JP2000237863A - Formation of metallic interface reaction layer - Google Patents

Formation of metallic interface reaction layer

Info

Publication number
JP2000237863A
JP2000237863A JP11042133A JP4213399A JP2000237863A JP 2000237863 A JP2000237863 A JP 2000237863A JP 11042133 A JP11042133 A JP 11042133A JP 4213399 A JP4213399 A JP 4213399A JP 2000237863 A JP2000237863 A JP 2000237863A
Authority
JP
Japan
Prior art keywords
metal
reaction layer
interface
interface reaction
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11042133A
Other languages
Japanese (ja)
Inventor
Yuichi Furukawa
雄一 古川
Yoshiki Tsunekawa
好樹 恒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP11042133A priority Critical patent/JP2000237863A/en
Publication of JP2000237863A publication Critical patent/JP2000237863A/en
Pending legal-status Critical Current

Links

Landscapes

  • Molten Solder (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Coating With Molten Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable the control of thickness while forming a reaction layer in the interface between a first metal and a second metal member by allowing the solid second metal member to contact with the molten first metal surface and also, solidifying the molten metal while oscillating the second metal member with the propagation of ultrasonic wave. SOLUTION: As the first metal, e.g. Mg or Mg alloy is used and the solid second metal member e.g. Al alloy, is brought into contact with the molten first metal surface and the molten first metal is solidified while oscillating the second metal member with the propagation of the ultrasonic wave. Further, the interface reaction layer is discovered on the first metal surface by separating the second metal member from the first metal during solidifying. Then, the interface reaction layer formed on the first metal surface can be utilized as the surface hardened layer by suitably selecting the kinds of the first metal and the second metal member. A crucible 6 charging ADC12, is heated in a prescribed condition, and when the molten metal becomes a prescribed temp. after forcibly air-cooling, the tip part of the metal bar 5 of SUS304 is dipped into the molten metal, and the ultrasonic wave oscillation under a prescribed condition is applied to obtain the joined part of both metals.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属界面反応層の
形成方法に関する。本発明の金属界面反応層の形成方法
は、表面硬化層を形成したり、鋳ぐるみ鋳造時に鋳ぐる
み部材と鋳造物との界面に界面反応層を形成する場合な
どに用いることができる。
[0001] The present invention relates to a method for forming a metal interface reaction layer. The method for forming a metal interfacial reaction layer of the present invention can be used for forming a surface hardened layer or for forming an interfacial reaction layer at the interface between a cast-in member and a casting at the time of cast-in casting.

【0002】[0002]

【従来の技術】例えばアルミニウム合金は活性で軟化温
度が低いため、摺動環境や高温の腐食環境で使用するた
めには表面に保護層を形成する必要がある。この保護層
を形成するには、めっきや溶射などの表面被覆、表面合
金化、部分複合化、接合・鋳ぐるみなどの方法が知られ
ている。
2. Description of the Related Art For example, since an aluminum alloy is active and has a low softening temperature, it is necessary to form a protective layer on the surface for use in a sliding environment or a high-temperature corrosive environment. In order to form the protective layer, methods such as surface coating such as plating and thermal spraying, surface alloying, partial compounding, joining and casting are known.

【0003】この鋳ぐるみ鋳造においては、鋳ぐるみ部
材と鋳造物との界面に界面反応層が形成される場合があ
ることが知られ、この界面反応層を接合層などとして利
用することが検討されている。また例えば特開平10−
280110号公報などには、アルミニウム部材表面に
レーザービームや電子ビームなどの高密度エネルギービ
ームを照射し、次いで急冷凝固することで表面硬化層を
形成する方法が開示されている。
[0003] In this insert casting, it is known that an interface reaction layer may be formed at the interface between the insert member and the casting, and it has been studied to use this interface reaction layer as a bonding layer or the like. ing. For example, see
No. 280110 discloses a method in which a surface hardened layer is formed by irradiating the surface of an aluminum member with a high-density energy beam such as a laser beam or an electron beam, followed by rapid solidification.

【0004】[0004]

【発明が解決しようとする課題】ところが高密度エネル
ギービームを用いる表面硬化方法では、大がかりな装置
が必要となり、設備費用が多大となるとともに設置スペ
ース面からの制約も大きい。また鋳ぐるみ鋳造におい
て、例えばステンレス製の鋳ぐるみ部材をアルミニウム
溶湯で鋳ぐるもうとすると、溶湯温度が低いと酸化膜に
よって接合が不良となり、溶湯温度が高いと界面に厚い
反応層が生成して接合強度が低下するという不具合があ
ることが知られている。
However, the surface hardening method using a high-density energy beam requires a large-scale apparatus, which increases facility costs and limits installation space. Also, in cast-in-place casting, for example, when trying to cast a cast-in stainless steel member with molten aluminum, if the temperature of the molten metal is low, the bonding becomes poor due to the oxide film, and if the temperature of the molten metal is high, a thick reaction layer is generated at the interface. It is known that there is a problem that the bonding strength is reduced.

【0005】本発明はこのような事情に鑑みてなされた
ものであり、容易に界面反応層を形成でき、しかも界面
反応層の厚さの制御も可能とすることを目的とするもの
である。
The present invention has been made in view of such circumstances, and has as its object to enable easy formation of an interface reaction layer and control of the thickness of the interface reaction layer.

【0006】[0006]

【課題を解決するための手段】上記課題を解決する本発
明の界面反応層の形成方法は、第1金属の溶湯表面に固
体の第2金属部材を接触させ、超音波の伝播によって第
2金属部材を加振しながら溶湯を凝固させることにより
第1金属と第2金属部材との界面に反応層を形成するこ
とにある。
According to the present invention, there is provided a method for forming an interface reaction layer, comprising the steps of: bringing a solid second metal member into contact with a surface of a molten metal of a first metal; An object of the present invention is to form a reaction layer at an interface between a first metal and a second metal member by solidifying a molten metal while vibrating the members.

【0007】[0007]

【発明の実施の形態】本発明は、固体の第2金属部材を
超音波加振しながら第1金属溶湯表面に接触させるとこ
ろに特徴を有している。これにより両者の界面に界面反
応層が形成される。例えばアルミニウムからなる第1金
属の溶湯にステンレス製の第2金属部材を接触させただ
けでは界面反応層は形成されないが、第2金属部材を超
音波加振しながら第1金属の溶湯表面に接触させること
で界面反応層を形成することができる。この理由は現時
点では明らかとはなっていないが、超音波振動により界
面の酸化膜や空気層が除去されることに起因すると考え
られる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is characterized in that a solid second metal member is brought into contact with the surface of a first molten metal while being subjected to ultrasonic vibration. Thereby, an interface reaction layer is formed at the interface between the two. For example, the interface reaction layer is not formed only by bringing the second metal member made of stainless steel into contact with the first metal melt made of aluminum, but the second metal member comes into contact with the first metal melt surface while being ultrasonically vibrated. By doing so, an interface reaction layer can be formed. Although the reason for this has not been clarified at present, it is considered that the reason is that the oxide film and the air layer at the interface are removed by the ultrasonic vibration.

【0008】本発明によって表面硬化層を形成する場合
には、第1金属の溶湯表面に固体の第2金属部材を接触
させ、超音波の伝播によって第2金属部材を加振しなが
ら溶湯を凝固させる。これにより界面の酸化膜や空気層
が除去され、界面反応層が形成される。そして凝固の途
中で第2金属部材を第1金属から離すことで、第1金属
表面に界面反応層が表出する。また第1金属が凝固後
に、界面反応層が表出するように界面で切断してもよ
い。そして第1金属と第2金属部材の種類を適切に選択
することにより、第1金属表面に表出する界面反応層を
表面硬化層として利用することができる。
In the case of forming a surface hardened layer according to the present invention, a solid second metal member is brought into contact with the surface of the molten metal of the first metal, and the molten metal is solidified while vibrating the second metal member by propagation of ultrasonic waves. Let it. Thereby, the oxide film and the air layer at the interface are removed, and the interface reaction layer is formed. Then, by separating the second metal member from the first metal during solidification, an interface reaction layer appears on the surface of the first metal. Further, after the first metal is solidified, cutting may be performed at the interface so that the interface reaction layer is exposed. By appropriately selecting the types of the first metal and the second metal member, the interface reaction layer exposed on the first metal surface can be used as a surface hardened layer.

【0009】例えば第1金属としてマグネシウムあるい
はマグネシウム合金を用い、第2金属部材としてアルミ
ニウム合金からなる部材を用いれば、界面にスピネル
(MgAl2 4 )からなる界面反応層を形成すること
ができ、アルミニウム合金部材を除去することで界面反
応層を表面硬化層として利用することができる。また第
1金属としてアルミニウムあるいはアルミニウム合金を
用い、第2金属部材としてSUS304からなるステン
レス部材を用いれば、界面にFe−Al−Si,Al95
Fe4 Cr,Cr3 Ni5 Si2 などからなる界面反応
層が形成され、ステンレス部材を除去することで界面反
応層を表面硬化層として利用することができる。
For example, if magnesium or a magnesium alloy is used as the first metal and a member made of an aluminum alloy is used as the second metal member, an interface reaction layer made of spinel (MgAl 2 O 4 ) can be formed at the interface. By removing the aluminum alloy member, the interface reaction layer can be used as a surface hardened layer. If aluminum or an aluminum alloy is used as the first metal and a stainless steel member made of SUS304 is used as the second metal member, Fe-Al-Si, Al 95
An interface reaction layer made of Fe 4 Cr, Cr 3 Ni 5 Si 2 or the like is formed, and the interface reaction layer can be used as a surface hardened layer by removing the stainless steel member.

【0010】また超音波加振するときの第1金属溶湯の
温度を制御することで、界面反応層を形成しつつ第2金
属部材の接合を回避することができる。このようにすれ
ば、上記した第2金属部材の除去工程を省略することが
でき、表面硬化層の形成が一層容易となる。そして界面
反応層は第2金属部材が接触する表面にのみ形成される
ので、第2金属部材の接触する部分の面積を小さくすれ
ば、表面硬化層を部分的に形成することもできる。
[0010] Further, by controlling the temperature of the first molten metal at the time of ultrasonic vibration, it is possible to avoid joining the second metal member while forming an interface reaction layer. With this configuration, the step of removing the second metal member described above can be omitted, and the formation of the surface hardened layer is further facilitated. Since the interface reaction layer is formed only on the surface where the second metal member contacts, if the area of the contacting portion of the second metal member is reduced, the surface hardened layer can be partially formed.

【0011】さらに本発明の界面反応層の形成方法によ
れば、界面反応層の厚さを容易に制御することができ
る。第1金属溶湯に第2金属部材を接触させると、超音
波加振しなくとも界面反応層が形成される場合がある。
この界面反応層の厚さは、溶湯温度に比例し、また溶湯
との接触時間が長くなるにつれて界面反応層が成長す
る。しかし鋳ぐるみ鋳造などにおいて、界面反応層が過
度に厚くなると鋳ぐるみ鋳造において接合強度などの物
性が低下する場合がある。
Further, according to the method for forming an interface reaction layer of the present invention, the thickness of the interface reaction layer can be easily controlled. When the second metal member is brought into contact with the first molten metal, an interface reaction layer may be formed without applying ultrasonic vibration.
The thickness of the interface reaction layer is proportional to the temperature of the melt, and the interface reaction layer grows as the contact time with the melt increases. However, in the case of cast-in-place casting, if the interface reaction layer is excessively thick, physical properties such as bonding strength may be reduced in the case of cast-in-place casting.

【0012】そこで本発明では、第2金属部材を超音波
加振しながら第1金属溶湯に接触させている。すると第
2金属部材表面に生成した界面反応層は超音波加振によ
る音響流によって溶湯中に飛散し、これにより界面反応
層の厚さが薄くなることが明らかとなった。そして超音
波加振しながら溶湯と接触することで界面反応層が瞬時
に形成され、その後は加振時間が長くなるほど界面反応
層の厚さが薄くなり、超音波振動の全振幅が大きいほど
界面反応層の厚さが薄くなることが明らかとなった。し
かし加振時間が過度に長くなると、界面反応層にクラッ
クが生じる場合がある。
Therefore, in the present invention, the second metal member is brought into contact with the first molten metal while being subjected to ultrasonic vibration. Then, it became clear that the interfacial reaction layer generated on the surface of the second metal member was scattered in the molten metal due to the acoustic current generated by the ultrasonic vibration, thereby reducing the thickness of the interfacial reaction layer. An interface reaction layer is instantaneously formed by contact with the molten metal while being subjected to ultrasonic vibration, and thereafter, the longer the vibration time, the thinner the interface reaction layer becomes, and the larger the total amplitude of the ultrasonic vibration becomes, the larger the interface reaction layer becomes. It became clear that the thickness of the reaction layer was reduced. However, if the vibration time is too long, cracks may occur in the interface reaction layer.

【0013】すなわち超音波加振時間と全振幅を調整す
ることにより、界面反応層の厚さを制御することがで
き、鋳ぐるみ鋳造における鋳造接合強度の低下などの不
具合を回避することができる。超音波加振しながらの鋳
造接合では、先ず界面の空気層や酸化膜が超音波振動で
除去され、次いで界面反応層が形成される。したがって
界面反応層の厚さを薄くするには、界面の空気層や酸化
膜が除去されて表面反応層が形成された瞬間に凝固する
ことが最も望ましい。
That is, by adjusting the ultrasonic vibration time and the total amplitude, it is possible to control the thickness of the interface reaction layer, and to avoid problems such as a decrease in cast joining strength in the insert casting. In the casting joining with ultrasonic vibration, first, an air layer and an oxide film at the interface are removed by ultrasonic vibration, and then an interface reaction layer is formed. Therefore, in order to reduce the thickness of the interface reaction layer, it is most desirable to solidify at the moment when the surface reaction layer is formed by removing the interface air layer or oxide film.

【0014】一方、例えば第2金属部材を超音波加振し
ながら第1金属溶湯に接触させ、その状態で引き上げる
と、第1金属溶湯が第2金属部材表面に吸い付くように
して付着し、超音波加振しない場合より付着量が多くな
ることが明らかとなった。つまり、超音波振動によって
付着力が増加することが明らかとなった。また付着した
溶湯量は付着量が増加したといっても僅かであり、引き
上げられた第2金属部材表面で速やかに凝固する。
On the other hand, for example, when the second metal member is brought into contact with the first molten metal while being vibrated by ultrasonic waves and pulled up in this state, the first molten metal adheres to the surface of the second metal member so as to be attracted thereto. It became clear that the amount of adhesion was larger than when no ultrasonic vibration was applied. That is, it became clear that the ultrasonic vibration increases the adhesive force. Also, the amount of the adhered molten metal is slight even if the amount of the adhered metal is increased, and the molten metal is rapidly solidified on the surface of the pulled up second metal member.

【0015】したがってこの現象を利用すれば、引き上
げられた第2金属部材とそれに付着している第1金属溶
湯の界面にきわめて薄い界面反応層を形成することがで
きる。つまり第2金属部材を超音波加振しながら第1金
属溶湯に接触させて引き上げると、第2金属部材には界
面反応層が形成された状態で適当な量の第1金属溶湯が
付着している。そして付着溶湯は引き上げられた瞬間に
冷却されて凝固するため、界面反応層の成長が抑制さ
れ、薄い界面反応層となる。
Therefore, if this phenomenon is utilized, an extremely thin interface reaction layer can be formed at the interface between the pulled-up second metal member and the first molten metal adhered thereto. That is, when the second metal member is brought into contact with the first molten metal while being ultrasonically vibrated and pulled up, an appropriate amount of the first molten metal adheres to the second metal member in a state where the interface reaction layer is formed. I have. Then, the deposited molten metal is cooled and solidified at the moment of being pulled up, so that the growth of the interface reaction layer is suppressed and a thin interface reaction layer is formed.

【0016】そして第1金属溶湯の凝固物が付着した第
2金属部材を再び第1金属溶湯中に浸漬すれば、第1金
属溶湯の凝固物と第1金属溶湯との鋳造接合になり、凝
固物と第2金属部材の間に薄い界面反応層を保持しつつ
容易に接合することができる。この場合も、酸化膜の除
去などを目的として超音波加振することが望ましい。そ
して、凝固物が再び溶融して界面反応層が成長しないよ
うに、できるだけ低い溶湯温度、短い加振時間とするこ
とが望ましい。
Then, if the second metal member to which the solidified material of the first molten metal adheres is immersed in the first molten metal again, the solidified material of the first molten metal and the first molten metal are cast and joined, and the solidification is performed. Bonding can be easily performed between the object and the second metal member while maintaining a thin interface reaction layer. Also in this case, it is desirable to perform ultrasonic vibration for the purpose of removing the oxide film. It is desirable that the temperature of the molten metal be as low as possible and the vibration time be as short as possible so that the coagulated material does not melt again and the interface reaction layer grows.

【0017】[0017]

【実施例】(実施例1)本実施例は、アルミニウム合金
表面に表面硬化層を形成する場合に本発明を適用したも
のである。図1に、本実施例に用いた超音波鋳造接合装
置を示す。この装置は、超音波発振源1と、図示しない
空冷手段をもつ振動子2と、図示しない水冷手段をもつ
ホーン3と、加熱炉4と、から構成されている。この振
動系の共振周波数は20キロヘルツである。
(Embodiment 1) In this embodiment, the present invention is applied to a case where a hardened surface layer is formed on the surface of an aluminum alloy. FIG. 1 shows an ultrasonic casting and joining apparatus used in the present embodiment. This apparatus includes an ultrasonic oscillation source 1, a vibrator 2 having air cooling means (not shown), a horn 3 having water cooling means (not shown), and a heating furnace 4. The resonance frequency of this vibration system is 20 kilohertz.

【0018】本実施例では、ホーン3の先端にSUS3
04からなり直径9mmの金属棒5をナット30を介し
て固定する。また加熱炉4内にはるつぼ6が配置され、
るつぼ6にはAl−Si−Cu系合金であるADC12
が入れられている。先ず、るつぼ6を加熱炉4内で加熱
して、ADC12溶湯を973Kで20分間保持した。
続いて加熱炉4を取り除き、強制空冷した。溶湯温度が
913Kになると同時にリフト7によってるつぼ6を上
昇させ、図1に示すように金属棒5の先端1mmを溶湯
に漬けた。金属棒5は、溶湯へ浸漬する直前に全振幅1
0μmで超音波加振し始め、10秒間加振した後に超音
波振動を停止した。その後も強制空冷を続行した。
In this embodiment, a SUS3
A metal rod 5 made of 04 and having a diameter of 9 mm is fixed via a nut 30. In addition, a crucible 6 is arranged in the heating furnace 4,
The crucible 6 has an ADC 12 of an Al-Si-Cu alloy.
Is inserted. First, the crucible 6 was heated in the heating furnace 4, and the ADC12 melt was held at 973K for 20 minutes.
Subsequently, the heating furnace 4 was removed and forced air cooling was performed. The crucible 6 was raised by the lift 7 at the same time when the temperature of the molten metal reached 913 K, and the tip 1 mm of the metal rod 5 was immersed in the molten metal as shown in FIG. Immediately before immersion in the molten metal,
Ultrasonic vibration was started at 0 μm, and after 10 seconds, ultrasonic vibration was stopped. After that, forced air cooling was continued.

【0019】室温まで冷却された試料の、金属棒5とA
DC12の接合部分の断面の組織写真と、界面のEPM
A分析結果を図2及び図3にそれぞれ示す。 (実施例2)金属棒5を溶湯に浸漬するときの溶湯温度
を933Kとしたこと以外は実施例1と同様にして鋳造
接合を行った。室温まで冷却された試料の、金属棒5と
ADC12の接合部分の断面の組織写真と、界面のEP
MA分析結果を図4及び図5にそれぞれ示す。
The metal rod 5 and A of the sample cooled to room temperature
Microstructure photograph of the cross section of the junction of DC12 and EPM at the interface
A analysis results are shown in FIGS. 2 and 3, respectively. (Example 2) Cast joining was performed in the same manner as in Example 1 except that the temperature of the molten metal when the metal rod 5 was immersed in the molten metal was 933K. A micrograph of the cross section of the joint between the metal rod 5 and the ADC 12 of the sample cooled to room temperature, and EP at the interface.
MA analysis results are shown in FIGS. 4 and 5, respectively.

【0020】(比較例1)実施例1と同様の装置を用
い、加熱炉4を取り除き強制空冷して、溶湯温度が95
3Kになると同時にリフト7によってるつぼ6を上昇さ
せ、金属棒5の先端1mmを溶湯に漬けた。超音波加振
は行わず、そのまま強制空冷した。室温まで冷却された
試料の、金属棒5とADC12の接合部分の断面の組織
写真と、界面のEPMA分析結果を図6及び図7にそれ
ぞれ示す。
(Comparative Example 1) Using the same apparatus as in Example 1, the heating furnace 4 was removed and forced air cooling was performed.
At the same time as the temperature reached 3K, the crucible 6 was raised by the lift 7 and the tip 1 mm of the metal rod 5 was dipped in the molten metal. Forced air cooling was performed without ultrasonic vibration. FIGS. 6 and 7 show a micrograph of the cross section of the joint between the metal rod 5 and the ADC 12 and the EPMA analysis result of the interface of the sample cooled to room temperature, respectively.

【0021】(評価)比較例1の方法で得られた接合試
料では、図6に示されるように金属棒5が接合されてお
らず、溶湯温度を953Kと高くしても接合が困難であ
った。そして図7より、金属棒5及びADC12の表面
には酸素が多く認められ、酸化膜により接合が阻害され
たことが明らかである。また比較例1の方法で得られた
接合試料の界面には、界面反応層は全く形成されていな
い。
(Evaluation) In the joint sample obtained by the method of Comparative Example 1, the metal rod 5 was not joined as shown in FIG. 6, and it was difficult to join even if the temperature of the molten metal was increased to 953K. Was. From FIG. 7, it is clear that a large amount of oxygen is observed on the surfaces of the metal rod 5 and the ADC 12, and that the bonding was inhibited by the oxide film. No interface reaction layer was formed at the interface of the joined sample obtained by the method of Comparative Example 1.

【0022】一方実施例1の方法で得られた接合試料で
は、図2に示すように部分的に隙間が形成されて部分的
に接合し、実施例2の方法では図4に示すように界面が
密着して全面的に接合している。実施例1と実施例2の
差は接合時の溶湯温度のみであるから、溶湯温度によっ
て接合状態に差が生じたと考えられる。そして実施例1
の部分的に接合された試料では、図3に示すように界面
に酸素が多く認められ、また実施例2では、図5に示す
ように界面に酸素がほとんど認められない。したがって
SUS304とADC12の鋳造接合は、超音波振動に
よって接合界面の酸化膜が除去されることによって実現
されると考えられる。
On the other hand, in the bonded sample obtained by the method of the first embodiment, a gap is partially formed as shown in FIG. 2 and partially bonded, and in the method of the second embodiment, the interface is formed as shown in FIG. Are in close contact and are joined over the entire surface. Since the difference between Example 1 and Example 2 is only the molten metal temperature at the time of joining, it is considered that there was a difference in the joining state depending on the molten metal temperature. And Example 1
In the partially bonded sample, a large amount of oxygen is recognized at the interface as shown in FIG. 3, and in Example 2, almost no oxygen is recognized at the interface as shown in FIG. Therefore, it is considered that the cast joining of the SUS 304 and the ADC 12 is realized by removing the oxide film at the joining interface by ultrasonic vibration.

【0023】また実施例1及び実施例2では、51%A
l−24%Fe−12%Mn−5.8%Si−4.5%
Crの組成からなる界面反応層が形成されている。この
界面反応層は硬度が約1000HVであり、ADC12
よりはるかに硬度が大きい。したがって切断などで金属
棒5を除去すれば、ADC12の表面に硬度が大きな界
面反応層が残って表出し、それを表面硬化層として用い
ることができる。また実施例1の方法で得られた接合試
料では、部分的な隙間の存在により金属棒5の除去が容
易であるという利点を有している。
In Examples 1 and 2, 51% A
1-24% Fe-12% Mn-5.8% Si-4.5%
An interfacial reaction layer composed of Cr is formed. This interface reaction layer has a hardness of about 1000 HV,
Much higher hardness. Therefore, if the metal bar 5 is removed by cutting or the like, an interface reaction layer having high hardness remains on the surface of the ADC 12 and is exposed, and can be used as a surface hardened layer. Further, the joined sample obtained by the method of Example 1 has an advantage that the metal rod 5 can be easily removed due to the existence of a partial gap.

【0024】ところで、実施例1では界面反応層が約1
8μmと比較的厚く形成され、実施例2では約5μmと
実施例1より薄い界面反応層が形成されている。これは
接合開始時の溶湯温度の影響によるものである。そこで
溶湯温度と形成される界面反応層の厚さとの関係を実験
により求め、結果を図8に示す。白丸は全面的に完全接
合していることを示し、半白半黒丸は部分的に接合し、
黒丸は接合していないことを示している。図8より、超
音波加振しなかったものでは、溶湯温度が高くても界面
反応層は形成されず接合されていない。これは界面に酸
化膜が存在しているためである。
By the way, in Example 1, the interface reaction layer was about 1
In the second embodiment, an interface reaction layer having a thickness of about 5 μm, which is thinner than that of the first embodiment, is formed. This is due to the effect of the temperature of the molten metal at the start of joining. Thus, the relationship between the temperature of the molten metal and the thickness of the formed interface reaction layer was determined by experiment, and the results are shown in FIG. White circles indicate that the entire surface is completely joined, semi-white semi-black circles are partially joined,
Black circles indicate that they are not joined. As shown in FIG. 8, in the case where the ultrasonic vibration was not applied, even if the temperature of the molten metal was high, the interface reaction layer was not formed and was not joined. This is because an oxide film exists at the interface.

【0025】一方、超音波加振した場合には、例えば接
合温度が約900Kであれば、接合していなくても界面
反応層が形成されている。したがって、接合温度を約9
00Kとすれば、金属棒の除去工程を不要として表面硬
化層を形成することができる。しかし図8では、条件に
よって表面硬化層の厚さが大きく変動している。そこで
以下の実施例に示す実験を行った。
On the other hand, when ultrasonic vibration is applied, if the bonding temperature is, for example, about 900 K, an interface reaction layer is formed even without bonding. Therefore, a bonding temperature of about 9
If the temperature is set to 00K, the surface hardened layer can be formed without the need for the metal rod removing step. However, in FIG. 8, the thickness of the surface hardened layer greatly varies depending on the conditions. Therefore, an experiment described in the following example was performed.

【0026】(実施例3)先ず、るつぼ6を加熱炉4内
で加熱して、ADC12溶湯を973Kで20分間保持
した。続いて加熱炉4を取り除き、強制空冷した。溶湯
温度が923Kになると同時にリフト7によってるつぼ
6を上昇させ、金属棒5の先端1mmを溶湯に漬けた。
金属棒5は、溶湯へ浸漬する直前に超音波加振し始め、
4秒間加振した後超音波振動を停止した。その後3.3
K/秒の冷却速度で強制空冷を続行した。
Example 3 First, the crucible 6 was heated in the heating furnace 4 and the ADC12 melt was held at 973K for 20 minutes. Subsequently, the heating furnace 4 was removed and forced air cooling was performed. The crucible 6 was raised by the lift 7 at the same time when the temperature of the molten metal reached 923 K, and the tip 1 mm of the metal rod 5 was immersed in the molten metal.
Immediately before immersing in the molten metal, the metal rod 5 starts to be subjected to ultrasonic vibration,
After vibrating for 4 seconds, the ultrasonic vibration was stopped. Then 3.3
Forced air cooling was continued at a cooling rate of K / sec.

【0027】得られた接合試料は、図9に示すように実
施例1と同様に部分的に接合された状態であり、その界
面反応層の厚さは4.5μmであった。 (実施例4)超音波加振を4秒間に代えて10秒間とし
たこと以外は実施例3と同様である。
The obtained bonded sample was in a partially bonded state as in Example 1 as shown in FIG. 9, and the thickness of the interface reaction layer was 4.5 μm. (Example 4) It is the same as Example 3 except that the ultrasonic vibration was changed to 10 seconds instead of 4 seconds.

【0028】得られた試料は、図10に示すように密着
して接合された状態であり、その界面反応層の厚さは1
μmであって、凝固したADC12中には界面反応層と
同一組成の粒子が存在している。 (評価)すなわち実施例4の方法では、加振時間が実施
例3より長いために、形成された界面反応層が音響流に
よって溶湯中に飛散し、その分界面反応層が薄くなった
と考えられる。したがって超音波加振時間を制御するこ
とで、界面反応層の厚さを制御することができることが
明らかである。
The obtained sample is in a state of being closely bonded as shown in FIG. 10, and the thickness of the interface reaction layer is 1
In the solidified ADC 12, particles having the same composition as that of the interface reaction layer exist. (Evaluation) That is, in the method of Example 4, since the excitation time was longer than that of Example 3, it was considered that the formed interface reaction layer was scattered into the molten metal by acoustic flow, and the interface reaction layer was thinned accordingly. . Therefore, it is clear that the thickness of the interface reaction layer can be controlled by controlling the ultrasonic vibration time.

【0029】また図8より、超音波加振により形成され
た界面反応層は、非接合及び部分接合の場合には厚く、
密着した接合では一旦薄くなり接合温度が高くなるにつ
れて厚くなっていることがわかる。したがって密着した
接合を形成する場合において、界面反応層の厚さが一旦
薄くなる時点で溶湯が凝固すれば、界面反応層の厚さを
きわめて薄くすることができ、特に好ましい。
FIG. 8 shows that the interface reaction layer formed by the ultrasonic vibration is thick in the case of non-joining and partial joining,
It can be seen that in the case of close contact bonding, the thickness is temporarily reduced and the thickness increases as the bonding temperature increases. Therefore, in the case of forming an intimate bond, it is particularly preferable if the molten metal solidifies once the thickness of the interface reaction layer is once reduced, since the thickness of the interface reaction layer can be extremely reduced.

【0030】また本発明者らの研究によれば、第2金属
部材を超音波加振しながら第1金属溶湯に接触させ、そ
の状態で引き上げると、第1金属溶湯が第2金属部材表
面に吸い付くようにして付着し、超音波加振しない場合
より付着量が多くなることが明らかとなった。この現象
も界面に存在する空気層などが除去されるためと推定さ
れている。
According to the study of the present inventors, when the second metal member is brought into contact with the first molten metal while being vibrated by ultrasonic waves, and pulled up in that state, the first molten metal is brought to the surface of the second metal member. It was found that the particles adhered so that they adhered, and the amount of adhesion was larger than in the case where no ultrasonic vibration was applied. It is presumed that this phenomenon is also due to the removal of the air layer existing at the interface.

【0031】そこで以下の実施例では、2回のステップ
に分けて鋳造接合している。 (実施例5) <第1ステップ>先ず、るつぼ6を加熱炉4内で加熱し
て、ADC12溶湯を973Kで20分間保持した。続
いて加熱炉4を取り除き、強制空冷した。溶湯温度が9
23Kになると同時にリフト7によってるつぼ6を上昇
させ、金属棒5の先端1mmを溶湯に漬けた。金属棒5
は、溶湯へ浸漬する直前に全振幅13μmで超音波加振
し始め、10秒間加振した後るつぼ6を下降させた。そ
して超音波加振を続行しながら、金属棒5の先端に付着
した溶湯を急速に凝固させた。
Therefore, in the following embodiment, casting and joining are performed in two steps. (Example 5) <First step> First, the crucible 6 was heated in the heating furnace 4 and the ADC12 melt was held at 973K for 20 minutes. Subsequently, the heating furnace 4 was removed and forced air cooling was performed. Melt temperature is 9
The crucible 6 was raised by the lift 7 at the same time when the temperature reached 23 K, and the tip 1 mm of the metal rod 5 was immersed in the molten metal. Metal rod 5
Immediately before being immersed in the molten metal, ultrasonic vibration was started at a total amplitude of 13 μm, and after being vibrated for 10 seconds, the crucible 6 was lowered. Then, while continuing the ultrasonic vibration, the molten metal attached to the tip of the metal rod 5 was rapidly solidified.

【0032】このとき付着層の厚さは約4μmであり、
付着層と金属棒5との界面には、図11に示すように、
実施例4と同様の厚さ約1.5μmの界面反応層が形成
されていた。また付着層には界面反応層から飛散した粒
子が存在している。 <第2ステップ>次に、溶湯温度が873Kのときにる
つぼ6を上昇させ、付着層をもつ金属棒5の先端1mm
を溶湯に漬けた。金属棒5は、溶湯へ浸漬する直前に全
振幅10μmで超音波加振し始め、4秒間加振した後に
超音波加振を停止した。その後3.3K/秒の冷却速度
で強制空冷を続行した。
At this time, the thickness of the adhesion layer is about 4 μm,
At the interface between the adhesion layer and the metal rod 5, as shown in FIG.
An interface reaction layer having a thickness of about 1.5 μm similar to that in Example 4 was formed. In addition, particles scattered from the interface reaction layer exist in the adhesion layer. <Second Step> Next, when the temperature of the molten metal is 873K, the crucible 6 is raised, and the tip of the metal rod 5 having the adhesion layer is 1 mm.
Was soaked in the molten metal. Ultrasonic vibration of the metal rod 5 was started at a total amplitude of 10 μm immediately before being immersed in the molten metal, and ultrasonic vibration was stopped after vibrating for 4 seconds. Thereafter, forced air cooling was continued at a cooling rate of 3.3 K / sec.

【0033】この第二ステップでは、付着層と溶湯との
界面における空気層や酸化膜は超音波振動によって除去
され、次に付着層が少し溶解して溶融接合して接合が完
了する。得られた接合試料は、図12に示すように密着
して接合された状態であり、その界面反応層の厚さは約
1.5μmと第1ステップで得られた厚さが維持され、
凝固したADC12中には、飛散した界面反応層から晶
出したSi相が粒状化して存在している。
In this second step, the air layer and the oxide film at the interface between the adhesion layer and the molten metal are removed by ultrasonic vibration, and then the adhesion layer is slightly melted and melt-bonded to complete the bonding. As shown in FIG. 12, the obtained bonded sample is in a state of being closely bonded and bonded, and the thickness of the interface reaction layer is about 1.5 μm, and the thickness obtained in the first step is maintained.
In the solidified ADC 12, a Si phase crystallized from the scattered interface reaction layer is present in a granular form.

【0034】したがって本実施例によっても、薄い界面
反応層を容易に形成することができる。
Therefore, also in this embodiment, a thin interface reaction layer can be easily formed.

【0035】[0035]

【発明の効果】すなわち本発明の金属界面反応層の形成
方法によれば、従来困難であった金属種どうしの界面反
応層を確実に形成することができる。また界面反応層の
厚さの制御も容易である。したがって鋳造接合における
接合強度の向上を図ることができ、高密度エネルギービ
ームなどを用いなくとも表面硬化層を形成することがで
きる。
According to the method for forming a metal interfacial reaction layer of the present invention, an interfacial reaction layer between metal species, which has been conventionally difficult, can be reliably formed. It is also easy to control the thickness of the interface reaction layer. Therefore, the joining strength in cast joining can be improved, and a hardened surface layer can be formed without using a high-density energy beam or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例で用いた超音波鋳造装置の構成
を示す説明図である。
FIG. 1 is an explanatory diagram showing a configuration of an ultrasonic casting apparatus used in an embodiment of the present invention.

【図2】本発明の一実施例で得られた鋳造接合品の界面
の金属組織を示す顕微鏡写真である。
FIG. 2 is a photomicrograph showing the metal structure at the interface of the cast joint obtained in one example of the present invention.

【図3】本発明の一実施例で得られた鋳造接合品の界面
のEPMA分析チャートである。
FIG. 3 is an EPMA analysis chart of an interface of a cast joint product obtained in one example of the present invention.

【図4】本発明の第2の実施例で得られた鋳造接合品の
界面の金属組織を示す顕微鏡写真である。
FIG. 4 is a micrograph showing the metal structure of the interface of the cast joint obtained in the second embodiment of the present invention.

【図5】本発明の第2の実施例で得られた鋳造接合品の
界面のEPMA分析チャートである。
FIG. 5 is an EPMA analysis chart of the interface of the cast joint product obtained in the second example of the present invention.

【図6】本発明の比較例で得られた鋳造接合品の界面の
金属組織を示す顕微鏡写真である。
FIG. 6 is a photomicrograph showing the metal structure of the interface of the cast joint obtained in the comparative example of the present invention.

【図7】本発明の比較例で得られた鋳造接合品の界面の
EPMA分析チャートである。
FIG. 7 is an EPMA analysis chart of an interface of a cast joint product obtained in a comparative example of the present invention.

【図8】接合時の溶湯温度と界面反応層厚さとの関係を
示すグラフである。
FIG. 8 is a graph showing the relationship between the temperature of the molten metal at the time of joining and the thickness of the interface reaction layer.

【図9】本発明の第3の実施例で得られた鋳造接合品の
界面の金属組織を示す顕微鏡写真である。
FIG. 9 is a photomicrograph showing the metal structure at the interface of the cast joint obtained in the third example of the present invention.

【図10】本発明の第4の実施例で得られた鋳造接合品
の界面の金属組織を示す顕微鏡写真である。
FIG. 10 is a photomicrograph showing the metal structure at the interface of the cast joint obtained in the fourth example of the present invention.

【図11】本発明の第5の実施例の第1ステップで得ら
れた鋳造接合品の界面の金属組織を示す顕微鏡写真であ
る。
FIG. 11 is a photomicrograph showing the metal structure at the interface of the cast joint obtained in the first step of the fifth example of the present invention.

【図12】本発明の第5の実施例の第2ステップで得ら
れた鋳造接合品の界面の金属組織を示す顕微鏡写真であ
る。
FIG. 12 is a photomicrograph showing the metal structure of the interface of the cast joint obtained in the second step of the fifth example of the present invention.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年12月20日(1999.12.
20)
[Submission date] December 20, 1999 (1999.12.
20)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図2[Correction target item name] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図2】 FIG. 2

【手続補正2】[Procedure amendment 2]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図4[Correction target item name] Fig. 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図4】 FIG. 4

【手続補正3】[Procedure amendment 3]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図6[Correction target item name] Fig. 6

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図6】 FIG. 6

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図9[Correction target item name] Fig. 9

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図9】 FIG. 9

【手続補正5】[Procedure amendment 5]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図10[Correction target item name] FIG.

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図10】 FIG. 10

【手続補正6】[Procedure amendment 6]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図11[Correction target item name] FIG.

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図11】 FIG. 11

【手続補正7】[Procedure amendment 7]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図12[Correction target item name] FIG.

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図12】 FIG.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第1金属の溶湯表面に固体の第2金属部
材を接触させ、超音波の伝播によって該第2金属部材を
加振しながら該溶湯を凝固させることにより該第1金属
と該第2金属部材との界面に反応層を形成することを特
徴とする金属界面反応層の形成方法。
1. A method in which a solid second metal member is brought into contact with the surface of a molten metal of a first metal, and the molten metal is solidified while vibrating the second metal member by propagation of ultrasonic waves, thereby forming the first metal and the first metal. A method for forming a metal interface reaction layer, comprising forming a reaction layer at an interface with a second metal member.
JP11042133A 1999-02-19 1999-02-19 Formation of metallic interface reaction layer Pending JP2000237863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11042133A JP2000237863A (en) 1999-02-19 1999-02-19 Formation of metallic interface reaction layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11042133A JP2000237863A (en) 1999-02-19 1999-02-19 Formation of metallic interface reaction layer

Publications (1)

Publication Number Publication Date
JP2000237863A true JP2000237863A (en) 2000-09-05

Family

ID=12627453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11042133A Pending JP2000237863A (en) 1999-02-19 1999-02-19 Formation of metallic interface reaction layer

Country Status (1)

Country Link
JP (1) JP2000237863A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113634736A (en) * 2021-08-17 2021-11-12 齐鲁工业大学 Bimetal compounding method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113634736A (en) * 2021-08-17 2021-11-12 齐鲁工业大学 Bimetal compounding method
CN113634736B (en) * 2021-08-17 2022-10-21 齐鲁工业大学 Bimetal compounding method

Similar Documents

Publication Publication Date Title
US8992705B2 (en) Microcrystalline alloy, method for production of the same, apparatus for production of the same, and method for production of casting of the same
JP2006102807A (en) Method for reforming metallic structure
JP4594336B2 (en) Solidification method
JP4551995B2 (en) Aluminum alloy for casting
US20220009023A1 (en) Methods of ultrasound assisted 3d printing and welding
KR101974462B1 (en) Material and repair process using laser and ultrasonic
JP2004209487A (en) Method for controlling solidifying crystalline structure of aluminum cast alloy
CN107214341B (en) A kind of steel-wear-resistant copper alloy stratiform bush material, its preparation facilities and preparation method
Pan et al. Ultrasonic insert casting of aluminum alloy
US20080041922A1 (en) Hybrid Resistance/Ultrasonic Welding System and Method
Radel Mechanical manipulation of solidification during laser beam welding of aluminum
JP2000237863A (en) Formation of metallic interface reaction layer
Shabadi et al. Characterization of joints between aluminum and galvanized steel sheets
JPS63295061A (en) Method for preventing welding defect by ultrasonic excitation
US11471935B2 (en) Method of producing high quality metallurgical bond within a composite casting
JP3000366B1 (en) Ultrasonic cast-in joining method and ultrasonic cast-in joint
Liu et al. Ultrasonic Cast Bonding of Sheet Steel to Aluminum in a Metal Mold
JP3468393B2 (en) Zinc solder layer forming method and ultrasonic soldering joining method
JP2829766B2 (en) How to join dissimilar materials
KR20170066501A (en) Method for wetting a sonotrode
JP3151556B2 (en) Composite casting method
JP2000246430A (en) Joining method for aluminum alloy member
JPH082493B2 (en) Casting method
JP2001225163A (en) Ultrasonic soldering method for aluminum alloy member
JP3182603B2 (en) Aluminum alloy joining method and aluminum alloy vacuum vessel