に(強固に)接合される。しかも、被鋳ぐるみ部材全体が均一に振動するように超音波振動が付与されるため、被鋳ぐるみ部材の表面全体に拡散浸透層が形成され、被鋳ぐるみ部材全体が鋳造金属と良好に接合される。また、複数の方向から被鋳ぐるみ部材に超音波振動を付与した状態で鋳造金属を鋳込むだけで、容易に被鋳ぐるみ部材を鋳ぐるむことができる。すなわち、専用の溶解炉などが必要で、しかも煩雑で多くの時間と労力を要するアルミナイジングを行うことなく、良好な鋳ぐるみを行うことが可能となる。   According to the first aspect of the present invention, the cast metal diffuses and permeates into the surface of the cast walnut member, and a diffusion / penetration layer (bonding layer) is formed on the surface of the cast walnut member. Good (strong) bonding with the cast metal. Moreover, since ultrasonic vibration is applied so that the entire cast walnut member vibrates uniformly, a diffusion / penetration layer is formed on the entire surface of the cast walnut member, and the entire cast walnut member is well bonded to the cast metal. Is done. Further, the cast stuffed member can be easily cast only by casting the cast metal in a state where ultrasonic vibration is applied to the cast stuffed member from a plurality of directions. That is, a dedicated melting furnace is required, and good casting can be performed without performing aluminizing which is complicated and requires a lot of time and labor.

請求項2に記載の発明によれば、少なくとも対向する2つの方向から被鋳ぐるみ部材に超音波振動を付与することで、被鋳ぐるみ部材全体を均一に振動させるため、少ない振動子で効果的に超音波振動を与えて、良好な鋳ぐるみを行うことが可能となる。   According to the second aspect of the present invention, ultrasonic vibration is applied to the cast walnut member from at least two opposing directions, so that the entire cast walnut member is vibrated uniformly. It is possible to perform good cast-in by applying ultrasonic vibration to the surface.

請求項3に記載の発明によれば、超音波振動の周波数、振幅および付与時間を調整して、被鋳ぐるみ部材と鋳造金属との接合層を所定の厚みにすることで、接合強度を適正にすることが可能となる。すなわち、接合層が厚すぎると、その脆性によって被鋳ぐるみ部材と鋳造金属とが剥離するおそれがある場合に、接合層を所定の厚みに(薄く)制御することで、被鋳ぐるみ部材と鋳造金属との剥離を防止し、接合強度を適正にすることが可能となる。   According to the invention described in claim 3, by adjusting the frequency, amplitude, and application time of the ultrasonic vibration, the bonding layer between the cast walnut member and the cast metal has a predetermined thickness, so that the bonding strength is appropriate. It becomes possible to. That is, if the joining layer is too thick, the cast walnut member and the cast metal may be peeled off due to the brittleness thereof, and the joining layer is controlled to a predetermined thickness (thin), so that the cast walnut member and the cast metal are cast. It is possible to prevent peeling from the metal and make the bonding strength appropriate.

また、被鋳ぐるみ部材が耐熱鋳鉄製で、鋳造金属がアルミニウムまたはアルミニウム合金の場合、本発明者の調査、研究の結果、接合層の厚みを1μm以上15μm未満とすることで、被鋳ぐるみ部材と鋳造金属との剥離が防止され、接合強度が適正になることが確認されている。このため、請求項4に記載の発明によれば、被鋳ぐるみ部材と鋳造金属との剥離を防止し、接合強度を適正になることが可能となる。   Further, when the cast walnut member is made of heat-resistant cast iron and the cast metal is aluminum or an aluminum alloy, as a result of investigation and research by the present inventor, the thickness of the bonding layer is set to 1 μm or more and less than 15 μm. It has been confirmed that peeling between the metal and the cast metal is prevented and the bonding strength is appropriate. For this reason, according to the invention described in claim 4, it is possible to prevent the cast-in member and the cast metal from being separated from each other, and to make the bonding strength appropriate.

請求項5に記載の発明によれば、鋳造金属が内燃機関のピストンを構成し、被鋳ぐるみ部材がリング溝部を構成し、鋳造金属であるピストンと被鋳ぐるみ部材であるリング溝部とが良好に接合される。このため、高温高圧下においてもリング溝部がピストンから離脱することがなく、リング溝部が永続的に機能する。   According to the fifth aspect of the present invention, the cast metal constitutes the piston of the internal combustion engine, the cast stuffed member constitutes the ring groove, and the piston that is the cast metal and the ring groove that is the cast stuffed member are good. To be joined. For this reason, the ring groove portion does not detach from the piston even under high temperature and pressure, and the ring groove portion functions permanently.

以下、この発明を図示の実施の形態に基づいて説明する。   The present invention will be described below based on the illustrated embodiments.

図1は、この発明の実施の形態に係る鋳ぐるみ方法を示すフローチャートであり、この鋳ぐるみ方法は、被鋳ぐるみ部材とこれを鋳ぐるむ鋳造金属とが異種材、異種金属である場合の鋳ぐるみ方法である。この実施の形態では、被鋳ぐるみ部材が耐熱鋳鉄(高Niのオーステナイト鋳鉄)製の耐摩環、鋳造金属がアルミニウムで、耐摩環が配置されたアルミニウム製のディーゼルエンジン(内燃機関)用ピストンを鋳造する場合について説明する。すなわち、アルミニウムが内燃機関のピストンを構成し、耐摩環にピストンリングを装着するリング溝が形成されて、耐摩環がリング溝部を構成する場合について説明する。   FIG. 1 is a flowchart showing a cast-in method according to an embodiment of the present invention. This cast-in method is for a case where a cast-in member and a cast metal in which the cast-in member is cast are different materials and different metals. This is a cast-in method. In this embodiment, the cast walnut member is made of a heat-resistant cast iron (high-Ni austenitic cast iron) wear-resistant ring, the cast metal is aluminum, and the piston for an aluminum diesel engine (internal combustion engine) in which the wear-resistant ring is arranged is cast. The case where it does is demonstrated. That is, a case where aluminum constitutes a piston of an internal combustion engine, a ring groove for mounting the piston ring on the wear resistant ring is formed, and the wear resistant ring constitutes a ring groove portion will be described.

まず、鋳造金属である原材料(アルミニウムインゴット等)を溶解炉で溶解し(ステップS1)、脱ガス処理や改質処理などの溶湯処理を行った(ステップS2)後に、アルミニウム溶湯を溶解炉から溶解保持炉へ移動する(ステップS3)。一方、耐摩環を雰囲気炉で200〜300℃程度に加熱(予熱)し(ステップS4)、図2に示すように、耐摩環1を鋳造金型(鋳型)2内の所定位置に載置することで保持する(ステップS5)。   First, a raw material (aluminum ingot, etc.), which is a cast metal, is melted in a melting furnace (step S1), and molten metal treatment such as degassing treatment or reforming treatment is performed (step S2), and then the molten aluminum melt is melted from the melting furnace. It moves to a holding furnace (step S3). On the other hand, the wear ring is heated (preheated) to about 200 to 300 ° C. in an atmospheric furnace (step S4), and the wear ring 1 is placed at a predetermined position in the casting mold (mold) 2 as shown in FIG. (Step S5).

次に、耐摩環1に超音波発振器の振動子を取り付ける(ステップS6)。このとき、耐摩環1全体が均一に振動するように、振動子を取り付ける。具体的には、円環状の耐摩環1に対して、図3に示すように、耐摩環1の中心を中心とする点対称の位置(対向する位置)に、それぞれ振動子10を取り付ける。このように対向する2つの位置に振動子10を取り付け、後述するように2つの方向から耐摩環1に超音波振動を付与するのは、次の理由によるものである。   Next, a vibrator of an ultrasonic oscillator is attached to the wear-resistant ring 1 (step S6). At this time, the vibrator is attached so that the entire wear-resistant ring 1 vibrates uniformly. Specifically, as shown in FIG. 3, the vibrators 10 are respectively attached to the annular wear-resistant ring 1 at point-symmetric positions (opposite positions) around the center of the wear-resistant ring 1. The reason why the vibrator 10 is attached to two opposing positions in this way and ultrasonic vibration is applied to the wear-resistant ring 1 from two directions as will be described later is as follows.

すなわち、振動が伝わる際には1/2波長で共振が発生するため、1つの方向のみから耐摩環1に超音波振動を与えた場合、図4に示すように、振動しない無振動部が発生し、耐摩環1全体が均一に振動しなくなる。この結果、後述するアルミニウム溶湯20の鋳込みの際に、耐摩環1とアルミニウムとが均一に接合しなくなる。このため、対向する2つの方向から交互に(180度位相をずらして)耐摩環1に超音波振動を与えることで、耐摩環1全体が均一に振動するようにするものである。   That is, when vibration is transmitted, resonance occurs at a half wavelength, and therefore, when ultrasonic vibration is applied to the wear-resistant ring 1 from only one direction, a non-vibrating portion that does not vibrate is generated as shown in FIG. As a result, the entire wear-resistant ring 1 does not vibrate uniformly. As a result, the wear-resistant ring 1 and aluminum are not uniformly joined when the molten aluminum 20 described later is cast. For this reason, by applying ultrasonic vibration to the wear-resistant ring 1 alternately from two opposing directions (with a phase difference of 180 degrees), the entire wear-resistant ring 1 is vibrated uniformly.

続いて、超音波発振器を起動して耐摩環1に超音波振動を付与し(ステップS7)、この状態で、図5に示すように、アルミニウム溶湯20を鋳造金型2内に鋳込む(ステップS8)。ここで、超音波の周波数は、一般的な周波数(20kHz以上)でよいが、アルミニウム溶湯20へのキャビテーションなどの影響を考慮すると、より高い周波数が望ましい。また、耐摩環1とアルミニウムとの接合層(拡散浸透層)が所定の厚みになるように、超音波振動の周波数、振幅および付与(照射)時間の少なくともひとつを調整する。すなわち、接合層が厚すぎると、その脆性によって耐摩環1とアルミニウムとが剥離するおそれがあり、接合層を所定の厚みに(薄く)制御することで、耐摩環1とアルミニウムとの剥離を防止し、接合強度を適正にすることが可能となる。   Subsequently, the ultrasonic oscillator is activated to apply ultrasonic vibration to the wear-resistant ring 1 (step S7). In this state, as shown in FIG. 5, the molten aluminum 20 is cast into the casting mold 2 (step S7). S8). Here, the frequency of the ultrasonic wave may be a general frequency (20 kHz or more), but a higher frequency is desirable in consideration of the influence of cavitation on the molten aluminum 20. Further, at least one of the frequency, amplitude and application (irradiation) time of the ultrasonic vibration is adjusted so that the bonding layer (diffusion permeation layer) between the wear-resistant ring 1 and aluminum has a predetermined thickness. That is, if the bonding layer is too thick, the wear-resistant ring 1 and aluminum may be peeled off due to its brittleness, and the peeling of the wear-resistant ring 1 and aluminum is prevented by controlling the bonding layer to a predetermined thickness (thin). Thus, the bonding strength can be made appropriate.

具体的には、高Niのオーステナイト鋳鉄製の耐摩環1とアルミニウムまたはアルミニウム合金の場合、本発明者の調査、研究の結果、接合層の厚みが7μm前後(1μm以上15μm未満)の場合が最適である、ことが確認された。このため、接合層の厚みが7μm前後になるように、超音波振動の周波数、振幅および付与時間の少なくともひとつのパラメータを調整する。ここで、調整するパラメータは、被鋳ぐるみ部材(耐摩環1)の材質、大きさ、形状や、鋳造金属の材質、溶湯温度、さらには周囲温度などに基づいて決定する。例えば、次のように調整する。
超音波振動の周波数:28〜50kHz
超音波振動の振幅:15μm以下
アルミニウム溶湯の温度:700〜800℃
Specifically, in the case of a wear ring 1 made of high Ni austenitic cast iron and aluminum or an aluminum alloy, the result of investigation and research by the present inventor is that the thickness of the bonding layer is about 7 μm (1 μm or more and less than 15 μm). It was confirmed that. For this reason, at least one parameter of the frequency, amplitude, and application time of the ultrasonic vibration is adjusted so that the thickness of the bonding layer is about 7 μm. Here, the parameters to be adjusted are determined based on the material, size, and shape of the to-be-cast member (wear ring 1), the material of the cast metal, the molten metal temperature, and the ambient temperature. For example, the adjustment is performed as follows.
Frequency of ultrasonic vibration: 28-50kHz
Amplitude of ultrasonic vibration: 15 μm or less Temperature of molten aluminum: 700 to 800 ° C.

また、超音波振動の付与時間については、接合層の厚みを左右する最も大きなパラメータとなり、付与時間が長いと接合層が厚くなり、付与時間が短いと接合層が薄くなる。   The application time of ultrasonic vibration is the largest parameter that affects the thickness of the bonding layer. When the application time is long, the bonding layer becomes thick, and when the application time is short, the bonding layer becomes thin.

このように、耐摩環1に超音波振動を与えた状態でアルミニウム溶湯20を鋳込むことで、超音波による振動エネルギーによってアルミニウムが耐摩環1の表面に拡散浸透し、アルミニウム溶湯20の凝固に伴って耐摩環1とアルミニウムとが接合されていく。   Thus, by casting the molten aluminum 20 in a state where ultrasonic vibration is applied to the wear-resistant ring 1, aluminum diffuses and penetrates into the surface of the wear-resistant ring 1 due to vibrational energy due to ultrasonic waves, and as the molten aluminum 20 solidifies. Thus, the wear-resistant ring 1 and aluminum are joined together.

次に、鋳込みが完了した後に、鋳造金型2内のアルミニウム溶湯20を冷却し、凝固させる(ステップS9)。その後、鋳造金型2から鋳造物(ピストン)を取り出し(ステップS10)、鋳造物の冷却、湯口の切断などの後工程を行う(ステップS11)。ここで、後工程には、耐摩環1にリング溝を形成する機械加工も含まれ、これにより、耐摩環1がリング溝部を構成することになる。   Next, after the casting is completed, the molten aluminum 20 in the casting mold 2 is cooled and solidified (step S9). Thereafter, the casting (piston) is taken out from the casting mold 2 (step S10), and post-processes such as cooling the casting and cutting the gate are performed (step S11). Here, the post-process also includes machining for forming a ring groove in the wear-resistant ring 1, whereby the wear-resistant ring 1 constitutes a ring groove portion.

このような鋳ぐるみ方法によれば、鋳造金属であるアルミニウムが耐摩環1の表面に拡散浸透し、耐摩環1の表面に拡散浸透層(接合層)が形成されるため、耐摩環1と凝固アルミニウムとが良好に(強固に)接合される。しかも、耐摩環1全体が均一に振動するように超音波振動が付与されるため、耐摩環1の表面全体に拡散浸透層が形成され、耐摩環1全体が凝固アルミニウムと良好に接合される。さらに、超音波振動の周波数、振幅および付与時間を調整して、接合層の厚みが7μm程度になるように超音波振動が付与されているため、耐摩環1と凝固アルミニウムとの剥離を防止し、接合強度(靭性)を適正にすることが可能となる。   According to such a cast-in method, aluminum, which is a cast metal, diffuses and penetrates the surface of the wear-resistant ring 1, and a diffusion / penetration layer (bonding layer) is formed on the surface of the wear-resistant ring 1. Good (strong) bonding with aluminum. Moreover, since ultrasonic vibration is applied so that the entire wear-resistant ring 1 vibrates uniformly, a diffusion / penetration layer is formed on the entire surface of the wear-resistant ring 1, and the entire wear-resistant ring 1 is well bonded to the solidified aluminum. Further, since the ultrasonic vibration is applied so that the thickness of the bonding layer is about 7 μm by adjusting the frequency, amplitude and application time of the ultrasonic vibration, peeling between the wear resistant ring 1 and the solidified aluminum is prevented. It is possible to make the bonding strength (toughness) appropriate.

ここで、このような効果を確認した結果を図6〜9に示す。図6は、本鋳ぐるみ方法による鋳造品を製品外径(最終的なピストン外径)まで加工し、耐摩環1の周辺をレッドチェック(浸透探傷試験)した結果を示す。図7は、この鋳造品を切断し、耐摩環1と凝固アルミニウム21との接合状態を顕微鏡で検証した結果を示す。一方、図8は、超音波振動を与えず、かつアルミナイジングを行わないで鋳ぐるみ(以下、「単純鋳ぐるみ方法」という)した鋳造品を製品外径まで加工し、耐摩環1の周辺をレッドチェックした結果を示し、図9は、図8を拡大した図である。   Here, the result of confirming such an effect is shown in FIGS. FIG. 6 shows the result of processing the cast product by the main casting method to the product outer diameter (final piston outer diameter) and performing a red check (penetration flaw test) around the wear-resistant ring 1. FIG. 7 shows the result of cutting this cast product and verifying the joining state between the wear-resistant ring 1 and the solidified aluminum 21 with a microscope. On the other hand, FIG. 8 shows a case where a cast product (hereinafter referred to as “simple cast method”) without ultrasonic vibration and aluminizing is processed to the product outer diameter, and the periphery of the wear-resistant ring 1 is The result of the red check is shown, and FIG. 9 is an enlarged view of FIG.

図8、9から明らかなように、単純鋳ぐるみ方法では、耐摩環1と凝固アルミニウム21との間に隙間(赤色染色)が多く、かつ隙間が大きいこと、つまり両者が接合されていないことが確認された。一方、本鋳ぐるみ方法では、図6に示すように、耐摩環1と凝固アルミニウム21との間に隙間がなく、耐摩環1と凝固アルミニウム21とが良好に接合されていることが確認された。さらに、図7に示すように、耐摩環1の表面に接合層(拡散浸透層)1Aが形成され、この接合層1Aの厚みが5〜7μmであることが確認された。すなわち、接合強度(靭性)が適正で、耐摩環1と凝固アルミニウム21との剥離が防止されることが確認された。一方、耐摩環1をアルミナイジングした後にアルミニウム溶湯20を鋳込んだ場合には、接合層1Aの厚みが15〜20μm程度であることが確認されている。   As is apparent from FIGS. 8 and 9, in the simple cast-in method, there are many gaps (red dyeing) between the wear-resistant ring 1 and the solidified aluminum 21, and the gaps are large, that is, the two are not joined. confirmed. On the other hand, in this cast-in method, as shown in FIG. 6, it was confirmed that there was no gap between the wear-resistant ring 1 and the solidified aluminum 21, and the wear-resistant ring 1 and the solidified aluminum 21 were well bonded. . Furthermore, as shown in FIG. 7, it was confirmed that a bonding layer (diffusion permeation layer) 1A was formed on the surface of the wear-resistant ring 1, and the thickness of the bonding layer 1A was 5 to 7 μm. That is, it was confirmed that the bonding strength (toughness) is appropriate and that the wear-resistant ring 1 and the solidified aluminum 21 are prevented from peeling off. On the other hand, when the molten aluminum 20 is cast after the wear resistant ring 1 is aluminized, it is confirmed that the thickness of the bonding layer 1A is about 15 to 20 μm.

また、2つの方向から耐摩環1に超音波振動を付与した状態でアルミニウム溶湯20を鋳込むだけで、容易かつ適正に耐摩環1を鋳ぐるむことができる。すなわち、専用の溶解炉などが必要で、しかも煩雑で多くの時間と労力を要するアルミナイジングを行うことなく、異種材(異種金属)の鋳ぐるみを良好に行うことが可能となる。この結果、工程の簡素化、製造エネルギーおよび製造費の削減が可能となる。   Moreover, the wear resistant ring 1 can be cast easily and appropriately simply by casting the molten aluminum 20 in a state where ultrasonic vibration is applied to the wear resistant ring 1 from two directions. In other words, a special melting furnace or the like is required, and it is possible to perform the casting of dissimilar materials (dissimilar metals) satisfactorily without performing aluminizing which is complicated and requires a lot of time and labor. As a result, it is possible to simplify the process and reduce manufacturing energy and manufacturing cost.

以上、この発明の実施の形態について説明したが、具体的な構成は、上記の実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があっても、この発明に含まれる。例えば、上記の実施の形態では、対向する2つの方向から交互に耐摩環1に超音波振動を与えているが、被鋳ぐるみ部材の形状、大きさ、材質などに応じて、3つ以上の方向から超音波振動を与え、被鋳ぐるみ部材全体が均一に振動するようにしてもよい。また、耐摩環1を鋳ぐるむ場合について説明したが、その他の被鋳ぐるみ部材にも適用できることは勿論である。   Although the embodiment of the present invention has been described above, the specific configuration is not limited to the above embodiment, and even if there is a design change or the like without departing from the gist of the present invention, Included in the invention. For example, in the above embodiment, ultrasonic vibration is alternately applied to the wear-resistant ring 1 from two opposing directions. However, depending on the shape, size, material, etc. of the cast stuffed member, three or more Ultrasonic vibration may be applied from the direction so that the entire cast-in member is vibrated uniformly. Moreover, although the case where the wear-resistant ring 1 was cast was described, it is needless to say that the present invention can be applied to other cast members.

以上のように、この発明に係る鋳ぐるみ方法は、被鋳ぐるみ部材とこれを鋳ぐるむ鋳造金属とが異種材であっても、良好かつ容易に被鋳ぐるみ部材を鋳ぐるむことが可能なものとして極めて有用である。   As described above, the cast-in method according to the present invention can cast the cast-in member in a good and easy manner even if the cast-in member and the cast metal for casting the same are different materials. This is extremely useful.

この発明の実施の形態に係る鋳ぐるみ方法を示すフローチャートである。It is a flowchart which shows the casting method which concerns on embodiment of this invention. 図1の鋳ぐるみ方法において、耐摩環を鋳造金型内に載置する状態を示す図である。FIG. 2 is a diagram showing a state in which a wear-resistant ring is placed in a casting mold in the cast-in method of FIG. 1. 図1の鋳ぐるみ方法において、耐摩環に振動子を取り付けた状態を示す図である。FIG. 2 is a view showing a state in which a vibrator is attached to a wear-resistant ring in the cast-in method of FIG. 1. 図3に対して、耐摩環に振動子をひとつだけ取り付けた状態と、その場合の耐摩環に与える振動状態を示す図である。FIG. 4 is a diagram showing a state in which only one vibrator is attached to the wear-resistant ring and a vibration state given to the wear-resistant ring in that case. 図1の鋳ぐるみ方法において、アルミニウム溶湯を鋳造金型内に鋳込む状態を示す図である。FIG. 2 is a view showing a state in which molten aluminum is cast into a casting mold in the cast-in method of FIG. 1. 図1の鋳ぐるみ方法による耐摩環の周辺をレッドチェックした結果を示す写真である。It is a photograph which shows the result of having carried out the red check of the periphery of the wear-resistant ring by the cast-in method of FIG. 図1の鋳ぐるみ方法による耐摩環の周辺を切断し、耐摩環と凝固アルミニウムとの接合状態を顕微鏡撮影した結果を示す写真(a)と、その拡大写真(b)である。It is the photograph (a) which shows the result of having cut | disconnected the periphery of the wear-resistant ring by the cast-in method of FIG. 単純鋳ぐるみ方法による耐摩環の周辺をレッドチェックした結果を示す写真である。It is a photograph which shows the result of having carried out the red check of the periphery of the wear-resistant ring by a simple cast-in method. 図8の一部拡大写真である。It is a partially enlarged photograph of FIG.

符号の説明Explanation of symbols

1 耐摩環(被鋳ぐるみ部材)
1A 接合層
2 鋳造金型(鋳型)
20 アルミニウム溶湯(鋳造金属)
10 振動子
21 凝固アルミニウム(鋳造金属)
1. Wear-resistant ring (cast cast member)
1A Bonding layer 2 Casting mold (mold)
20 Molten aluminum (cast metal)
10 vibrator 21 solidified aluminum (cast metal)

Claims (5)

被鋳ぐるみ部材とこれを鋳ぐるむ鋳造金属とが異種材である鋳ぐるみ方法であって、
前記被鋳ぐるみ部材を予熱して鋳型内に保持し、前記被鋳ぐるみ部材全体が均一に振動するように複数の方向から前記被鋳ぐるみ部材に超音波振動を付与した状態で前記鋳造金属を鋳型内に鋳込む、ことを特徴とする鋳ぐるみ方法。
A cast walnut method in which a cast stuffed member and a cast metal that casts this are different materials,
The cast metal is preheated and held in a mold, and the cast metal is applied in a state where ultrasonic vibration is applied to the cast walnut member from a plurality of directions so that the entire cast walnut member vibrates uniformly. A casting method characterized by casting into a mold.
少なくとも対向する2つの方向から前記被鋳ぐるみ部材に超音波振動を付与する、ことを特徴とする請求項1に記載の鋳ぐるみ方法。   2. The cast-in method according to claim 1, wherein ultrasonic vibration is applied to the cast-in member from at least two opposing directions. 前記被鋳ぐるみ部材と鋳造金属との接合層が所定の厚みになるように、前記超音波振動の周波数、振幅および付与時間の少なくともひとつを調整する、ことを特徴とする請求項1または2のいずれか1項に記載の鋳ぐるみ方法。   The frequency, amplitude, and application time of the ultrasonic vibration are adjusted so that the joining layer between the cast stuffed member and the cast metal has a predetermined thickness. The cast-in method of any one of Claims. 前記被鋳ぐるみ部材が耐熱鋳鉄製で、前記鋳造金属がアルミニウムまたはアルミニウム合金の場合に、前記接合層の厚みを1μm以上15μm未満とする、ことを特徴とする請求項3に記載の鋳ぐるみ方法。   4. The cast-in method according to claim 3, wherein when the cast-in member is made of heat-resistant cast iron and the cast metal is aluminum or an aluminum alloy, the thickness of the bonding layer is 1 μm or more and less than 15 μm. . 前記鋳造金属が内燃機関のピストンを構成し、前記被鋳ぐるみ部材がピストンリングを装着するリング溝部を構成する、ことを特徴とする請求項1から4のいずれか1項に記載の鋳ぐるみ方法。
The cast-in method according to any one of claims 1 to 4, wherein the cast metal constitutes a piston of an internal combustion engine, and the cast-in stuffed member constitutes a ring groove portion in which a piston ring is mounted. .
JP2008218735A 2008-08-27 2008-08-27 Internal chilling method Pending JP2010052000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008218735A JP2010052000A (en) 2008-08-27 2008-08-27 Internal chilling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008218735A JP2010052000A (en) 2008-08-27 2008-08-27 Internal chilling method

Publications (1)

Publication Number Publication Date
JP2010052000A true JP2010052000A (en) 2010-03-11

Family

ID=42068480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008218735A Pending JP2010052000A (en) 2008-08-27 2008-08-27 Internal chilling method

Country Status (1)

Country Link
JP (1) JP2010052000A (en)

Similar Documents

Publication Publication Date Title
US8979971B2 (en) Process for producing metallic components
CN101234420A (en) Ultrasound wave compression mold casting method and special-purpose equipment thereof
WO2011100098A4 (en) Cast metal parts with cosmetic surfaces and methods of making same
JP2010052000A (en) Internal chilling method
US20090260153A1 (en) Construction of hollow zinc die-casting by thixotropic welding
JP6533642B2 (en) Member to be joined for high energy beam welding and method of manufacturing joined body
KR101808193B1 (en) Method of manufacturing for piston having cooled ring carrier and apparatus for alfin processing
JP2007061866A (en) Method for producing composite cast iron member
JP5771974B2 (en) Joining method
JP5905809B2 (en) Method for producing Al-Si casting alloy
CN109352984A (en) Increasing material manufacturing method and associated components
JP3000366B1 (en) Ultrasonic cast-in joining method and ultrasonic cast-in joint
JP2007237459A (en) Worm wheel and its manufacturing method
KR100982865B1 (en) A dissimilar metal joining method using vacuum investment casting and dissimilar joining body fabricated by the same
JPH07314121A (en) Method and device for composite casting of dissimilar metal using lost foam pattern casting method
CN108080602A (en) A kind of part blank nature cracking technology
JP7184730B2 (en) Joining method of aluminum materials
JPH09209824A (en) Manufacture of cylinder block
JP5566155B2 (en) Al alloy cast product and manufacturing method thereof
JPS6356346A (en) Production of fiber reinforced composite material
JP2000237863A (en) Formation of metallic interface reaction layer
JP6512059B2 (en) Laser buildup method for valve seat
US20090120535A1 (en) Method of bonding steel members, method of enhancing bonding strength of united body formed of steel members, steel product, and die-cast product
JPS6356345A (en) Insert casting method
JP5111903B2 (en) Cylinder sleeve manufacturing method