JP2010044551A - Device and program for calculating water type power generation output - Google Patents

Device and program for calculating water type power generation output Download PDF

Info

Publication number
JP2010044551A
JP2010044551A JP2008207703A JP2008207703A JP2010044551A JP 2010044551 A JP2010044551 A JP 2010044551A JP 2008207703 A JP2008207703 A JP 2008207703A JP 2008207703 A JP2008207703 A JP 2008207703A JP 2010044551 A JP2010044551 A JP 2010044551A
Authority
JP
Japan
Prior art keywords
water
power generation
power
amount
power plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008207703A
Other languages
Japanese (ja)
Other versions
JP5191308B2 (en
Inventor
Shohei Izumiya
昌平 泉谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2008207703A priority Critical patent/JP5191308B2/en
Publication of JP2010044551A publication Critical patent/JP2010044551A/en
Application granted granted Critical
Publication of JP5191308B2 publication Critical patent/JP5191308B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily and properly calculate the power generation quantity of a water type power generation including an inflow type hydraulic power generation. <P>SOLUTION: The water type power generation output calculation device includes: a water type database 4 for storing a hydraulic flow system showing the flow of water flowing in each plant; a branch database 5 for storing water quantity flowing from the branch to the plant in association with the tidal state of the branch; and a power generation quantity task 71 for calculating the power generation quantity of each plant based on the hydraulic flow system stored in the hydraulic flow database 4 and the water quantity from the branch acquired from the branch database 5 based on the tidal state. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、流れ込み式水力発電を含む水系発電の発電量を算出する水系発電出力算出装置および水系発電出力算出プログラムに関する。   The present invention relates to a water power generation output calculation device and a water power generation output calculation program for calculating a power generation amount of water power generation including flow-in hydropower generation.

水系発電における停電計画を作成する場合や、電力系統運用を検討する場合などには、送電線の容量などを検討する上で、水系発電全体の発電量(発電出力)を算出する必要がある。つまり、各発電所における発電量を算出し、その算出結果に基づいて水系発電全体の発電量を算出する。このような算出において、流れ込み式水力発電を含む場合には、上流の発電所の使用水量、つまり出力が変動することで、下流の発電所の出力も変動するため、上流の発電所における使用水量、発電量によって全体の発電量が大きく左右される。また、下流の発電所では、支流からの水も流れ込む場合があり、そのような場合には、支流からの水量を考慮して発電量を算出する必要がある。   When preparing a power outage plan for water-based power generation or considering power system operation, it is necessary to calculate the power generation amount (power generation output) of the entire water-based power generation when considering the capacity of the transmission line. That is, the power generation amount at each power plant is calculated, and the power generation amount of the entire water-based power generation is calculated based on the calculation result. In such calculation, when flow-through hydropower generation is included, the amount of water used at the upstream power plant also varies as the amount of water used at the upstream power plant, that is, the output fluctuates. The overall power generation amount is greatly influenced by the power generation amount. Further, in the downstream power plant, water from a tributary may also flow. In such a case, it is necessary to calculate the amount of power generation in consideration of the amount of water from the tributary.

一方、多くの制約条件や複雑な諸条件の下においても、より柔軟に適切な発電運用計画を作成可能にする、という発電運用計画作成支援装置が知られている(例えば、特許文献1参照。)。この装置は、基準日量に基づいて、設定された運用計画作成条件下で運用データを求め、運用データが満足すべきものでない場合には、過去の実績データを検索し、抽出した実績データに基づいて運用データを計算する。さらに、運用データが満足すべきものでない場合には、表示装置に表示された発電放流量カーブおよびダム水位カーブの一方をドラッグアンドドロップにより修正し、他方のカーブを自動修正する。これにより、運用計画作成条件として与えきれない複雑な諸条件をも考慮した適切な発電運用計画を柔軟に作成できる、というものである。
特開2006−039838号公報
On the other hand, there is known a power generation operation plan creation support apparatus that makes it possible to create an appropriate power generation operation plan more flexibly even under many constraints and complicated conditions (see, for example, Patent Document 1). ). Based on the standard daily rate, this device obtains operational data under the established operational plan creation conditions. If the operational data is not satisfactory, the past data is retrieved and based on the extracted actual data. To calculate operational data. Further, when the operation data is not satisfactory, one of the power generation discharge flow curve and the dam water level curve displayed on the display device is corrected by drag and drop, and the other curve is automatically corrected. As a result, it is possible to flexibly create an appropriate power generation operation plan that takes into account complicated conditions that cannot be given as operation plan preparation conditions.
JP 2006-039838 A

ところで、上記のような発電量の算出は、従来人による手計算によって行っていた。このため、時間と労力を要するばかりでなく、適正な算出が行われないおそれがあった。特に、流れ込み式水力発電を含む場合には、上記のように算出が複雑で、しかも、支流からの水量をどのくらいに設定して発電量を算出するかは、算出する人によって異なり、適正な結果を得るには豊富な知識と経験が必要であった。つまり、算出する人の経験などによって算出結果にバラツキが生じ、適正な発電量を算出することができない場合があった。   By the way, the calculation of the power generation amount as described above has been performed manually by a conventional person. For this reason, not only time and labor are required, but there is a possibility that proper calculation is not performed. In particular, when flow-in hydropower generation is included, the calculation is complicated as described above, and the amount of water from the tributary is set to calculate the amount of power generation, which differs depending on the person who calculates it. A wealth of knowledge and experience was required to gain In other words, there are cases where the calculation results vary depending on the experience of the person who calculates, and the appropriate amount of power generation cannot be calculated.

また、上記特許文献1に記載された装置では、複雑な諸条件をも考慮した適切な発電運用計画を作成することが可能ではあるが、運用データが満足すべきか否かを判断しなければならず、また、装置の構成が複雑である。さらに、流れ込み式水力発電を含む場合に、支流からの水量をどのくらいにすべきかなどについて支援するものではなく、上記のような発電量を適正に算出することができない。   Moreover, in the apparatus described in the above-mentioned Patent Document 1, it is possible to create an appropriate power generation operation plan taking into account complicated conditions, but it is necessary to determine whether or not the operation data should be satisfied. In addition, the configuration of the apparatus is complicated. Furthermore, in the case of including inflow-type hydroelectric power generation, it does not support how much the amount of water from the tributary should be, and the above-mentioned power generation amount cannot be calculated appropriately.

そこでこの発明は、流れ込み式水力発電を含む水系発電の発電量を容易かつ適正に算出することを可能にする水系発電出力算出装置および水系発電出力算出プログラムを提供することを目的とする。   Therefore, an object of the present invention is to provide a water-system power generation output calculation device and a water-system power generation output calculation program that can easily and appropriately calculate the power generation amount of water-system power generation including flow-in hydropower generation.

上記目的を達成するために請求項1に記載の発明は、上流の発電所から下流の発電所に水が流れる水系発電における各発電所に流れ込む水の流れを示す水流系統を記憶する水流系統記憶手段と、支流から発電所に流れ込む水量を、該水量に関連する情報である関連情報と関連付けて記憶する支流量記憶手段と、前記水流系統記憶手段に記憶された水流系統と、関連情報に基づいて前記支流量記憶手段から取得した支流からの水量とに基づいて、各発電所の発電量を算出する発電量算出手段と、を備えることを特徴とする水系発電出力算出装置である。   In order to achieve the above object, the invention described in claim 1 is a water flow system memory for storing a water flow system indicating a flow of water flowing into each power plant in water power generation in which water flows from an upstream power plant to a downstream power plant. Means, a branch flow storage means for storing the amount of water flowing from the branch into the power plant in association with related information, which is information related to the amount of water, a water flow system stored in the water flow system storage means, and based on the related information And a power generation amount calculating means for calculating the power generation amount of each power plant based on the water amount from the tributary obtained from the branch flow rate storage means.

この発明によれば、水が発電所間をどのようにして流れるかを示す水流系統が水流系統記憶手段に記憶され、支流から発電所に流れ込む水量が、その関連情報と関連付けて支流量記憶手段に記憶される。そして、発電量算出手段によって、水流系統による発電所間の水の流れと、関連情報による支流からの水量とに基づいて各発電所における発電量が算出される。   According to this invention, the water flow system indicating how water flows between the power plants is stored in the water flow system storage means, and the amount of water flowing from the tributaries into the power plant is associated with the related information and the branch flow storage means. Is remembered. Then, the power generation amount calculation means calculates the power generation amount at each power plant based on the water flow between the power plants by the water flow system and the water amount from the tributary by the related information.

請求項2に記載の発明は、請求項1に記載の水系発電出力算出装置において、前記水流系統記憶手段には、水が上流の発電所から下流の発電所に流れるのに要する時間が発電所間時間として記憶され、前記発電量算出手段は、前記水流系統記憶手段に記憶された発電所間時間に基づいて、各発電所の発電量を時系列に算出する、ことを特徴とする。   According to a second aspect of the present invention, in the water-system power generation output calculation device according to the first aspect, the time required for the water to flow from the upstream power plant to the downstream power plant is stored in the water flow system storage means. The power generation amount calculation means is stored as an inter-hour time, and the power generation amount of each power plant is calculated in time series based on the inter-power plant time stored in the water flow system storage means.

この発明によれば、各発電所の発電量が時系列に、つまり、各発電所においていつ(何時に)どのくらいの発電量が出力されるかが、算出される。   According to the present invention, the power generation amount of each power plant is calculated in chronological order, that is, how much power generation amount is output (when) at each power plant.

請求項3に記載の発明は、請求項1または2に記載の水系発電出力算出装置において、前記支流量記憶手段は、前記関連情報として支流の干満状態を記憶し、前記発電量算出手段は、入力された関連情報に基づいて前記発電量を算出する、ことを特徴とする。   According to a third aspect of the present invention, in the water-system power generation output calculation device according to the first or second aspect, the branch flow rate storage unit stores a tidal state of a tributary as the related information, and the power generation amount calculation unit includes: The power generation amount is calculated based on the input related information.

この発明によれば、支流の干満状態を入力すると、この干満状態に合った支流からの水量が支流量記憶手段から取得され、その水量に基づいて各発電所の発電量が算出される。   According to this invention, when the tidal state of the tributary is input, the amount of water from the tributary that matches the tidal state is acquired from the tributary flow storage means, and the power generation amount of each power plant is calculated based on the amount of water.

請求項4に記載の発明は、請求項1から3に記載の水系発電出力算出装置において、前記発電所間の接続状態を示す電力系統を記憶する電力系統記憶手段と、前記発電量算出手段によって算出された各発電所の発電量と前記電力系統記憶手段に記憶された電力系統とに基づいて、発電所間の電力潮流を算出する潮流算出手段と、を備えることを特徴とする。   According to a fourth aspect of the present invention, in the water-based power generation output calculation device according to any one of the first to third aspects, the power system storage unit that stores a power system indicating a connection state between the power plants, and the power generation amount calculation unit And tidal current calculating means for calculating a power flow between the power plants based on the calculated power generation amount of each power plant and the power grid stored in the power grid storage means.

請求項5に記載の発明は、コンピュータを、上流の発電所から下流の発電所に水が流れる水系発電における各発電所に流れ込む水の流れを示す水流系統を記憶する水流系統記憶手段と、支流から発電所に流れ込む水量を、該水量に関連する情報である関連情報と関連付けて記憶する支流量記憶手段と、前記水流系統記憶手段に記憶された水流系統と、関連情報に基づいて前記支流量記憶手段から取得した支流からの水量とに基づいて、各発電所の発電量を算出する発電量算出手段、として機能させるための水系発電出力算出プログラムである。   According to a fifth aspect of the present invention, there is provided a water flow system storage means for storing a water flow system indicating a flow of water flowing into each power plant in water power generation in which water flows from an upstream power plant to a downstream power plant, and a tributary The flow rate storage means for storing the water amount flowing into the power plant in association with related information that is information related to the water amount, the water flow system stored in the water flow system storage means, and the branch flow rate based on the related information A water-based power generation output calculation program for functioning as power generation amount calculation means for calculating the power generation amount of each power plant based on the amount of water from a tributary acquired from storage means.

請求項1および5に記載の発明によれば、発電所間における水の流れと、発電所に流れ込む支流からの水量とに基づいて、各発電所における発電量が算出される。つまり、上流の発電所の使用水量が変動することによる下流の発電所の出力変動や、下流の発電所に支流から流れ込む水量を考慮して、発電量が算出されるため、各発電所における発電量、さらには水系発電全体の発電量を適正に算出することが可能となる。しかも、支流からの水量に関連する情報である関連情報を入力などするだけで、容易に算出することが可能となる。   According to the first and fifth aspects of the present invention, the power generation amount at each power plant is calculated based on the flow of water between the power plants and the amount of water from a tributary flowing into the power plant. In other words, the power generation amount is calculated considering the output fluctuation of the downstream power plant due to fluctuations in the amount of water used at the upstream power plant and the amount of water flowing from the tributaries to the downstream power plant. It is possible to appropriately calculate the amount, and further, the amount of power generation of the entire water-based power generation. Moreover, it is possible to easily calculate by simply inputting related information that is information related to the amount of water from the tributary.

請求項2に記載の発明によれば、各発電所の発電量が時系列に算出されるため、いつ、どの発電所で、どのくらいの発電が出力されるか、さらには、水系発電全体の発電量が、いつ、どのくらいになるのかが把握できる。この結果、停電計画や電力系統運用の検討などを容易かつ適正に行うことが可能となる。   According to the invention described in claim 2, since the power generation amount of each power plant is calculated in time series, when and how much power is output at which power plant, and further, the power generation of the entire water-based power generation You can see when and how much the amount will be. As a result, it is possible to easily and appropriately perform a power outage plan and examination of power system operation.

請求項3に記載の発明によれば、支流の干満状態を入力するだけで、干満状態に合った適正な発電量を容易に算出することが可能となる。   According to the third aspect of the present invention, it is possible to easily calculate an appropriate amount of power generation suitable for the tidal state simply by inputting the tidal state of the tributary.

請求項4に記載の発明によれば、算出された発電量と発電所間の電力系統とに基づいて、発電所間の電力潮流が算出されるため、上流の発電所の使用水量による出力変動や、支流から流れ込む水量を考慮した電力潮流を、適正かつ容易に把握することが可能となる。   According to the invention of claim 4, since the power flow between the power plants is calculated based on the calculated power generation amount and the power system between the power plants, the output fluctuation due to the amount of water used in the upstream power plant In addition, it is possible to appropriately and easily grasp the power flow considering the amount of water flowing from the tributary.

以下、この発明を図示の実施の形態に基づいて説明する。   The present invention will be described below based on the illustrated embodiments.

図1は、この発明の実施の形態に係る水系発電出力算出装置1を示す概略構成ブロック図である。この水系発電出力算出装置1は、流れ込み式水力発電を含む水系発電の発電量を算出する装置であり、主として、入力装置2と、表示装置3と、水系データベース(水流系統記憶手段)4と、支流データベース(支流量記憶手段)5と、電力データベース(電力系統記憶手段)6と、中央処理装置7とを備えている。   FIG. 1 is a schematic block diagram showing a water-system power generation output calculation device 1 according to an embodiment of the present invention. This water-system power generation output calculation device 1 is a device for calculating the power generation amount of water-system power generation including flow-in hydropower generation, and mainly includes an input device 2, a display device 3, a water system database (water flow system storage means) 4, A tributary database (branch flow storage means) 5, a power database (power system storage means) 6, and a central processing unit 7 are provided.

入力装置2は、後述する水系や使用水量などを入力する装置であり、キーボードやマウスなどで構成される。表示装置3は、後述する水流系統や電力系統、算出結果などを表示する装置であり、液晶ディスプレイなどで構成される。   The input device 2 is a device for inputting a water system, the amount of water used, and the like, which will be described later, and includes a keyboard, a mouse, and the like. The display device 3 is a device that displays a water flow system, a power system, a calculation result, and the like, which will be described later, and includes a liquid crystal display or the like.

水系データベース4は、主として、水流系統および発電所間時間を記憶する記憶装置である。ここで、水流系統とは、上流の発電所から下流の発電所に水が流れる水系発電における各発電所に流れ込む水の流れを示す系統であり、発電所間時間とは、水が上流の発電所から下流の発電所に流れるのに要する時間を示す。具体的には、ひとつの川の水系ごとに水流系統を記憶し、例えば、図2に示すような水流系統が記憶されている。   The water system database 4 is a storage device that mainly stores the water flow system and the time between power plants. Here, the water flow system is a system showing the flow of water flowing into each power plant in the water power generation in which water flows from the upstream power plant to the downstream power plant. It shows the time required to flow from the power station to the downstream power plant. Specifically, a water flow system is stored for each water system of one river, for example, a water flow system as shown in FIG. 2 is stored.

この水流系統では、AAダムからの水がAA1発電所に流れ、このAA1発電所から流出した(排出された)水がAA2発電所に流入する。このとき、支流であるAC川からの水もAA2発電所に流入する。ここで、支流とは、AAダム(源流)から下流の発電所に流れる流れ(本流)ではなく、別のルートから下流の発電所に流れる流れを意味する。続いて、AA2発電所から流出した水がAB調整池に流入し、支流であるAD川およびAE川からの水もAB調整池に流入する。さらに、AA3発電所から流出した水が支流としてAB調整池に流入する。次に、AB調整池からの水がAA4発電所に流れ、AA4発電所から流出した水がAA5発電所に流入する。このとき、支流であるAF川およびAG川からの水もAA5発電所に流入し、AA5発電所側に流れる水の一部がAH川に放流される。一方、BBダムからの水がBB1発電所に流れ、BB1発電所から流出した水がBB2発電所に流入するものである。   In this water flow system, water from the AA dam flows to the AA1 power plant, and water that flows out (discharged) from the AA1 power plant flows into the AA2 power plant. At this time, water from the AC river as a tributary also flows into the AA2 power plant. Here, the tributary means not a flow (main stream) flowing from the AA dam (source stream) to the downstream power plant, but a flow flowing from another route to the downstream power plant. Subsequently, water flowing out from the AA2 power plant flows into the AB regulating pond, and water from the AD river and AE river, which are tributaries, also flows into the AB regulating pond. Furthermore, water flowing out from the AA3 power plant flows into the AB regulating pond as a tributary. Next, water from the AB regulating pond flows to the AA4 power plant, and water that flows out from the AA4 power plant flows into the AA5 power plant. At this time, water from the AF and AG rivers, which are tributaries, also flows into the AA5 power plant, and part of the water flowing to the AA5 power plant is discharged into the AH river. On the other hand, water from the BB dam flows to the BB1 power plant, and water that flows out from the BB1 power plant flows into the BB2 power plant.

また、発電所間時間として、水が各発電所間を流れるのに要する時間が記憶されている。例えば、AA1発電所からAA2発電所に至る時間が30分、AA4発電所からAA5発電所に至る時間が1時間30分、などと記憶されている。さらに、ダムからの水が直下流の発電所に流れるのに要する時間が記憶されている。例えば、AAダムからAA1発電所に至る時間が30分、などと記憶されている。   Moreover, the time required for water to flow between each power plant is stored as the time between power plants. For example, the time from the AA1 power plant to the AA2 power plant is 30 minutes, the time from the AA4 power plant to the AA5 power plant is 1 hour 30 minutes, and the like. Furthermore, the time required for the water from the dam to flow to the power plant immediately downstream is stored. For example, the time from the AA dam to the AA1 power plant is stored as 30 minutes.

支流データベース5は、支流から発電所に流れ込む水量を、この水量に関連する情報である関連情報と関連付けて記憶する記憶装置である。ここで、関連情報とは、支流からの水量が変化するパラメータを意味し、この実施の形態では、支流の干満状態となっている。具体的には、図3に示すように、支流を識別する支流コードごとに、干満状態が渇水時における水量(図では「1トン」)、干満状態が平水時における水量(図では「1.6トン」)、干満状態が豊水時における水量(図では「2.3トン」)、干満状態が断水時における水量(図では「0トン」)が記憶されている。ここで、このような干満状態と水量のデータは、入力装置2から支流データベース5に入力、記憶してもよいし、各支流の流量、水位などを計測、監視するシステムと本装置1とを接続し、このシステムからのデータ受信によって入力、記憶してもよい。   The tributary database 5 is a storage device that stores the amount of water flowing from the tributary into the power plant in association with related information that is information related to the amount of water. Here, the related information means a parameter in which the amount of water from the tributary changes. In this embodiment, the tributary state of the tributary is obtained. Specifically, as shown in FIG. 3, for each tributary code identifying a tributary, the amount of water when the tidal state is drought (“1 ton” in the figure), and the amount of water when the tidal state is normal (“1. 6 tons "), the amount of water when the tidal state is high (" 2.3 tons "in the figure), and the amount of water when the tidal state is out of water (" 0 ton "in the figure) are stored. Here, the data of the tidal state and the amount of water may be input and stored in the tributary database 5 from the input device 2, or the system 1 for measuring and monitoring the flow rate, water level, etc. of each tributary and the present apparatus 1 It may be connected and input and stored by receiving data from this system.

電力データベース6は、発電所間の接続状態を示す電力系統を記憶する記憶装置である。具体的には、図4に示すように、発電所間を接続する送電線の配設状態や遮断器の配置位置などが、電力系統として記憶されている。   The power database 6 is a storage device that stores a power system indicating a connection state between power plants. Specifically, as shown in FIG. 4, the arrangement state of the power transmission lines connecting the power plants, the arrangement position of the circuit breaker, and the like are stored as a power system.

中央処理装置7は、入力装置2、表示装置3および各データベース4〜6を管理、制御するとともに、発電量タスク(発電量算出手段)71と潮流タスク(潮流算出手段)72を備えている。発電量タスク71は、水系データベース4に記憶された水流系統と、関連情報に基づいて支流データベース5から取得した支流からの水量とに基づいて、各発電所の発電量を算出するプログラムであり、図5に示すフローチャートに基づいている。   The central processing unit 7 manages and controls the input device 2, the display device 3, and the databases 4 to 6, and includes a power generation amount task (power generation amount calculation means) 71 and a tidal current task (tidal current calculation means) 72. The power generation amount task 71 is a program for calculating the power generation amount of each power plant based on the water flow system stored in the water system database 4 and the water amount from the tributary obtained from the tributary database 5 based on the related information. This is based on the flowchart shown in FIG.

まず、発電量タスク71が起動されると、算出対象の水系を選択する初期画面を表示装置3に表示し(ステップS1)、水系が選択、入力されると(ステップS2)、該当する水系の水流系統を水系データベース4から取得し、その水流系統と入力エリアを表示装置3に表示する(ステップS3)。具体的には、図6に示すように、上記の水流系統に、入力すべき位置に使用水量入力ポイントP1、P2および、選択すべき位置に取水量選択ポイントP3〜P11を付加した画面を表示装置3に表示する。   First, when the power generation amount task 71 is activated, an initial screen for selecting a calculation target water system is displayed on the display device 3 (step S1). When a water system is selected and inputted (step S2), the corresponding water system is selected. A water flow system is acquired from the water system database 4, and the water flow system and an input area are displayed on the display device 3 (step S3). Specifically, as shown in FIG. 6, a screen in which the water flow input points P1 and P2 are added to the positions to be input and the water intake selection points P3 to P11 are added to the positions to be selected is displayed on the water flow system. Display on the device 3.

ここで、使用水量入力ポイントP1、P2には、該当する発電所で使用する水量を任意に入力できるようになっている。また、取水量選択ポイントP3〜P11を選択(クリック)すると、図7に示すように、支流データベース5に記憶された当該支流の干満状態ごとの水量が表示され、干満状態または水量を選択することで、取水量を入力できるようになっている。また、入力エリアとして、バルブ開時刻を入力するエリアが表示され、このエリアにダムのバルブを開ける時刻を任意に入力できるようになっている。ここで、バルブ開時刻の入力は、後述するステップS8の前までに行えばよく、ステップS1の直後に行ってもよい。   Here, the amount of water used at the corresponding power plant can be arbitrarily input to the used water amount input points P1 and P2. Moreover, when the water intake selection points P3 to P11 are selected (clicked), as shown in FIG. 7, the water amount for each tidal state of the tributary stored in the tributary database 5 is displayed, and the tidal state or the water amount is selected. And you can enter the water intake. In addition, an area for inputting the valve opening time is displayed as an input area, and the time for opening the valve of the dam can be arbitrarily input in this area. Here, the input of the valve opening time may be performed before step S8 described later, or may be performed immediately after step S1.

次に、使用水量、取水量およびバルブ開時刻が入力されると(ステップS4)、所定の発電所における使用水量および調整池における流入水量を算出し、表示装置3に表示する(ステップS5)。すなわち、上記の入力に基づいて算出されるべき発電所および調整池における使用水量、流入水量を算出して、その結果を表示する。具体的には、上記の水系の場合、AA2発電所の使用水量P21、AB調整池への流入水量P22を次のようにして算出する。ここで、使用水量および取水量として、ステップS4でP1=1.0、P3=0.7、P4=0.27、P5=0.2、P6=0.8が入力されたとする。
P21=P1+P3=1.7
P22=P21+P4+P5+P6=2.97
そして、この算出結果をAA2発電所およびAB調整池の近傍に、それぞれ表示する(図6参照)。
Next, when the amount of water used, the amount of water intake, and the valve opening time are input (step S4), the amount of water used in a predetermined power plant and the amount of inflow water in the regulating pond are calculated and displayed on the display device 3 (step S5). That is, the amount of water used and the amount of inflow water in the power plant and regulating pond to be calculated based on the above input are calculated, and the results are displayed. Specifically, in the case of the above water system, the amount of water used P21 of the AA2 power plant and the amount of water P22 flowing into the AB adjustment pond are calculated as follows. Here, it is assumed that P1 = 1.0, P3 = 0.7, P4 = 0.27, P5 = 0.2, and P6 = 0.8 are input as the used water amount and the intake water amount in step S4.
P21 = P1 + P3 = 1.7
P22 = P21 + P4 + P5 + P6 = 2.97
Then, the calculation results are displayed in the vicinity of the AA2 power plant and the AB adjustment pond, respectively (see FIG. 6).

続いて、さらに入力すべき使用水量、取水量があるか否かを判断する(ステップS6)。すなわち、ステップS5で算出した使用水量および流入水量に基づいて入力すべき発電所の使用水量などが存在するか否かを判断する。そして、入力すべき使用水量があると判断すると、ステップS4に戻り、その入力を待つ。例えば、上記の水系では、AA4発電所以降の使用水量などを入力すべきと判断し、使用水量などが入力されると(ステップS4)、上記と同様にして所定の発電所における使用水量および調整池における流入水量を算出し、表示装置3に表示する(ステップS5)。   Subsequently, it is determined whether or not there is an amount of water to be used and an amount of water to be input (step S6). That is, it is determined whether or not there is a used water amount of the power plant to be input based on the used water amount and the inflow water amount calculated in step S5. If it is determined that there is an amount of water to be input, the process returns to step S4 and waits for the input. For example, in the above water system, it is determined that the amount of water used after the AA4 power plant should be input, and when the amount of water used is input (step S4), the amount of water used and adjustment at a predetermined power plant are performed in the same manner as described above. The amount of inflow water in the pond is calculated and displayed on the display device 3 (step S5).

上記の水系の場合、AA5発電所の使用水量P23を次のようにして算出する。ここで、使用水量および取水量として、ステップS4でP2=2.5、P7=0.5、P8=0.3、P9=0.7が入力されたとする。また、P9は、AA5発電所側に流れる水の一部がAH川に放流される水量を示し、P23に対してマイナス量となる。
P23=P2+P7+P8−P9=2.6
そして、この算出結果をAA5発電所の近傍に表示する(図6参照)。
In the case of the above water system, the amount of water used P23 of the AA5 power plant is calculated as follows. Here, it is assumed that P2 = 2.5, P7 = 0.5, P8 = 0.3, and P9 = 0.7 are input as the used water amount and the intake water amount in step S4. Moreover, P9 shows the amount of water that a part of the water flowing to the AA5 power plant side is discharged into the AH river, and is a negative amount with respect to P23.
P23 = P2 + P7 + P8-P9 = 2.6
Then, the calculation result is displayed in the vicinity of the AA5 power plant (see FIG. 6).

一方、すべての入力が完了した場合(ステップS6で「N」の場合)には、各発電所における発電量などを算出する(ステップS7)。すなわち、上記のようにして入力、算出された使用水量、取水量(水量)と、各発電所における単位水量あたりの発電量とに基づいて、各発電所の発電量を算出する。さらに、各発電所における発電量の合計値を算出する。上記の水系では、AA5発電所を含まない全発電所の合計を「小計」とし、AA5発電所を含む全発電所の合計を「総計」として算出する。なお、単位水量あたりの発電量に基づいて発電量を算出しているが、水量に基づくその他の算出方法で発電量を算出してもよいことは勿論である。   On the other hand, when all the inputs are completed (in the case of “N” in step S6), the power generation amount at each power plant is calculated (step S7). That is, the power generation amount of each power plant is calculated based on the amount of water used, the amount of water intake (water amount) input and calculated as described above, and the power generation amount per unit water amount in each power plant. Furthermore, the total value of the power generation amount at each power plant is calculated. In the above water system, the total of all power plants not including AA5 power plant is calculated as “subtotal”, and the total of all power plants including AA5 power plant is calculated as “total”. Although the power generation amount is calculated based on the power generation amount per unit water amount, it is needless to say that the power generation amount may be calculated by other calculation methods based on the water amount.

続いて、以上のようにして算出した各発電所における発電量などを、時系列に表示装置3に表示する(ステップS8)。すなわち、図8に示すように、入力されたバルブ開時刻を基準として、水系データベース4に記憶された発電所間時間に基づいて、各発電所で発電が開始される時刻(発電開始時刻)を算出し、各発電所と対応付けて表示する。また、ステップS4で入力した使用水量およびステップS5で算出した使用水量を各発電所と対応付けて表示し、さらに、ステップS7で算出した発電量を各発電所と対応付けて表示する。同時に、上記の「小計」および「総計」を表示する。このようにして、各発電所における発電量を時系列に算出、表示するものである。ここで、図8の例では、BB1発電所の発電量P10として「1.0」、BB2発電所の発電量P11として「0.4」が入力さ、また、バルブ開時刻として「6時」が入力された場合を示している。   Subsequently, the power generation amount at each power plant calculated as described above is displayed on the display device 3 in time series (step S8). That is, as shown in FIG. 8, the time (power generation start time) at which power generation is started at each power plant based on the inter-power plant time stored in the water system database 4 with the input valve opening time as a reference. Calculate and display in association with each power plant. Further, the amount of water used input in step S4 and the amount of water used calculated in step S5 are displayed in association with each power plant, and the power generation amount calculated in step S7 is displayed in correspondence with each power plant. At the same time, the above-mentioned “subtotal” and “total” are displayed. In this way, the power generation amount at each power plant is calculated and displayed in time series. Here, in the example of FIG. 8, “1.0” is input as the power generation amount P10 of the BB1 power plant, “0.4” is input as the power generation amount P11 of the BB2 power plant, and “6 o'clock” is the valve opening time. It shows the case where is input.

潮流タスク72は、発電量タスク71によって算出された各発電所の発電量と電力データベース6に記憶された電力系統とに基づいて、発電所間の電力潮流を算出するプログラムである。具体的には、発電量タスク71で算出された各発電所の発電量がパラメータとされ、各発電量と電力系統とに基づいて、直流法またはニュートンラフソン法によって各発電所への送電量を算出する。そして、図9に示すように、算出した送電量を該当する送電線の近傍に表示した電力系統図を、表示装置3に表示するものである。   The tidal current task 72 is a program that calculates the power flow between the power plants based on the power generation amount of each power plant calculated by the power generation amount task 71 and the power system stored in the power database 6. Specifically, the power generation amount of each power plant calculated in the power generation amount task 71 is used as a parameter, and the power transmission amount to each power plant is determined by the DC method or Newton Raphson method based on each power generation amount and the power system. calculate. Then, as shown in FIG. 9, a power system diagram in which the calculated power transmission amount is displayed in the vicinity of the corresponding power transmission line is displayed on the display device 3.

次に、このような構成の水系発電出力算出装置1の作用などについて説明する。まず、ある水系の各発電所の発電量やその合計を知りたい場合には、入力装置2で発電量タスク71を起動し、上記のようにして対象の水系や使用水量、取水量などを入力装置2から入力する。これにより、上記のようにして、各発電所における発電量が時系列に算出されるとともに、この水系における合計の発電量が算出され、その結果が表示装置3に表示される。続いて、このような発電量が各発電所で出力された場合の電力潮流を知りたい場合には、入力装置2で潮流タスク72を起動する。これにより、発電量タスク71で算出された各発電所の発電量がパラメータ渡しされ、上記のようにして各発電所への送電量が算出され、その算出結果が表示装置3に表示されるものである。   Next, the operation of the water-system power generation output calculation device 1 having such a configuration will be described. First, if you want to know the power generation amount of each power plant in the water system and the total, start the power generation task 71 with the input device 2 and enter the target water system, the amount of water used, the amount of water intake, etc. as described above. Input from the device 2. Thereby, as described above, the power generation amount at each power plant is calculated in time series, and the total power generation amount in this water system is calculated, and the result is displayed on the display device 3. Subsequently, when it is desired to know the power flow when such a power generation amount is output at each power plant, the power flow task 72 is activated by the input device 2. Thereby, the power generation amount of each power plant calculated in the power generation amount task 71 is passed as a parameter, the power transmission amount to each power plant is calculated as described above, and the calculation result is displayed on the display device 3. It is.

以上のように、この水系発電出力算出装置1によれば、発電所間における水の流れと、発電所に流れ込む支流からの水量とに基づいて、各発電所における発電量が算出される。つまり、上流の発電所の使用水量が変動することによる下流の発電所の出力変動や、下流の発電所に支流から流れ込む水量を考慮して、発電量が算出されるため、各発電所における発電量、さらには水系全体の発電量を適正に算出することが可能となる。しかも、支流の干満状態を選択するだけで、干満状態に合った適正な発電量を容易に算出することが可能となる。つまり、専門的、あるいは高度な知識や経験などを要しなくても、季節や天候などに応じた支流の干満状態を入力するだけで、適正な発電量を容易に算出することが可能となる。   As described above, according to this water-system power generation output calculation device 1, the power generation amount at each power plant is calculated based on the flow of water between the power plants and the amount of water from a tributary flowing into the power plant. In other words, the power generation amount is calculated considering the output fluctuation of the downstream power plant due to fluctuations in the amount of water used at the upstream power plant and the amount of water flowing from the tributaries to the downstream power plant. It is possible to appropriately calculate the amount, and further, the power generation amount of the entire water system. In addition, it is possible to easily calculate an appropriate amount of power generation that matches the tidal state simply by selecting the tidal state of the tributary. In other words, even if you do not need specialized or advanced knowledge and experience, you can easily calculate the appropriate amount of power generation by simply entering the tributary status according to the season and weather. .

また、各発電所の発電量が時系列に算出されるため、いつ、どの発電所で、どのくらいの発電が出力されるか、さらには、水系全体の発電量が、いつ、どのくらいになるのかを容易に把握できる。例えば上記の水系(図8参照)では、6時にダムのバルブを開けると、9時30分に水系全体の発電量(総計)が8.3MWに達することがわかる。この結果、電力系統運用の検討などを容易かつ適正に行うことが可能となる。さらに、算出された発電量に基づいて各発電所間の電力潮流が算出されるため、電力潮流を適正かつ容易に把握することが可能となる。   In addition, since the power generation amount of each power plant is calculated in time series, how much power is output at which power plant, and when and how much power generation of the entire water system becomes. Easy to grasp. For example, in the above water system (see FIG. 8), when the valve of the dam is opened at 6 o'clock, the power generation amount (total) of the entire water system reaches 8.3 MW at 9:30. As a result, it is possible to easily and appropriately perform examination of power system operation. Furthermore, since the power flow between the power plants is calculated based on the calculated power generation amount, it is possible to appropriately and easily grasp the power flow.

以上、この発明の実施の形態について説明したが、具体的な構成は、上記の実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があっても、この発明に含まれる。例えば、上記の実施の形態では、関連情報を支流の干満状態としているが、季節や月、天候などを関連情報としてもよい。例えば、各月の平均の支流水量を月ごとに支流データベース5に記憶し、月を入力することで支流水量を取得したり、あるいはタスク起動時の月の支流水量を自動取得して、発電量を算出するようにしてもよい。また、干満状態を入力装置2から選択するのではなく、支流の干満状態を計測、監視する装置から計測データを取得して、支流からの水量を割り出す(算出する)ようにしてもよい。さらに、手動で発電量タスク71と潮流タスク72を起動しているが、発電量タスク71の後に自動的に潮流タスク72を起動するようにしてもよい。また、最下流の発電所(AA5発電所)で発電が開始されるべき時刻を入力することで、上流の発電所での発電開始時刻やバルブ開時刻を割り出す(逆算する)ようにしてもよい。   Although the embodiment of the present invention has been described above, the specific configuration is not limited to the above embodiment, and even if there is a design change or the like without departing from the gist of the present invention, Included in the invention. For example, in the above embodiment, the related information is a tributary state of the tributary, but the season, month, weather, and the like may be used as the related information. For example, the average amount of tributary water for each month is stored in the tributary database 5 for each month, and the tributary water amount is acquired by inputting the month, or the monthly tributary water amount at the time of starting the task is automatically acquired, and the power generation amount May be calculated. Further, instead of selecting the tidal state from the input device 2, measurement data may be acquired from a device that measures and monitors the tidal state of the tributary to determine (calculate) the amount of water from the tributary. Furthermore, although the power generation amount task 71 and the power flow task 72 are activated manually, the power flow task 72 may be automatically started after the power generation amount task 71. Further, by inputting the time at which power generation should be started at the most downstream power plant (AA5 power plant), the power generation start time and valve opening time at the upstream power plant may be calculated (reverse calculation). .

ところで、汎用のコンピュータに次のような水系発電出力算出プログラムをインストールすることで、汎用のコンピュータで各発電所における発電量を容易かつ適正に算出することが可能となる。すなわち、コンピュータを、上記のような水系データベース4と支流データベース5と発電量タスク71として機能させるための水系発電出力算出プログラムとする。さらに、この水系発電出力算出プログラムを、コンピュータを上記のような電力データベース6と潮流タスク72として機能させるプログラムにすることで、各発電所間の電力潮流を適正かつ容易に把握することが可能となる。   By installing the following water-based power generation output calculation program on a general-purpose computer, the power generation amount at each power plant can be calculated easily and appropriately with the general-purpose computer. That is, the computer is a water-system power generation output calculation program for causing the water-system database 4, the tributary database 5, and the power generation amount task 71 to function as described above. Furthermore, by making this water system power generation output calculation program a program that causes the computer to function as the power database 6 and the power flow task 72 as described above, it is possible to appropriately and easily grasp the power flow between the power plants. Become.

この発明の実施の形態に係る水系発電出力算出装置を示す概略構成ブロック図である。1 is a schematic block diagram showing a water power generation output calculation device according to an embodiment of the present invention. 図1の装置の水系データベースに記憶された水流系統の一例を示す図である。It is a figure which shows an example of the water flow system memorize | stored in the water system database of the apparatus of FIG. 図1の装置の支流データベースに記憶されたデータの一例を示す図である。It is a figure which shows an example of the data memorize | stored in the tributary database of the apparatus of FIG. 図1の装置の電力データベースに記憶された電力系統の一例を示す図である。It is a figure which shows an example of the electric power grid | system memorize | stored in the electric power database of the apparatus of FIG. 図1の装置の発電量タスクのフローチャートである。It is a flowchart of the electric power generation amount task of the apparatus of FIG. 図5の発電量タスクでの表示画面の一例を示す図である。It is a figure which shows an example of the display screen in the electric power generation amount task of FIG. 図5の発電量タスクにおける支流からの取水量の入力方法を示す図である。It is a figure which shows the input method of the water intake from the tributary in the electric power generation amount task of FIG. 図5の発電量タスクにおいて発電量の算出結果などを示す画面の一例を示す図である。It is a figure which shows an example of the screen which shows the calculation result etc. of the electric power generation amount in the electric power generation amount task of FIG. 図1の装置の潮流タスクによる算出結果を示す画面の一例を示す図である。It is a figure which shows an example of the screen which shows the calculation result by the tidal current task of the apparatus of FIG.

符号の説明Explanation of symbols

1 水系発電出力算出装置
2 入力装置
3 表示装置
4 水系データベース(水流系統記憶手段)
5 支流データベース(支流量記憶手段)
6 電力データベース(電力系統記憶手段)
7 中央処理装置
71 発電量タスク(発電量算出手段)
72 潮流タスク(潮流算出手段)
1 Water Power Generation Output Calculation Device 2 Input Device 3 Display Device 4 Water System Database (Water Flow System Storage Means)
5 Tributary database (branch flow storage means)
6 Electric power database (electric power system storage means)
7 Central processing unit 71 Power generation amount task (power generation amount calculation means)
72 Tidal current task (Tidal current calculation means)

Claims (5)

上流の発電所から下流の発電所に水が流れる水系発電における各発電所に流れ込む水の流れを示す水流系統を記憶する水流系統記憶手段と、
支流から発電所に流れ込む水量を、該水量に関連する情報である関連情報と関連付けて記憶する支流量記憶手段と、
前記水流系統記憶手段に記憶された水流系統と、関連情報に基づいて前記支流量記憶手段から取得した支流からの水量とに基づいて、各発電所の発電量を算出する発電量算出手段と、
を備えることを特徴とする水系発電出力算出装置。
A water flow system storage means for storing a water flow system indicating a flow of water flowing into each power plant in water power generation in which water flows from an upstream power plant to a downstream power plant;
A branch flow storage means for storing the amount of water flowing from the branch into the power plant in association with related information, which is information related to the amount of water;
A power generation amount calculating means for calculating a power generation amount of each power plant based on the water flow system stored in the water flow system storage means and the water amount from the tributary obtained from the branch flow storage means based on the related information;
A water-based power generation output calculation device comprising:
前記水流系統記憶手段には、水が上流の発電所から下流の発電所に流れるのに要する時間が発電所間時間として記憶され、
前記発電量算出手段は、前記水流系統記憶手段に記憶された発電所間時間に基づいて、各発電所の発電量を時系列に算出する、ことを特徴とする請求項1に記載の水系発電出力算出装置。
In the water flow system storage means, the time required for water to flow from the upstream power plant to the downstream power plant is stored as the time between power plants,
The water power generation according to claim 1, wherein the power generation amount calculation means calculates the power generation amount of each power station in time series based on the time between power stations stored in the water flow system storage means. Output calculation device.
前記支流量記憶手段は、前記関連情報として支流の干満状態を記憶し、
前記発電量算出手段は、入力された関連情報に基づいて前記発電量を算出する、ことを特徴とする請求項1または2のいずれか1項に記載の水系発電出力算出装置。
The tributary flow storage means stores the tidal state of the tributary as the related information,
The water-based power generation output calculation apparatus according to claim 1, wherein the power generation amount calculation unit calculates the power generation amount based on the input related information.
前記発電所間の接続状態を示す電力系統を記憶する電力系統記憶手段と、
前記発電量算出手段によって算出された各発電所の発電量と前記電力系統記憶手段に記憶された電力系統とに基づいて、発電所間の電力潮流を算出する潮流算出手段と、を備えることを特徴とする請求項1から3のいずれか1項に記載の水系発電出力算出装置。
A power system storage means for storing a power system indicating a connection state between the power plants;
A tidal current calculating means for calculating a power flow between the power plants based on the power generation amount of each power plant calculated by the power generation amount calculating means and the power system stored in the power system storage means. The water-system power generation output calculation device according to any one of claims 1 to 3, wherein
コンピュータを、
上流の発電所から下流の発電所に水が流れる水系発電における各発電所に流れ込む水の流れを示す水流系統を記憶する水流系統記憶手段と、
支流から発電所に流れ込む水量を、該水量に関連する情報である関連情報と関連付けて記憶する支流量記憶手段と、
前記水流系統記憶手段に記憶された水流系統と、関連情報に基づいて前記支流量記憶手段から取得した支流からの水量とに基づいて、各発電所の発電量を算出する発電量算出手段、
として機能させるための水系発電出力算出プログラム。
Computer
A water flow system storage means for storing a water flow system indicating a flow of water flowing into each power plant in water power generation in which water flows from an upstream power plant to a downstream power plant;
A branch flow storage means for storing the amount of water flowing from the branch into the power plant in association with related information, which is information related to the amount of water;
A power generation amount calculating means for calculating a power generation amount of each power plant based on the water flow system stored in the water flow system storage means and the water amount from the tributary obtained from the branch flow storage means based on the related information,
Water-based power generation output calculation program to function as
JP2008207703A 2008-08-12 2008-08-12 Water-based power generation output calculation device and water-based power generation output calculation program Active JP5191308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008207703A JP5191308B2 (en) 2008-08-12 2008-08-12 Water-based power generation output calculation device and water-based power generation output calculation program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008207703A JP5191308B2 (en) 2008-08-12 2008-08-12 Water-based power generation output calculation device and water-based power generation output calculation program

Publications (2)

Publication Number Publication Date
JP2010044551A true JP2010044551A (en) 2010-02-25
JP5191308B2 JP5191308B2 (en) 2013-05-08

Family

ID=42015895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008207703A Active JP5191308B2 (en) 2008-08-12 2008-08-12 Water-based power generation output calculation device and water-based power generation output calculation program

Country Status (1)

Country Link
JP (1) JP5191308B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140035112A (en) * 2012-09-13 2014-03-21 한국전력공사 Apparatus for calculating power generating available time and method for operating thereof
CN104156882A (en) * 2014-07-10 2014-11-19 华南理工大学 Method for calculating variable working condition of thermal power plant based on equivalent enthalpy drop and Friuli Greig formula
JP2017186951A (en) * 2016-04-05 2017-10-12 東洋技研工業株式会社 Turbine blade angle adjustment mechanism for tubular water turbine and adjustment method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08140262A (en) * 1994-11-11 1996-05-31 Hitachi Ltd Tide computer
JP2005031821A (en) * 2003-07-09 2005-02-03 Hitachi Ltd Hydroelectric power station operation plan preparing device, method, and program
JP2005285032A (en) * 2004-03-31 2005-10-13 Ffc Ltd Daily power generation planning system for hydroelectric power station group
JP2007138549A (en) * 2005-11-18 2007-06-07 Chugoku Electric Power Co Inc:The Management method and management system for the whole river
JP2008118810A (en) * 2006-11-07 2008-05-22 Hitachi Ltd Operation plan creation support system of connection water system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08140262A (en) * 1994-11-11 1996-05-31 Hitachi Ltd Tide computer
JP2005031821A (en) * 2003-07-09 2005-02-03 Hitachi Ltd Hydroelectric power station operation plan preparing device, method, and program
JP2005285032A (en) * 2004-03-31 2005-10-13 Ffc Ltd Daily power generation planning system for hydroelectric power station group
JP2007138549A (en) * 2005-11-18 2007-06-07 Chugoku Electric Power Co Inc:The Management method and management system for the whole river
JP2008118810A (en) * 2006-11-07 2008-05-22 Hitachi Ltd Operation plan creation support system of connection water system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140035112A (en) * 2012-09-13 2014-03-21 한국전력공사 Apparatus for calculating power generating available time and method for operating thereof
KR102042786B1 (en) 2012-09-13 2019-11-08 한국전력공사 Apparatus for calculating power generating available time and method for operating thereof
CN104156882A (en) * 2014-07-10 2014-11-19 华南理工大学 Method for calculating variable working condition of thermal power plant based on equivalent enthalpy drop and Friuli Greig formula
JP2017186951A (en) * 2016-04-05 2017-10-12 東洋技研工業株式会社 Turbine blade angle adjustment mechanism for tubular water turbine and adjustment method

Also Published As

Publication number Publication date
JP5191308B2 (en) 2013-05-08

Similar Documents

Publication Publication Date Title
US7684901B2 (en) Automatic utility usage rate analysis methodology
CN104392274B (en) The short-term electro-load forecast method in city based on power load and temperature trend
Rebello et al. Ancillary services from wind turbines: automatic generation control (AGC) from a single Type 4 turbine
Koltsaklis et al. Energy transition in the South East Europe: The case of the Romanian power system
JP5191308B2 (en) Water-based power generation output calculation device and water-based power generation output calculation program
Chowdhury et al. Expected benefits of Laos’ hydropower development curbed by hydroclimatic variability and limited transmission capacity: Opportunities to reform
JP5357287B2 (en) Fuel cell power generator
Bakirtzis et al. Comparison of advanced power system operations models for large-scale renewable integration
JP5208983B2 (en) Reservoir operation plan creation method and apparatus
Sitzenfrei et al. Design and optimization of small hydropower systems in water distribution networks under consideration of rehabilitation measures
JP2005285032A (en) Daily power generation planning system for hydroelectric power station group
Welsch et al. Long-term energy systems planning: accounting for short-term variability and flexibility
CN113722557B (en) Method and device for determining fuel gas supply and distribution difference
JP2009192328A (en) Water distribution information analyzer and analysis method
CN102567340B (en) A kind of method and device filtering micro-blog information
JP2011065354A (en) Water-level management system of hydraulic power plant, and method therefor
JP5412332B2 (en) Generator operation plan determination device, generator operation plan determination method, and generator operation plan determination program
Wu et al. Power plant model verification at ISO New England
Higgins et al. The significance of interconnector counter-trading in a security constrained electricity market
JP5476275B2 (en) Water distribution plan prediction system, prediction method thereof, and program thereof
Narimani et al. Energy and ancillary services value of CSP with thermal energy storage in the Australian national electricity market
EP4330196A1 (en) Energy services through integrated flexible operation of wastewater systems
JP2005031821A (en) Hydroelectric power station operation plan preparing device, method, and program
JP2007221975A (en) Device and method for evaluating power distribution system
JP2017201443A (en) Operation plan creating device, program and operation plan creating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130129

R150 Certificate of patent or registration of utility model

Ref document number: 5191308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250