JP2010049946A - High frequency heating device - Google Patents
High frequency heating device Download PDFInfo
- Publication number
- JP2010049946A JP2010049946A JP2008213444A JP2008213444A JP2010049946A JP 2010049946 A JP2010049946 A JP 2010049946A JP 2008213444 A JP2008213444 A JP 2008213444A JP 2008213444 A JP2008213444 A JP 2008213444A JP 2010049946 A JP2010049946 A JP 2010049946A
- Authority
- JP
- Japan
- Prior art keywords
- arc
- rotating antenna
- heated
- high frequency
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Constitution Of High-Frequency Heating (AREA)
- Electric Ovens (AREA)
Abstract
Description
本発明は、回転アンテナを用いて高周波エネルギーを加熱室内に放射して食品などを高周波加熱する高周波加熱装置に関するものである。 The present invention relates to a high-frequency heating apparatus that uses a rotating antenna to radiate high-frequency energy into a heating chamber to heat food or the like at high frequency.
従来の所謂ターンテーブルレス高周波加熱装置は、加熱室内の被加熱物載置板の下に回転アンテナを備え、マグネトロンから供給される高周波を回転アンテナで散乱させて加熱室内に放射し、被加熱物載置板に載置された被加熱物を高周波加熱するものである。 A conventional so-called turntableless high-frequency heating apparatus includes a rotating antenna under a heated object mounting plate in a heating chamber, scatters high-frequency waves supplied from the magnetron with the rotating antenna, and radiates the heated object into the heating chamber. The object to be heated placed on the placing plate is heated at high frequency.
そして、複数の被加熱物に異なる量の高周波エネルギーを供給するための回転アンテナとして、使用波長の1/2よりも長い辺を持った放射口を回転アンテナに設け、ほとんど減衰することなく高周波エネルギーを加熱室内に向けて放射する高周波加熱装置が知られている(例えば、特許文献1の図2,図3など参照)。 As a rotating antenna for supplying different amounts of high-frequency energy to a plurality of objects to be heated, a radiation port having a side longer than ½ of the wavelength used is provided in the rotating antenna, and the high-frequency energy is hardly attenuated. There is known a high-frequency heating device that radiates the light toward the heating chamber (see, for example, FIG. 2 and FIG. 3 in Patent Document 1).
特許文献1の図2の回転アンテナを用いると、放射口9bの真上方向に高周波エネルギーが集中するので、仕上がり温度が高い被加熱物の下に放射口9bを位置付ける時間を長くし、仕上がり温度が低い被加熱物の下に放射口9bを位置付ける時間を短くすることで、各々の被加熱物に適した仕上がり温度にすることができる。 When the rotating antenna shown in FIG. 2 of Patent Document 1 is used, high-frequency energy concentrates directly above the radiation port 9b. Therefore, the time required to position the radiation port 9b under the heated object having a high finishing temperature is lengthened, and the finishing temperature is increased. By shortening the time for positioning the radiation port 9b under the object to be heated, the finishing temperature suitable for each object to be heated can be obtained.
しかし、放射口9bの真上方向に高周波エネルギーが集中するという特許文献1の回転アンテナの特徴を考慮すると、被加熱物載置板に載置された被加熱物のうち回転アンテナの投影面に置かれた被加熱物しか仕上がり温度の調整ができない。つまり、加熱室を広くしたときには回転アンテナも大きくしなければ任意の場所に置かれた被加熱物の仕上がり温度を調整することができなくなり、加熱室を広くしつつ、回転アンテナを小型化することができないという問題があった。 However, in consideration of the feature of the rotating antenna of Patent Document 1 in which high-frequency energy is concentrated directly above the radiation port 9b, among the heated objects placed on the heated object placing plate, on the projection surface of the rotating antenna. Only the object to be heated can adjust the finishing temperature. In other words, when the heating chamber is widened, it is impossible to adjust the finishing temperature of the object to be heated if the rotating antenna is not enlarged, and the rotating antenna is reduced in size while widening the heating chamber. There was a problem that could not.
また、特許文献1の図3には、使用波長の1/2よりも長い辺を持った弧状の放射口を複数設けた回転アンテナが開示されている。しかし、何れの弧状の放射口も回転アンテナの中心を弧の中心としているため、使用波長の1/2よりも長い辺を持った放射口を数多く設けるのが難しい構造であった。このため、回転アンテナを小型化すると、使用波長の1/2よりも長い辺を持った放射口の数も減ってしまうため、回転アンテナの小型化が難しいという問題があった。 Further, FIG. 3 of Patent Document 1 discloses a rotating antenna provided with a plurality of arc-shaped radiation openings having sides longer than ½ of the used wavelength. However, since any arc-shaped radiation aperture has the center of the rotating antenna as the center of the arc, it is difficult to provide a large number of radiation apertures having sides longer than ½ of the wavelength used. For this reason, if the size of the rotating antenna is reduced, the number of radiation openings having sides longer than ½ of the wavelength used is also reduced, which makes it difficult to reduce the size of the rotating antenna.
前記課題は、被加熱物を収容する加熱室と、該加熱室の底面に固着された被加熱物載置板と、波長λの高周波エネルギーを発生させるマグネトロンと、該マグネトロンで発生した高周波エネルギーを伝える導波管と、前記被加熱物載置板の下に設けられ、前記導波管から伝えられた高周波エネルギーを拡散させる回転アンテナと、該回転アンテナを回転駆動する駆動部と、前記マグネトロンと、前記駆動を制御する制御回路と、を備えた高周波加熱装置であって、前記回転アンテナには、λ/2以上の長さの弧状スリットが設けられており、該弧状スリットの弧の中心が前記回転アンテナの外にある高周波加熱装置によって解決できる。 The problems include a heating chamber that accommodates a heated object, a heated object mounting plate fixed to the bottom surface of the heating chamber, a magnetron that generates high-frequency energy of wavelength λ, and high-frequency energy generated by the magnetron. A transmission waveguide, a rotating antenna provided under the object-to-be-heated object mounting plate and diffusing high-frequency energy transmitted from the waveguide, a driving unit for rotating the rotation antenna, and the magnetron; A control circuit for controlling the driving, wherein the rotary antenna is provided with an arc-shaped slit having a length of λ / 2 or more, and the arc center of the arc-shaped slit is This can be solved by a high-frequency heating device outside the rotating antenna.
本発明により、小径の回転アンテナを用いたときでも高周波エネルギーの拡散に指向性をもたせることができ、複数の被加熱物の各々に対して任意の時間だけ指向性のある高周波エネルギーを照射することが容易となり、複数の被加熱物を異なる仕上がり温度になるように加熱することが容易になる。 According to the present invention, even when a small-diameter rotating antenna is used, the directivity can be given to the diffusion of the high-frequency energy, and the directional high-frequency energy is irradiated to each of the plurality of heated objects for an arbitrary time. It becomes easy, and it becomes easy to heat a several to-be-heated material so that it may become a different finishing temperature.
以下、図1から図5を参照して本発明の一実施例を説明する。図5は一実施例の高周波加熱装置50のドア53を開いた状態を示す図である。なお、図5では説明のため、上部カバーおよび側面カバーを省略している。図5において、1は被加熱物を収容する加熱室である。2は被加熱物を載置する被加熱物載置板であり、例えば結晶化ガラスなどの誘電体で構成され、加熱室1の底面に固着されている。4はISM(Industrial, Scientific and Medical)周波数帯に割り当てられる2450MHzの電磁波を発生させるマグネトロンである。8はアルミニウム等の良導電性金属の円板で構成された回転自在の回転アンテナである。51はマグネトロン4に駆動電力を供給するインバータ電源である。52はマグネトロン4や回転アンテナ8の回転を制御する制御回路である。なお、本実施例の回転アンテナ8は従来の回転アンテナよりも小型であることを想定しており、ここでは回転アンテナ8の直径を130mmであるとして説明を行うが、本発明の適用対象はこれに限られない。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. FIG. 5 is a diagram illustrating a state in which the
図1は高周波加熱装置50の要部縦断面図である。図1において、12は加熱室1に収容された被加熱物である。3は被加熱物載置板2の下方に設けられた高周波供給室である。5は一端がマグネトロン4に接続され他端が高周波供給室3に開口する導波管であり、導波管5を経由してマグネトロン4で発生した高周波エネルギーが内導体7に導かれる。内導体7に導かれた高周波エネルギーは同軸結合により回転アンテナ8に伝わり、回転アンテナ8によって高周波供給室3内に拡散され、被加熱物載置板2を通過して加熱室1に放射される。6は導波管5の高周波供給室3側の開口にある結合穴で、高周波供給室3の底面の略中央に位置する。回転アンテナ8は誘電体軸9と内導体7を介して駆動部11から与えられる駆動力によって回転駆動される。なお、図1に示すように、結合穴6を貫通する位置に略垂直に設けられた内導体7の上端に回転アンテナ8が水平に固着されている。また、内導体7の下端と誘電体軸9が導波管5内で連結されており、誘電体軸9は導波管5に設けられた穴10を通して駆動部11に連結される。なお、回転アンテナ8を円形平板にすると、回転アンテナ8外周淵部に電界が集中しにくく、電界強度が平準化されるので、この部分でのスパークや異常加熱が生じにくくなる。また、回転アンテナ8を回転させたときに、ブレが少なく安定した回転が得られるという利点がある。
FIG. 1 is a longitudinal sectional view of a main part of a high-frequency heating device 50. In FIG. 1, reference numeral 12 denotes an object to be heated accommodated in the heating chamber 1. Reference numeral 3 denotes a high-frequency supply chamber provided below the heated object placing plate 2. Reference numeral 5 denotes a waveguide having one end connected to the magnetron 4 and the other end opened to the high-frequency supply chamber 3, and high-frequency energy generated in the magnetron 4 is guided to the
図2を用いて本実施例の回転アンテナ8の詳細を説明する。図2は回転アンテナ8を上から見た平面図である。8a〜8gは円板状の回転アンテナ8に設けられた複数の弧状スリットであり、8dを除く弧状スリットは61mm以上の長さを有する。ここで、61mmとは、マグネトロン4が発生させる電磁波の周波数が2450MHzであるとき、すなわち、波長λが122mmであるときに、λ/2に相当する長さであり、回転アンテナ8上にλ/2以上の長さのスリットを設けることで、回転アンテナ8に伝わった高周波エネルギーをほとんど減衰させることなく加熱室内に向けて放射することができる。 Details of the rotating antenna 8 of this embodiment will be described with reference to FIG. FIG. 2 is a plan view of the rotating antenna 8 as seen from above. Reference numerals 8a to 8g denote a plurality of arc-shaped slits provided in the disk-shaped rotating antenna 8, and the arc-shaped slits excluding 8d have a length of 61 mm or more. Here, 61 mm is a length corresponding to λ / 2 when the frequency of the electromagnetic wave generated by the magnetron 4 is 2450 MHz, that is, when the wavelength λ is 122 mm. By providing a slit having a length of 2 or more, high-frequency energy transmitted to the rotating antenna 8 can be radiated into the heating chamber with almost no attenuation.
弧状スリット8cを例に弧状スリットの構成を説明する。図2に示すように弧状スリット8cは外周側の弧と内周側の弧と両弧を結ぶ二辺とで構成される半径Rcの弧状のスリットであり、弧の中心であるK点は回転アンテナ8の外にある。そして、外周側の弧が内周側の弧よりも長くなるように設計されている。なお、回転アンテナ8の中心とK点を結んだ直線を直径軸21と称することとする。
The configuration of the arc slit will be described by taking the
また、弧状スリット8a〜8gの弧の中心もK点とし、弧状スリット8a〜8gの半径であるRa〜Rgを、Ra>Rb>Rc>Rd>Re>Rf>Rgの関係が成り立つように設定する。そして、弧状スリット8a〜8gの中心がそれぞれ直径軸21上に位置するようにする。これにより、各弧状スリット8a〜8gは隣り合う弧状スリットと交わることがない同心の弧状スリットとなる。この結果、回転アンテナ8の左側に設けられた弧状スリット8a〜8cと、回転アンテナ8の右側に設けられた弧状スリット8e〜8gは、回転アンテナ8の回転中心を挟んで設けられることになる。なお、弧状スリット8c以外の弧状スリットも内周側の弧が外周側の弧よりも短くなるように設計する。
The arc centers of the arc-shaped slits 8a to 8g are also set as the K point, and Ra to Rg, which are the radii of the arc-shaped slits 8a to 8g, are set so that the relationship Ra> Rb> Rc> Rd> Re> Rf> Rg is established. To do. The centers of the arc-shaped slits 8a to 8g are positioned on the diameter axis 21, respectively. Thereby, each arc-shaped slit 8a-8g turns into a concentric arc-shaped slit which does not cross | intersect with the adjacent arc-shaped slit. As a result, the arc-shaped slits 8 a to 8 c provided on the left side of the rotating antenna 8 and the arc-shaped slits 8 e to 8 g provided on the right side of the rotating antenna 8 are provided across the rotation center of the rotating antenna 8. The arc-shaped slits other than the arc-
このように、弧状スリット8a〜8gの弧の中心を回転アンテナ8の外にあるK点に位置させたので、λ/2以上の長さを持った弧状スリット数の配置の自由度を高めることができる。すなわち、小型の回転アンテナに対しても、λ/2以上の長さを持った弧状スリットを数多く設けるのが容易になる。 As described above, since the arc centers of the arc-shaped slits 8a to 8g are located at the point K outside the rotating antenna 8, the degree of freedom of arrangement of the number of arc-shaped slits having a length of λ / 2 or more is increased. Can do. That is, it becomes easy to provide a large number of arc-shaped slits having a length of λ / 2 or more even for a small rotating antenna.
上述のようにして回転アンテナ8にλ/2以上の長さを持った弧状スリットを複数設けたので、回転アンテナ8に伝えられたマイクロ波エネルギーは回転アンテナ8中心近傍の弧状スリットから外周囲の弧状スリットに向かって次々と伝搬する過程で、個々の弧状スリットからの放射マイクロ波の位相が少しずつ遅れて重なり合い、直径軸21方向に強い指向性をもつマイクロ波エネルギーが加熱室1内に放射されることになる。 Since a plurality of arc-shaped slits having a length of λ / 2 or more are provided in the rotating antenna 8 as described above, the microwave energy transmitted to the rotating antenna 8 is transmitted from the arc-shaped slit near the center of the rotating antenna 8 to the outer periphery. In the process of successively propagating toward the arc-shaped slits, the phases of the microwaves emitted from the individual arc-shaped slits overlap with a slight delay, and microwave energy having strong directivity in the direction of the diameter axis 21 is radiated into the heating chamber 1. Will be.
図3を用いて、本実施例の回転アンテナ8の放射特性を電磁界解析手法の一種であるTLM法によって計算した結果を説明する。図3の下図に示すように、X軸は回転アンテナ8の中心と上述したK点を結んだ軸であり、K点方向をプラスとしている。Z軸はX軸に垂直な軸であり、回転アンテナ8の平面上かつ回転アンテナ8の中心を通る位置に設けられる。また、図3の上図に示すように、Y軸はX軸及びZ軸に垂直な軸であり、高さ方向をプラス方向としている。図3の上図は回転アンテナ8のXY平面での放射特性を示している。ここから分かるように、XY平面の左上側、すなわち、X軸のマイナス方向により強い放射が見られた。 The result of calculating the radiation characteristics of the rotating antenna 8 of this embodiment by the TLM method, which is a kind of electromagnetic field analysis technique, will be described with reference to FIG. As shown in the lower part of FIG. 3, the X axis is an axis connecting the center of the rotating antenna 8 and the K point described above, and the K point direction is positive. The Z axis is an axis perpendicular to the X axis, and is provided on the plane of the rotating antenna 8 and at a position passing through the center of the rotating antenna 8. Further, as shown in the upper diagram of FIG. 3, the Y axis is an axis perpendicular to the X axis and the Z axis, and the height direction is a plus direction. The upper diagram of FIG. 3 shows the radiation characteristics of the rotating antenna 8 on the XY plane. As can be seen, stronger radiation was seen in the upper left side of the XY plane, that is, in the minus direction of the X axis.
次に、図4を用いて、被加熱物12を加熱したときの温度分布をTLM法によって計算した結果を説明する。図4では被加熱物12と回転アンテナ8の位置関係をわかりやすくするために被加熱物12に回転アンテナ8を重ねて表示している。図4において、被加熱物12は直径170mm,厚さ10mmの冷凍ピザであり、被加熱物12を174,000個のセルに分解し各々の温度上昇値を計算した。解析時の物理定数は、比誘電率4.4,導電率0.0722s/m,密度794kg/m3とした。図4の明暗は被加熱物12の内部の温度分布(具体的には冷凍ピザの厚さ5mmの断面における温度分布)を示し、明るい部分は温度上昇が高く、暗い部分は温度上昇が低いことを示している。ここから分かるように、被加熱物12の左側、すなわち、X軸のマイナス方向がより強く加熱され、温度が高くなることが確認できた。 Next, the results of calculating the temperature distribution when the article to be heated 12 is heated by the TLM method will be described with reference to FIG. In FIG. 4, in order to make the positional relationship between the object to be heated 12 and the rotating antenna 8 easy to understand, the rotating antenna 8 is superimposed on the object to be heated 12. In FIG. 4, the object to be heated 12 is a frozen pizza having a diameter of 170 mm and a thickness of 10 mm. The object to be heated 12 was decomposed into 174,000 cells, and the temperature rise value was calculated for each. The physical constants at the time of analysis were a relative dielectric constant of 4.4, a conductivity of 0.0722 s / m, and a density of 794 kg / m 3 . The lightness and darkness in FIG. 4 indicate the temperature distribution inside the object to be heated 12 (specifically, the temperature distribution in the cross section of the frozen pizza having a thickness of 5 mm). The bright portion has a high temperature rise, and the dark portion has a low temperature rise. Is shown. As can be seen from this, it was confirmed that the left side of the object to be heated 12, that is, the negative direction of the X axis was heated more strongly, and the temperature was increased.
このように、X軸のマイナス方向に置いた被加熱物がより強く加熱されるので、加熱室1内に複数の被加熱物が載置されたときであって、重点的に加熱したい被加熱物があるときには、その被加熱物の方向にX軸のマイナス方向を向ける時間を長くすることで、任意の被加熱物を重点的に加熱することができる。一方、加熱室1内に複数の被加熱物が載置されたときであって、複数の被加熱物の加熱むらを抑制したいときには、回転アンテナ8を一定速度で回転させることで複数の被加熱物の加熱むらを防ぐことができる。 In this way, the object to be heated placed in the negative direction of the X axis is heated more strongly, and therefore, when a plurality of objects to be heated are placed in the heating chamber 1, the object to be heated that is to be preferentially heated. When there is an object, any object to be heated can be preferentially heated by lengthening the time in which the negative direction of the X axis is directed toward the object to be heated. On the other hand, when a plurality of objects to be heated are placed in the heating chamber 1 and it is desired to suppress uneven heating of the plurality of objects to be heated, the plurality of objects to be heated are rotated by rotating the rotating antenna 8 at a constant speed. Uneven heating of objects can be prevented.
なお、回転アンテナ8の各弧状スリットの間隔を広くすることで、強い放射の方向をX軸のマイナス方向に近づけることができ、回転アンテナ8の回転中心からより遠い位置を強く温めることができる。反対に、回転アンテナ8の各弧状スリットの間隔を狭くすることで、強い放射の方向をX軸のマイナス方向から遠ざけてY軸のプラス方向に近づけることができ、回転アンテナ8の回転中心からより近い位置を強く温めることができる。すなわち、弧状スリットの間隔を調整することで、マイクロ波エネルギーの放射指向性を調整することができるので、小型の回転アンテナ8を用いたときでも任意の指向性を得ることができる。 In addition, by widening the space | interval of each arc-shaped slit of the rotating antenna 8, the direction of strong radiation can be brought close to the minus direction of the X axis, and the position far from the center of rotation of the rotating antenna 8 can be warmed strongly. On the other hand, by narrowing the interval between the arc-shaped slits of the rotating antenna 8, the direction of strong radiation can be moved away from the minus direction of the X axis and closer to the plus direction of the Y axis. A close position can be warmed strongly. That is, by adjusting the distance between the arc-shaped slits, the radiation directivity of the microwave energy can be adjusted, so that any directivity can be obtained even when the small rotating antenna 8 is used.
また、本実施例において、λ/2以上の長さの弧状スリット8cと8eの間に、λ/2に満たない長さの弧状スリット8dを配置したのは、マイクロ波エネルギーの放射の指向性をより高めるためである。仮に、弧状スリット8dが無いとすると、内導体7を介して回転アンテナ8に伝わった高周波エネルギーが弧状スリット8cと8eの間の方向にも放射されることになるので、高周波エネルギーの放射の指向性が弱まるという問題が生じるが、弧状スリット8dを弧状スリット8cと8eの間に設けることで、内導体7を介して回転アンテナ8に伝わった高周波エネルギーが弧状スリット8d方向に放射されるのを防止でき、高周波エネルギーの放射の指向性が弱まるのを防止できる。
In the present embodiment, the arc-shaped slit 8d having a length less than λ / 2 is disposed between the arc-shaped
以上で説明したように、本発明の高周波加熱装置は、直径の小さな小形の回転アンテナでもλ/2以上の弧状スリットが複数個平行に多数並べ設置でき、しかも弧状スリットの長さを調整しやすい。また、複数個の弧状スリットを平行に並べることにより指向性を持たせることができ、弧状スリットの間隔の調整により指向性を任意に変えることができるので指向性の制御が可能となる。さらに、指向性を持たせることにより複数個の非加熱物に対して任意の被加熱物を狙って集中的にマイクロ波の放射ができる。 As described above, the high-frequency heating device of the present invention can install a plurality of arc slits of λ / 2 or more in parallel even with a small rotating antenna having a small diameter, and the length of the arc slit can be easily adjusted. . Moreover, directivity can be provided by arranging a plurality of arc-shaped slits in parallel, and directivity can be controlled because the directivity can be arbitrarily changed by adjusting the interval between the arc-shaped slits. Furthermore, by providing directivity, microwaves can be radiated in a concentrated manner by targeting any object to be heated with respect to a plurality of non-heated objects.
1 加熱室
2 被加熱物載置板
3 高周波供給室
4 マグネトロン
5 導波管
6 結合穴
7 内導体
8 回転アンテナ
8a 弧状スリット
9 誘電体軸
11 駆動部
DESCRIPTION OF SYMBOLS 1 Heating chamber 2 To-be-heated object mounting plate 3 High frequency supply chamber 4 Magnetron 5 Waveguide 6
Claims (4)
該加熱室の底面に固着された被加熱物載置板と、
波長λの高周波エネルギーを発生させるマグネトロンと、
該マグネトロンで発生した高周波エネルギーを伝える導波管と、
前記被加熱物載置板の下に設けられ、前記導波管から伝えられた高周波エネルギーを拡散させる回転アンテナと、
該回転アンテナを回転駆動する駆動部と、
前記マグネトロンと、前記駆動を制御する制御回路と、
を備えた高周波加熱装置であって、
前記回転アンテナには、λ/2以上の長さの弧状スリットが設けられており、該弧状スリットの弧の中心が前記回転アンテナの外にあることを特徴とする高周波加熱装置。 A heating chamber for storing an object to be heated;
A heated object mounting plate fixed to the bottom surface of the heating chamber;
A magnetron that generates high-frequency energy of wavelength λ,
A waveguide for transmitting high-frequency energy generated by the magnetron;
A rotating antenna that is provided under the heated object mounting plate and diffuses high-frequency energy transmitted from the waveguide;
A drive unit for rotationally driving the rotating antenna;
The magnetron; and a control circuit for controlling the driving;
A high-frequency heating apparatus comprising:
The rotating antenna is provided with an arc-shaped slit having a length of λ / 2 or more, and the arc center of the arc-shaped slit is outside the rotating antenna.
前記回転アンテナには、前記弧状スリットが複数設けられており、該複数の弧状スリットは同心の弧状スリットであることを特徴とする高周波加熱装置。 In the high frequency heating apparatus according to claim 1,
The rotary antenna is provided with a plurality of arc-shaped slits, and the plurality of arc-shaped slits are concentric arc-shaped slits.
前記複数の弧状スリットは前記回転アンテナの回転中心を挟んで設けられていることを特徴とする高周波加熱装置。 The microwave oven according to claim 2, wherein
The high frequency heating apparatus, wherein the plurality of arc-shaped slits are provided across a rotation center of the rotating antenna.
この加熱室の底面に設けられた誘電体からなる被加熱物載置板と、
この被加熱物載置板の下方で前記加熱室の底面中央部に設けられた高周波供給室と、
高周波エネルギーを発生するマグネトロンと、
このマグネトロンを取り付ける導波管と、
この導波管に導かれた高周波エネルギーを前記高周波供給室に放射するために高周波供給室底面中央部に設けられた結合穴と、
この結合穴を貫通して前記高周波供給室内へ略垂直に臨んで設けられた内導体と、
この内導体の一端の前記高周波供給室内に略水平に連結された金属製平板の回転アンテナと、
前記内導体の前記導波管内で連結された誘電体軸と、この誘電体軸を回転駆動する駆動部とを備え、
前記回転アンテナには複数個のλ/2(λ:122mm)以上の長さを有する弧状スリットを設けるとともに、各弧状スリットの弧の中心は回転アンテナの外にあることを特徴とする高周波加熱装置。 A heating chamber for storing an object to be heated;
A heated object mounting plate made of a dielectric provided on the bottom surface of the heating chamber;
A high-frequency supply chamber provided in the center of the bottom surface of the heating chamber below the heated object placing plate,
A magnetron that generates high-frequency energy;
A waveguide to which this magnetron is attached;
A coupling hole provided in a central portion of the bottom surface of the high frequency supply chamber for radiating high frequency energy guided to the waveguide to the high frequency supply chamber;
An inner conductor provided substantially vertically through the coupling hole and into the high-frequency supply chamber;
A metal flat plate rotating antenna connected substantially horizontally in the high-frequency supply chamber at one end of the inner conductor;
A dielectric shaft connected within the waveguide of the inner conductor, and a drive unit that rotationally drives the dielectric shaft,
The rotating antenna is provided with a plurality of arc-shaped slits having a length of λ / 2 (λ: 122 mm) or more, and the arc center of each arc-shaped slit is outside the rotating antenna. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008213444A JP2010049946A (en) | 2008-08-22 | 2008-08-22 | High frequency heating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008213444A JP2010049946A (en) | 2008-08-22 | 2008-08-22 | High frequency heating device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010049946A true JP2010049946A (en) | 2010-03-04 |
Family
ID=42066855
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008213444A Withdrawn JP2010049946A (en) | 2008-08-22 | 2008-08-22 | High frequency heating device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010049946A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013053795A (en) * | 2011-09-02 | 2013-03-21 | Toshiba Corp | Heating cooker |
-
2008
- 2008-08-22 JP JP2008213444A patent/JP2010049946A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013053795A (en) * | 2011-09-02 | 2013-03-21 | Toshiba Corp | Heating cooker |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2988574B1 (en) | Microwave heating device | |
JP5895247B2 (en) | Microwave heating device | |
US11191134B2 (en) | Microwave heating apparatus with rotatable antenna and method thereof | |
SG192170A1 (en) | High-frequency heating apparatus | |
JP2003173867A (en) | Microwave oven | |
US7049566B2 (en) | Cooking device | |
WO2013005420A1 (en) | Microwave heating device | |
JP2013037795A (en) | Microwave heating device | |
JP2010049946A (en) | High frequency heating device | |
JP2016213099A (en) | Heating cooker | |
JP2007042333A (en) | High frequency heating device | |
JP2010251129A (en) | High frequency heating device | |
JP6111421B2 (en) | Microwave heating device | |
JP4413034B2 (en) | microwave | |
JP2007317411A (en) | High-frequency heating apparatus | |
JP6212705B2 (en) | Microwave heating device | |
JP3619044B2 (en) | High frequency heating device | |
JP4832315B2 (en) | High frequency heating device | |
JP2009181727A (en) | Microwave processing device | |
JP2012009238A (en) | High frequency heating apparatus | |
JP2000133433A (en) | High frequency heating device | |
JP4966648B2 (en) | Microwave heating device | |
KR100657482B1 (en) | Microwave Range | |
JPH09320756A (en) | High-frequency heating apparatus | |
JP3575051B2 (en) | High frequency heating equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20111101 |