JP2010045317A - Reflective photomask, holding device, exposure device, and exposure method - Google Patents

Reflective photomask, holding device, exposure device, and exposure method Download PDF

Info

Publication number
JP2010045317A
JP2010045317A JP2008210137A JP2008210137A JP2010045317A JP 2010045317 A JP2010045317 A JP 2010045317A JP 2008210137 A JP2008210137 A JP 2008210137A JP 2008210137 A JP2008210137 A JP 2008210137A JP 2010045317 A JP2010045317 A JP 2010045317A
Authority
JP
Japan
Prior art keywords
reflective photomask
film
reflective
photomask
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008210137A
Other languages
Japanese (ja)
Other versions
JP5304097B2 (en
Inventor
Akira Sakata
陽 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2008210137A priority Critical patent/JP5304097B2/en
Publication of JP2010045317A publication Critical patent/JP2010045317A/en
Application granted granted Critical
Publication of JP5304097B2 publication Critical patent/JP5304097B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reflective photomask with a dust removing function for a magnetic material as a non-charged material to remove dust in an exposure process. <P>SOLUTION: In the reflective photomask having a pattern forming region on its surface, a thin-film coil is formed on the backside of the reflective photomask so that an electric current flows in the thin-film coil to prevent dust from depositing on the pattern forming region. Further, a first yoke is located in the whole or part of the outer periphery of the pattern forming region on the surface and a second yoke is located in the whole or part of the sides of the reflective photomask. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、反射型フォトマスク、把持装置、露光装置及び露光方法に関し、特に、半導体製造におけるフォトリソグラフィ工程で用いられる反射型フォトマスク、把持装置、露光装置及び露光方法に関するものである。   The present invention relates to a reflective photomask, a gripping apparatus, an exposure apparatus, and an exposure method, and more particularly to a reflective photomask, a gripping apparatus, an exposure apparatus, and an exposure method used in a photolithography process in semiconductor manufacturing.

近年の半導体集積回路の微細化、高集積化に伴い、その製造工程であるフォトリソグラフィ工程で用いられるフォトマスク(レチクル)のパターン寸法も同様に微細化が進められている。フォトマスクのパターン面に異物が付着すると、この異物が半導体基板表面に投影され、欠陥となる。このため、パターン面への異物付着を抑止すべく従来からペリクルと呼ばれる除塵保護膜が考案されている。   With the recent miniaturization and high integration of semiconductor integrated circuits, the pattern dimensions of photomasks (reticles) used in the photolithography process, which is the manufacturing process, are also being miniaturized. When foreign matter adheres to the pattern surface of the photomask, the foreign matter is projected onto the surface of the semiconductor substrate and becomes a defect. For this reason, a dust removal protective film called a pellicle has been conventionally devised to suppress adhesion of foreign matter to the pattern surface.

ペリクルには、フォトリソグラフィ工程で用いられる露光光源の波長に対して高い透過率を有する樹脂材料が用いられている。ペリクルは一般に薄膜状に加工されたものが金属製のフレームに貼り付けられた構造となっている。このフレームをペリクルとは反対の端面をフォトマスクに接着剤で貼り付けて用いられている。   A resin material having a high transmittance with respect to the wavelength of an exposure light source used in the photolithography process is used for the pellicle. The pellicle generally has a structure in which a thin film processed is attached to a metal frame. This frame is used by attaching an end surface opposite to the pellicle to the photomask with an adhesive.

現在の露光光源はKrFレーザ(波長248nm)、ArFレーザ(波長193nm)が主流となっている。近年の半導体集積回路の微細化に伴って、露光波長のさらなる短波長化が要請され、極端紫外線リソグラフィ(以下、「EUVリソグラフィ」という。(EUV:Extreme Ultraviolet Lithography)の開発が進められており、その露光光源の波長は略13.5nmである。波長13.5nmでは従来の樹脂を材料としたペリクルでは透過せず、使用が不可能となっている。また、露光工程ではその環境が真空であることから、アウトガスを発生する樹脂材料は真空度を低下させる理由で敬遠される傾向にある。   Current exposure light sources are mainly KrF laser (wavelength 248 nm) and ArF laser (wavelength 193 nm). With the recent miniaturization of semiconductor integrated circuits, there has been a demand for further shortening of the exposure wavelength, and development of extreme ultraviolet lithography (hereinafter referred to as “EUV lithography”) (EUV: Extreme Ultraviolet Lithography) The wavelength of the exposure light source is approximately 13.5 nm, and at a wavelength of 13.5 nm, a conventional pellicle made of a resin does not transmit and cannot be used. For this reason, resin materials that generate outgas tend to be avoided for reasons of lowering the degree of vacuum.

このため、特許文献1には、露光装置の内部のマスク近傍にて電界を発生して帯電した浮遊粒子を付着させる機構を備えた技術が開示されている(特許文献1参照)。また、特許文献2には、EUVマスクを収納する容器を二重化することでペリクル機能を代替させた容器などを用いた技術が開示されている(特許文献2参照)。
特開2006−120776号公報 特開2007−141925号公報
For this reason, Patent Document 1 discloses a technique including a mechanism for attaching charged floating particles by generating an electric field in the vicinity of a mask inside an exposure apparatus (see Patent Document 1). Further, Patent Document 2 discloses a technique using a container in which the pellicle function is replaced by duplicating a container for storing an EUV mask (see Patent Document 2).
JP 2006-12076 A JP 2007-141925 A

しかしながら、特許文献1において、電界を発生させる方法を用いると、非帯電物質には作用しなくなってしまう問題がある。また、特許文献2において、容器の二重化では露光機内部における露光中はマスクがその容器から取り出されてしまうため、除塵作用が露光工程中では働かなくなってしまう問題がある。   However, in Patent Document 1, when a method of generating an electric field is used, there is a problem that it does not act on an uncharged substance. Further, in Patent Document 2, when the container is duplicated, the mask is taken out from the container during the exposure inside the exposure apparatus, so that there is a problem that the dust removing function does not work during the exposure process.

そこで、本発明は、上述の問題を解決するためになされたものであり、非帯電物質である磁性物質の除塵機能を反射型フォトマスクに備え、露光工程中で除塵機能を有する反射型フォトマスク、把持装置、露光装置及び露光方法を提供することを目的とする。   Accordingly, the present invention has been made to solve the above-described problem, and a reflection type photomask having a dust removal function of a magnetic substance that is an uncharged substance and having a dust removal function in an exposure process is provided. An object of the present invention is to provide a gripping apparatus, an exposure apparatus, and an exposure method.

本発明の請求項1に係る発明は、表面にパターン形成領域を有する反射型フォトマスクにおいて、反射型フォトマスクの裏面に薄膜コイルが形成され、薄膜コイルに電流を流してパターン形成領域に塵埃が付着するのを防ぐよう構成したことを特徴とする反射型フォトマスクとしたものである。   According to the first aspect of the present invention, in a reflective photomask having a pattern formation region on the surface, a thin film coil is formed on the back surface of the reflective photomask, and a current is passed through the thin film coil so that dust is generated in the pattern formation region. The reflection type photomask is characterized in that it is configured to prevent adhesion.

本発明の請求項2に係る発明は、請求項1に記載の反射型フォトマスクにおいて、表面のパターン形成領域の外周の全部又は一部に第1のヨークを配置したことを特徴とする反射型フォトマスクとしたものである。   According to a second aspect of the present invention, in the reflective photomask according to the first aspect, the first yoke is disposed on all or part of the outer periphery of the pattern formation region on the surface. This is a photomask.

本発明の請求項3に係る発明は、請求項1又は2のいずれかに記載の反射型フォトマスクにおいて、反射型フォトマスクの側面の全部又は一部に第2のヨークを配置したことを特徴とする反射型フォトマスクとしたものである。   According to a third aspect of the present invention, in the reflective photomask according to the first or second aspect, the second yoke is disposed on all or part of the side surface of the reflective photomask. The reflection type photomask.

本発明の請求項4に係る発明は、反射型フォトマスクは、基板と、基板上に形成された多層反射膜と、多層反射膜上に形成された保護膜と、保護膜上にパターン形成された緩衝膜と、緩衝膜上にパターン形成された吸収膜と、吸収膜上にパターン形成された低反射膜を具備することを特徴とする請求項1乃至3のいずれかに記載の反射型フォトマスクとしたものである。   According to a fourth aspect of the present invention, a reflective photomask is formed by patterning a substrate, a multilayer reflective film formed on the substrate, a protective film formed on the multilayer reflective film, and a protective film. 4. The reflection-type photo according to claim 1, comprising: a buffer film; an absorption film patterned on the buffer film; and a low-reflection film patterned on the absorption film. It is a mask.

本発明の請求項5に係る発明は、薄膜コイルは導電性の非磁性材料であることを特徴とする請求項4に記載の反射型フォトマスクとしたものである。   The invention according to claim 5 of the present invention is the reflective photomask according to claim 4, wherein the thin film coil is made of a conductive nonmagnetic material.

本発明の請求項6に係る発明は、薄膜コイルを構成する裏面導電膜が、パターン形成領域より大きいことを特徴とする請求項1乃至請求項5のいずれかに記載の反射型フォトマスクとしたものである。   The invention according to claim 6 of the present invention is the reflective photomask according to any one of claims 1 to 5, wherein the back surface conductive film constituting the thin film coil is larger than the pattern formation region. Is.

本発明の請求項7に係る発明は、請求項1乃至請求項6のいずれかに記載の反射型フォトマスクを把持する把持装置において、薄膜コイルに電流を流すための手段を備えることを特徴とする把持装置としたものである。   The invention according to claim 7 of the present invention is a gripping device for gripping the reflective photomask according to any one of claims 1 to 6, characterized by comprising means for passing a current through the thin film coil. This is a gripping device.

本発明の請求項8に係る発明は、請求項1乃至請求項6のいずれかに記載の反射型フォトマスクに露光光を用いて所望のパターンに転写する露光装置において、反射型フォトマスクを把持する静電チャックは、薄膜コイルに電流を流すための手段を備えることを特徴とする露光装置としたものである。   According to an eighth aspect of the present invention, in the exposure apparatus for transferring to a desired pattern using exposure light on the reflective photomask according to any one of the first to sixth aspects, the reflective photomask is gripped. The electrostatic chuck is an exposure apparatus including means for passing a current through a thin film coil.

本発明の請求項9に係る発明は、請求項1乃至請求項6のいずれかに記載の反射型フォトマスクを配置し、反射型フォトマスクの薄膜コイルに電流を流してパターン形成領域に塵埃が付着するのを防ぎつつ極端紫外線で露光を行うことを特徴とする露光方法としたものである。   According to a ninth aspect of the present invention, the reflective photomask according to any one of the first to sixth aspects is arranged, and a current is passed through the thin film coil of the reflective photomask to cause dust in the pattern formation region. The exposure method is characterized in that exposure is performed with extreme ultraviolet rays while preventing adhesion.

本発明によれば、非帯電物質である磁性物質の除塵機能を反射型フォトマスクに備え、露光工程中で除塵機能を有する反射型フォトマスクを提供することができる。   According to the present invention, it is possible to provide a reflective photomask having a dust removal function of a magnetic substance that is an uncharged substance and having a dust removal function in an exposure process.

以下、本発明を、図面を参照して説明する。本発明の実施の形態において、同一構成要件には同一符号を付し、実施の形態の間において重複する説明は省略する。   Hereinafter, the present invention will be described with reference to the drawings. In the embodiment of the present invention, the same constituent elements are denoted by the same reference numerals, and redundant description among the embodiments is omitted.

図1は本実施の形態に係る反射型フォトマスク100の構造を示す概略断面図である。反射型フォトマスク100は、従来の波長243nm(KrFレーザ)や波長193nm(ArFレーザ)を用いたマスクの構造と異なり、波長13.5nmの光を用いることから、反射型フォトマスク100に用いられる石英材料が光を透過しないため反射型構造となる。なお、反射型フォトマスクの一般的な仕様は業界規格であるSEMIスタンダードP37−1102,P37−1103で標準化されている。   FIG. 1 is a schematic sectional view showing the structure of a reflective photomask 100 according to the present embodiment. Unlike the conventional mask structure using a wavelength of 243 nm (KrF laser) or a wavelength of 193 nm (ArF laser), the reflective photomask 100 is used for the reflective photomask 100 because it uses light having a wavelength of 13.5 nm. Since the quartz material does not transmit light, it has a reflective structure. Note that the general specifications of the reflective photomask are standardized by SEMI standards P37-1102 and P37-1103, which are industry standards.

図1に示すように、本実施の形態に係る反射型フォトマスク100は、多層の積層膜で構成され、光の入射方向(図中、矢印方向)から低反射膜10、吸収膜20、緩衝膜30、保護膜40、多層反射膜50、基板60、裏面導電膜70を備えている。   As shown in FIG. 1, the reflective photomask 100 according to the present embodiment is formed of a multilayer film, and the low reflection film 10, the absorption film 20, and the buffer from the light incident direction (the arrow direction in the figure). A film 30, a protective film 40, a multilayer reflective film 50, a substrate 60, and a back conductive film 70 are provided.

本実施の形態に係る低反射膜10は、パターン形状の検査のために波長13.5nm以外の光を用いる場合があり、多層反射膜50と低反射膜10とのコントラスト(((Rm−Ra)/(Rm+Ra))×100(%))を向上させるために形成する。本実施の形態に係る吸収膜20は、パターン形成された際に、照射されたEUV光(極端紫外光)を吸収するものであり、EUV光に対する高吸収性を有する材料から選択される。低反射膜10及び吸収膜20には、タンタル(Ta)を主成分とし、珪素(Si)、酸素(O)、窒素(N)の少なくとも1つを含む材料を用いて形成することが好ましい。   The low reflection film 10 according to the present embodiment may use light having a wavelength other than 13.5 nm for pattern shape inspection, and the contrast between the multilayer reflection film 50 and the low reflection film 10 (((Rm-Ra ) / (Rm + Ra)) × 100 (%)). The absorption film 20 according to the present embodiment absorbs irradiated EUV light (extreme ultraviolet light) when a pattern is formed, and is selected from materials having high absorbability with respect to EUV light. The low reflection film 10 and the absorption film 20 are preferably formed using a material containing tantalum (Ta) as a main component and at least one of silicon (Si), oxygen (O), and nitrogen (N).

本実施の形態に係る緩衝膜30は、物理的または化学的反応による反射型フォトマスク100の修正時に多層反射膜50(後述する)をダメージから守る犠牲膜である。緩衝膜30には、クロム(Cr)やジルコニウム(Zr)を主成分とし、酸素(O)、窒素(N)、シリコン(Si)の少なくとも1つを含む材料を用いて形成することが好ましい。   The buffer film 30 according to the present embodiment is a sacrificial film that protects the multilayer reflective film 50 (described later) from damage when the reflective photomask 100 is corrected by a physical or chemical reaction. The buffer film 30 is preferably formed using a material containing chromium (Cr) or zirconium (Zr) as a main component and at least one of oxygen (O), nitrogen (N), and silicon (Si).

保護膜40は多層反射膜50の表面酸化などによる変質を保護するためのものであり、緩衝膜30をエッチングして除去する際に、多層反射膜50へのダメージを防ぐエッチングストッパーとして機能するものである。保護膜40には、珪素(シリコン)及びRu(ルテニウム)等の材料を用いて形成することが好ましい。   The protective film 40 is used to protect the multilayer reflective film 50 from deterioration due to surface oxidation or the like, and functions as an etching stopper that prevents damage to the multilayer reflective film 50 when the buffer film 30 is removed by etching. It is. The protective film 40 is preferably formed using a material such as silicon (silicon) and Ru (ruthenium).

多層反射膜50は、露光光であるEUV光を反射するもので、EUV光に対する屈折率の大きく異なる材料の組み合わせによる多層膜から構成されている。多層反射膜50の材料には、例えば、モリブデン(Mo)とシリコン(Si)、またはモリブデン(Mo)とベリリウム(Be)といった組み合わせの層を40周期程度繰り返し積層することにより形成することができる。多層反射膜50の1層ずつの膜厚は、例えばMo膜が2.8nm、Si膜が4.2nmである。ここで、パターンとなる光学的コントラスト(明暗)を形成する部分は多層反射膜50及び吸収膜20である。   The multilayer reflective film 50 reflects EUV light that is exposure light, and is composed of a multilayer film made of a combination of materials having significantly different refractive indexes with respect to EUV light. The material of the multilayer reflective film 50 can be formed, for example, by repeatedly laminating a combination of molybdenum (Mo) and silicon (Si) or molybdenum (Mo) and beryllium (Be) for about 40 cycles. The film thickness of each layer of the multilayer reflective film 50 is, for example, 2.8 nm for the Mo film and 4.2 nm for the Si film. Here, the portions that form the optical contrast (brightness and darkness) to be a pattern are the multilayer reflection film 50 and the absorption film 20.

基板60には石英が用いられ、特にチタン(Ti)もしくはチタン酸化物(TiO)を添加した合成石英を用いることが好ましい。合成石英は添加しない石英に比べて熱膨張率が低い特性をもつことが知られている。   Quartz is used for the substrate 60, and it is particularly preferable to use synthetic quartz to which titanium (Ti) or titanium oxide (TiO) is added. Synthetic quartz is known to have a lower coefficient of thermal expansion than quartz without addition.

裏面導電膜70は露光装置への搭載に静電的吸着原理を利用した把持装置を用いるために形成される。裏面導電膜70には、クロム(Cr)を主成分とし、酸素(O)及び窒素(N)の少なくとも1つを含む材料を用いることが好ましい。   The back conductive film 70 is formed in order to use a gripping device that uses the electrostatic adsorption principle for mounting in an exposure apparatus. The back conductive film 70 is preferably made of a material containing chromium (Cr) as a main component and at least one of oxygen (O) and nitrogen (N).

また、図示しないが、吸収膜20と多層反射膜50との間に、多層反射膜50を保護するための保護膜40と緩衝膜30との両方の役割を果たす兼用膜を備えることができる。兼用膜の材料には、Ru(ルテニウム)を用いることが好ましい。   Although not shown, a dual-purpose film serving as both the protective film 40 and the buffer film 30 for protecting the multilayer reflective film 50 can be provided between the absorption film 20 and the multilayer reflective film 50. Ru (ruthenium) is preferably used as the material of the dual-purpose film.

以下、本発明の実施の形態に係る除塵機能付き反射型フォトマスク100の機構を図2乃至図6を用いて説明する。図2(a)は本発明の実施の形態に係る防塵機能付き反射型フォトマスク100の構造を示す概略断面図であり、図2(b)は本発明の実施の形態に係る防塵機能付き反射型フォトマスク100の構造を示す概略底面図である。   Hereinafter, the mechanism of the reflective photomask 100 with a dust removal function according to the embodiment of the present invention will be described with reference to FIGS. FIG. 2A is a schematic cross-sectional view showing the structure of a reflective photomask 100 with a dustproof function according to the embodiment of the present invention, and FIG. 2B is a reflection with a dustproof function according to the embodiment of the present invention. 2 is a schematic bottom view showing a structure of a mold photomask 100. FIG.

本発明の実施の形態に係る防塵機能の原理は磁場を利用するものであり、磁場の発生はアンペールの右ねじの法則によるものである。図2(a)に示すように、本発明の実施の形態に係る防塵機能付き反射型フォトマスク100は、前述した反射型フォトマスク100の低反射膜10、吸収膜20及び緩衝膜30がパターン形成されたパターン領域160と、裏面導電膜70の一部に薄膜コイル110とが形成されている。ここで、薄膜コイル110は裏面導電膜70の一部をパターン形成することで得ることができる。また、図2(b)に示すように、薄膜コイル110の両端部にはパット(電極)130が形成され、パット(電極)130が電源140に接続されている。   The principle of the dustproof function according to the embodiment of the present invention uses a magnetic field, and the generation of the magnetic field is based on Ampere's right-handed screw law. As shown in FIG. 2A, the reflective photomask 100 with a dustproof function according to the embodiment of the present invention has a pattern of the low reflective film 10, the absorption film 20 and the buffer film 30 of the reflective photomask 100 described above. The formed pattern region 160 and the thin film coil 110 are formed on a part of the back surface conductive film 70. Here, the thin film coil 110 can be obtained by patterning a part of the back surface conductive film 70. Further, as shown in FIG. 2B, pads (electrodes) 130 are formed at both ends of the thin film coil 110, and the pads (electrodes) 130 are connected to a power source 140.

次に、本発明の実施の形態に係る防塵機能付き反射型フォトマスク100の磁界発生の原理について説明する。図3(a)及び(b)は本発明の実施の形態に係る防塵機能付き反射型フォトマスク100の磁界発生の原理を示す。図3(a)及び(b)に示すように、電源140から直流電流をパッド(電極)131に負極、パッド132に正極で流した場合に、薄膜コイル110に磁場が発生し、磁力線150が発生する(図中矢印方向)。なお、電源140から流す電流は直流でも交流でも良く、適時選択することができる。磁場の強弱は電源140から供給する電流や、薄膜コイル110の巻き数や線幅などで調整することができ、磁力線150により磁性材料を元素に含む塵埃を吸引、捕獲して除塵作用を得ることができる。図3(a)に示すように、発生した磁力線150は反射型フォトマスク100のパターン領域160を通過することとなり、反射型フォトマスク100のパターン領域160において塵埃の吸引効果が発現してしまう。   Next, the principle of magnetic field generation in the reflective photomask 100 with a dustproof function according to the embodiment of the present invention will be described. 3A and 3B show the principle of magnetic field generation of the reflective photomask 100 with a dustproof function according to the embodiment of the present invention. As shown in FIGS. 3A and 3B, when a direct current is supplied from a power source 140 to a pad (electrode) 131 with a negative electrode and a pad 132 with a positive electrode, a magnetic field is generated in the thin film coil 110, and the magnetic field lines 150 are generated. It occurs (in the direction of the arrow in the figure). The current flowing from the power supply 140 may be direct current or alternating current, and can be selected as appropriate. The strength of the magnetic field can be adjusted by the current supplied from the power source 140, the number of turns and the line width of the thin film coil 110, etc., and the dust containing the magnetic material as an element is attracted and captured by the magnetic force lines 150 to obtain a dust removing action. Can do. As shown in FIG. 3A, the generated magnetic force lines 150 pass through the pattern region 160 of the reflective photomask 100, and a dust suction effect appears in the pattern region 160 of the reflective photomask 100.

そこで、図4(a)及び(b)に示すように、吸引力を反射型フォトマスク100のパターン領域160に対してより高磁力(磁束密度が高い)となる箇所を設けることで吸引力に勾配を付与する。磁束密度を高くする手段として高透磁率材料を用いた第1のヨーク170を反射型フォトマスク100のパターン領域160よりも反射型フォトマスク100の外周の全部又は一部に設ける。この第1のヨーク170内に磁力線が収束するので、吸引力が反射型フォトマスク100のパターン領域160よりも強くすることができる。塵埃が第1のヨーク170側に引き寄せられることから、反射型フォトマスク100のパターン領域160への塵埃付着を抑止することができる。図4(a)に示すように、第1のヨーク170は露光光学系の影響が無い限り、反射型フォトマスク100のパターン面からできるだけ高いほうが、反射型フォトマスク100のパターン領域160に対して斜めに飛来する塵埃に対して防護壁となることができる。また、図示しないが、第1のヨーク170を反射型フォトマスク100の裏面側にさらに設けても良い。この場合、裏面導電膜70の膜厚と同一かつ、同一機械的強度を有する物質に限定される。後述するが、反射型フォトマスク100は露光装置内で反射型フォトマスク100のパターン領域160を下方とし、その反対面側となる裏面導電膜70を静電気の吸引力を利用した把持装置(静電チャック)で全面吸着するためである。膜厚を同一とする理由は把持において平面性を確保するためであり、機械的強度はチャッキング力により変形を受けた場合、平坦性の確保ができなくなるためである。第1のヨーク170の材料には、例えば、FeNi合金(パーマロイ)などを用いることが好ましい。   Therefore, as shown in FIGS. 4A and 4B, the attractive force can be reduced by providing a portion having a higher magnetic force (higher magnetic flux density) than the pattern region 160 of the reflective photomask 100. Give a gradient. As a means for increasing the magnetic flux density, the first yoke 170 using a high magnetic permeability material is provided on all or part of the outer periphery of the reflective photomask 100 rather than the pattern region 160 of the reflective photomask 100. Since the lines of magnetic force converge in the first yoke 170, the attractive force can be made stronger than the pattern region 160 of the reflective photomask 100. Since dust is attracted to the first yoke 170 side, dust adhesion to the pattern region 160 of the reflective photomask 100 can be suppressed. As shown in FIG. 4A, the first yoke 170 is as high as possible from the pattern surface of the reflective photomask 100 with respect to the pattern region 160 of the reflective photomask 100 as long as there is no influence of the exposure optical system. It can be a protective wall against dust flying obliquely. Although not shown, the first yoke 170 may be further provided on the back side of the reflective photomask 100. In this case, the material is limited to a material having the same mechanical strength as the film thickness of the back surface conductive film 70. As will be described later, the reflective photomask 100 has a patterning device 160 in the exposure apparatus with the pattern region 160 of the reflective photomask 100 facing downward, and a back surface conductive film 70 on the opposite side of the backside conductive film 70 utilizing electrostatic attraction. This is because the entire surface is adsorbed by the chuck). The reason why the film thicknesses are the same is to ensure flatness in gripping, and the mechanical strength cannot be ensured to be flat when deformed by a chucking force. For example, an FeNi alloy (permalloy) is preferably used as the material of the first yoke 170.

図4(a)及び(b)では第1のヨーク170は反射型フォトマスク100のパターン領域160面側のみに設置したが、図5(a)及び(b)に示すように、反射型フォトマスク100の側面の全部又は一部に第2のヨーク180を設置してもよい。第2のヨーク180は磁力の及ぶ範囲を狭め、反射型フォトマスク100から空間的に外側遠方の異物まで吸引することを抑制することができる。第2のヨーク180を設置する場合、一般に反射型フォトマスク100の外形寸法は前述した業界規格が定められているため、その範囲に収める必要がある。第1及び第2のヨーク170、180を薄膜で成膜する手段としては鍍金や塗工、スパッタリング法が挙げられる。スパッタリング法による一例として、例えば数10nmの薄膜の形成が可能な磁性材料を用いることが好ましい。磁性材料としてはハードディスクに用いられるCoCrTa系合金、CoCrPt系合金を用いることが好ましい。   4A and 4B, the first yoke 170 is disposed only on the pattern region 160 surface side of the reflective photomask 100. However, as shown in FIGS. The second yoke 180 may be provided on all or part of the side surface of the mask 100. The second yoke 180 can narrow the range in which the magnetic force is applied, and can suppress attraction from the reflective photomask 100 to a foreign object that is spatially far away. When the second yoke 180 is installed, the external dimensions of the reflective photomask 100 are generally set in the above-described industry standards, and thus must be within that range. Examples of means for forming the first and second yokes 170 and 180 as thin films include plating, coating, and sputtering. As an example of the sputtering method, it is preferable to use a magnetic material capable of forming a thin film of several tens of nm, for example. As the magnetic material, it is preferable to use a CoCrTa alloy or a CoCrPt alloy used for a hard disk.

図6(a)及び(b)は本発明の実施の形態に係る反射型フォトマスク100の撓み及び反射型フォトマスク100のパターン領域160と裏面導電膜70との関係を示す。図6(a)及び(b)を参照してパターン領域160と裏面導電膜70とについて説明する。図6(a)に示すように、本発明の実施の形態に係る反射型フォトマスク100は露光装置内で反射型フォトマスク100のパターン領域160を下方とし、その対向面側の裏面導電膜70を静電気の吸引力を利用した把持装置210(静電チャック)で全面吸着する。これは反射型フォトマスク100のパターン領域160への重力落下による異物付着を避ける目的が一要因としてある。裏面導電膜70の領域は反射型フォトマスク100のパターン領域160よりも外形寸法が大きいほうが望ましい。小さい場合には図6(b)で示すように段差Aにより反射型フォトマスク100に対して応力が発生し、撓みが生じてパターン領域160にも歪みが発生する恐れがある。   FIGS. 6A and 6B show the relationship between the deflection of the reflective photomask 100 and the pattern region 160 of the reflective photomask 100 and the back conductive film 70 according to the embodiment of the present invention. The pattern region 160 and the back surface conductive film 70 will be described with reference to FIGS. As shown in FIG. 6A, the reflective photomask 100 according to the embodiment of the present invention has the pattern region 160 of the reflective photomask 100 in the exposure apparatus, and the back conductive film 70 on the opposite surface side. Is attracted to the entire surface by a gripping device 210 (electrostatic chuck) using electrostatic attraction. This is partly due to the purpose of avoiding foreign matter adhering to the pattern area 160 of the reflective photomask 100 due to gravity drop. The region of the back surface conductive film 70 preferably has a larger outer dimension than the pattern region 160 of the reflective photomask 100. In the case of being small, as shown in FIG. 6B, a stress is generated on the reflective photomask 100 by the step A, and there is a possibility that the pattern region 160 may be distorted due to bending.

図6(a)及び(b)を参照して裏面導電膜70、薄膜コイル110及びパット130について説明する。上述した通り、段差Aによる撓みを発生させないように、裏面導電膜70、薄膜コイル110及びパット130が同一平面であることが好ましい。また、静電チャック210による把持のために導電性が必要となり、薄膜コイル110及びパット130に電流を流すことから導電性が必要となる。図1に示すように、これらの部材は反射型フォトマスク100の構造である裏面導電膜70が元来導電性を必要としていることから兼用できる利点がある。   The back conductive film 70, the thin film coil 110, and the pad 130 will be described with reference to FIGS. As described above, the back conductive film 70, the thin film coil 110, and the pad 130 are preferably flush with each other so as not to cause bending due to the step A. In addition, conductivity is required for gripping by the electrostatic chuck 210, and conductivity is required because current flows through the thin film coil 110 and the pad 130. As shown in FIG. 1, these members have an advantage that they can be used together because the back conductive film 70 which is the structure of the reflective photomask 100 originally needs conductivity.

図1に示すように、反射型フォトマスク100を構成する材料及び裏面導電膜70(薄膜コイル110、パット130を含む)の材料は、導電性の非磁性材料を用いることで非帯電物質を含む塵埃を効果的に吸収及び捕獲することができる。具体的に、裏面導電膜70の材料は、窒化クロム(CrN)を用いることが好ましい。CrNは、スパッタリング法を用いて薄膜を成膜して、フォトリソグラフィ法によりパターンを形成することができる。導電性の磁性材料では、電磁石効果により吸引効果は向上するが、吸引点が第1のヨーク170ではなく、反射型フォトマスク100のパターン領域160の面にも発現してしまう。さらに、薄膜コイル110に電流を流さない場合においても少なくとも一方が磁性材料である限り、反射型フォトマスク100のパターン領域160に磁性体の付着が発生する欠点が避けられなくなってしまう。   As shown in FIG. 1, the material constituting the reflective photomask 100 and the material of the back surface conductive film 70 (including the thin film coil 110 and the pad 130) include a non-charged substance by using a conductive nonmagnetic material. Dust can be absorbed and captured effectively. Specifically, it is preferable to use chromium nitride (CrN) as the material of the back surface conductive film 70. CrN can form a thin film using a sputtering method and form a pattern using a photolithography method. In the conductive magnetic material, the attraction effect is improved by the electromagnet effect, but the attraction point appears not on the first yoke 170 but also on the surface of the pattern region 160 of the reflective photomask 100. Further, even when no current is passed through the thin film coil 110, as long as at least one is made of a magnetic material, the defect that the magnetic substance adheres to the pattern region 160 of the reflective photomask 100 is unavoidable.

上述した本発明の実施の形態に係る反射型フォトマスク100を露光装置300に設置し、露光工程中で除塵作用を有する場合について説明する。図7(a)及び(b)は本発明の実施の形態に係る除塵機能付き反射型フォトマスク100を静電チャック210に把持する機構を示し、露光工程中で除塵作用を有することを示す。図7(a)及び(b)に示すように、露光装置内における半導体基板への転写露光工程では、反射型フォトマスク100が静電チャック210に把持搭載される。なお、図7(a)及び(b)は露光装置内部の一部を示すが、光源、マスクへの集光光学系、半導体基板への投影光学系などは省略する。静電チャック210は静電吸着を発現させるためにその内部に電荷を供給するための電極220を有する。本発明の実施の形態に係る反射型フォトマスク100への電流の供給もこの静電チャック210の内部に配線230と接点240とを設け、ここから反射型フォトマスク100のパット130に供給すればよい。   A case will be described in which the above-described reflective photomask 100 according to the embodiment of the present invention is installed in the exposure apparatus 300 and has a dust removing action during the exposure process. FIGS. 7A and 7B show a mechanism for holding the reflective photomask 100 with a dust removal function according to the embodiment of the present invention on the electrostatic chuck 210 and show that it has a dust removal action during the exposure process. As shown in FIGS. 7A and 7B, the reflective photomask 100 is gripped and mounted on the electrostatic chuck 210 in the transfer exposure process to the semiconductor substrate in the exposure apparatus. 7A and 7B show a part of the inside of the exposure apparatus, but a light source, a condensing optical system for a mask, a projection optical system for a semiconductor substrate, and the like are omitted. The electrostatic chuck 210 has an electrode 220 for supplying a charge to the inside in order to develop electrostatic adsorption. In the current supply to the reflective photomask 100 according to the embodiment of the present invention, the wiring 230 and the contact 240 are provided inside the electrostatic chuck 210 and supplied from here to the pad 130 of the reflective photomask 100. Good.

次に、本発明の実施の形態に係る反射型フォトマスク100をロボット等で搬送する場合について説明する。図8は、本発明の実施の形態に係る除塵機能付き反射型フォトマスク100と把持機構を備えた露光装置とさらに露光装置内での搬送工程において除塵作用を有することを示す。図8に示すように、露光装置300の内部は真空環境となる。図8では光源、マスクへの集光光学系、半導体基板への投影光学系などは省略する。反射型フォトマスク100は露光装置300の内部のマスクライブラリ310に格納される。マスクライブラリ310も真空環境とする。図8では多段構造を示しているが、枚葉型であってもよく、数量に制限はない。このマスクライブラリ310では二重ケースの少なくとも内側ケース320内に格納されている。この二重ケースの内側ケース320からの取り出し動作から静電チャック210に至るまでは機械的動作を行う搬送ロボット330により取り出し、移動が行われ、静電チャック210に装着される。この間、反射型フォトマスク100はなんら防塵のための保護を受けない。そこで、搬送ロボット330のアーム340に反射型フォトマスク100のパッド130に対応した位置に、電流の供給を可能にする接点350を設け、電源140から配線360を通じて電流をする流すことにより、取り出し、移動、装着工程においても本発明の除塵作用が働く露光装置が実現する。   Next, a case where the reflective photomask 100 according to the embodiment of the present invention is transported by a robot or the like will be described. FIG. 8 shows that the reflection type photomask 100 with a dust removal function according to the embodiment of the present invention, an exposure apparatus provided with a gripping mechanism, and a dust removal function in a transport process in the exposure apparatus. As shown in FIG. 8, the inside of the exposure apparatus 300 is in a vacuum environment. In FIG. 8, a light source, a condensing optical system for a mask, a projection optical system for a semiconductor substrate, and the like are omitted. The reflective photomask 100 is stored in a mask library 310 inside the exposure apparatus 300. The mask library 310 is also a vacuum environment. Although FIG. 8 shows a multi-stage structure, it may be a single-wafer type and there is no limit on the quantity. In this mask library 310, it is stored in at least the inner case 320 of the double case. From the take-out operation from the inner case 320 of the double case to the electrostatic chuck 210, it is taken out and moved by the transfer robot 330 that performs mechanical operation, and is attached to the electrostatic chuck 210. During this time, the reflective photomask 100 does not receive any protection against dust. Therefore, the arm 340 of the transfer robot 330 is provided with a contact 350 that enables supply of current at a position corresponding to the pad 130 of the reflective photomask 100, and is taken out by flowing current from the power supply 140 through the wiring 360. The exposure apparatus in which the dust removing action of the present invention works also in the moving and mounting processes is realized.

次に、反射型フォトマスク100を露光装置300に配置して、露光を行う露光方法について説明する。本発明の実施の形態に係る露光方法は、露光装置300内で反射型フォトマスク100を静電チャック210に配置する。露光装置300内で、反射型フォトマスク100の薄膜コイル110に電流を流してパターン形成領域に塵埃が付着するのを防ぎつつ極端紫外線で露光を行う。このように、露光を行うことにより、半導体製造の歩留まりを向上させることができる。   Next, an exposure method for performing exposure by placing the reflective photomask 100 in the exposure apparatus 300 will be described. In the exposure method according to the embodiment of the present invention, the reflective photomask 100 is disposed on the electrostatic chuck 210 in the exposure apparatus 300. In the exposure apparatus 300, an electric current is passed through the thin film coil 110 of the reflective photomask 100 to perform exposure with extreme ultraviolet rays while preventing dust from adhering to the pattern formation region. Thus, by performing exposure, the yield of semiconductor manufacturing can be improved.

本発明の極端紫外線リソグラフィ用反射型フォトマスクは、露光工程中で除塵作用が反射型フォトマスクに働くために、半導体製造の歩留まり向上が期待できる。   The reflection type photomask for extreme ultraviolet lithography of the present invention can be expected to improve the yield of semiconductor manufacturing because the dust removing action acts on the reflection type photomask during the exposure process.

本実施の形態に係る反射型フォトマスクの構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the reflection type photomask which concerns on this Embodiment. (a)は、本発明の実施の形態に係る除塵機能付き反射型フォトマスクの構造を示す概略断面図であり、(b)は、本発明の実施の形態に係る除塵機能付き反射型フォトマスクの構造を示す概略底面図である。(A) is a schematic sectional drawing which shows the structure of the reflective photomask with a dust removal function which concerns on embodiment of this invention, (b) is the reflective photomask with a dust removal function which concerns on embodiment of this invention It is a schematic bottom view which shows the structure of these. (a)は、本発明の実施の形態に係る除塵機能付き反射型フォトマスクの磁界発生の原理を示す概略断面図であり、(b)は、本発明の実施の形態に係る除塵機能付き反射型フォトマスクの磁界発生の原理を示す概略底面図である。(A) is a schematic sectional drawing which shows the principle of the magnetic field generation | occurrence | production of the reflective photomask with a dust removal function which concerns on embodiment of this invention, (b) is a reflection with a dust removal function which concerns on embodiment of this invention. It is a schematic bottom view which shows the principle of the magnetic field generation of a type photomask. (a)は、本発明の実施の形態に係る除塵機能付きフォトマスクの構造と磁界の収束作用を示す概略断面図であり、(b)は、本発明の実施の形態に係る除塵機能付き反射型フォトマスクの構造と磁界の収束作用を示す概略底面図である。(A) is a schematic sectional drawing which shows the structure of the photomask with a dust removal function which concerns on embodiment of this invention, and the convergence effect | action of a magnetic field, (b) is a reflection with dust removal function which concerns on embodiment of this invention It is a schematic bottom view which shows the structure of a type | mold photomask, and the convergence effect | action of a magnetic field. (a)は、本発明の実施の形態に係る除塵機能付きフォトマスクの構造と磁界の収束作用を示す図であり、(b)は、本発明の実施の形態に係る除塵機能付き反射型フォトマスクの構造と磁界の収束作用を示す概略底面図である。(A) is a figure which shows the structure of the photomask with a dust removal function which concerns on embodiment of this invention, and the convergence effect | action of a magnetic field, (b) is a reflective photo with dust removal function which concerns on embodiment of this invention It is a schematic bottom view which shows the structure of a mask, and the convergence effect | action of a magnetic field. (a)及び(b)は、本発明の実施の形態に係る反射型フォトマスクの撓みと反射型フォトマスク上に形成されたパターン領域の関係を示す概略断面図である。(A) And (b) is a schematic sectional drawing which shows the relationship between the bending of the reflection type photomask which concerns on embodiment of this invention, and the pattern area | region formed on the reflection type photomask. 本発明の実施の形態に係る除塵機能付き反射型フォトマスクを静電チャックに把持する機構を示す図である。It is a figure which shows the mechanism which hold | grips the reflective photomask with a dust removal function which concerns on embodiment of this invention to an electrostatic chuck. 本発明の実施の形態に係る除塵機能付き反射型フォトマスクと把持機構を備えた露光装置の搬送工程とを示す概略断面図である。It is a schematic sectional drawing which shows the conveyance process of the exposure apparatus provided with the reflective photomask with a dust removal function which concerns on embodiment of this invention, and a holding mechanism.

符号の説明Explanation of symbols

10:低反射膜、20:吸収膜、30:緩衝膜、40:保護膜、50:多層反射膜、60:基板、70:裏面導電膜、100:反射型フォトマスク、110:薄膜コイル、130:パット、140:電源、150:磁力線、160:パターン領域、170:第1のヨーク、180:第2のヨーク、210:静電チャック、220:電極、230:配線、240:接点、300:露光装置、310:マスクライブラリ、320:内側ケース、330:搬送ロボット、340:アーム、350:接点、360:配線 10: Low reflection film, 20: Absorption film, 30: Buffer film, 40: Protective film, 50: Multi-layer reflection film, 60: Substrate, 70: Back conductive film, 100: Reflective photomask, 110: Thin film coil, 130 : Pad, 140: Power supply, 150: Magnetic field line, 160: Pattern region, 170: First yoke, 180: Second yoke, 210: Electrostatic chuck, 220: Electrode, 230: Wiring, 240: Contact, 300: Exposure apparatus, 310: mask library, 320: inner case, 330: transfer robot, 340: arm, 350: contact, 360: wiring

Claims (9)

表面にパターン形成領域を有する反射型フォトマスクにおいて、
前記反射型フォトマスクの裏面に薄膜コイルが形成され、前記薄膜コイルに電流を流して前記パターン形成領域に塵埃が付着するのを防ぐよう構成したことを特徴とする反射型フォトマスク。
In a reflective photomask having a pattern formation region on the surface,
A reflective photomask, wherein a thin film coil is formed on the back surface of the reflective photomask, and current is passed through the thin film coil to prevent dust from adhering to the pattern formation region.
請求項1に記載の反射型フォトマスクにおいて、
前記表面の前記パターン形成領域の外周の全部又は一部に第1のヨークを配置したことを特徴とする反射型フォトマスク。
The reflective photomask according to claim 1,
A reflective photomask, wherein a first yoke is disposed on all or part of the outer periphery of the pattern formation region on the surface.
請求項1又は2のいずれかに記載の反射型フォトマスクにおいて、
前記反射型フォトマスクの側面の全部又は一部に第2のヨークを配置したことを特徴とする反射型フォトマスク。
The reflective photomask according to claim 1 or 2,
A reflective photomask comprising a second yoke disposed on all or a part of a side surface of the reflective photomask.
前記反射型フォトマスクは、
基板と、
前記基板上に形成された多層反射膜と、
前記多層反射膜上に形成された保護膜と、
前記保護膜上にパターン形成された緩衝膜と、
前記緩衝膜上にパターン形成された吸収膜と、
前記吸収膜上にパターン形成された低反射膜を具備することを特徴とする請求項1乃至3のいずれかに記載の反射型フォトマスク。
The reflective photomask is
A substrate,
A multilayer reflective film formed on the substrate;
A protective film formed on the multilayer reflective film;
A buffer film patterned on the protective film;
An absorption film patterned on the buffer film;
The reflective photomask according to claim 1, further comprising a low-reflection film patterned on the absorption film.
前記薄膜コイルは導電性の非磁性材料であることを特徴とする請求項4に記載の反射型フォトマスク。   5. The reflective photomask according to claim 4, wherein the thin film coil is made of a conductive nonmagnetic material. 前記薄膜コイルを構成する裏面導電膜が、前記パターン形成領域より大きいことを特徴とする請求項1乃至請求項5のいずれかに記載の反射型フォトマスク。   6. The reflective photomask according to claim 1, wherein a back surface conductive film constituting the thin film coil is larger than the pattern formation region. 請求項1乃至請求項6のいずれかに記載の反射型フォトマスクを把持する把持装置において、前記薄膜コイルに電流を流すための手段を備えることを特徴とする把持装置。   7. A gripping apparatus for gripping the reflective photomask according to claim 1, further comprising means for passing a current through the thin film coil. 請求項1乃至請求項6のいずれかに記載の反射型フォトマスクに露光光を用いて所望のパターンに転写する露光装置において、
前記反射型フォトマスクを把持する静電チャックは、前記薄膜コイルに電流を流すための手段を備えることを特徴とする露光装置。
In the exposure apparatus which transfers to a desired pattern using exposure light to the reflection type photomask in any one of Claims 1 thru | or 6,
An exposure apparatus, wherein the electrostatic chuck for gripping the reflective photomask includes means for causing a current to flow through the thin film coil.
請求項1乃至請求項6のいずれかに記載の反射型フォトマスクを配置し、
前記反射型フォトマスクの前記薄膜コイルに電流を流して前記パターン形成領域に塵埃が付着するのを防ぎつつ極端紫外線で露光を行うことを特徴とする露光方法。
The reflective photomask according to any one of claims 1 to 6 is disposed,
An exposure method characterized in that exposure is carried out with extreme ultraviolet rays while current is passed through the thin film coil of the reflective photomask to prevent dust from adhering to the pattern formation region.
JP2008210137A 2008-08-18 2008-08-18 Reflective photomask, gripping apparatus, and exposure apparatus Expired - Fee Related JP5304097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008210137A JP5304097B2 (en) 2008-08-18 2008-08-18 Reflective photomask, gripping apparatus, and exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008210137A JP5304097B2 (en) 2008-08-18 2008-08-18 Reflective photomask, gripping apparatus, and exposure apparatus

Publications (2)

Publication Number Publication Date
JP2010045317A true JP2010045317A (en) 2010-02-25
JP5304097B2 JP5304097B2 (en) 2013-10-02

Family

ID=42016433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008210137A Expired - Fee Related JP5304097B2 (en) 2008-08-18 2008-08-18 Reflective photomask, gripping apparatus, and exposure apparatus

Country Status (1)

Country Link
JP (1) JP5304097B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105698A1 (en) * 2011-02-04 2012-08-09 旭硝子株式会社 Substrate with conductive film, substrate with multilayer reflection film, and reflective mask blank for euv lithography
JP2012208415A (en) * 2011-03-30 2012-10-25 Toppan Printing Co Ltd Reflective exposure mask
JP2013045982A (en) * 2011-08-25 2013-03-04 Toppan Printing Co Ltd Manufacturing method of reflective mask, and reflective mask
US9134253B2 (en) 2013-08-27 2015-09-15 Kabushiki Kaisha Toshiba Inspecting apparatus and inspecting method
WO2016142370A1 (en) * 2015-03-12 2016-09-15 Carl Zeiss Smt Gmbh Cleaning device for an euv lithography system, euv lithography system with such a device and cleaning method
US12092952B2 (en) * 2020-10-16 2024-09-17 Taiwan Semiconductor Manufacturing Co., Ltd. Methods for forming extreme ultraviolet mask comprising magnetic material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210052707A (en) 2019-10-30 2021-05-11 삼성전자주식회사 Extreme ultraviolet exporure system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63107022A (en) * 1986-10-24 1988-05-12 Hitachi Ltd Measuring device for clearance between mask and wafer
JPH10221499A (en) * 1997-02-07 1998-08-21 Hitachi Ltd Laser plasma x-ray source and device and method for exposing semiconductor using the same
JP2002324757A (en) * 2001-03-01 2002-11-08 Asml Netherlands Bv Mask handling method, mask, tool or apparatus including gripper therefor, device manufacturing method and device manufactured thereby
JP2006324268A (en) * 2005-05-17 2006-11-30 Dainippon Printing Co Ltd Mask blanks for euv exposure, its manufacturing method and mask for euv exposure
JP2008171998A (en) * 2007-01-11 2008-07-24 Nikon Corp Reticle chuck, reticle, absorption structure of reticle and exposure device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63107022A (en) * 1986-10-24 1988-05-12 Hitachi Ltd Measuring device for clearance between mask and wafer
JPH10221499A (en) * 1997-02-07 1998-08-21 Hitachi Ltd Laser plasma x-ray source and device and method for exposing semiconductor using the same
JP2002324757A (en) * 2001-03-01 2002-11-08 Asml Netherlands Bv Mask handling method, mask, tool or apparatus including gripper therefor, device manufacturing method and device manufactured thereby
JP2006324268A (en) * 2005-05-17 2006-11-30 Dainippon Printing Co Ltd Mask blanks for euv exposure, its manufacturing method and mask for euv exposure
JP2008171998A (en) * 2007-01-11 2008-07-24 Nikon Corp Reticle chuck, reticle, absorption structure of reticle and exposure device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105698A1 (en) * 2011-02-04 2012-08-09 旭硝子株式会社 Substrate with conductive film, substrate with multilayer reflection film, and reflective mask blank for euv lithography
US9086629B2 (en) 2011-02-04 2015-07-21 Asahi Glass Company, Limited Substrate with conductive film, substrate with multilayer reflective film and reflective mask blank for EUV lithography
JP5888247B2 (en) * 2011-02-04 2016-03-16 旭硝子株式会社 Substrate with conductive film, substrate with multilayer reflective film, and reflective mask blank for EUV lithography
KR101857844B1 (en) 2011-02-04 2018-05-14 아사히 가라스 가부시키가이샤 Substrate with conductive film, substrate with multilayer reflection film, and reflective mask blank for euv lithography
JP2012208415A (en) * 2011-03-30 2012-10-25 Toppan Printing Co Ltd Reflective exposure mask
JP2013045982A (en) * 2011-08-25 2013-03-04 Toppan Printing Co Ltd Manufacturing method of reflective mask, and reflective mask
US9134253B2 (en) 2013-08-27 2015-09-15 Kabushiki Kaisha Toshiba Inspecting apparatus and inspecting method
WO2016142370A1 (en) * 2015-03-12 2016-09-15 Carl Zeiss Smt Gmbh Cleaning device for an euv lithography system, euv lithography system with such a device and cleaning method
US12092952B2 (en) * 2020-10-16 2024-09-17 Taiwan Semiconductor Manufacturing Co., Ltd. Methods for forming extreme ultraviolet mask comprising magnetic material

Also Published As

Publication number Publication date
JP5304097B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
JP5304097B2 (en) Reflective photomask, gripping apparatus, and exposure apparatus
US9535318B2 (en) Reflective mask blank and method for manufacturing same, method for manufacturing reflective mask, and method for manufacturing semiconductor device
US7910264B2 (en) Reflective mask blank for exposure, reflective mask for exposure, method of producing a semiconductor device, and substrate provided with multilayer reflective film
US20150064611A1 (en) Extreme Ultraviolet (Euv) Mask And Method Of Fabricating The Euv Mask
JP4926521B2 (en) REFLECTIVE MASK BLANK, REFLECTIVE MASK, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE
KR20080092363A (en) Reflective-type mask blank for euv lithography
US7078134B2 (en) Photolithographic mask having a structure region covered by a thin protective coating of only a few atomic layers and methods for the fabrication of the mask including ALCVD to form the thin protective coating
JP6845122B2 (en) Reflective mask blank, reflective mask and its manufacturing method, and semiconductor device manufacturing method
JP2016080967A (en) Pellicle
JP5533016B2 (en) Method for manufacturing a reflective mask
JP2006324268A (en) Mask blanks for euv exposure, its manufacturing method and mask for euv exposure
JP2012009537A (en) Reflection type mask blank, reflection type mask, method of manufacturing reflection type mask blank, and method of manufacturing reflection type mask
JP5703841B2 (en) Reflective mask
JP2010072420A (en) Photomask case
US12092952B2 (en) Methods for forming extreme ultraviolet mask comprising magnetic material
TW202246880A (en) Reflective mask blank, reflective mask, method for manufacturing reflective mask, and method for manufacturing semiconductor device
CN110824853B (en) Mask and method of making and using the same
TW201915594A (en) Semiconductor wafer processing method, semiconductor wafer processing system and method for cleaning semiconductor wafer processing system
US20200183268A1 (en) Attachment feature removal from photomask in extreme ultraviolet lithography application
JP2022098729A (en) Reflection type mask blank, reflection type mask, method for manufacturing reflection type mask, and method for manufacturing semiconductor device
JP6303399B2 (en) EUV exposure equipment
KR102688865B1 (en) Substrate with film for reflective mask blank, reflective mask blank, and method for manufacturing reflective mask
JP2013046017A (en) Manufacturing method of semiconductor device
Hayashi et al. Mask readiness for EUVL pilot line

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130610

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5304097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees