WO2013005420A1 - Microwave heating device - Google Patents

Microwave heating device Download PDF

Info

Publication number
WO2013005420A1
WO2013005420A1 PCT/JP2012/004304 JP2012004304W WO2013005420A1 WO 2013005420 A1 WO2013005420 A1 WO 2013005420A1 JP 2012004304 W JP2012004304 W JP 2012004304W WO 2013005420 A1 WO2013005420 A1 WO 2013005420A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
heating
waveguide
heating chamber
radiating
Prior art date
Application number
PCT/JP2012/004304
Other languages
French (fr)
Japanese (ja)
Inventor
大介 細川
吉野 浩二
貞平 匡史
信江 等隆
大森 義治
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201280032970.9A priority Critical patent/CN103650637B/en
Publication of WO2013005420A1 publication Critical patent/WO2013005420A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/707Feed lines using waveguides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/72Radiators or antennas

Definitions

  • the present invention relates to a microwave heating apparatus such as a microwave oven, and more particularly to a microwave heating apparatus characterized by a structure for radiating microwaves into a heating chamber.
  • a typical microwave heating apparatus that heats an object to be heated by microwaves is a microwave oven.
  • the microwave generated in the microwave generating means is radiated into the metal heating chamber, and the object to be heated in the heating chamber is heated by the radiated microwave.
  • Magnetron is used as a microwave generation means in a conventional microwave oven. Microwaves generated by the magnetron are radiated from the microwave radiating portion into the heating chamber through the waveguide. If the electromagnetic field distribution (microwave distribution) of the microwave in the heating chamber is not uniform, there is a problem that the object to be heated cannot be uniformly heated by microwaves.
  • a structure for rotating the table to place the object to be heated to rotate the object to be heated inside the heating chamber, fixing the object to be heated, and applying microwaves
  • a structure for rotating a radiating antenna or a structure for changing the phase of the microwave from the microwave generating means using a phase shifter is generally used.
  • a rotatable antenna, an antenna shaft, and the like are arranged inside a waveguide, and the microwave distribution in the heating chamber is driven by driving the magnetron while rotating the antenna by a motor.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 62-64093 (Patent Document 1) describes a microwave heating apparatus having another configuration.
  • a rotatable antenna is provided on the upper part of a magnetron, and the antenna is rotated by the wind force of the blower fan by applying the wind from the blower fan to the blades of the antenna.
  • Microwave heating devices that change the distribution have been proposed.
  • Patent Document 2 proposes a microwave heating apparatus having a single microwave radiating section that radiates circularly polarized waves inside a heating chamber.
  • the microwave heating apparatus having the above-described conventional configuration is required to have a simple structure as much as possible, and to efficiently heat an object to be heated without unevenness.
  • the conventional configurations proposed so far are not satisfactory and have various problems in terms of efficiency and uniformity in terms of structure.
  • microwave heating devices especially in microwave ovens, technological development for higher output has progressed, and products with a rated high-frequency output of 1000 W have been commercialized in Japan.
  • Microwave ovens are notable for heating food by heat conduction, but the convenience of being able to heat food directly using dielectric heating is a major feature of this product.
  • increasing the output in a state where non-uniform heating has not been solved has a big problem that non-uniform heating becomes more obvious.
  • the following three points are given as structural problems of the conventional microwave heating apparatus.
  • the first point requires a drive mechanism for rotating the table or antenna to reduce non-uniform heating, so that a rotation space and a space for installing a drive source such as a motor for rotating the table or antenna are secured. This is a point that obstructs miniaturization of the microwave oven.
  • the second point is that in order to rotate the table or antenna stably, it is necessary to provide the antenna above or below the heating chamber, and the arrangement of specific parts is limited on the structure.
  • the third point is that with the advent of microwave ovens with various heating functions such as steam heating and hot air heating, many components are required inside the microwave oven casing, and control components inside the casing Because of the large amount of heat generation, it is necessary to secure a cooling air path to achieve sufficient cooling performance, the installation position of the waveguide and microwave radiation part is limited, and the microwave distribution in the heating chamber is uneven It is a point.
  • the microwave heating device having a single microwave radiating unit that radiates circularly polarized waves into the inside of the heating chamber disclosed in Patent Document 2 has an advantage that it does not have a rotating mechanism. There is a problem that sufficient uniform heating cannot be realized.
  • the present invention solves the above-described problems in the conventional technology, and an object thereof is to provide a microwave heating apparatus capable of uniformly heating an object to be heated without using a rotation mechanism.
  • One aspect of the microwave heating apparatus is: A heating chamber for storing an object to be heated; A microwave generator for generating microwaves; A waveguide for transmitting microwaves; A plurality of microwave radiating sections that radiate circularly polarized waves in the heating chamber, The waveguide section is arranged so that the center point of the heating space in the heating chamber is not included on the vertical line of the central axis parallel to the transmission direction in the waveguide section, A combined wave of the microwaves radiated from each of the microwave radiating portions is configured to have a directivity for radiating many microwaves toward the center side of the heating space.
  • the microwave heating device of one embodiment according to the present invention configured as described above can uniformly heat an object to be heated without using a rotation mechanism.
  • a microwave heating apparatus that can uniformly perform microwave heating on an object to be heated arranged in a heating chamber without using a rotation mechanism.
  • FIG. 1 It is a cross-sectional view which shows the microwave oven which is the microwave heating device of Embodiment 1 which concerns on this invention. It is a top view which shows the structure of the microwave radiation
  • produces circularly polarized wave in the microwave heating apparatus of Embodiment 2 which concerns on this invention
  • the microwave heating apparatus is A heating chamber for storing an object to be heated; A microwave generator for generating microwaves; A waveguide for transmitting microwaves; A plurality of microwave radiating sections that radiate circularly polarized waves in the heating chamber, The waveguide section is arranged so that the center point of the heating space in the heating chamber is not included on the vertical line of the central axis parallel to the transmission direction in the waveguide section, A combined wave of the microwaves radiated from each of the microwave radiating portions is configured to have a directivity for radiating many microwaves toward the center side of the heating space.
  • the microwave heating apparatus configured as described above can adjust the number, shape, arrangement, and the like of the microwave radiating portions, and changes the microwave distribution in the heating chamber.
  • a control factor increases and it becomes the structure which is easy to implement
  • the microwave heating apparatus since the microwave heating apparatus according to the first aspect of the present invention has a microwave radiating unit that radiates circularly polarized waves, microwaves having a spread are radiated from the microwave radiating unit and heated. It is possible to make the microwave radiation uniform over a wider range. In particular, uniform heating in the circumferential direction of circular polarization can be expected.
  • the plurality of microwave radiating portions in the first aspect are non-axisymmetric with respect to a central axis parallel to the transmission direction in the waveguide. It is arranged to be.
  • the microwave heating apparatus according to the second aspect of the present invention configured as described above can change the microwave distribution in the heating chamber, and can set the microwave distribution in the heating space to a desired state. It becomes.
  • At least one microwave radiating part in the plurality of microwave radiating parts in the first or second aspect is more than the other microwave radiating parts.
  • the microwave radiating unit has a directivity structure, the microwave distribution in the heating chamber can be changed, and the rotation mechanism can be changed. Without using it, it becomes possible to uniformly heat the object to be heated.
  • microwave heating apparatus in any one of the first to third aspects, transmission in the waveguide section is performed on the surface of the waveguide section facing the heating chamber.
  • the microwave radiating portions provided in the respective regions on both sides of the boundary are configured such that the distances from the central axis to the center of the microwave radiating portion are different.
  • the microwave heating device configured as described above has a configuration having directivity by a plurality of microwave radiating units, and can change the microwave distribution in the heating chamber.
  • the transmission in the waveguide section is performed on the surface of the waveguide section facing the heating chamber.
  • the number of the microwave radiating portions provided on both sides of the boundary is closer to the center point of the heating space, and the number of the microwave radiating portions is closer to the far side. More than the number of radiation parts.
  • the microwave heating apparatus according to the fifth aspect of the present invention configured as described above has a configuration having directivity by a plurality of microwave radiating units, and can change the microwave distribution in the heating chamber.
  • the transmission in the waveguide section is performed on the surface of the waveguide section facing the heating chamber.
  • the microwave radiating portions on the side close to the center point of the heating space in the plurality of microwave radiating portions provided on both sides of the boundary are defined in the waveguide portion. It is formed at the position of the standing wave belly.
  • a microwave heating apparatus is the microwave heating apparatus according to any one of the first to sixth aspects, wherein at least one microwave radiating portion is configured by a combination of two or more slits.
  • the longitudinal direction of at least one slit in the microwave radiating portion is inclined with respect to the transmission direction in the waveguide portion, and the combined wave of the microwaves radiated from all the microwave radiating portions is in a specific direction.
  • a circularly polarized microwave having a spread from the microwave radiating unit is reliably radiated, and the microwave is applied to the object to be heated. Can be made uniform over a wider range.
  • the microwave heating apparatus has a configuration in which the microwave radiating portion is formed by two or more slits to reliably radiate circularly polarized waves.
  • a mechanism for rotating the table or the antenna for reducing unevenness is not required, and the reliability of the apparatus can be improved and the power feeding unit can be downsized.
  • the microwave heating apparatus according to the seventh aspect, wherein the length of the slit of the microwave radiating portion configured by the slit is the length of the transmission in the waveguide portion. It is comprised so that it may differ with the position in the direction orthogonal to an electric field direction.
  • the microwave heating apparatus according to the eighth aspect of the present invention configured as described above is configured to have directivity by a plurality of microwave radiating units, and can change the microwave distribution in the heating chamber, It becomes possible to make the microwave distribution in the space a desired state.
  • the length in the width direction of the slit of the microwave radiating unit configured by the slit is the transmission in the waveguide unit. It is comprised so that it may differ with the position of the direction orthogonal to an electric field direction.
  • the microwave heating apparatus according to the ninth aspect of the present invention configured as described above has a configuration having directivity by a plurality of microwave radiating units, and can change the microwave distribution in the heating chamber, It becomes possible to make the microwave distribution in the space a desired state.
  • an R chamfering process or a C chamfering process is performed at the intersection of the slits of the microwave radiating unit configured by the slits.
  • the microwave heating apparatus according to the tenth aspect of the present invention thus configured can alleviate electric field concentration, suppress energy loss, and increase the reliability of the apparatus.
  • an R chamfering process or a C chamfering process is performed on a slit end portion of the microwave radiating portion configured by a slit. ing.
  • the microwave heating apparatus according to the tenth aspect of the present invention thus configured can alleviate electric field concentration, suppress energy loss, and increase the reliability of the apparatus.
  • a microwave oven will be described.
  • the microwave oven is an example, and the microwave heating apparatus of the present invention is not limited to the microwave oven, and uses dielectric heating.
  • a microwave heating device such as a garbage processing machine or a semiconductor manufacturing device.
  • the present invention includes appropriately combining arbitrary configurations described in the respective embodiments described below, and the combined configurations exhibit their respective effects.
  • the present invention is not limited to the specific microwave oven configuration described in the following embodiments, and includes a configuration based on the same technical idea.
  • FIG. 1 is a cross-sectional view showing a microwave oven that is a microwave heating apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a plan view of the microwave radiating unit in the microwave oven according to the first embodiment of the present invention, and shows a positional relationship among the heating chamber 101, the waveguide unit 103, and the microwave radiating unit 104.
  • a microwave oven that is a microwave heating apparatus according to Embodiment 1 is supplied from a heating chamber 101 that stores an object to be heated 107, a microwave generation unit 102 that generates a microwave, and a microwave generation unit 102.
  • the configuration in the microwave oven of the first embodiment is obtained by using a magnetron as the microwave generation unit 102, a rectangular waveguide as the waveguide unit 103, and an opening provided in the waveguide unit 103 as the microwave radiation unit 104. It can be easily realized.
  • the waveguide unit 103 has a plurality of microwave radiation units 104 that radiate circularly polarized waves in the heating chamber 101.
  • the positional relationship between the waveguide section 103 and the heating chamber 101 is such that, when the heating chamber 101 is viewed from above, the central axis P parallel to the transmission direction in the waveguide section 103 (the right direction in FIG. 2) is The center point O of the inner wall surface (bottom wall) of the heating chamber 101 provided with 103 is not included.
  • the center point O of the heating space in the heating chamber is on the vertical line (on the vertical line) of the center point O of the bottom wall (the wall surface of the heating chamber 101) facing the waveguide unit 103.
  • the central axis P parallel to the transmission direction in the waveguide section 103 does not include the center point O of the inner wall surface of the heating chamber 101 where the waveguide section 103 is installed.
  • the related configuration is called off-center.
  • the microwave heating apparatus transmits a microwave from the magnetron serving as the microwave generation unit 102 into the waveguide unit 103. Is supplied, and microwaves are radiated into the heating chamber 101 through the microwave radiating unit 104 that connects the heating chamber 101 and the waveguide unit 103. In this manner, the microwave is radiated into the heating chamber 101, so that the microwave heating apparatus performs a heat treatment on the object to be heated 107.
  • the shape (heating space shape) in the heating chamber 101 is often asymmetric, and a large number of components having different dielectric constants are attached to the wall surface constituting the heating chamber 101. As specific examples, there are mainly the following three points.
  • 1st point is that the door 108 and the door glass 109 for taking out the to-be-heated material 107 are attached.
  • the second point is that the heater 110 is attached to the upper surface or the bottom surface to radiately heat the article to be heated 107.
  • the third point is that since the heater 110 and the convection fan 111 are attached to the back side of the back surface to convectionly heat the object to be heated 107, the back side wall surface has a complicated shape.
  • the shape of the heating space in the heating chamber 101 is asymmetrical and / or components having different dielectric constants are attached to the wall surface of the heating chamber 101, so that microwaves are reflected on the inner wall surface of the heating chamber 101.
  • the heating of the object to be heated 107 becomes uneven due to the reflected wave.
  • microwaves radiated from the microwave radiating unit 104 and directly irradiating the object to be heated 107 are referred to as direct waves and reflected on the wall surface in the heating chamber 101 to be heated.
  • the microwave that irradiates 107 is a reflected wave.
  • microwave heating apparatuses having not only a microwave heating function but also other heating methods (water vapor heating, radiation heating, hot air heating, etc.) have appeared. For this reason, in order to ensure the performance of other heating functions, the waveguide section is often configured to be off-center with respect to the heating chamber.
  • the microwave radiating portion is symmetrically arranged with the central axis of the waveguide portion in the tube axis direction (see the central axis P in FIG. 2) as the symmetry axis, the heating chamber has a uniform microwave distribution. It is difficult.
  • the first point is in the case of a microwave heating device having a water vapor heating function.
  • the water tank 112, the pump 113, the heater 110, and the spout 114 for ejecting water vapor into the heating chamber 101 are used.
  • Etc. must be installed inside and outside of the heating chamber 101, and the waveguide 103 is off-centered with respect to the heating chamber 101.
  • the second point is a case of a microwave heating apparatus having a radiant heating function, and it is necessary to install a heater 110 on the upper surface side or the bottom surface side of the heating chamber 101. It becomes an off-center configuration.
  • a heater 110 is installed on the upper surface side of the heating chamber 101.
  • parts with a large amount of heat generation such as an inverter, a magnetron, and a control board are installed in the casing.
  • Such heat generating parts such as inverters, magnetrons and control bases must be sufficiently cooled, and a cooling air passage (cooling space) 115 (see FIG. 1) is secured in the housing for these heat generating parts.
  • a cooling air passage (cooling space) 115 (see FIG. 1) is secured in the housing for these heat generating parts.
  • the object to be heated in the heating chamber is made uniform unless it has a desired directivity corresponding to the heating space in the heating chamber. It is difficult to heat by microwave.
  • the microwave heating apparatus having a plurality of microwave radiating portions will be described.
  • the microwave heating apparatus having one microwave radiating portion since the number of factors for adjusting the directivity of the microwave is small, it is difficult to obtain the uniformity of the microwave distribution with respect to the heating region in the target heating chamber. It is.
  • microwave heating apparatus since microwaves are radiated from one point into the heating chamber, sufficient spreading of the microwaves cannot be expected, and the direct wave and the reflected wave have a heating area in a specific area. In many cases, the heat is concentrated, resulting in non-uniform microwave heating on the object to be heated.
  • the object to be heated is often placed at a short distance from the microwave radiation part, and the microwave does not spread sufficiently, and the microwave is near the object to be heated.
  • the heating unevenness of the object to be heated becomes remarkable.
  • the microwave radiating portions in the waveguide portion and radiating microwaves to the heating chamber, not only the shape of the microwave radiating portions but also the directivity such as quantity and arrangement are adjusted. It is possible to increase the number of factors. Thus, by providing a plurality of microwave radiating portions, the number of adjustment factors can be significantly increased compared to the case of one microwave radiating portion. For this reason, it is possible to make the microwave distribution in the heating space uniform, and it becomes easy to obtain uniform microwave heating for the target object to be heated.
  • Circular polarization is a technique widely used in the fields of mobile communication and satellite communication. Familiar use examples include ETC (Electronic Toll Collection System) “non-stop automatic toll collection system”.
  • Circular polarization is a microwave in which the polarization plane of the electric field rotates with respect to the traveling direction of the radio wave, and when the circular polarization is formed, the direction of the electric field continues to change with time. The radiation angle of the emitted microwave continues to change, and the electric field strength does not change with time.
  • the microwave radiating part that radiates circularly polarized waves disperses microwaves over a wide range compared to microwave heating by linearly polarized waves used in conventional microwave heating devices. By being emitted, it becomes possible to heat the object to be heated more uniformly. In particular, there is a strong tendency for uniform heating in the circumferential direction of circular polarization.
  • circularly polarized waves are classified into two types, that is, right-handed polarization (CW: clockwise) and left-handed polarization (CCW: counter clockwise) from the direction of rotation, but there is no difference in heating performance.
  • the standing wave in the heating chamber caused by interference between the direct wave and the reflected wave which has been a problem in microwave heating by the conventional microwave heating apparatus using linearly polarized waves, is converted into circularly polarized radiation. It can be mitigated by use, and it is considered that more uniform microwave heating can be realized.
  • Microwaves transmitted through the waveguide are linearly polarized waves whose electric field and magnetic field oscillation directions are constant.
  • a structure for rotating the table on which the object to be heated is placed, It has been necessary to provide a structure for rotating an antenna that radiates microwaves from the waveguide to the heating chamber, or a structure for changing the phase of the microwave by installing a phase shifter in the waveguide.
  • the inventor proposes, as one aspect, the configuration of the microwave heating apparatus according to the first embodiment of the present invention that solves the above-described problems.
  • a method for adjusting the directivity of the combined wave of the microwaves radiated by the plurality of microwave radiating units 104 configured in the microwave heating apparatus according to the first embodiment of the present invention will be described using a specific example.
  • the waveguide section 103 is provided with a plurality of microwave radiating sections 104, and the waveguide section 103 is configured to be in an off-center position with respect to the heating chamber 101.
  • the waveguide section 103 is arranged so as to be on the back side (upper side in FIG. 2) from the center point O of the heating space of the heating chamber 101 when the heating chamber 101 is viewed from above. Has been.
  • the fundamental is increased as the distance from the microwave generating portion increases.
  • the amount of microwave radiation decreases. In such a configuration, it is difficult to uniformly heat the object to be heated arranged in the center of the heating chamber.
  • the plurality of microwave radiating portions 104 are arranged so as not to be axially symmetric with respect to the central axis P parallel to the transmission direction X of the waveguide portion 103 (non-axisymmetric arrangement).
  • two waveguide portions 103 are provided in the region on the back side from the central axis P of the waveguide portion 103, and three in the region on the front side from the central axis P of the waveguide portion 103.
  • the waveguide section 103 is provided.
  • the total opening area of the microwave radiating portions 104 in the region where the number of the microwave radiating portions 104 is large is the opposite region (rear region). ) And the total microwave radiation in the regions on both sides is biased.
  • the microwaves radiated from the front-side microwave radiating units 104 to the front side of the heating chamber 101 are microwave radiations on the back side. More than the microwaves radiated from each of the sections 104 to the back side of the heating chamber 101.
  • the synthesized wave from the waveguide unit 103 is configured to have directivity on the side with the large numerical aperture (front side) of the microwave radiating unit 104.
  • the surface of the waveguide 103 facing the heating chamber 101 is closer to the center O of the heating space of the heating chamber 101.
  • the distance from the center axis P to the center of the microwave radiating unit 104 may be adjusted to be different. good.
  • the distance L1 from the central axis P to the center of the microwave radiating unit 104 on the front side is from the central axis P as shown in the microwave radiating unit 104 closest to the terminal end 201 of the waveguide unit 103. It is set longer than the distance L2 to the microwave radiation part 104 on the back side (L1> L2).
  • each microwave radiating portion 104 closer to the center point O of the heating space of the heating chamber 101, in the microwave radiation from the microwave radiating portion 104 provided in the waveguide portion 103, the heating chamber More microwaves are radiated in the direction toward the center of 101, and directivity is obtained in the radiation direction of the combined wave (total amount) of the microwaves.
  • the heating chamber is adjusted by adjusting the position of the microwave radiating unit 104 in the direction Y (the width direction of the waveguide unit 103) orthogonal to the transmission and electric field directions. More microwaves can be radiated to the center side of 101, and the configuration has directivity.
  • the waveguide unit 103 has the heating chamber 101.
  • the present invention can be applied not only to the case where the heating chamber 101 is arranged off-center, but also to the case where the bias of the microwave distribution that occurs when the heating space shape of the heating chamber 101 is asymmetrical becomes a problem.
  • the two specific configurations described above can be configured to achieve more uniform heating of the object to be heated by combining these configurations.
  • the microwave heating apparatus of the second embodiment is different from the microwave heating apparatus of the first embodiment described above in that the directivity of the microwave radiating unit is specified in relation to the standing wave in the waveguide. Yes, the other configurations are the same.
  • FIG. 3 is a diagram for explaining the relationship between the microwave radiating unit 104 and the standing wave 301 in the microwave heating apparatus according to the second embodiment of the present invention.
  • FIG. 3 illustrates the positional relationship between the standing wave 301 and the microwave radiating unit 104 generated in the waveguide unit 103.
  • the waveguide 103 has at least one microwave radiating unit 104 at a specific position, so that the microwave radiated from the microwave radiating unit 104 has directivity.
  • the traveling wave generated in the microwave generation unit 102 (see FIG. 1) and supplied to the waveguide unit 103, and the waveguide
  • the reflected waves reflected at the terminal end 201 of the section 103 interfere with each other, and a standing wave 301 is generated inside the waveguide section 103.
  • the present inventor confirmed by experiments that the directivity of the microwave radiated from the microwave radiating unit 104 changes due to the difference in the phase of the standing wave 301 immediately below the microwave radiating unit 104. Yes.
  • the principle that the directivity of the microwave radiated from the microwave radiating unit 104 changes according to the phase of the standing wave 301 will be described below.
  • FIG. 4 is a diagram for explaining a relationship among an electric field, a magnetic field, and a current with respect to the microwave radiating unit 104 in the microwave heating apparatus of the second embodiment.
  • FIG. 4 shows the principle that the directivity changes depending on the installation position of the microwave radiating unit 104, and explains the relationship between the electric field, magnetic field, and current in the waveguide unit 103 where the standing wave 301 is generated. Yes.
  • reference numeral 402 indicates a curve of electric field distribution
  • reference numeral 403 indicates a curve indicating magnetic field distribution
  • reference numeral 404 indicates a current flow.
  • the direction of electric field and magnetic field are orthogonal (90 °) and the phase is the same.
  • the directions of the electric field and the magnetic field are orthogonal (90 °), and the phase is shifted by ⁇ / 2. Therefore, the relationship between the electric field and the magnetic field in the rectangular waveguide, which is the waveguide 103 where the standing wave 301 is generated, is as shown in FIG. In the case of the standing wave 301, this is mainly due to the fact that the phase of the electric field is shifted by 180 ° when the traveling wave is reflected at the end of the waveguide 103.
  • the current flows on the surface of the waveguide 103 in a direction perpendicular to the magnetic field.
  • the microwave radiation section 104 is provided on the surface orthogonal to the electric field direction Z (see FIG. 3)
  • the radiation is generated when the standing wave 301 is generated therein.
  • the principle of microwave directivity will be described.
  • the microwave radiation part 104 is arrange
  • the current in the microwave radiating unit 104 arranged at the position of “antinode” increases the current in the Y direction component in the width direction Y perpendicular to the transmission and electric field direction.
  • the radiated microwave Since the direction in which the current flows and the direction in which the electric field spreads are the same, the radiated microwave has directivity in the Y direction (width direction of the waveguide 103) perpendicular to the transmission and electric field direction.
  • the current in the microwave radiating unit 104 arranged at the position of the “node” of the standing wave has more components in the transmission direction X (X-direction component). For this reason, the emitted microwave has directivity in the X direction, which is the transmission direction X of the waveguide section 103.
  • FIG. 5 is a diagram for explaining the relationship between the phase and directivity of the standing wave 301 generated in the waveguide section 103 in the microwave heating apparatus of the second embodiment.
  • FIG. 5 illustrates the relationship between the phase of the standing wave 301 generated in the waveguide 103 where the microwave radiating unit 104 is located and the directivity of the microwave radiated into the heating chamber 101. The results shown in FIG. 5 are obtained by analysis.
  • FIG. 5A shows a change in the distance from the end 201 (see FIG. 4) of the waveguide 103 to the center of the microwave radiating unit 104, thereby changing the waveguide 103 immediately below the microwave radiating unit 104. It is the figure which changed the phase of the standing wave inside.
  • emission part 104 shows the gravity center position of the board
  • the position of the “antinode” of the standing wave is set to phase 0 °
  • the position of the “node” is set to phase 180 °
  • the phase ranges from about 0 ° to about 180 °.
  • the microwave distribution radiated from the microwave radiating unit 104 at an interval of about 45 ° in phase was obtained by analysis.
  • the microwave radiating unit 104 is changed by changing the distance from the end 201 of the waveguide unit (rectangular waveguide) 103 to the center of the microwave radiating unit 104.
  • the phase of the standing wave in the waveguide 103 immediately below is changed.
  • the end 201 of the waveguide 103 is a waveguide that is the end position in the transmission direction with the microwave output position of the magnetron serving as the microwave generator 102 as the start end in the transmission space in the waveguide 103.
  • the inner wall surface of the closed part of the part 103 is said.
  • the microwave radiating unit 104 radiates microwaves in the transmission direction X in the same manner as described above. Have directivity. Then, as shown in FIG. 5B, by shifting the phase by about 45 °, the directivity of the microwave shifts counterclockwise, and the phase is about 0 ° (standing wave). When the position is substantially “antinode”, the directivity is in the width direction (Y direction) orthogonal to the transmission and electric field directions.
  • the microwave radiating unit 104 when the phase directly below the microwave radiating unit 104 is about 0 ° (position of almost “antinode” in the standing wave), the microwave radiating unit 104 has a width direction orthogonal to the transmission and electric field directions ( (Y direction) has directivity of microwave radiation. This result is also consistent with the above explanation of the principle.
  • the microwave radiating unit 104 having directivity in the target direction can be provided, and heating is performed.
  • the non-uniform microwave distribution in the chamber 101 can be improved.
  • a rectangular waveguide is used as the waveguide unit 103 to transmit a microwave generated from a magnetron as a microwave generation unit, and in the transmission direction of the rectangular waveguide (see arrow X in FIG. 4).
  • a microwave having a transmission mode called TE10 mode is transmitted in an H wave (TE wave; Transverse Electric Wave) which is a transmission mode having only a magnetic field component and no electric field component. ing.
  • transmission modes other than the TE10 mode are rarely applied to the waveguide unit 103 of the microwave heating apparatus.
  • the upper and lower limits of the dimensions of the rectangular waveguide transmission and the direction orthogonal to the electric field direction are the microwave frequency and the electric field direction of the rectangular waveguide (FIG. 3). (See arrow Z).
  • the moving distance of the microwave radiating unit 104 necessary for changing the radiation direction by 90 ° is about a half wavelength of the standing wave in the tube.
  • FIG. 6 is an explanatory diagram of a specific opening shape of the microwave radiating unit 104 in the microwave heating apparatus of the second embodiment.
  • the microwave radiating unit 104 shown in FIG. 6 is configured so that two slits (openings) that are linear openings intersect each other, and the longitudinal direction of at least one slit (the length L in FIG. 6 is shown). (Direction) is a shape inclined with respect to the transmission direction X in the waveguide section 103.
  • the length in the longitudinal direction of the slit constituting the microwave radiating portion 104 is L
  • the width of the slit is S.
  • the analysis condition for the above analysis results is that the opening shape of the microwave radiating unit 104 is orthogonal to the transmission direction X so that two slits intersect each other at the center of each slit.
  • the longitudinal direction of the slit is inclined by 45 °.
  • the number of the microwave radiating portions 104 is one, the length L of each slit is 55 mm, the thickness (height) of the rectangular waveguide is 30 mm, and the directivity display data is effective radiated power.
  • FIG. 7 shows an arrangement configuration example of the microwave radiating unit 104 provided in the waveguide unit 103 with respect to the heating chamber 101 in the microwave heating apparatus according to the second embodiment of the present invention configured based on the above analysis result. It is a top view.
  • the waveguide unit 103 includes a plurality of microwave radiation units 104 that radiate circularly polarized waves in the heating chamber 101.
  • the positional relationship between the waveguide section 103 and the heating chamber 101 is a vertical line (vertical) of the central axis P parallel to the transmission direction (right direction in FIG. 7) in the waveguide section 103 when the heating chamber 101 is viewed from above.
  • the regions on both sides of the waveguide 103 that are parallel to the transmission direction as a boundary that is, the regions on both sides, that is, the back wall region and the front surface of the tube wall surface facing the heating chamber 101 with the center axis P as a boundary.
  • a plurality of microwave radiating portions 104 are provided in each region. Two microwave radiating portions 104 are arranged in the position of the “node” of the standing wave in the waveguide section 103 in the back side region, and “standing wave“ of the standing wave in the waveguide portion 103 is arranged in the front side region. Three microwave radiating portions 104 are arranged at the position of “belly”.
  • each of the microwave radiating portions 104 in the back side region of the waveguide portion 103 has directivity in the tube axis direction (left-right direction in FIG. 7). Perform microwave radiation.
  • each of the microwave radiating portions 104 in the front side region of the waveguide portion 103 performs microwave radiation having directivity in a direction orthogonal to the tube axis direction (vertical direction in FIG. 7).
  • the total amount of microwave radiation from the microwave radiation unit 104 in the front side region is larger than the total amount of microwave radiation from the microwave radiation unit 104 in the rear side region, A large amount of microwave radiation is performed from the microwave radiation unit 104 on the front side.
  • the object to be heated can be uniformly heated.
  • the following three points can be given as conditions for the best shape of the microwave radiating unit 104 that radiates circularly polarized waves constituted by the two linear slits shown in FIG.
  • the first point is that the length L in the longitudinal direction of each slit is 1 ⁇ 4 or more of the in-tube wavelength ( ⁇ g) of the microwave transmitted through the waveguide section 103.
  • the second point is that the two slits are orthogonal to each other at the center, and that the longitudinal direction of each slit is inclined 45 ° with respect to the transmission direction X.
  • the third point is a straight line parallel to the transmission direction X of the waveguide section 103, and the electric field distribution in the waveguide section 103 is not axisymmetric with respect to a straight line passing through the center of the microwave radiating section 104. It is.
  • the central axis (tube axis) parallel to the transmission direction in the waveguide is set as the symmetry axis in the waveguide. Has a distributed electric field.
  • the opening shape of the microwave radiating unit 104 is arranged (asymmetrically arranged) so as not to be axially symmetric with respect to the central axis P (tube axis) in the transmission direction X in the waveguide unit 103.
  • microwave radiating unit 104 that generates circularly polarized waves.
  • the configuration of the microwave radiation unit 104 configured by at least two slits will be described.
  • FIG. 8 is a diagram illustrating another configuration of the microwave radiating unit 104 that generates circularly polarized waves in the microwave heating apparatus according to the second embodiment of the present invention, and faces the heating chamber 101 in the waveguide unit 103. It is a top view which shows the state formed in the pipe wall surface.
  • FIG. 8 as another configuration of the microwave radiating unit 104, an example of a different shape of the microwave radiating unit 104 configured by two or more linear slits (openings) and radiating circularly polarized waves is shown. ing.
  • the microwave radiating portion 104 is configured by two or more linearly opened slits, and the longitudinal direction of at least one of these slits is The shape may be inclined with respect to the microwave transmission direction X. Therefore, as shown in (e) and (f) of FIG. 8, a shape in which the slits do not intersect, or a shape constituted by three slits as shown in (d) of FIG. 8 may be used.
  • the microwave radiated from the waveguide unit 103 to the heating chamber 101 through the microwave radiating unit 104 is increased or decreased by increasing or decreasing the opening area of the slit.
  • a method for adjusting the amount of wave radiation will be described.
  • the object to be heated is uniform.
  • the total amount of microwaves radiated from the microwave radiation unit 104 can be changed by increasing or decreasing the respective opening areas of the microwave radiation unit 104. Therefore, it is possible to adjust the directivity of the composite wave of the microwaves radiated from all the microwave radiation units 104 in the waveguide unit 103.
  • two microwave radiating units 104 are symmetrically arranged in regions on both sides of the central axis P parallel to the transmission direction X of the waveguide unit 103 (front region and front region), and the heating space of the heating chamber 101 Let us consider a case where the waveguide 103 is disposed at an off-center position with respect to the center point O.
  • the same number of microwave radiating parts 104 having the same opening area are arranged so as to be symmetric with respect to the central axis P parallel to the transmission direction X in the waveguide part 103, the distance from the microwave generating part (for example, magnetron). Since the intensity of the microwave basically decreases with increasing distance, it is difficult to uniformly heat the object to be heated placed in the center of the heating chamber 101.
  • the length of the slit of the microwave radiating unit 104 disposed on the front side of the heating chamber 101 (the center side of the heating space).
  • FIG. 9 is a plan view showing an example in which the configuration of the microwave radiating unit 104 in the microwave heating apparatus of the second embodiment is changed.
  • a plurality of microwave radiating portions 104 that radiate circularly polarized waves are formed in the waveguide 103 in the heating chamber 101, and the waveguide 103 is off-center with respect to the heating chamber 101. It has become.
  • the length L in the longitudinal direction of the slit of the microwave radiating unit 104 arranged on the front surface side (center side) of the heating chamber 101 is set to the back side micro wave. By making it longer (thicker) than the wave radiating unit 104, the amount of microwave radiation on the front side (center side) of the heating chamber 101 can be increased from the microwave radiating unit 104 on the back side.
  • the length S in the width direction of the slit of the microwave radiating unit 104 arranged on the front side (center side) of the heating chamber 101 is set to the back side.
  • the amount of microwave radiation on the front side (center side) of the heating chamber 101 can be increased from the microwave radiating unit 104 on the back side.
  • FIG. 6 and FIG. 9 is a microwave having a shape in which the longitudinal direction of the slit is inclined by 45 ° with respect to the transmission direction X in the waveguide section 103, with the two slits shown in FIGS.
  • the amount of microwave radiation radiated from the radiating unit 104 can be determined based on the following equation (Equation 1) for obtaining the coupling degree C of the cruciform directional coupler.
  • the degree of coupling C of the cruciform directional coupler means the microwave emissivity from the waveguide unit 103 to the heating chamber 101 through the microwave radiating unit 104.
  • Microwaves have the property of concentrating on corners and sharp points. Therefore, if there is a corner or pointed portion at the slit crossing portion A (see FIG. 6) or the slit end portion B (see FIG. 6), the electric field concentrates on that portion and heat is generated. When the electric field concentrates in this way, energy loss occurs, so that the heating efficiency of the object to be heated decreases, and ultimately the reliability of the microwave heating apparatus decreases.
  • an R chamfering process is performed at the slit intersecting portion A or the slit end portion B of the microwave radiating portion 104 configured by intersecting two linear slits.
  • the microwave heating apparatus adjusts the number, shape, and arrangement of a plurality of microwave radiating portions that radiate circularly polarized waves installed in a heating chamber, thereby adjusting an object to be heated arranged in the heating chamber. Uniform microwave heating can be realized.
  • the microwave radiating portion into a shape composed of two or more slits, the object to be heated can be uniformly micro-shaped without providing a mechanism for rotating the antenna, a mechanism for rotating the table, and a phase shifter. It becomes possible to perform wave heating, and it becomes possible to reduce the size of the power supply unit, improve the reliability, and reduce the manufacturing cost.
  • the microwave heating apparatus of the present invention can uniformly irradiate the object to be heated with microwaves, it can be effectively used for a microwave heating apparatus that performs heating processing or sterilization of food.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Electric Ovens (AREA)

Abstract

Provided is a microwave heating device configured such that: a waveguide unit (103) is positioned such that a center point (O) of a heating space within a heating chamber (101) is not included upon a perpendicular of a center axis (P) which is parallel to a transmission direction (X) in the waveguide unit; and a composite wave of microwaves which are radiated from each microwave radiation unit (104) has a directivity which radiates many microwaves toward the center part of the heating space; and uniform microwave heating of a substance to be heated within a heating chamber is possible.

Description

マイクロ波加熱装置Microwave heating device
 本発明は、電子レンジ等のマイクロ波加熱装置に関し、特に、加熱室の内部にマイクロ波を放射するための構造に特徴を有するマイクロ波加熱装置に関するものである。 The present invention relates to a microwave heating apparatus such as a microwave oven, and more particularly to a microwave heating apparatus characterized by a structure for radiating microwaves into a heating chamber.
 マイクロ波により被加熱物を加熱処理するマイクロ波加熱装置の代表的な装置としては、電子レンジがある。電子レンジにおいては、マイクロ波発生手段において発生したマイクロ波が金属製の加熱室の内部に放射され、加熱室内部の被加熱物が放射されたマイクロ波により加熱処理される。 A typical microwave heating apparatus that heats an object to be heated by microwaves is a microwave oven. In the microwave oven, the microwave generated in the microwave generating means is radiated into the metal heating chamber, and the object to be heated in the heating chamber is heated by the radiated microwave.
 従来の電子レンジにおけるマイクロ波発生手段としては、マグネトロンが用いられている。マグネトロンにより生成されたマイクロ波は、導波管を介してマイクロ波放射部から加熱室内部に放射される。加熱室内部におけるマイクロ波の電磁界分布(マイクロ波分布)が不均一であると、被加熱物を均一にマイクロ波加熱することができないという問題を有する。 Magnetron is used as a microwave generation means in a conventional microwave oven. Microwaves generated by the magnetron are radiated from the microwave radiating portion into the heating chamber through the waveguide. If the electromagnetic field distribution (microwave distribution) of the microwave in the heating chamber is not uniform, there is a problem that the object to be heated cannot be uniformly heated by microwaves.
 加熱室内部の被加熱物を均一に加熱する手段としては、被加熱物を載置するテーブルを回転させて被加熱物を加熱室内部において回転させる構造、被加熱物を固定してマイクロ波を放射するアンテナを回転させる構造、または位相器を用いてマイクロ波発生手段からのマイクロ波の位相を変化させる構造が有る。このような構造を備えたマイクロ波加熱装置が一般的に用いられている。 As a means for uniformly heating the object to be heated inside the heating chamber, a structure for rotating the table to place the object to be heated to rotate the object to be heated inside the heating chamber, fixing the object to be heated, and applying microwaves There is a structure for rotating a radiating antenna or a structure for changing the phase of the microwave from the microwave generating means using a phase shifter. A microwave heating apparatus having such a structure is generally used.
 例えば、従来のマイクロ波加熱装置では、導波管内部に回転可能なアンテナ、アンテナシャフトなどが配置されており、モータによって当該アンテナを回転させながらマグネトロンを駆動することにより、加熱室内のマイクロ波分布の不均一さを低減する構造を有するものがあった。 For example, in a conventional microwave heating apparatus, a rotatable antenna, an antenna shaft, and the like are arranged inside a waveguide, and the microwave distribution in the heating chamber is driven by driving the magnetron while rotating the antenna by a motor. Some have a structure that reduces the non-uniformity of the film.
 また、日本の特開昭62-64093号公報(特許文献1)には別の構成のマイクロ波加熱装置が記載されている。この特許文献1には、マグネトロンの上部に回転可能なアンテナを設け、当該アンテナの羽根に送風ファンからの風をあてることにより、当該送風ファンの風力でアンテナが回転して、加熱室内のマイクロ波分布を変化させるマイクロ波加熱装置が提案されている。 Further, Japanese Patent Application Laid-Open No. 62-64093 (Patent Document 1) describes a microwave heating apparatus having another configuration. In this Patent Document 1, a rotatable antenna is provided on the upper part of a magnetron, and the antenna is rotated by the wind force of the blower fan by applying the wind from the blower fan to the blades of the antenna. Microwave heating devices that change the distribution have been proposed.
 位相器を有する例としては、マイクロ波加熱による被加熱物の加熱ムラの低減を図ると共に、コスト削減および給電部の省スペース化を図ったマイクロ波加熱装置が米国特許第4301347号明細書(特許文献2)に記載されている。この特許文献2には、加熱室内部に円偏波を放射する単一のマイクロ波放射部を有するマイクロ波加熱装置が提案されている。 As an example having a phase shifter, a microwave heating apparatus that reduces heating unevenness of an object to be heated by microwave heating, reduces cost, and saves space in a power feeding unit is disclosed in US Pat. No. 4,301,347 (patented) Document 2). Patent Document 2 proposes a microwave heating apparatus having a single microwave radiating section that radiates circularly polarized waves inside a heating chamber.
特開昭62-64093号公報JP-A-62-64093 米国特許第4301347号明細書U.S. Pat. No. 4,301,347
 前述の従来の構成を有するマイクロ波加熱装置においては、出来るだけ簡易的な構造を有し、被加熱物を効率良く、ムラ無く加熱することが求められている。しかし、これまで提案されていた従来の構成においては、満足出来るものではなく、構造上、効率化および均一化などの点で種々の問題を有していた。 The microwave heating apparatus having the above-described conventional configuration is required to have a simple structure as much as possible, and to efficiently heat an object to be heated without unevenness. However, the conventional configurations proposed so far are not satisfactory and have various problems in terms of efficiency and uniformity in terms of structure.
 また、マイクロ波加熱装置、特に、電子レンジにおいては、高出力化の技術開発が進み、国内では定格高周波出力1000Wの製品が商品化されている。電子レンジは、熱伝導によって食品を加熱するのではなく、誘電加熱を用いて直接食品を加熱できる利便性がこの商品の大きな特徴である。しかし、電子レンジにおいて、不均一加熱が未解決な状態においての高出力化は不均一加熱をより顕在化させるという大きな問題を抱えている。 Also, in microwave heating devices, especially in microwave ovens, technological development for higher output has progressed, and products with a rated high-frequency output of 1000 W have been commercialized in Japan. Microwave ovens are notable for heating food by heat conduction, but the convenience of being able to heat food directly using dielectric heating is a major feature of this product. However, in a microwave oven, increasing the output in a state where non-uniform heating has not been solved has a big problem that non-uniform heating becomes more obvious.
 従来のマイクロ波加熱装置が抱える構造上の課題としては、下記の3点が挙げられる。
 1点目は、不均一加熱を低減するためにテーブルまたはアンテナを回転させるための駆動機構を必要としており、このため回転スペース、およびテーブルまたはアンテナを回転させるモータなどの駆動源の設置スペースを確保しなければならず、電子レンジの小型化を阻害している点である。
The following three points are given as structural problems of the conventional microwave heating apparatus.
The first point requires a drive mechanism for rotating the table or antenna to reduce non-uniform heating, so that a rotation space and a space for installing a drive source such as a motor for rotating the table or antenna are secured. This is a point that obstructs miniaturization of the microwave oven.
 2点目は、テーブルまたはアンテナを安定的に回転させるために、当該アンテナを加熱室の上部又は下部に設ける必要があり、構造上において特定の部品の配置が制限されている点である。 The second point is that in order to rotate the table or antenna stably, it is necessary to provide the antenna above or below the heating chamber, and the arrangement of specific parts is limited on the structure.
 3点目は、水蒸気加熱や熱風加熱などの種々の加熱機能を有する電子レンジの登場により、電子レンジの筐体内部に多くの構成部品が必要となること、および筐体内部の制御部品などから発熱量が多いため、十分な冷却性能を実現するために冷却風路を確保する必要があり、導波管およびマイクロ波放射部の設置位置が制限され、加熱室内のマイクロ波分布が不均一になる点である。 The third point is that with the advent of microwave ovens with various heating functions such as steam heating and hot air heating, many components are required inside the microwave oven casing, and control components inside the casing Because of the large amount of heat generation, it is necessary to secure a cooling air path to achieve sufficient cooling performance, the installation position of the waveguide and microwave radiation part is limited, and the microwave distribution in the heating chamber is uneven It is a point.
 また、マイクロ波加熱装置における加熱室に通じる、マイクロ波が照射される空間(アプリケータ)内には、テーブルまたはアンテナの回転機構や、位相器などの各種機構が設置されており、このような機構の設置は、装置の信頼性を低下させるおそれがあるという課題を有していた。したがって、これら機構の設置を不要とするマイクロ波加熱装置が求められている。 Various mechanisms such as a table or antenna rotation mechanism and a phaser are installed in a space (applicator) that is connected to the heating chamber of the microwave heating apparatus and is irradiated with microwaves. The installation of the mechanism has a problem that the reliability of the apparatus may be lowered. Therefore, there is a demand for a microwave heating apparatus that does not require the installation of these mechanisms.
 さらに、マイクロ波加熱による被加熱物の不均一加熱(加熱ムラ)の低減を図ると共に、製造コストの低減および給電部の省スペース化を図った特許文献2に記載されたマイクロ波加熱装置においても次のような問題を有する。特許文献2に開示された、円偏波を加熱室内部に放射する単一のマイクロ波放射部を有するマイクロ波加熱装置は、回転機構を有していないという利点を有するが、マイクロ波加熱により十分な均一加熱が実現できないという課題を有している。 Furthermore, in the microwave heating apparatus described in Patent Document 2 that reduces uneven heating (heating unevenness) of an object to be heated by microwave heating, reduces manufacturing costs, and saves space in a power feeding unit. Has the following problems. The microwave heating device having a single microwave radiating unit that radiates circularly polarized waves into the inside of the heating chamber disclosed in Patent Document 2 has an advantage that it does not have a rotating mechanism. There is a problem that sufficient uniform heating cannot be realized.
 本発明は、前記の従来の技術における課題を解決するものであり、回転機構を用いることなく、被加熱物を均一にマイクロ波加熱することが可能となるマイクロ波加熱装置を提供することを目的とする。 The present invention solves the above-described problems in the conventional technology, and an object thereof is to provide a microwave heating apparatus capable of uniformly heating an object to be heated without using a rotation mechanism. And
 本発明に係る一態様のマイクロ波加熱装置は、
 被加熱物を収納する加熱室と、
 マイクロ波を発生するマイクロ波発生部と、
 マイクロ波を伝送する導波部と、
 前記加熱室内に円偏波を放射する複数のマイクロ波放射部と、を備え、
 前記導波部は、前記導波部における伝送方向に平行な中心軸の垂直線上に前記加熱室内の加熱空間の中心点が含まれないように配置されており、
 各前記マイクロ波放射部から放射されるマイクロ波の合成波が、前記加熱空間の中心側へ多くのマイクロ波を放射する指向性を有するよう構成されている。
 このように構成された本発明に係る一態様のマイクロ波加熱装置は、回転機構を用いることなく、被加熱物を均一にマイクロ波加熱することが可能となる。
One aspect of the microwave heating apparatus according to the present invention is:
A heating chamber for storing an object to be heated;
A microwave generator for generating microwaves;
A waveguide for transmitting microwaves;
A plurality of microwave radiating sections that radiate circularly polarized waves in the heating chamber,
The waveguide section is arranged so that the center point of the heating space in the heating chamber is not included on the vertical line of the central axis parallel to the transmission direction in the waveguide section,
A combined wave of the microwaves radiated from each of the microwave radiating portions is configured to have a directivity for radiating many microwaves toward the center side of the heating space.
The microwave heating device of one embodiment according to the present invention configured as described above can uniformly heat an object to be heated without using a rotation mechanism.
 本発明によれば、回転機構を用いることなく、加熱室内に配置された被加熱物に対して均一にマイクロ波加熱を行うことが可能なマイクロ波加熱装置を提供することができる。 According to the present invention, it is possible to provide a microwave heating apparatus that can uniformly perform microwave heating on an object to be heated arranged in a heating chamber without using a rotation mechanism.
本発明に係る実施の形態1のマイクロ波加熱装置である電子レンジを示す横断面図である。It is a cross-sectional view which shows the microwave oven which is the microwave heating device of Embodiment 1 which concerns on this invention. 本発明に係る実施の形態1の電子レンジにおけるマイクロ波放射部の構成を示す平面図である。It is a top view which shows the structure of the microwave radiation | emission part in the microwave oven of Embodiment 1 which concerns on this invention. 本発明に係る実施の形態2のマイクロ波加熱装置におけるマイクロ波放射部と定在波との関係を説明する図である。It is a figure explaining the relationship between the microwave radiation | emission part and standing wave in the microwave heating apparatus of Embodiment 2 which concerns on this invention. 本発明に係る実施の形態2のマイクロ波加熱装置におけるマイクロ波放射部の定在波、電界分布、磁界分布、電流分布などの関係を説明する図である。It is a figure explaining the relationship among the standing wave of the microwave radiation | emission part in the microwave heating apparatus of Embodiment 2 which concerns on this invention, electric field distribution, magnetic field distribution, current distribution, etc. FIG. 本発明に係る実施の形態2のマイクロ波加熱装置における導波部内に生じる定在波の位相と指向性との関係を説明する図である。It is a figure explaining the relationship between the phase of the standing wave which arises in the waveguide part in the microwave heating device of Embodiment 2 which concerns on this invention, and directivity. 本発明に係る実施の形態2のマイクロ波加熱装置におけるマイクロ波放射部の具体的な開口形状を示す説明図である。It is explanatory drawing which shows the specific opening shape of the microwave radiation | emission part in the microwave heating apparatus of Embodiment 2 which concerns on this invention. 本発明に係る実施の形態2のマイクロ波加熱装置における加熱室に対する導波部に設けたマイクロ波放射部の配置構成例を示す平面図である。It is a top view which shows the example of arrangement configuration of the microwave radiation | emission part provided in the waveguide part with respect to the heating chamber in the microwave heating apparatus of Embodiment 2 which concerns on this invention. 本発明に係る実施の形態2のマイクロ波加熱装置における円偏波を発生するマイクロ波放射部の他の構成を示す平面図The top view which shows the other structure of the microwave radiation | emission part which generate | occur | produces circularly polarized wave in the microwave heating apparatus of Embodiment 2 which concerns on this invention 本発明に係る実施の形態2のマイクロ波加熱装置におけるマイクロ波放射部の構成の変更例を示す平面図である。It is a top view which shows the example of a change of the structure of the microwave radiation | emission part in the microwave heating apparatus of Embodiment 2 which concerns on this invention.
 本発明に係る第1の態様のマイクロ波加熱装置は、
 被加熱物を収納する加熱室と、
 マイクロ波を発生するマイクロ波発生部と、
 マイクロ波を伝送する導波部と、
 前記加熱室内に円偏波を放射する複数のマイクロ波放射部と、を備え、
 前記導波部は、前記導波部における伝送方向に平行な中心軸の垂直線上に前記加熱室内の加熱空間の中心点が含まれないように配置されており、
 各前記マイクロ波放射部から放射されるマイクロ波の合成波が、前記加熱空間の中心側へ多くのマイクロ波を放射する指向性を有するよう構成されている。
The microwave heating apparatus according to the first aspect of the present invention is
A heating chamber for storing an object to be heated;
A microwave generator for generating microwaves;
A waveguide for transmitting microwaves;
A plurality of microwave radiating sections that radiate circularly polarized waves in the heating chamber,
The waveguide section is arranged so that the center point of the heating space in the heating chamber is not included on the vertical line of the central axis parallel to the transmission direction in the waveguide section,
A combined wave of the microwaves radiated from each of the microwave radiating portions is configured to have a directivity for radiating many microwaves toward the center side of the heating space.
 上記のように構成された本発明に係る第1の態様のマイクロ波加熱装置は、マイクロ波放射部の数、形状、配置などを調整することが可能となり、加熱室内のマイクロ波分布を変化させる制御因子が多くなり、加熱空間における目標とするマイクロ波分布を実現し易い構成となる。したがって、本発明に係る第1の態様のマイクロ波加熱装置は、回転機構を用いることなく、被加熱物に対して均一にマイクロ波加熱させることが可能となる。 The microwave heating apparatus according to the first aspect of the present invention configured as described above can adjust the number, shape, arrangement, and the like of the microwave radiating portions, and changes the microwave distribution in the heating chamber. A control factor increases and it becomes the structure which is easy to implement | achieve the target microwave distribution in heating space. Therefore, the microwave heating apparatus according to the first aspect of the present invention can uniformly heat the object to be heated without using a rotating mechanism.
 また、本発明に係る第1の態様のマイクロ波加熱装置は、円偏波を放射するマイクロ波放射部を有しているため、マイクロ波放射部から拡がりを有するマイクロ波が放射され、被加熱物に対してマイクロ波の放射をより広い範囲で均一化することが可能となる。特に、円偏波の周方向に対しての均一加熱が期待できる。 Moreover, since the microwave heating apparatus according to the first aspect of the present invention has a microwave radiating unit that radiates circularly polarized waves, microwaves having a spread are radiated from the microwave radiating unit and heated. It is possible to make the microwave radiation uniform over a wider range. In particular, uniform heating in the circumferential direction of circular polarization can be expected.
 本発明に係る第2の態様のマイクロ波加熱装置は、前記の第1の態様における前記複数のマイクロ波放射部が、前記導波部における伝送方向に平行な中心軸に対して非軸対称となるよう配置されている。このように構成された本発明に係る第2の態様のマイクロ波加熱装置は、加熱室内のマイクロ波分布を変化させることが可能となり、加熱空間におけるマイクロ波分布を所望の状態とすることが可能となる。 In the microwave heating apparatus according to the second aspect of the present invention, the plurality of microwave radiating portions in the first aspect are non-axisymmetric with respect to a central axis parallel to the transmission direction in the waveguide. It is arranged to be. The microwave heating apparatus according to the second aspect of the present invention configured as described above can change the microwave distribution in the heating chamber, and can set the microwave distribution in the heating space to a desired state. It becomes.
 本発明に係る第3の態様のマイクロ波加熱装置は、前記の第1または第2の態様における前記複数のマイクロ波放射部における少なくとも1つマイクロ波放射部が、他のマイクロ波放射部に比べて特定の方向に多くのマイクロ波を放射するよう構成されている。このように構成された本発明に係る第3の態様のマイクロ波加熱装置は、マイクロ波放射部が指向性を有する構成となり、加熱室内のマイクロ波分布を変化させることが可能となり、回転機構を用いることなく、被加熱物に対して均一にマイクロ波加熱させることが可能となる。 In the microwave heating apparatus according to the third aspect of the present invention, at least one microwave radiating part in the plurality of microwave radiating parts in the first or second aspect is more than the other microwave radiating parts. Thus, it is configured to emit many microwaves in a specific direction. In the microwave heating apparatus according to the third aspect of the present invention configured as described above, the microwave radiating unit has a directivity structure, the microwave distribution in the heating chamber can be changed, and the rotation mechanism can be changed. Without using it, it becomes possible to uniformly heat the object to be heated.
 本発明に係る第4の態様のマイクロ波加熱装置は、前記の第1乃至第3の態様のいずれかの態様では、前記導波部における前記加熱室に対する対向面において、前記導波部における伝送方向に平行な中心軸を境界として、当該境界の両側のそれぞれの領域に設けられたマイクロ波放射部が、前記中心軸から前記マイクロ波放射部の中心までの距離が異なるよう構成されている。このように構成された本発明に係る第4の態様のマイクロ波加熱装置は、複数のマイクロ波放射部により指向性を有する構成となり、加熱室内のマイクロ波分布を変化させることが可能となる。 In the microwave heating apparatus according to the fourth aspect of the present invention, in any one of the first to third aspects, transmission in the waveguide section is performed on the surface of the waveguide section facing the heating chamber. With the central axis parallel to the direction as a boundary, the microwave radiating portions provided in the respective regions on both sides of the boundary are configured such that the distances from the central axis to the center of the microwave radiating portion are different. The microwave heating device according to the fourth aspect of the present invention configured as described above has a configuration having directivity by a plurality of microwave radiating units, and can change the microwave distribution in the heating chamber.
 本発明に係る第5の態様のマイクロ波加熱装置は、前記の第1乃至第4の態様のいずれかの態様では、前記導波部における前記加熱室に対する対向面において、前記導波部における伝送方向に平行な中心軸を境界として、当該境界の両側に設けられた複数のマイクロ波放射部が、前記加熱空間の中心点に近い側の前記マイクロ波放射部の数が、遠い側のマイクロ波放射部の数より多く設けられている。このように構成された本発明に係る第5の態様のマイクロ波加熱装置は、複数のマイクロ波放射部により指向性を有する構成となり、加熱室内のマイクロ波分布を変化させることが可能となる。 In the microwave heating apparatus according to the fifth aspect of the present invention, in any one of the first to fourth aspects, the transmission in the waveguide section is performed on the surface of the waveguide section facing the heating chamber. With a central axis parallel to the direction as a boundary, the number of the microwave radiating portions provided on both sides of the boundary is closer to the center point of the heating space, and the number of the microwave radiating portions is closer to the far side. More than the number of radiation parts. The microwave heating apparatus according to the fifth aspect of the present invention configured as described above has a configuration having directivity by a plurality of microwave radiating units, and can change the microwave distribution in the heating chamber.
 本発明に係る第6の態様のマイクロ波加熱装置は、前記の第1乃至第5の態様のいずれかの態様では、前記導波部における前記加熱室に対する対向面において、前記導波部における伝送方向に平行な中心軸を境界として、当該境界の両側に設けられた複数のマイクロ波放射部における前記加熱空間の中心点に近い側の前記マイクロ波放射部が、前記導波部内に生じた定在波の腹の位置に形成されている。このように構成された本発明に係る第6の態様のマイクロ波加熱装置においては、加熱空間の中心点に近い側のマイクロ波放射部から導波部の幅方向に放射させることが可能となり、加熱室内のマイクロ波分布を変化させることが可能な構成となる。 In the microwave heating apparatus according to a sixth aspect of the present invention, in any one of the first to fifth aspects, the transmission in the waveguide section is performed on the surface of the waveguide section facing the heating chamber. With the central axis parallel to the direction as a boundary, the microwave radiating portions on the side close to the center point of the heating space in the plurality of microwave radiating portions provided on both sides of the boundary are defined in the waveguide portion. It is formed at the position of the standing wave belly. In the microwave heating apparatus according to the sixth aspect of the present invention configured as described above, it is possible to radiate in the width direction of the waveguide from the microwave radiating unit on the side close to the center point of the heating space, The microwave distribution in the heating chamber can be changed.
 本発明に係る第7の態様のマイクロ波加熱装置は、前記の第1乃至第6の態様のいずれかの態様において、少なくとも1つのマイクロ波放射部が2本以上のスリットの組み合わせにより構成されており、当該マイクロ波放射部における少なくとも1本のスリットの長手方向が前記導波部における伝送方向に対して傾いており、全てのマイクロ波放射部から放射されるマイクロ波の合成波が特定の方向に多くのマイクロ波を放射する指向性を有するよう構成されている。このように構成された本発明に係る第7の態様のマイクロ波加熱装置においては、マイクロ波放射部から拡がりを有する円偏波のマイクロ波が確実に放射され、被加熱物に対してマイクロ波の放射をより広い範囲で均一化することが可能となる。 A microwave heating apparatus according to a seventh aspect of the present invention is the microwave heating apparatus according to any one of the first to sixth aspects, wherein at least one microwave radiating portion is configured by a combination of two or more slits. The longitudinal direction of at least one slit in the microwave radiating portion is inclined with respect to the transmission direction in the waveguide portion, and the combined wave of the microwaves radiated from all the microwave radiating portions is in a specific direction. Are configured to have a directivity for radiating a large number of microwaves. In the microwave heating apparatus according to the seventh aspect of the present invention configured as described above, a circularly polarized microwave having a spread from the microwave radiating unit is reliably radiated, and the microwave is applied to the object to be heated. Can be made uniform over a wider range.
 また、本発明に係る第7の態様のマイクロ波加熱装置は、マイクロ波放射部を2本以上のスリットにより形成して、確実に円偏波を放射する構成であるため、被加熱物の加熱ムラを低減するためのテーブルまたはアンテナを回転させる機構が不要となり、装置の信頼性の向上、および給電部の小型化が可能となる。 Further, the microwave heating apparatus according to the seventh aspect of the present invention has a configuration in which the microwave radiating portion is formed by two or more slits to reliably radiate circularly polarized waves. A mechanism for rotating the table or the antenna for reducing unevenness is not required, and the reliability of the apparatus can be improved and the power feeding unit can be downsized.
 本発明に係る第8の態様のマイクロ波加熱装置は、前記の第7の態様において、スリットにより構成された前記マイクロ波放射部のスリットの長手方向の長さが、前記導波部における伝送および電界方向に対して直交する方向における位置によって異なるよう構成されている。このように構成された本発明に係る第8の態様のマイクロ波加熱装置は、複数のマイクロ波放射部により指向性を有する構成となり、加熱室内のマイクロ波分布を変化させることが可能となり、加熱空間におけるマイクロ波分布を所望の状態とすることが可能となる。 According to an eighth aspect of the present invention, there is provided the microwave heating apparatus according to the seventh aspect, wherein the length of the slit of the microwave radiating portion configured by the slit is the length of the transmission in the waveguide portion. It is comprised so that it may differ with the position in the direction orthogonal to an electric field direction. The microwave heating apparatus according to the eighth aspect of the present invention configured as described above is configured to have directivity by a plurality of microwave radiating units, and can change the microwave distribution in the heating chamber, It becomes possible to make the microwave distribution in the space a desired state.
 本発明に係る第9の態様のマイクロ波加熱装置は、前記の第7の態様において、スリットにより構成された前記マイクロ波放射部のスリットの幅方向の長さが、前記導波部における伝送および電界方向に対して直交する方向の位置によって異なるよう構成されている。このように構成された本発明に係る第9の態様のマイクロ波加熱装置は、複数のマイクロ波放射部により指向性を有する構成となり、加熱室内のマイクロ波分布を変化させることが可能となり、加熱空間におけるマイクロ波分布を所望の状態とすることが可能となる。 According to a ninth aspect of the present invention, in the microwave heating apparatus according to the seventh aspect, the length in the width direction of the slit of the microwave radiating unit configured by the slit is the transmission in the waveguide unit. It is comprised so that it may differ with the position of the direction orthogonal to an electric field direction. The microwave heating apparatus according to the ninth aspect of the present invention configured as described above has a configuration having directivity by a plurality of microwave radiating units, and can change the microwave distribution in the heating chamber, It becomes possible to make the microwave distribution in the space a desired state.
 本発明に係る第10の態様のマイクロ波加熱装置は、前記の第7の態様において、スリットにより構成された前記マイクロ波放射部のスリットの交差部分には、R面取り加工またはC面取り加工が施されている。このように構成された本発明に係る第10の態様のマイクロ波加熱装置は、電界の集中を緩和し、エネルギ損失を抑制することができ、装置の信頼性を高めることができる。 In the microwave heating apparatus according to a tenth aspect of the present invention, in the seventh aspect described above, an R chamfering process or a C chamfering process is performed at the intersection of the slits of the microwave radiating unit configured by the slits. Has been. The microwave heating apparatus according to the tenth aspect of the present invention thus configured can alleviate electric field concentration, suppress energy loss, and increase the reliability of the apparatus.
 本発明に係る第11の態様のマイクロ波加熱装置は、前記の第7の態様において、スリットにより構成された前記マイクロ波放射部のスリット末端部分には、R面取り加工またはC面取り加工が施されている。このように構成された本発明に係る第10の態様のマイクロ波加熱装置は、電界の集中を緩和し、エネルギ損失を抑制することができ、装置の信頼性を高めることができる。 In the microwave heating apparatus of the eleventh aspect according to the present invention, in the seventh aspect, an R chamfering process or a C chamfering process is performed on a slit end portion of the microwave radiating portion configured by a slit. ing. The microwave heating apparatus according to the tenth aspect of the present invention thus configured can alleviate electric field concentration, suppress energy loss, and increase the reliability of the apparatus.
 以下、本発明に係るマイクロ波加熱装置の好適な実施の形態について、添付の図面を参照しながら説明する。なお、以下の実施の形態のマイクロ波加熱装置においては電子レンジについて説明するが、電子レンジは例示であり、本発明のマイクロ波加熱装置は電子レンジに限定されるものではなく、誘電加熱を利用した加熱装置、生ゴミ処理機、あるいは半導体製造装置などのマイクロ波加熱装置を含むものである。また、本発明には、以下に述べる各実施の形態において説明する任意の構成を適宜組み合わせることを含むものであり、組み合わされた構成においてはそれぞれの効果を奏するものである。さらに、本発明は、以下の実施の形態において説明する具体的な電子レンジの構成に限定されるものではなく、同様の技術的思想に基づく構成が本発明に含まれる。 Hereinafter, preferred embodiments of a microwave heating apparatus according to the present invention will be described with reference to the accompanying drawings. In the microwave heating apparatus of the following embodiment, a microwave oven will be described. However, the microwave oven is an example, and the microwave heating apparatus of the present invention is not limited to the microwave oven, and uses dielectric heating. And a microwave heating device such as a garbage processing machine or a semiconductor manufacturing device. Further, the present invention includes appropriately combining arbitrary configurations described in the respective embodiments described below, and the combined configurations exhibit their respective effects. Furthermore, the present invention is not limited to the specific microwave oven configuration described in the following embodiments, and includes a configuration based on the same technical idea.
 (実施の形態1)
 図1は、本発明に係る実施の形態1のマイクロ波加熱装置である電子レンジを示す横断面図である。図2は、本発明に係る実施の形態1の電子レンジにおけるマイクロ波放射部の平面図であり、加熱室101と導波部103とマイクロ波放射部104との位置関係を示している。
(Embodiment 1)
FIG. 1 is a cross-sectional view showing a microwave oven that is a microwave heating apparatus according to a first embodiment of the present invention. FIG. 2 is a plan view of the microwave radiating unit in the microwave oven according to the first embodiment of the present invention, and shows a positional relationship among the heating chamber 101, the waveguide unit 103, and the microwave radiating unit 104.
 図1において、実施の形態1のマイクロ波加熱装置である電子レンジは、被加熱物107を収納する加熱室101と、マイクロ波を生成するマイクロ波発生部102と、マイクロ波発生部102から供給されるマイクロ波を加熱室101へ伝送するための導波部103と、導波部103における加熱室101に対向する管壁面に設けられ、加熱室101内に円偏波を放射するマイクロ波放射部104と、を有する。 In FIG. 1, a microwave oven that is a microwave heating apparatus according to Embodiment 1 is supplied from a heating chamber 101 that stores an object to be heated 107, a microwave generation unit 102 that generates a microwave, and a microwave generation unit 102. Waveguide part 103 for transmitting the microwave to be heated to heating chamber 101, and microwave radiation that is provided on the tube wall surface of waveguide part 103 that faces heating chamber 101, and radiates circularly polarized waves in heating chamber 101 Part 104.
 なお、マイクロ波発生部102としてマグネトロン、導波部103として矩形導波管、およびマイクロ波放射部104として導波部103に設けた開口を用いることにより、実施の形態1の電子レンジにおける構成を容易に実現することができる。 Note that the configuration in the microwave oven of the first embodiment is obtained by using a magnetron as the microwave generation unit 102, a rectangular waveguide as the waveguide unit 103, and an opening provided in the waveguide unit 103 as the microwave radiation unit 104. It can be easily realized.
 図2に示すように、導波部103は、加熱室101内に円偏波を放射する複数のマイクロ波放射部104を有している。導波部103と加熱室101との位置関係は、加熱室101を上から見た状態において、導波部103における伝送方向(図2における右方向)に平行な中心軸Pが、導波部103を設置した加熱室101の内壁面(底面壁)の中心点Oを含まないよう、構成されている。ここでは、導波部103が対向する底面壁(加熱室101の壁面)の中心点Oの鉛直線上(垂直線上)に加熱室内部の加熱空間の中心点Oがあるものとする。なお、実施の形態1の説明においては、上記のように導波部103における伝送方向に平行な中心軸Pが導波部103を設置した加熱室101の内壁面の中心点Oを含まない位置関係となっている構成をオフセンタと呼ぶ。 As shown in FIG. 2, the waveguide unit 103 has a plurality of microwave radiation units 104 that radiate circularly polarized waves in the heating chamber 101. The positional relationship between the waveguide section 103 and the heating chamber 101 is such that, when the heating chamber 101 is viewed from above, the central axis P parallel to the transmission direction in the waveguide section 103 (the right direction in FIG. 2) is The center point O of the inner wall surface (bottom wall) of the heating chamber 101 provided with 103 is not included. Here, it is assumed that the center point O of the heating space in the heating chamber is on the vertical line (on the vertical line) of the center point O of the bottom wall (the wall surface of the heating chamber 101) facing the waveguide unit 103. In the description of the first embodiment, as described above, the central axis P parallel to the transmission direction in the waveguide section 103 does not include the center point O of the inner wall surface of the heating chamber 101 where the waveguide section 103 is installed. The related configuration is called off-center.
 以上のように構成された実施の形態1の電子レンジにおける動作、作用について以下説明する。
 最初にマイクロ波加熱装置の概略動作について説明する。使用者により加熱室101内に被加熱物107が配置され、加熱開始指示の操作が行われると、当該マイクロ波加熱装置は、マイクロ波発生部102であるマグネトロンから導波部103内にマイクロ波が供給され、加熱室101と導波部103とを接続するマイクロ波放射部104を介して、加熱室101内にマイクロ波が放射される。このように加熱室101内にマイクロ波が放射されることにより、当該マイクロ波加熱装置は被加熱物107に対する加熱処理を行う。
The operation and action of the microwave oven according to Embodiment 1 configured as described above will be described below.
First, the schematic operation of the microwave heating apparatus will be described. When the object to be heated 107 is arranged in the heating chamber 101 by the user and a heating start instruction is performed, the microwave heating apparatus transmits a microwave from the magnetron serving as the microwave generation unit 102 into the waveguide unit 103. Is supplied, and microwaves are radiated into the heating chamber 101 through the microwave radiating unit 104 that connects the heating chamber 101 and the waveguide unit 103. In this manner, the microwave is radiated into the heating chamber 101, so that the microwave heating apparatus performs a heat treatment on the object to be heated 107.
 次に、加熱室101の内壁面の形状による、加熱室101内のマイクロ波分布の不均一性について図1を参照して説明する。
 加熱室101内の形状(加熱空間形状)は、非対称である場合が多く、加熱室101を構成する壁面には誘電率の異なる多数の部品が取付けられている。具体例としては、主に以下の3点が挙げられる。
Next, the non-uniformity of the microwave distribution in the heating chamber 101 due to the shape of the inner wall surface of the heating chamber 101 will be described with reference to FIG.
The shape (heating space shape) in the heating chamber 101 is often asymmetric, and a large number of components having different dielectric constants are attached to the wall surface constituting the heating chamber 101. As specific examples, there are mainly the following three points.
 1点目は、被加熱物107を取り出すためのドア108およびドアガラス109が取付けられていることである。2点目は、被加熱物107を輻射加熱するために上面または底面にヒータ110が取付けられていることである。3点目は、被加熱物107に対して対流加熱するために背面裏側にヒータ110および対流ファン111が取付けられているため、背面側壁面が複雑な形状になっていることである。 1st point is that the door 108 and the door glass 109 for taking out the to-be-heated material 107 are attached. The second point is that the heater 110 is attached to the upper surface or the bottom surface to radiately heat the article to be heated 107. The third point is that since the heater 110 and the convection fan 111 are attached to the back side of the back surface to convectionly heat the object to be heated 107, the back side wall surface has a complicated shape.
 上記のように、加熱室101内の加熱空間形状が非対称であり、および/または加熱室101の壁面に誘電率の異なる部品が取付けられているため、加熱室101の内壁面でマイクロ波が反射して、その反射波により被加熱物107に対する加熱が不均一となる。なお、実施の形態1の説明においては、マイクロ波放射部104から放射されて被加熱物107を直接照射するマイクロ波を直接波と呼び、加熱室101内の壁面などに反射して被加熱物107を照射するマイクロ波を反射波とする。 As described above, the shape of the heating space in the heating chamber 101 is asymmetrical and / or components having different dielectric constants are attached to the wall surface of the heating chamber 101, so that microwaves are reflected on the inner wall surface of the heating chamber 101. Thus, the heating of the object to be heated 107 becomes uneven due to the reflected wave. Note that in the description of Embodiment Mode 1, microwaves radiated from the microwave radiating unit 104 and directly irradiating the object to be heated 107 are referred to as direct waves and reflected on the wall surface in the heating chamber 101 to be heated. The microwave that irradiates 107 is a reflected wave.
 次に、導波部103と加熱室101の位置関係による、加熱室101内のマイクロ波分布の不均一性について説明する。
 近年、マイクロ波加熱機能だけではなく、他の加熱方式(水蒸気加熱、輻射加熱、熱風加熱など)を有するマイクロ波加熱装置が登場している。このため、他の加熱機能の性能を確保するため、導波部は加熱室に対してオフセンタとなる構成が多くなっている。
Next, the non-uniformity of the microwave distribution in the heating chamber 101 due to the positional relationship between the waveguide unit 103 and the heating chamber 101 will be described.
In recent years, microwave heating apparatuses having not only a microwave heating function but also other heating methods (water vapor heating, radiation heating, hot air heating, etc.) have appeared. For this reason, in order to ensure the performance of other heating functions, the waveguide section is often configured to be off-center with respect to the heating chamber.
 このため、導波部における管軸方向の中心軸(図2の中心軸P参照)を対称軸としてマイクロ波放射部を対称的に配置したとしても、加熱室内を均一なマイクロ波分布とすることは困難である。 For this reason, even if the microwave radiating portion is symmetrically arranged with the central axis of the waveguide portion in the tube axis direction (see the central axis P in FIG. 2) as the symmetry axis, the heating chamber has a uniform microwave distribution. It is difficult.
 以下、導波部が加熱室に対してオフセンタとなる構成の具体例として、図1に示す構成を参照して説明する。オフセンタとなる構成の例としては、主に以下の2点が挙げられる。1点目は、水蒸気加熱機能を有するマイクロ波加熱装置の場合であり、水蒸気加熱機能を実現するために、水タンク112、ポンプ113、ヒータ110、加熱室101内へ水蒸気を噴出する噴出口114などを加熱室101の内外に設置する必要があり、導波部103は加熱室101に対してオフセンタの構成となる。 Hereinafter, a specific example of a configuration in which the waveguide unit is off-center with respect to the heating chamber will be described with reference to the configuration illustrated in FIG. The following two points are mainly given as examples of the configuration that is off-center. The first point is in the case of a microwave heating device having a water vapor heating function. In order to realize the water vapor heating function, the water tank 112, the pump 113, the heater 110, and the spout 114 for ejecting water vapor into the heating chamber 101 are used. Etc. must be installed inside and outside of the heating chamber 101, and the waveguide 103 is off-centered with respect to the heating chamber 101.
 2点目は、輻射加熱機能を有するマイクロ波加熱装置の場合であり、加熱室101の上面側または底面側にヒータ110を設置する必要があるため、導波部103は加熱室101に対してオフセンタの構成となる。図1に示すマイクロ波加熱装置においては、加熱室101の上面側にヒータ110が設置された例を示している。 The second point is a case of a microwave heating apparatus having a radiant heating function, and it is necessary to install a heater 110 on the upper surface side or the bottom surface side of the heating chamber 101. It becomes an off-center configuration. In the microwave heating apparatus shown in FIG. 1, an example is shown in which a heater 110 is installed on the upper surface side of the heating chamber 101.
 また、マイクロ波加熱装置においては、その筐体内にインバータ、マグネトロン、制御基盤などの発熱量が多い部品などが設置されている。このようなインバータ、マグネトロン、制御基盤などの発熱部品は十分に冷却しなければならず、これらの発熱部品に対して筐体内には冷却風路(冷却空間)115(図1参照)を確保する必要がある。もしこれらの発熱部品に対する冷却が不十分であれば正常に動作しない部品や、焼損する部品が発生してしまい、装置の信頼性を大幅に損ねるという問題を有している。したがって、十分な冷却性能を確保するためには、導波部が加熱室に対してオフセンタの位置となる構成とならざるをえない場合が多かった。 Also, in the microwave heating apparatus, parts with a large amount of heat generation such as an inverter, a magnetron, and a control board are installed in the casing. Such heat generating parts such as inverters, magnetrons and control bases must be sufficiently cooled, and a cooling air passage (cooling space) 115 (see FIG. 1) is secured in the housing for these heat generating parts. There is a need. If these heat generating parts are not sufficiently cooled, parts that do not operate normally or parts that burn out are generated, and the reliability of the apparatus is greatly impaired. Therefore, in order to ensure a sufficient cooling performance, there are many cases where the waveguide portion has to be configured to be an off-center position with respect to the heating chamber.
 以上の点を考慮すると、マイクロ波放射部から放射されるマイクロ波においては、加熱室内の加熱空間に対応して所望の指向性を有するように構成しなければ、加熱室内の被加熱物を均一にマイクロ波加熱することは困難である。 Considering the above points, in the microwave radiated from the microwave radiating unit, the object to be heated in the heating chamber is made uniform unless it has a desired directivity corresponding to the heating space in the heating chamber. It is difficult to heat by microwave.
 次に、複数のマイクロ波放射部を有するマイクロ波加熱装置の利点について説明する。
 1つのマイクロ波放射部を有するマイクロ波加熱装置では、マイクロ波の指向性を調整するための因子数が少ないため、目標とする加熱室内の加熱領域に対するマイクロ波分布の均一性を得ることは困難である。
Next, the advantage of the microwave heating apparatus having a plurality of microwave radiating portions will be described.
In the microwave heating apparatus having one microwave radiating portion, since the number of factors for adjusting the directivity of the microwave is small, it is difficult to obtain the uniformity of the microwave distribution with respect to the heating region in the target heating chamber. It is.
 また、このようなマイクロ波加熱装置においては、1点からマイクロ波が加熱室内に放射されるため、マイクロ波の十分な拡がりが期待できず、直接波および反射波が特定の領域に加熱領域が集中してしまい、被加熱物に対して不均一なマイクロ波加熱となってしまうことが多い。 Further, in such a microwave heating apparatus, since microwaves are radiated from one point into the heating chamber, sufficient spreading of the microwaves cannot be expected, and the direct wave and the reflected wave have a heating area in a specific area. In many cases, the heat is concentrated, resulting in non-uniform microwave heating on the object to be heated.
 特に、加熱室の底面からマイクロ波を放射する場合においては、被加熱物がマイクロ波放射部と近距離に置かれることが多く、マイクロ波が十分に拡がらず、マイクロ波が被加熱物近傍に集中してしまい、被加熱物の加熱ムラが顕著となる。 In particular, when microwaves are radiated from the bottom of the heating chamber, the object to be heated is often placed at a short distance from the microwave radiation part, and the microwave does not spread sufficiently, and the microwave is near the object to be heated. The heating unevenness of the object to be heated becomes remarkable.
 したがって、マイクロ波放射部を導波部に複数設けて加熱室に対してマイクロ波を放射する構成とすることにより、マイクロ波放射部の形状だけではなく、数量、配置などの指向性を調整するための因子数を増やすことが可能となる。このように、マイクロ波放射部を複数設けることにより、1つのマイクロ波放射部の場合と比較して、大幅に調整因子数を増加させることができる。このため、加熱空間内のマイクロ波分布を均一にすることが可能であり、目標とする被加熱物に対するマイクロ波加熱の均一化を得ることが容易になる。 Therefore, by providing a plurality of microwave radiating portions in the waveguide portion and radiating microwaves to the heating chamber, not only the shape of the microwave radiating portions but also the directivity such as quantity and arrangement are adjusted. It is possible to increase the number of factors. Thus, by providing a plurality of microwave radiating portions, the number of adjustment factors can be significantly increased compared to the case of one microwave radiating portion. For this reason, it is possible to make the microwave distribution in the heating space uniform, and it becomes easy to obtain uniform microwave heating for the target object to be heated.
 次に、円偏波の特徴および円偏波を用いたマイクロ波加熱の利点について説明する。
 円偏波とは、移動通信および衛星通信の分野で広く用いられている技術である。身近な使用例としては、ETC(Electronic Toll Collection System)「ノンストップ自動料金収受システム」などが挙げられる。円偏波は、電界の偏波面が電波の進行方向に対して時間に応じて回転するマイクロ波であり、円偏波を形成すると電界の方向が時間に応じて変化し続けるため、加熱室内に放射されるマイクロ波の放射角度も変化し続け、時間的に電界強度の大きさが変化しないという特徴を有している。
Next, features of circularly polarized waves and advantages of microwave heating using circularly polarized waves will be described.
Circular polarization is a technique widely used in the fields of mobile communication and satellite communication. Familiar use examples include ETC (Electronic Toll Collection System) “non-stop automatic toll collection system”. Circular polarization is a microwave in which the polarization plane of the electric field rotates with respect to the traveling direction of the radio wave, and when the circular polarization is formed, the direction of the electric field continues to change with time. The radiation angle of the emitted microwave continues to change, and the electric field strength does not change with time.
 上記の円偏波の特徴により、円偏波を放射するマイクロ波放射部は、従来のマイクロ波加熱装置に用いられている直線偏波によるマイクロ波加熱と比較して、広範囲にわたってマイクロ波が分散放射されて、被加熱物をより均一に加熱することが可能となる。特に、円偏波の周方向に対して均一加熱の傾向が強い。なお、円偏波は回転方向から右旋偏波(CW:clockwise)と左旋偏波(CCW:counter clockwise)の2種類に分類されるが、加熱性能に違いはない。 Due to the characteristics of the above circularly polarized waves, the microwave radiating part that radiates circularly polarized waves disperses microwaves over a wide range compared to microwave heating by linearly polarized waves used in conventional microwave heating devices. By being emitted, it becomes possible to heat the object to be heated more uniformly. In particular, there is a strong tendency for uniform heating in the circumferential direction of circular polarization. Note that circularly polarized waves are classified into two types, that is, right-handed polarization (CW: clockwise) and left-handed polarization (CCW: counter clockwise) from the direction of rotation, but there is no difference in heating performance.
 したがって、直線偏波を用いた従来のマイクロ波加熱装置によるマイクロ波加熱において問題となっていた、直接波と、その反射波との干渉によって生じる加熱室内の定在波を、円偏波放射を利用することにより緩和することが可能であり、より均一なマイクロ波加熱を実現することができると考えられる。 Therefore, the standing wave in the heating chamber caused by interference between the direct wave and the reflected wave, which has been a problem in microwave heating by the conventional microwave heating apparatus using linearly polarized waves, is converted into circularly polarized radiation. It can be mitigated by use, and it is considered that more uniform microwave heating can be realized.
 導波管内を伝送するマイクロ波は、電場および磁場の振動方向が一定方向である直線偏波である。前述のように、直線偏波を加熱室内に放射する従来のマイクロ波加熱装置においては、マイクロ波分布の不均一さを低減するためには、被加熱物を載置するテーブルを回転させる構造や、導波部から加熱室へマイクロ波を放射するアンテナを回転させる構造や、または導波部内に位相器を設置してマイクロ波の位相を変更させる構造を設けなければならなかった。 Microwaves transmitted through the waveguide are linearly polarized waves whose electric field and magnetic field oscillation directions are constant. As described above, in the conventional microwave heating apparatus that radiates linearly polarized waves into the heating chamber, in order to reduce the non-uniformity of the microwave distribution, a structure for rotating the table on which the object to be heated is placed, It has been necessary to provide a structure for rotating an antenna that radiates microwaves from the waveguide to the heating chamber, or a structure for changing the phase of the microwave by installing a phase shifter in the waveguide.
 しかしながら、テーブルやアンテナを回転させる機構、または導波部に位相器を設置する機構を設けても、加熱室内において被加熱物に対して十分に均一なマイクロ波加熱を実現することは困難であった。さらに、上記のように回転機構や、位相器を設置するような構成をマイクロ波加熱装置に設けることは、構造の複雑化を招き、構造上における制限が生じ、そして装置の信頼性が低下するという課題を有していた。 However, even if a mechanism for rotating the table or antenna or a mechanism for installing a phaser in the waveguide section is provided, it is difficult to achieve sufficiently uniform microwave heating for the object to be heated in the heating chamber. It was. Further, providing the microwave heating device with a configuration that installs a rotation mechanism or a phaser as described above causes a complicated structure, causes a structural limitation, and reduces the reliability of the device. It had the problem that.
 前述のように、加熱室内の加熱空間形状の非対称性、および加熱室に対する導波部がオフセンタとなる構成において、被加熱物に対する均一加熱を実現するためには、複数のマイクロ波放射部により放射されるマイクロ波の合成波の指向性を調整する必要がある。さらに、円偏波を放射するマイクロ波放射部を設置することにより、加熱空間内のマイクロ波分布の均一性が向上させる必要がある。
 そこで、本発明者は、上記の課題を解決する本願発明に係る実施の形態1のマイクロ波加熱装置の構成を一態様として提案するものである。
As described above, in order to achieve uniform heating of the object to be heated in the configuration in which the heating space shape in the heating chamber is asymmetric and the waveguide with respect to the heating chamber is off-center, radiation is performed by a plurality of microwave radiation units. It is necessary to adjust the directivity of the synthesized wave of microwaves. Furthermore, it is necessary to improve the uniformity of the microwave distribution in the heating space by installing a microwave radiating unit that radiates circularly polarized waves.
Therefore, the inventor proposes, as one aspect, the configuration of the microwave heating apparatus according to the first embodiment of the present invention that solves the above-described problems.
 本発明に係る実施の形態1のマイクロ波加熱装置において構成した複数のマイクロ波放射部104により放射されるマイクロ波の合成波の指向性の調整方法について具体例を用いて説明する。 A method for adjusting the directivity of the combined wave of the microwaves radiated by the plurality of microwave radiating units 104 configured in the microwave heating apparatus according to the first embodiment of the present invention will be described using a specific example.
 図2に示すように、導波部103には複数のマイクロ波放射部104が設けられており、導波部103が加熱室101に対してオフセンタの位置となるよう構成されている。図2に示す実施の形態1において、導波部103は加熱室101の加熱空間の中心点Oより、加熱室101を上から見た状態において、背面側(図2における上側)となるよう配置されている。 As shown in FIG. 2, the waveguide section 103 is provided with a plurality of microwave radiating sections 104, and the waveguide section 103 is configured to be in an off-center position with respect to the heating chamber 101. In the first embodiment shown in FIG. 2, the waveguide section 103 is arranged so as to be on the back side (upper side in FIG. 2) from the center point O of the heating space of the heating chamber 101 when the heating chamber 101 is viewed from above. Has been.
 仮に、導波部の伝送方向に平行な中心軸(P)を対称軸として複数のマイクロ波放射部を対称的に配置した場合には、マイクロ波発生部からの距離が遠くなるに従って、基本的にはマイクロ波放射量は減少する。このような構成においては、加熱室内の中央に配置された被加熱物を均一加熱することは困難である。 If a plurality of microwave radiating portions are symmetrically arranged with the central axis (P) parallel to the transmission direction of the waveguide as a symmetric axis, the fundamental is increased as the distance from the microwave generating portion increases. The amount of microwave radiation decreases. In such a configuration, it is difficult to uniformly heat the object to be heated arranged in the center of the heating chamber.
 そこで、図2に示すように、複数のマイクロ波放射部104を、導波部103の伝送方向Xに平行な中心軸Pに対して、軸対称とならないように配置する(非軸対称配置)。図2に示した構成では、導波部103の中心軸Pより背面側の領域においては2個の導波部103を設け、導波部103の中心軸Pより前面側の領域においては3個の導波部103を設けている。このように構成した場合、中心軸Pを境界として、マイクロ波放射部104の数が多い領域(前面側領域)におけるマイクロ波放射部104の開口面積の合計が、反対側の領域(背面側領域)の開口面積の合計より大きくなり、両側の領域におけるマイクロ波放射総量において偏りが生じている。 Therefore, as shown in FIG. 2, the plurality of microwave radiating portions 104 are arranged so as not to be axially symmetric with respect to the central axis P parallel to the transmission direction X of the waveguide portion 103 (non-axisymmetric arrangement). . In the configuration shown in FIG. 2, two waveguide portions 103 are provided in the region on the back side from the central axis P of the waveguide portion 103, and three in the region on the front side from the central axis P of the waveguide portion 103. The waveguide section 103 is provided. When configured in this manner, with the central axis P as a boundary, the total opening area of the microwave radiating portions 104 in the region where the number of the microwave radiating portions 104 is large (front region) is the opposite region (rear region). ) And the total microwave radiation in the regions on both sides is biased.
 この結果、図2に示した実施の形態1の構成においては、前面側のマイクロ波放射部104の各々から加熱室101の前面側に対して放射されるマイクロ波は、背面側のマイクロ波放射部104の各々から加熱室101の背面側に対して放射されるマイクロ波より多くなる。結果的には、導波部103からの合成波は、マイクロ波放射部104の開口数の多い側(前面側)に指向性を有する構成となっている。 As a result, in the configuration of the first embodiment shown in FIG. 2, the microwaves radiated from the front-side microwave radiating units 104 to the front side of the heating chamber 101 are microwave radiations on the back side. More than the microwaves radiated from each of the sections 104 to the back side of the heating chamber 101. As a result, the synthesized wave from the waveguide unit 103 is configured to have directivity on the side with the large numerical aperture (front side) of the microwave radiating unit 104.
 したがって、導波部103が加熱室101に対してオフセンタとなっている場合には、導波部103の加熱室101に対向する面において、加熱室101の加熱空間の中心点Oに近い側の領域(例えば、前面側領域または背面側領域)にマイクロ波放射部104の開口数を多くすることにより、被加熱物107に対する均一加熱の実現をより図ることができる構成となる。 Therefore, when the waveguide 103 is off-center with respect to the heating chamber 101, the surface of the waveguide 103 facing the heating chamber 101 is closer to the center O of the heating space of the heating chamber 101. By increasing the numerical aperture of the microwave radiating unit 104 in the region (for example, the front side region or the back side region), uniform heating of the article to be heated 107 can be achieved.
 また、実施の形態1の構成において、導波管103の伝送方向に平行な中心軸Pを境界として、その中心軸Pからマイクロ波放射部104の中心までの距離が異なるように調整しても良い。例えば、図2において、導波部103の終端201に最も近いマイクロ波放射部104に示すように、中心軸Pから前面側のマイクロ波放射部104の中心までの距離L1は、中心軸Pから背面側のマイクロ波放射部104までの距離L2より長く設定する(L1>L2)。即ち、それぞれのマイクロ波放射部104を、より加熱室101の加熱空間の中心点Oに近づけて設けることにより、導波部103に設けたマイクロ波放射部104からのマイクロ波放射において、加熱室101の中央側の方向にマイクロ波がより多く放射されて、そのマイクロ波の合成波(総量)の放射方向において指向性を有する構成となる。 In the configuration of the first embodiment, even if the center axis P parallel to the transmission direction of the waveguide 103 is used as a boundary, the distance from the center axis P to the center of the microwave radiating unit 104 may be adjusted to be different. good. For example, in FIG. 2, the distance L1 from the central axis P to the center of the microwave radiating unit 104 on the front side is from the central axis P as shown in the microwave radiating unit 104 closest to the terminal end 201 of the waveguide unit 103. It is set longer than the distance L2 to the microwave radiation part 104 on the back side (L1> L2). That is, by providing each microwave radiating portion 104 closer to the center point O of the heating space of the heating chamber 101, in the microwave radiation from the microwave radiating portion 104 provided in the waveguide portion 103, the heating chamber More microwaves are radiated in the direction toward the center of 101, and directivity is obtained in the radiation direction of the combined wave (total amount) of the microwaves.
 上記のように、実施の形態1の構成においては、伝送および電界方向に対して直交する方向Y(導波部103の幅方向)におけるマイクロ波放射部104の位置を調整することにより、加熱室101の中央側にマイクロ波をより多く放射することができ、指向性を有する構成となる。 As described above, in the configuration of the first embodiment, the heating chamber is adjusted by adjusting the position of the microwave radiating unit 104 in the direction Y (the width direction of the waveguide unit 103) orthogonal to the transmission and electric field directions. More microwaves can be radiated to the center side of 101, and the configuration has directivity.
 なお、上記のように、伝送方向Xに並ぶマイクロ波放射部の数量を変更する構成や、中心軸Pに対する距離を変更する構成である具体的な構成については、導波部103が加熱室101に対してオフセンタに配置された場合だけではなく、加熱室101の加熱空間形状が非対称性であるときに生じるマイクロ波分布の偏りが問題となる場合においても適用可能である。
 また、上記の2つの具体的な構成に関しては、それらの構成を組合せることにより被加熱物に対するより均一な加熱の実現を図ることが可能な構成となる。
As described above, for the specific configuration in which the number of the microwave radiating units arranged in the transmission direction X is changed, or the specific configuration in which the distance to the central axis P is changed, the waveguide unit 103 has the heating chamber 101. However, the present invention can be applied not only to the case where the heating chamber 101 is arranged off-center, but also to the case where the bias of the microwave distribution that occurs when the heating space shape of the heating chamber 101 is asymmetrical becomes a problem.
In addition, the two specific configurations described above can be configured to achieve more uniform heating of the object to be heated by combining these configurations.
 (実施の形態2)
 以下、本発明に係る実施の形態2のマイクロ波加熱装置について説明する。実施の形態2のマイクロ波加熱装置において、前述の実施の形態1のマイクロ波加熱装置と異なる点は、マイクロ波放射部の指向性を導波管内の定在波との関係で特定する点であり、その他の構成は同じである。
(Embodiment 2)
Hereinafter, the microwave heating apparatus according to the second embodiment of the present invention will be described. The microwave heating apparatus of the second embodiment is different from the microwave heating apparatus of the first embodiment described above in that the directivity of the microwave radiating unit is specified in relation to the standing wave in the waveguide. Yes, the other configurations are the same.
 以下の実施の形態2のマイクロ波加熱装置の説明においては、実施の形態1のマイクロ波加熱装置における構成要素と同じ機能、構成を有するものには同じ符号を付し、その詳細な説明は実施の形態1の説明を適用する。また、実施の形態2における基本的な動作は前述の実施の形態1における動作と同様であるので、以下の説明においては、実施の形態1における動作とは異なる動作、作用などについて説明する。 In the description of the microwave heating apparatus of the second embodiment below, the same reference numerals are given to the components having the same functions and configurations as those in the microwave heating apparatus of the first embodiment, and the detailed description thereof is carried out. The description of Form 1 is applied. In addition, since the basic operation in the second embodiment is the same as the operation in the first embodiment described above, in the following description, operations and actions different from the operation in the first embodiment will be described.
 図3は、本発明に係る実施の形態2のマイクロ波加熱装置におけるマイクロ波放射部104と定在波301との関係を説明する図である。図3においては、導波部103内に生じる定在波301とマイクロ波放射部104との位置関係を説明している。 FIG. 3 is a diagram for explaining the relationship between the microwave radiating unit 104 and the standing wave 301 in the microwave heating apparatus according to the second embodiment of the present invention. FIG. 3 illustrates the positional relationship between the standing wave 301 and the microwave radiating unit 104 generated in the waveguide unit 103.
 まず、導波部103が少なくとも1つのマイクロ波放射部104を特定の位置に設けることにより、当該マイクロ波放射部104から放射されるマイクロ波が指向性を有する構成となることについて説明する。 First, it will be described that the waveguide 103 has at least one microwave radiating unit 104 at a specific position, so that the microwave radiated from the microwave radiating unit 104 has directivity.
 図3に示すように、導波部103として矩形導波管を用いている場合、マイクロ波発生部102(図1参照)において発生して導波部103に供給された進行波と、導波部103の終端201において反射した反射波とが互いに干渉して、導波部103の内部には定在波301が生じる。マイクロ波放射部104の直下にある定在波301の位相の違いによって、マイクロ波放射部104から放射されるマイクロ波は、その指向性が変化することを、本発明者は実験により確認している。マイクロ波放射部104から放射されるマイクロ波の指向性が、定在波301の位相に応じて変化する原理については以下で説明する。 As shown in FIG. 3, when a rectangular waveguide is used as the waveguide unit 103, the traveling wave generated in the microwave generation unit 102 (see FIG. 1) and supplied to the waveguide unit 103, and the waveguide The reflected waves reflected at the terminal end 201 of the section 103 interfere with each other, and a standing wave 301 is generated inside the waveguide section 103. The present inventor confirmed by experiments that the directivity of the microwave radiated from the microwave radiating unit 104 changes due to the difference in the phase of the standing wave 301 immediately below the microwave radiating unit 104. Yes. The principle that the directivity of the microwave radiated from the microwave radiating unit 104 changes according to the phase of the standing wave 301 will be described below.
 図4を用いて、定在波301による導波部103における電界、磁界、および電流の関係について説明する。図4は、実施の形態2のマイクロ波加熱装置におけるマイクロ波放射部104に対する電界と磁界と電流との関係を説明する図である。図4においては、マイクロ波放射部104の設置位置により指向性が変化する原理を示しており、定在波301が生じている導波部103における電界と磁界と電流との関係を説明している。図4において、符号402は電界分布の曲線を示しており、符号403は磁界分布を示す曲線であり、符号404は電流の流れを示している。 The relationship among the electric field, magnetic field, and current in the waveguide 103 by the standing wave 301 will be described with reference to FIG. FIG. 4 is a diagram for explaining a relationship among an electric field, a magnetic field, and a current with respect to the microwave radiating unit 104 in the microwave heating apparatus of the second embodiment. FIG. 4 shows the principle that the directivity changes depending on the installation position of the microwave radiating unit 104, and explains the relationship between the electric field, magnetic field, and current in the waveguide unit 103 where the standing wave 301 is generated. Yes. In FIG. 4, reference numeral 402 indicates a curve of electric field distribution, reference numeral 403 indicates a curve indicating magnetic field distribution, and reference numeral 404 indicates a current flow.
 進行波においては、電界と磁界の方向は直交(90°)しており、位相は同一である。これに対して、定在波301は、電界と磁界の方向が直交(90°)しており、位相がπ/2ずれている。したがって、定在波301が発生している導波部103である矩形導波管内の電界と磁界の関係は図4に示すようになる。これは、定在波301の場合は、進行波が導波部103の終端で反射する際に、電界の位相が180°ずれることが主な原因である。なお、電流は導波部103の表面を磁界に直交する方向に流れている。 In traveling wave, the direction of electric field and magnetic field are orthogonal (90 °) and the phase is the same. On the other hand, in the standing wave 301, the directions of the electric field and the magnetic field are orthogonal (90 °), and the phase is shifted by π / 2. Therefore, the relationship between the electric field and the magnetic field in the rectangular waveguide, which is the waveguide 103 where the standing wave 301 is generated, is as shown in FIG. In the case of the standing wave 301, this is mainly due to the fact that the phase of the electric field is shifted by 180 ° when the traveling wave is reflected at the end of the waveguide 103. The current flows on the surface of the waveguide 103 in a direction perpendicular to the magnetic field.
 以下、電界方向Z(図3参照)に直交する面にマイクロ波放射部104を設けた導波部(矩形導波管)103において、その内部に定在波301が発生しているときに放射されるマイクロ波の指向性について、その原理説明を行う。 Hereinafter, in the waveguide section (rectangular waveguide) 103 in which the microwave radiation section 104 is provided on the surface orthogonal to the electric field direction Z (see FIG. 3), the radiation is generated when the standing wave 301 is generated therein. The principle of microwave directivity will be described.
 図4に示すように、導波部103内の定在波301における「腹」の位置と、「節」の位置にマイクロ波放射部104が配置された場合について説明する。マイクロ波放射部104において、電流の伝送方向Xの成分(X方向成分)と、伝送および電界方向に対して直交する幅方向Yの成分(Y方向成分)を考えた場合、定在波の「腹」の位置に配置されたマイクロ波放射部104における電流には伝送および電界方向に対して直交する幅方向YのY方向成分の電流が多くなる。 As shown in FIG. 4, the case where the microwave radiation part 104 is arrange | positioned in the position of the "antinode" and the position of the "node" in the standing wave 301 in the waveguide part 103 is demonstrated. In the microwave radiating unit 104, when considering a component in the current transmission direction X (X direction component) and a component in the width direction Y (Y direction component) orthogonal to the transmission and electric field directions, The current in the microwave radiating unit 104 arranged at the position of “antinode” increases the current in the Y direction component in the width direction Y perpendicular to the transmission and electric field direction.
 電流の流れる方向と電界が拡がる方向は同一であるため、放射されるマイクロ波は、伝送および電界方向に対して直交するY方向(導波部103の幅方向)に指向性を有する。 Since the direction in which the current flows and the direction in which the electric field spreads are the same, the radiated microwave has directivity in the Y direction (width direction of the waveguide 103) perpendicular to the transmission and electric field direction.
 一方、定在波の「節」の位置に配置されたマイクロ波放射部104における電流には伝送方向Xの成分(X方向成分)が多くなる。このため、放射されるマイクロ波は、導波部103の伝送方向XであるX方向に指向性を有する。 On the other hand, the current in the microwave radiating unit 104 arranged at the position of the “node” of the standing wave has more components in the transmission direction X (X-direction component). For this reason, the emitted microwave has directivity in the X direction, which is the transmission direction X of the waveguide section 103.
 次に、マイクロ波放射部104の直下にある定在波の位相と、放射されるマイクロ波の指向性との関係を、図5を用いて説明する。図5は、実施の形態2のマイクロ波加熱装置における導波部103内に生じる定在波301の位相と指向性との関係を説明する図である。図5においては、マイクロ波放射部104が位置する導波部103内に生じる定在波301の位相と、加熱室101内に放射されるマイクロ波の指向性との関係を説明している。図5に示した結果は解析により求めたものである。 Next, the relationship between the phase of the standing wave immediately below the microwave radiating unit 104 and the directivity of the emitted microwave will be described with reference to FIG. FIG. 5 is a diagram for explaining the relationship between the phase and directivity of the standing wave 301 generated in the waveguide section 103 in the microwave heating apparatus of the second embodiment. FIG. 5 illustrates the relationship between the phase of the standing wave 301 generated in the waveguide 103 where the microwave radiating unit 104 is located and the directivity of the microwave radiated into the heating chamber 101. The results shown in FIG. 5 are obtained by analysis.
 図5の(a)は、導波部103の終端201(図4参照)からのマイクロ波放射部104の中心までの距離を変更することにより、マイクロ波放射部104の直下における導波部103内の定在波の位相を変えた図である。なお、マイクロ波放射部104の中心とは、開口形状を同じ厚みの板材で構成したと仮定した場合において、その板材の重心位置を示すものである。 FIG. 5A shows a change in the distance from the end 201 (see FIG. 4) of the waveguide 103 to the center of the microwave radiating unit 104, thereby changing the waveguide 103 immediately below the microwave radiating unit 104. It is the figure which changed the phase of the standing wave inside. In addition, the center of the microwave radiation | emission part 104 shows the gravity center position of the board | plate material, when it assumes that the opening shape was comprised with the board | plate material of the same thickness.
 図5の(a)に示した解析においては、定在波の「腹」の位置を位相0°とし、「節」の位置を位相180°として、位相約0°から位相約180°までを、位相約45°刻みで、マイクロ波放射部104から放射されるマイクロ波分布を解析により求めた。 In the analysis shown in FIG. 5A, the position of the “antinode” of the standing wave is set to phase 0 °, the position of the “node” is set to phase 180 °, and the phase ranges from about 0 ° to about 180 °. The microwave distribution radiated from the microwave radiating unit 104 at an interval of about 45 ° in phase was obtained by analysis.
 なお、図5の(a)に示すように、本解析では導波部(矩形導波管)103の終端201からマイクロ波放射部104の中心までの距離を変えることにより、マイクロ波放射部104の直下にある導波部103内の定在波の位相を変えている。なお、導波部103の終端201とは、導波部103内の伝送空間において、マイクロ波発生部102であるマグネトロンのマイクロ波出力位置を始端部として、その伝送方向の終端位置である導波部103の閉塞部分の内壁面をいう。 As shown in FIG. 5A, in this analysis, the microwave radiating unit 104 is changed by changing the distance from the end 201 of the waveguide unit (rectangular waveguide) 103 to the center of the microwave radiating unit 104. The phase of the standing wave in the waveguide 103 immediately below is changed. The end 201 of the waveguide 103 is a waveguide that is the end position in the transmission direction with the microwave output position of the magnetron serving as the microwave generator 102 as the start end in the transmission space in the waveguide 103. The inner wall surface of the closed part of the part 103 is said.
 マイクロ波放射部104の直下の位相が約180°(定在波におけるほぼ「節」の位置)の場合、前述の原理説明と同様に、当該マイクロ波放射部104は伝送方向Xにマイクロ波放射の指向性を有している。そして、図5の(b)に示すように、位相を約45°ずらしていくことによって、マイクロ波の指向性は、反時計回りに推移していき、位相が約0°(定在波のほぼ「腹」の位置)のとき、伝送および電界方向に対して直交する幅方向(Y方向)の指向性を有する。即ち、マイクロ波放射部104の直下の位相が約0°(定在波におけるほぼ「腹」の位置)の場合は、当該マイクロ波放射部104は伝送および電界方向に対して直交する幅方向(Y方向)にマイクロ波放射の指向性を有している。この結果も、前述の原理説明と一致している。 When the phase immediately below the microwave radiating unit 104 is about 180 ° (the position of almost “node” in the standing wave), the microwave radiating unit 104 radiates microwaves in the transmission direction X in the same manner as described above. Have directivity. Then, as shown in FIG. 5B, by shifting the phase by about 45 °, the directivity of the microwave shifts counterclockwise, and the phase is about 0 ° (standing wave). When the position is substantially “antinode”, the directivity is in the width direction (Y direction) orthogonal to the transmission and electric field directions. That is, when the phase directly below the microwave radiating unit 104 is about 0 ° (position of almost “antinode” in the standing wave), the microwave radiating unit 104 has a width direction orthogonal to the transmission and electric field directions ( (Y direction) has directivity of microwave radiation. This result is also consistent with the above explanation of the principle.
 上記において説明した定在波の位相とマイクロ波放射部104の指向性との関係に関する技術を応用することにより、狙った方向に指向性を有するマイクロ波放射部104を設けることが可能となり、加熱室101内の不均一なマイクロ波分布を改善することができる。 By applying the technology relating to the relationship between the phase of the standing wave and the directivity of the microwave radiating unit 104 described above, the microwave radiating unit 104 having directivity in the target direction can be provided, and heating is performed. The non-uniform microwave distribution in the chamber 101 can be improved.
 次に、図5に示した解析結果の解析条件を説明する。
 本解析においては、導波部103として矩形導波管を用いてマイクロ波発生部であるマグネトロンから発生したマイクロ波を伝送し、当該矩形導波管の伝送方向(図4における矢印X参照)には、磁界成分のみが存在して、電界成分のない伝送モードであるH波(TE波;電気的横波伝送 Transverse Electric Wave)におけるTE10モードという伝送モードのマイクロ波が伝送されている場合を想定している。
Next, analysis conditions for the analysis results shown in FIG. 5 will be described.
In this analysis, a rectangular waveguide is used as the waveguide unit 103 to transmit a microwave generated from a magnetron as a microwave generation unit, and in the transmission direction of the rectangular waveguide (see arrow X in FIG. 4). Assumes a case where a microwave having a transmission mode called TE10 mode is transmitted in an H wave (TE wave; Transverse Electric Wave) which is a transmission mode having only a magnetic field component and no electric field component. ing.
 なお、TE10モード以外の伝送モードがマイクロ波加熱装置の導波部103に適用されることは殆どない。なお、矩形導波管の伝送および電界方向に対して直交する方向(図4における矢印Y参照)の寸法の上限および下限は、マイクロ波の周波数と、当該矩形導波管の電界方向(図3における矢印Z参照)の寸法によって決定される。
 また、放射方向を90°変えるために必要なマイクロ波放射部104の移動距離は、管内定在波の約半波長分である。
Note that transmission modes other than the TE10 mode are rarely applied to the waveguide unit 103 of the microwave heating apparatus. Note that the upper and lower limits of the dimensions of the rectangular waveguide transmission and the direction orthogonal to the electric field direction (see arrow Y in FIG. 4) are the microwave frequency and the electric field direction of the rectangular waveguide (FIG. 3). (See arrow Z).
Further, the moving distance of the microwave radiating unit 104 necessary for changing the radiation direction by 90 ° is about a half wavelength of the standing wave in the tube.
 図6は、実施の形態2のマイクロ波加熱装置におけるマイクロ波放射部104の具体的な開口形状の説明図である。図6に示すマイクロ波放射部104は、2本の直線状の開口であるスリット(開口)が交差するよう構成されており、少なくとも1本のスリットの長手方向(図6において長さLを示す方向)が導波部103における伝送方向Xに対して傾いた形状である。なお、図6において、マイクロ波放射部104を構成するスリットの長手方向の長さをLとし、そのスリットの幅の長さをSとしている。 FIG. 6 is an explanatory diagram of a specific opening shape of the microwave radiating unit 104 in the microwave heating apparatus of the second embodiment. The microwave radiating unit 104 shown in FIG. 6 is configured so that two slits (openings) that are linear openings intersect each other, and the longitudinal direction of at least one slit (the length L in FIG. 6 is shown). (Direction) is a shape inclined with respect to the transmission direction X in the waveguide section 103. In FIG. 6, the length in the longitudinal direction of the slit constituting the microwave radiating portion 104 is L, and the width of the slit is S.
 図6に示すように、上記の解析結果の解析条件としては、マイクロ波放射部104の開口形状は2本のスリットを各スリットの中央で交差するよう直交させており、伝送方向Xに対してスリットの長手方向を45°傾けた構成となっている。
 また、マイクロ波放射部104の数は1個であり、各スリットの長さLは55mm、矩形導波管の厚さ(高さ)は30mm、指向性の表示データは実効放射電力である。
As shown in FIG. 6, the analysis condition for the above analysis results is that the opening shape of the microwave radiating unit 104 is orthogonal to the transmission direction X so that two slits intersect each other at the center of each slit. The longitudinal direction of the slit is inclined by 45 °.
Further, the number of the microwave radiating portions 104 is one, the length L of each slit is 55 mm, the thickness (height) of the rectangular waveguide is 30 mm, and the directivity display data is effective radiated power.
 図7は、上記の解析結果を踏まえて構成された本発明に係る実施の形態2のマイクロ波加熱装置における加熱室101に対する導波部103に設けたマイクロ波放射部104の配置構成例を示す平面図である。図7に示すように、導波部103は、加熱室101内に円偏波を放射する複数のマイクロ波放射部104を有している。導波部103と加熱室101との位置関係は、加熱室101を上から見た状態において、導波部103における伝送方向(図7における右方向)に平行な中心軸Pの垂直線上(鉛直線上)が、導波部103を設置した加熱室101の加熱空間の中心点Oを含まないよう、オフセンタで構成されている。上記の構成において、導波部103における伝送方向に平行な中心軸Pを境界としてその両側の領域、即ち加熱室101に対向する管壁面において前記の中心軸Pを境界として背面側領域および前面側領域には複数のマイクロ波放射部104がそれぞれ設けられている。背面側領域には導波部103内の定在波の「節」の位置に2つのマイクロ波放射部104が配置されており、前面側領域には導波部103内の定在波の「腹」の位置に3つのマイクロ波放射部104が配置されている。 FIG. 7 shows an arrangement configuration example of the microwave radiating unit 104 provided in the waveguide unit 103 with respect to the heating chamber 101 in the microwave heating apparatus according to the second embodiment of the present invention configured based on the above analysis result. It is a top view. As shown in FIG. 7, the waveguide unit 103 includes a plurality of microwave radiation units 104 that radiate circularly polarized waves in the heating chamber 101. The positional relationship between the waveguide section 103 and the heating chamber 101 is a vertical line (vertical) of the central axis P parallel to the transmission direction (right direction in FIG. 7) in the waveguide section 103 when the heating chamber 101 is viewed from above. (On the line) is configured off-center so as not to include the center point O of the heating space of the heating chamber 101 in which the waveguide unit 103 is installed. In the above-described configuration, the regions on both sides of the waveguide 103 that are parallel to the transmission direction as a boundary, that is, the regions on both sides, that is, the back wall region and the front surface of the tube wall surface facing the heating chamber 101 with the center axis P as a boundary. A plurality of microwave radiating portions 104 are provided in each region. Two microwave radiating portions 104 are arranged in the position of the “node” of the standing wave in the waveguide section 103 in the back side region, and “standing wave“ of the standing wave in the waveguide portion 103 is arranged in the front side region. Three microwave radiating portions 104 are arranged at the position of “belly”.
 上記のように、複数のマイクロ波放射部104を配置することにより、導波部103における背面側領域のマイクロ波放射部104のそれぞれは管軸方向(図7における左右方向)に指向性を有するマイクロ波放射を行う。一方、導波部103における前面側領域のマイクロ波放射部104のそれぞれは管軸方向に直交する方向(図7における上下方向)に指向性を有するマイクロ波放射を行う。また、前面側領域のマイクロ波放射部104からのマイクロ波放射量の総量は、背面側領域のマイクロ波放射部104からのマイクロ波放射量の総量より多いため、当該加熱室101に対しては前面側にマイクロ波放射部104から多くのマイクロ波放射が行われる構成である。この結果、上記のように構成された実施の形態2のマイクロ波加熱装置においては被加熱物に対する均一加熱を図ることができる構成となる。 As described above, by arranging the plurality of microwave radiating portions 104, each of the microwave radiating portions 104 in the back side region of the waveguide portion 103 has directivity in the tube axis direction (left-right direction in FIG. 7). Perform microwave radiation. On the other hand, each of the microwave radiating portions 104 in the front side region of the waveguide portion 103 performs microwave radiation having directivity in a direction orthogonal to the tube axis direction (vertical direction in FIG. 7). Further, since the total amount of microwave radiation from the microwave radiation unit 104 in the front side region is larger than the total amount of microwave radiation from the microwave radiation unit 104 in the rear side region, A large amount of microwave radiation is performed from the microwave radiation unit 104 on the front side. As a result, in the microwave heating apparatus according to the second embodiment configured as described above, the object to be heated can be uniformly heated.
 なお、図6に示した2本の直線状のスリットにより構成されている円偏波を放射するマイクロ波放射部104の最良な形状の条件としては以下の3点が挙げられる。 In addition, the following three points can be given as conditions for the best shape of the microwave radiating unit 104 that radiates circularly polarized waves constituted by the two linear slits shown in FIG.
 1点目は、各スリットの長手方向の長さLは導波部103内を伝送されているマイクロ波の管内波長(λg)の1/4以上であることである。 The first point is that the length L in the longitudinal direction of each slit is ¼ or more of the in-tube wavelength (λg) of the microwave transmitted through the waveguide section 103.
 2点目は、2本のスリットがお互いに中心において直交していること、および伝送方向Xに対して各スリットの長手方向が45°傾いていることである。 The second point is that the two slits are orthogonal to each other at the center, and that the longitudinal direction of each slit is inclined 45 ° with respect to the transmission direction X.
 3点目は、導波部103の伝送方向Xに平行な直線であり、且つ、マイクロ波放射部104の中心を通る直線を対称軸として、導波部103における電界分布が軸対称とならないことである。例えば、特許文献2で示されているように、TE10モードでマイクロ波を伝送している場合においては、導波部における伝送方向に平行な中心軸(管軸)を対称軸として導波部内には電界が分布している。このため、マイクロ波放射部104の開口形状が、導波部103における伝送方向Xの中心軸P(管軸)に対して軸対称とならないように配置(非対称配置)することが条件となる。 The third point is a straight line parallel to the transmission direction X of the waveguide section 103, and the electric field distribution in the waveguide section 103 is not axisymmetric with respect to a straight line passing through the center of the microwave radiating section 104. It is. For example, as shown in Patent Document 2, in the case where microwaves are transmitted in the TE10 mode, the central axis (tube axis) parallel to the transmission direction in the waveguide is set as the symmetry axis in the waveguide. Has a distributed electric field. For this reason, it is a condition that the opening shape of the microwave radiating unit 104 is arranged (asymmetrically arranged) so as not to be axially symmetric with respect to the central axis P (tube axis) in the transmission direction X in the waveguide unit 103.
 次に、円偏波を発生するマイクロ波放射部104の他の形状について説明する。特にここでは、少なくとも2本以上のスリットにより構成されるマイクロ波放射部104の構成について説明する。 Next, another shape of the microwave radiating unit 104 that generates circularly polarized waves will be described. In particular, here, the configuration of the microwave radiation unit 104 configured by at least two slits will be described.
 図8は、本発明に係る実施の形態2のマイクロ波加熱装置における円偏波を発生するマイクロ波放射部104の他の構成を示す図であり、導波部103における加熱室101に対向する管壁面に形成された状態を示す平面図である。図8においては、マイクロ波放射部104の他の構成として、2本以上の直線状のスリット(開口)により構成されており、円偏波を放射するマイクロ波放射部104の異なる形状例を示している。 FIG. 8 is a diagram illustrating another configuration of the microwave radiating unit 104 that generates circularly polarized waves in the microwave heating apparatus according to the second embodiment of the present invention, and faces the heating chamber 101 in the waveguide unit 103. It is a top view which shows the state formed in the pipe wall surface. In FIG. 8, as another configuration of the microwave radiating unit 104, an example of a different shape of the microwave radiating unit 104 configured by two or more linear slits (openings) and radiating circularly polarized waves is shown. ing.
 図8の(a)~(f)に示すように、マイクロ波放射部104は、2本以上の直線状に開口したスリットにより構成されており、このうちの少なくとも1本のスリットの長手方向がマイクロ波の伝送方向Xに対して傾いた形状となっていれば良い。したがって、図8の(e)および(f)に示すように、スリットが交差していない形状や、図8の(d)に示すように、3本のスリットにより構成されている形状でも良い。 As shown in FIGS. 8A to 8F, the microwave radiating portion 104 is configured by two or more linearly opened slits, and the longitudinal direction of at least one of these slits is The shape may be inclined with respect to the microwave transmission direction X. Therefore, as shown in (e) and (f) of FIG. 8, a shape in which the slits do not intersect, or a shape constituted by three slits as shown in (d) of FIG. 8 may be used.
 次に、2本以上のスリットにより構成されたマイクロ波放射部104において、スリットの開口面積を増減させることによって、導波部103から加熱室101にマイクロ波放射部104を介して放射されるマイクロ波放射量を調整する方法について説明する。 Next, in the microwave radiating unit 104 composed of two or more slits, the microwave radiated from the waveguide unit 103 to the heating chamber 101 through the microwave radiating unit 104 is increased or decreased by increasing or decreasing the opening area of the slit. A method for adjusting the amount of wave radiation will be described.
 スリットの長手方向の長さ(図6における長さL)を短くした場合や、スリットの幅方向の長さ(図6における長さS)を短くした場合には、マイクロ波放射部104から放射されるマイクロ波の放射量は減少する。逆に、それぞれの長さを長くした場合には、マイクロ波放射部104から放射されるマイクロ波の放射量は増加する。 When the length in the longitudinal direction of the slit (length L in FIG. 6) is shortened or when the length in the width direction of the slit (length S in FIG. 6) is shortened, radiation from the microwave radiation unit 104 is performed. The amount of microwave radiation is reduced. Conversely, when each length is increased, the amount of microwave radiation emitted from the microwave radiation unit 104 increases.
 したがって、前述のように導波部103が加熱室101に対してオフセンタである場合、または加熱室101内の内壁面で構成される加熱空間の形状が非対称である場合において、被加熱物の均一加熱を実現するためには、それぞれの構成に対応して、導波部103における全てのマイクロ波放射部104から放射されるマイクロ波の合成波の指向性を調整する必要がある。前述のように、マイクロ波放射部104のそれぞれの開口面積を増減させることにより、マイクロ波放射部104から放射されるマイクロ波の総量を変更することが可能である。したがって、導波部103における全てのマイクロ波放射部104から放射されるマイクロ波の合成波の指向性を調整することは可能である。 Therefore, when the waveguide 103 is off-center with respect to the heating chamber 101 as described above, or when the shape of the heating space formed by the inner wall surface in the heating chamber 101 is asymmetric, the object to be heated is uniform. In order to realize the heating, it is necessary to adjust the directivity of the combined wave of the microwaves radiated from all the microwave radiation units 104 in the waveguide unit 103 in accordance with each configuration. As described above, the total amount of microwaves radiated from the microwave radiation unit 104 can be changed by increasing or decreasing the respective opening areas of the microwave radiation unit 104. Therefore, it is possible to adjust the directivity of the composite wave of the microwaves radiated from all the microwave radiation units 104 in the waveguide unit 103.
 例えば、導波部103の伝送方向Xに平行な中心軸Pの両側の領域(前面側領域および前面側領域)に2つのマイクロ波放射部104を対称的に配置し、加熱室101の加熱空間の中心点Oに対して導波部103がオフセンタの位置に配置されている場合を考える。 For example, two microwave radiating units 104 are symmetrically arranged in regions on both sides of the central axis P parallel to the transmission direction X of the waveguide unit 103 (front region and front region), and the heating space of the heating chamber 101 Let us consider a case where the waveguide 103 is disposed at an off-center position with respect to the center point O.
 この場合において、導波部103における伝送方向Xに平行な中心軸Pに対称となるように開口面積の等しいマイクロ波放射部104を同数配置すると、マイクロ波発生部(例えば、マグネトロン)からの距離が遠くなるに従って、基本的にはマイクロ波の強度は弱まるため、加熱室101内の中央に置かれた被加熱物を均一加熱することは困難である。 In this case, if the same number of microwave radiating parts 104 having the same opening area are arranged so as to be symmetric with respect to the central axis P parallel to the transmission direction X in the waveguide part 103, the distance from the microwave generating part (for example, magnetron). Since the intensity of the microwave basically decreases with increasing distance, it is difficult to uniformly heat the object to be heated placed in the center of the heating chamber 101.
 したがって、導波部103における伝送方向Xに平行な中心軸Pを境界と考えた場合、加熱室101の前面側(加熱空間の中心側)に配置されているマイクロ波放射部104のスリットの長手方向の長さLおよび/またはスリットの幅方向の長さSを反対側である背面側のマイクロ波放射部104より長くすることにより、加熱室101の前面側(中心側)のマイクロ波の放射量を増加させることが可能となる。 Therefore, when the central axis P parallel to the transmission direction X in the waveguide 103 is considered as a boundary, the length of the slit of the microwave radiating unit 104 disposed on the front side of the heating chamber 101 (the center side of the heating space). By making the length L in the direction and / or the length S in the width direction of the slit longer than the microwave radiation portion 104 on the back side, which is the opposite side, microwave radiation on the front side (center side) of the heating chamber 101 The amount can be increased.
 図9は、実施の形態2のマイクロ波加熱装置におけるマイクロ波放射部104の構成を変更した例を示す平面図である。図9に示す構成においては、加熱室101内に円偏波を放射する複数のマイクロ波放射部104が導波部103に形成されており、導波部103は加熱室101に対してオフセンタとなっている。図9において左側のマイクロ波放射部104に示すように、例えば加熱室101の前面側(中心側)に配置されているマイクロ波放射部104のスリットの長手方向の長さLを背面側のマイクロ波放射部104より長く(太く)することにより、加熱室101の前面側(中心側)のマイクロ波の放射量を背面側のマイクロ波放射部104より増加させることができる。 FIG. 9 is a plan view showing an example in which the configuration of the microwave radiating unit 104 in the microwave heating apparatus of the second embodiment is changed. In the configuration shown in FIG. 9, a plurality of microwave radiating portions 104 that radiate circularly polarized waves are formed in the waveguide 103 in the heating chamber 101, and the waveguide 103 is off-center with respect to the heating chamber 101. It has become. As shown in the left microwave radiating unit 104 in FIG. 9, for example, the length L in the longitudinal direction of the slit of the microwave radiating unit 104 arranged on the front surface side (center side) of the heating chamber 101 is set to the back side micro wave. By making it longer (thicker) than the wave radiating unit 104, the amount of microwave radiation on the front side (center side) of the heating chamber 101 can be increased from the microwave radiating unit 104 on the back side.
 また、図9において右側のマイクロ波放射部104に示すように、加熱室101の前面側(中心側)に配置されているマイクロ波放射部104のスリットの幅方向の長さSを背面側のマイクロ波放射部104より長く(太く)することにより、加熱室101の前面側(中心側)のマイクロ波の放射量を背面側のマイクロ波放射部104より増加させることができる。 Further, as shown in the right-side microwave radiating unit 104 in FIG. 9, the length S in the width direction of the slit of the microwave radiating unit 104 arranged on the front side (center side) of the heating chamber 101 is set to the back side. By making it longer (thicker) than the microwave radiating unit 104, the amount of microwave radiation on the front side (center side) of the heating chamber 101 can be increased from the microwave radiating unit 104 on the back side.
 上記のように、図9に示した構成のようにマイクロ波放射部104の開口形状を所望の形状に選択することにより、加熱室101内の不均一なマイクロ波分布を改善することが可能な構成となる。 As described above, it is possible to improve the non-uniform microwave distribution in the heating chamber 101 by selecting the opening shape of the microwave radiating portion 104 to a desired shape as in the configuration shown in FIG. It becomes composition.
 なお、前述の図6および図9に示した2本のスリットをそれぞれの中央で直交させて、スリットの長手方向を導波部103における伝送方向Xに対して45°傾けた形状であるマイクロ波放射部104が放射するマイクロ波の放射量は、十字形方向性結合器の結合度Cを求める下記の(数1)で示す式に基づいて決定することができる。ここで、十字形方向性結合器の結合度Cとは、マイクロ波放射部104を通じて導波部103から加熱室101へのマイクロ波の放射率を意味する。 6 and FIG. 9 is a microwave having a shape in which the longitudinal direction of the slit is inclined by 45 ° with respect to the transmission direction X in the waveguide section 103, with the two slits shown in FIGS. The amount of microwave radiation radiated from the radiating unit 104 can be determined based on the following equation (Equation 1) for obtaining the coupling degree C of the cruciform directional coupler. Here, the degree of coupling C of the cruciform directional coupler means the microwave emissivity from the waveguide unit 103 to the heating chamber 101 through the microwave radiating unit 104.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 次に、2本以上のスリットより構成されたマイクロ波放射部104に施したR面取り加工およびC面取り加工について図6を参照しつつ説明する。 Next, the R chamfering process and the C chamfering process performed on the microwave radiating unit 104 including two or more slits will be described with reference to FIG.
 マイクロ波は、角や先端の尖った部分に集中する性質を有している。したがって、スリットの交差部分A(図6参照)またはスリットの末端部分B(図6参照)に角や尖った部分があると、その部分に電界集中して発熱する。このように電界が集中すると、エネルギ損失が生じるため、被加熱物の加熱効率が低下してしまい、最終的にはマイクロ波加熱装置の信頼性を低下させることになる。 ∙ Microwaves have the property of concentrating on corners and sharp points. Therefore, if there is a corner or pointed portion at the slit crossing portion A (see FIG. 6) or the slit end portion B (see FIG. 6), the electric field concentrates on that portion and heat is generated. When the electric field concentrates in this way, energy loss occurs, so that the heating efficiency of the object to be heated decreases, and ultimately the reliability of the microwave heating apparatus decreases.
 そこで、例えば前述の図6に示すように、直線状の2本のスリットを交差させて構成されたマイクロ波放射部104のスリットの交差部分A、またはスリットの末端部分Bにおいては、R面取り加工(図6において符号R部分)またはC面取り加工(図6において符号T部分)を施すことにより、マイクロ波放射部104での電界集中によるエネルギ損失を低減することができる。この結果、このように加工されたマイクロ波放射部104を有するマイクロ波加熱装置は、被加熱物に対する加熱効率を向上させることができ、そしてマイクロ波加熱装置の信頼性の改善を図ることが可能となる。 Therefore, for example, as shown in FIG. 6 described above, an R chamfering process is performed at the slit intersecting portion A or the slit end portion B of the microwave radiating portion 104 configured by intersecting two linear slits. By applying the C chamfering process (the symbol T portion in FIG. 6) or the C chamfering process (the symbol T portion in FIG. 6), energy loss due to electric field concentration in the microwave radiation unit 104 can be reduced. As a result, the microwave heating apparatus having the microwave radiating unit 104 processed in this way can improve the heating efficiency for the object to be heated, and can improve the reliability of the microwave heating apparatus. It becomes.
 本発明のマイクロ波加熱装置は、加熱室内に設置した円偏波を放射する複数のマイクロ波放射部の数、形状、配置を調整することにより、加熱室内に配置された被加熱物に対して均一なマイクロ波加熱を実現することができる。また、マイクロ波放射部を2本以上のスリットにより構成された形状とすることにより、アンテナを回転させる機構、テーブルを回転させる機構および位相器などを設けなくても、被加熱物を均一にマイクロ波加熱することが可能となり、給電部の小型化、信頼性の向上、製造コストの低減を図ることが可能となる。 The microwave heating apparatus according to the present invention adjusts the number, shape, and arrangement of a plurality of microwave radiating portions that radiate circularly polarized waves installed in a heating chamber, thereby adjusting an object to be heated arranged in the heating chamber. Uniform microwave heating can be realized. In addition, by forming the microwave radiating portion into a shape composed of two or more slits, the object to be heated can be uniformly micro-shaped without providing a mechanism for rotating the antenna, a mechanism for rotating the table, and a phase shifter. It becomes possible to perform wave heating, and it becomes possible to reduce the size of the power supply unit, improve the reliability, and reduce the manufacturing cost.
 本発明のマイクロ波加熱装置は、マイクロ波を被加熱物に均一に照射することができるため、食品の加熱加工や殺菌などを行うマイクロ波加熱装置などに有効に利用することができる。 Since the microwave heating apparatus of the present invention can uniformly irradiate the object to be heated with microwaves, it can be effectively used for a microwave heating apparatus that performs heating processing or sterilization of food.
 101 加熱室
 102 マイクロ波発生部
 103 導波部
 104 マイクロ波放射部
 O 加熱室内の加熱空間の中心点
 L マイクロ波放射部のスリットの長手方向の長さ
 S マイクロ波放射部のスリットの幅方向の長さ(太さ)
 P 導波部における伝送方向の中心軸
 X 導波部の伝送方向
 Y 導波部における伝送方向および電界方向に対してそれぞれ直交する方向(幅方向)
 Z 導波部における電界方向
DESCRIPTION OF SYMBOLS 101 Heating chamber 102 Microwave generation part 103 Waveguide part 104 Microwave radiation part O The center point of the heating space in a heating chamber L The length of the slit of a microwave radiation part in the longitudinal direction S The width direction of the slit of a microwave radiation part Length (thickness)
P Central axis of transmission direction in waveguide section X Transmission direction of waveguide section Y Direction perpendicular to transmission direction and electric field direction in waveguide section (width direction)
Z Electric field direction in waveguide

Claims (11)

  1.  被加熱物を収納する加熱室と、
     マイクロ波を発生するマイクロ波発生部と、
     マイクロ波を伝送する導波部と、
     前記加熱室内に円偏波を放射する複数のマイクロ波放射部と、を備え、
     前記導波部は、前記導波部における伝送方向に平行な中心軸の垂直線上に前記加熱室内の加熱空間の中心点が含まれないように配置されており、
     各前記マイクロ波放射部から放射されるマイクロ波の合成波が、前記加熱空間の中心側へ多くのマイクロ波を放射する指向性を有するよう構成されたマイクロ波加熱装置。
    A heating chamber for storing an object to be heated;
    A microwave generator for generating microwaves;
    A waveguide for transmitting microwaves;
    A plurality of microwave radiating sections that radiate circularly polarized waves in the heating chamber,
    The waveguide section is arranged so that the center point of the heating space in the heating chamber is not included on the vertical line of the central axis parallel to the transmission direction in the waveguide section,
    A microwave heating apparatus configured such that a combined wave of microwaves radiated from each of the microwave radiating units has a directivity for radiating a large number of microwaves toward the center of the heating space.
  2.  前記複数のマイクロ波放射部は、前記導波部における伝送方向に平行な中心軸に対して非軸対称となるよう配置された請求項1に記載のマイクロ波加熱装置。 The microwave heating device according to claim 1, wherein the plurality of microwave radiating portions are arranged so as to be non-axisymmetric with respect to a central axis parallel to a transmission direction in the waveguide portion.
  3.  前記複数のマイクロ波放射部における少なくとも1つマイクロ波放射部は、他のマイクロ波放射部に比べて特定の方向に多くのマイクロ波を放射するよう構成された請求項1または2に記載のマイクロ波加熱装置。 3. The microwave according to claim 1, wherein at least one of the plurality of microwave radiating units is configured to radiate more microwaves in a specific direction than other microwave radiating units. Wave heating device.
  4.  前記導波部における前記加熱室に対する対向面において、前記導波部における伝送方向に平行な中心軸を境界として、当該境界の両側のそれぞれの領域に設けられたマイクロ波放射部は、前記中心軸から前記マイクロ波放射部の中心までの距離が異なるよう構成された請求項1乃至3のいずれか一項に記載のマイクロ波加熱装置。 On the surface facing the heating chamber in the waveguide section, with the central axis parallel to the transmission direction in the waveguide section as a boundary, the microwave radiating section provided in each region on both sides of the boundary is the central axis The microwave heating device according to any one of claims 1 to 3, wherein the distance from the center to the center of the microwave radiation unit is different.
  5.  前記導波部における前記加熱室に対する対向面において、前記導波部における伝送方向に平行な中心軸を境界として、当該境界の両側に設けられた複数のマイクロ波放射部は、前記加熱空間の中心点に近い側の前記マイクロ波放射部の数が、遠い側のマイクロ波放射部の数より多く設けられた請求項1乃至4のいずれか一項に記載のマイクロ波加熱装置。 A plurality of microwave radiating portions provided on both sides of the boundary, with a central axis parallel to the transmission direction in the waveguide portion, as a boundary, on the surface of the waveguide portion facing the heating chamber, is the center of the heating space. The microwave heating device according to any one of claims 1 to 4, wherein the number of the microwave radiating units closer to the point is larger than the number of the microwave radiating units on the far side.
  6.  前記導波部における前記加熱室に対する対向面において、前記導波部における伝送方向に平行な中心軸を境界として、当該境界の両側に設けられた複数のマイクロ波放射部における前記加熱空間の中心点に近い側の前記マイクロ波放射部は、前記導波部内に生じた定在波の腹の位置に形成された請求項1乃至5のいずれか一項に記載のマイクロ波加熱装置。 The center point of the heating space in the plurality of microwave radiating portions provided on both sides of the boundary, with the central axis parallel to the transmission direction in the waveguide portion as a boundary, on the surface facing the heating chamber in the waveguide portion The microwave heating device according to any one of claims 1 to 5, wherein the microwave radiating portion on the side close to the surface is formed at a position of an antinode of a standing wave generated in the waveguide portion.
  7.  少なくとも1つのマイクロ波放射部が2本以上のスリットの組み合わせにより構成されており、当該マイクロ波放射部における少なくとも1本のスリットの長手方向が前記導波部における伝送方向に対して傾いており、全てのマイクロ波放射部から放射されるマイクロ波の合成波が特定の方向に多くのマイクロ波を放射する指向性を有するよう構成された請求項1乃至6のいずれか一項に記載のマイクロ波加熱装置。 At least one microwave radiating portion is composed of a combination of two or more slits, and the longitudinal direction of at least one slit in the microwave radiating portion is inclined with respect to the transmission direction in the waveguide portion; The microwave according to any one of claims 1 to 6, wherein a combined wave of the microwaves radiated from all the microwave radiation units has a directivity for radiating many microwaves in a specific direction. Heating device.
  8.  スリットにより構成された前記マイクロ波放射部のスリットの長手方向の長さが、前記導波部における伝送および電界方向に対して直交する方向における位置によって異なるよう構成された請求項7に記載のマイクロ波加熱装置。 8. The micro of claim 7, wherein the length of the microwave radiating portion formed of the slit in the longitudinal direction of the microwave varies depending on the transmission in the waveguide and the position in the direction orthogonal to the electric field direction. Wave heating device.
  9.  スリットにより構成された前記マイクロ波放射部のスリットの幅方向の長さが、前記導波部における伝送および電界方向に対して直交する方向の位置によって異なるよう構成された請求項7に記載のマイクロ波加熱装置。 8. The micro of claim 7, wherein a length in a width direction of the microwave radiating portion configured by the slit is different depending on a position in a direction orthogonal to the transmission and electric field direction in the waveguide portion. Wave heating device.
  10.  スリットにより構成された前記マイクロ波放射部のスリットの交差部分には、R面取り加工またはC面取り加工を施した請求項7に記載のマイクロ波加熱装置。 The microwave heating apparatus according to claim 7, wherein an R chamfering process or a C chamfering process is performed on a crossing portion of the slit of the microwave radiating unit configured by a slit.
  11.  スリットにより構成された前記マイクロ波放射部のスリット末端部分には、R面取り加工またはC面取り加工が施された請求項7に記載のマイクロ波加熱装置。 The microwave heating apparatus according to claim 7, wherein an R chamfering process or a C chamfering process is performed on a slit end portion of the microwave radiating unit configured by a slit.
PCT/JP2012/004304 2011-07-04 2012-07-03 Microwave heating device WO2013005420A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280032970.9A CN103650637B (en) 2011-07-04 2012-07-03 Microwave heating equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-147971 2011-07-04
JP2011147971 2011-07-04

Publications (1)

Publication Number Publication Date
WO2013005420A1 true WO2013005420A1 (en) 2013-01-10

Family

ID=47436783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004304 WO2013005420A1 (en) 2011-07-04 2012-07-03 Microwave heating device

Country Status (3)

Country Link
JP (1) JPWO2013005420A1 (en)
CN (1) CN103650637B (en)
WO (1) WO2013005420A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014175122A (en) * 2013-03-07 2014-09-22 Toshiba Corp Microwave heating device and exhaust emission control system
CN104125669A (en) * 2013-04-23 2014-10-29 松下电器产业株式会社 Microwave heating device
CN105716128A (en) * 2014-12-22 2016-06-29 松下知识产权经营株式会社 Microwave heating device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109548214B (en) * 2018-12-20 2022-02-25 广东美的厨房电器制造有限公司 Microwave oven with a heat exchanger
CN114340071A (en) * 2021-12-22 2022-04-12 广东美的白色家电技术创新中心有限公司 Waveguide for microwave oven and microwave oven

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030853A (en) * 1998-04-06 2000-01-28 Lg Electron Inc Microwave oven and waveguide system
JP2004335304A (en) * 2003-05-08 2004-11-25 Matsushita Electric Ind Co Ltd High frequency heating device
JP2005019279A (en) * 2003-06-27 2005-01-20 Matsushita Electric Ind Co Ltd High frequency heating device
JP2005268624A (en) * 2004-03-19 2005-09-29 Sumitomo Osaka Cement Co Ltd Heating equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327293A (en) * 2003-04-25 2004-11-18 Matsushita Electric Ind Co Ltd High frequency heating arrangement
CN101841947A (en) * 2010-05-19 2010-09-22 上海雅各来节能科技有限公司 Energy-saving environment-protection cabinet type microwave equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030853A (en) * 1998-04-06 2000-01-28 Lg Electron Inc Microwave oven and waveguide system
JP2004335304A (en) * 2003-05-08 2004-11-25 Matsushita Electric Ind Co Ltd High frequency heating device
JP2005019279A (en) * 2003-06-27 2005-01-20 Matsushita Electric Ind Co Ltd High frequency heating device
JP2005268624A (en) * 2004-03-19 2005-09-29 Sumitomo Osaka Cement Co Ltd Heating equipment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014175122A (en) * 2013-03-07 2014-09-22 Toshiba Corp Microwave heating device and exhaust emission control system
CN104125669A (en) * 2013-04-23 2014-10-29 松下电器产业株式会社 Microwave heating device
CN104125669B (en) * 2013-04-23 2018-11-27 松下电器产业株式会社 Microwave heating equipment
CN105716128A (en) * 2014-12-22 2016-06-29 松下知识产权经营株式会社 Microwave heating device
JP2016118345A (en) * 2014-12-22 2016-06-30 パナソニックIpマネジメント株式会社 Microwave heating device
CN105716128B (en) * 2014-12-22 2019-07-05 松下知识产权经营株式会社 Microwave heating equipment
TWI711343B (en) * 2014-12-22 2020-11-21 日商松下知識產權經營股份有限公司 Microwave heating device

Also Published As

Publication number Publication date
CN103650637A (en) 2014-03-19
JPWO2013005420A1 (en) 2015-02-23
CN103650637B (en) 2016-03-23

Similar Documents

Publication Publication Date Title
WO2013018358A1 (en) Microwave heating device
JP5991595B2 (en) Microwave heating device
JP6016135B2 (en) Microwave heating device
JP5895247B2 (en) Microwave heating device
WO2013005420A1 (en) Microwave heating device
WO2013005438A1 (en) Microwave heating device
JP6273598B2 (en) Microwave heating device
JP6179814B2 (en) Microwave heating device
JP2013098106A (en) Microwave heating device
WO2013001787A1 (en) Microwave heating device
JP6111421B2 (en) Microwave heating device
JP2014229532A (en) Microwave heating apparatus
JP2013098021A (en) Microwave heating device
CN111033127B (en) Microwave processing apparatus
JP2013105690A (en) Microwave heating device
JP6212705B2 (en) Microwave heating device
JP2013120632A (en) Microwave heating device
JP5877304B2 (en) Microwave heating device
JP6424332B2 (en) Microwave heating device
JP2014053231A (en) Microwave heating device
JP2014089942A (en) Microwave heating device
JP2013109887A (en) Microwave heating device
JP2013191349A (en) Microwave heating device
JP2015162321A (en) Radio frequency heating device
JP2013109987A (en) Microwave heating device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280032970.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12807217

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013522467

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12807217

Country of ref document: EP

Kind code of ref document: A1