JP2005285032A - Daily power generation planning system for hydroelectric power station group - Google Patents

Daily power generation planning system for hydroelectric power station group Download PDF

Info

Publication number
JP2005285032A
JP2005285032A JP2004101724A JP2004101724A JP2005285032A JP 2005285032 A JP2005285032 A JP 2005285032A JP 2004101724 A JP2004101724 A JP 2004101724A JP 2004101724 A JP2004101724 A JP 2004101724A JP 2005285032 A JP2005285032 A JP 2005285032A
Authority
JP
Japan
Prior art keywords
power generation
water
amount
constraint condition
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004101724A
Other languages
Japanese (ja)
Inventor
Tomio Terasaki
富雄 寺崎
Sho Takahashi
省 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
FFC Ltd
Original Assignee
Fuji Electric Systems Co Ltd
FFC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd, FFC Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2004101724A priority Critical patent/JP2005285032A/en
Publication of JP2005285032A publication Critical patent/JP2005285032A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To shorten a processing time by reducing a burden for making routine a linear planning problem and decreasing restriction conditional expressions. <P>SOLUTION: With regard to a planning system for determining from linear planning the quantity of water to be used for power generation with which static restriction conditions such as upper and lower limit values of storage of water in a dam are satisfied and a predetermined target function is maximized using power generator outputs of time zones as state parameters, the planning system comprises: a storage means 10 storing communicated water system model data; an operating data setting means 20 for setting the target function and the restriction conditions; a temporary power generation plan creation means 31 for creating a temporary power generation plan by executing linear planning; a restriction condition generation means 40 for generating operational restriction conditions relating to the quantity of water to be used for power generation while taking into account start/stop conditions of power generators or the like for power generation distribution based on the temporary power generation plan; a restriction condition addition means 32 for adding operational restriction conditions to the static restriction conditions; a final power generation plan creation means 33 for creating a final plan from linear planning using the new restriction conditions and the target function; a man-machine interface 50; and an input/output means 60. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、複数の水力発電所が同一の河川水系を介して接続された水系(以下では、連接水系という)における各発電所の日間発電計画を、計算機により線形計画法を用いて立案する立案システムに関する。   In the present invention, a daily power generation plan of each power plant in a water system in which a plurality of hydro power plants are connected through the same river system (hereinafter referred to as a connected water system) is planned by a computer using a linear programming method. About the system.

水力発電所群の日間発電計画(例えば翌日の発電計画)の立案は、各発電機の時間帯ごとの出力、言い換えれば発電使用水量を決定する問題である。
この種の発電計画の立案を組合せ最適化問題として扱う場合、発電機数をN、各発電機のとりうる出力を離散値としてK段階、一日の時間分割数をTとすると、その組合せ総数はKNTとなって通常は天文学的な数値になり、計算機による処理時間が膨大になるため、現実的な解法としては、各種の探索法によって準最適解を求めるアプローチがなされている。
The planning of a daily power generation plan (for example, the power generation plan for the next day) of a hydroelectric power station group is a problem of determining the output of each generator for each time zone, in other words, the amount of water used for power generation.
When handling this type of power generation plan as a combinatorial optimization problem, assuming that the number of generators is N, the output that each generator can take is K, and the number of time divisions per day is T, the total number of combinations Since KNT is usually an astronomical value and the processing time by the computer is enormous, as a practical solution, an approach for obtaining a sub-optimal solution by various search methods has been made.

ここで、主として処理時間の短縮を目的とした水力発電所群の日間発電計画立案方式が、後述する特許文献1により公知となっている。
この立案方式は、使用水量当たりの発電価値と発電価値補正係数との積が最も大きい放流ルート・時間帯・単位時間使用水量の順に水を配分して、配分された水の総量が所定の日間使用水量に達するように水配分計画を立案する立案手段と、この立案計画に従って水系のシミュレーションを行い、立案計画の評価(制約条件違反の有無や発電価値の評価)及び最良解の保存を行う評価手段と、上記シミュレーション結果に基づいて、計画案をより良いものに誘導するべく、前記放流ルート・時間帯・単位時間使用水量のそれぞれにおける発電価値補正係数を見直して変更する立案条件見直し手段とを備え、これらの各手段による処理を所定回数繰り返すことによって日間発電計画を生成するものである。
Here, a daily power generation planning method of a hydroelectric power station group mainly for the purpose of shortening the processing time is known from Patent Document 1 described later.
In this planning method, water is distributed in the order of discharge route, time zone, and unit-time water consumption, where the product of the power generation value per unit water consumption and the power generation value correction coefficient is the largest, and the total amount of water allocated is within a given day. An evaluation method that formulates a water distribution plan to reach the amount of water used, performs a water system simulation according to this plan, evaluates the plan (evaluates whether there is a violation of constraint conditions, evaluates power generation value), and stores the best solution And a planning condition reviewing means for reviewing and changing the power generation value correction coefficient in each of the discharge route, time zone, and unit water consumption amount to guide the plan to a better one based on the simulation result. And generating a daily power generation plan by repeating the processing by each of these means a predetermined number of times.

一方、連続量の変数が扱える最適化手法として、周知の線形計画法がある。この線形計画法を日間発電計画の立案に適用する場合、通常、一日の時間をN個に区分し(区分された一つの時間の区間をここでは「時間帯」という)、一つの時間帯内では発電使用水量(発電機出力と対応関係にあるものとする)等の諸量は一定とみなし、各発電所の各時間帯における発電使用水量と各ダムの各時刻における貯水量とを状態変数とし、制約条件として各ダムの貯水量上下限値、各発電所の発電使用水量の上下限値、流量関係式や貯水量関係式などを与え、状態変数に関する一次式として与えられた目的関数が最小または最大になる(つまり最適な)各発電所の各時間帯における発電使用水量を一括して求める方法が考えられる。   On the other hand, there is a well-known linear programming method as an optimization method that can handle a continuous amount of variables. When this linear programming method is applied to the planning of a daily power generation plan, the time of the day is usually divided into N (a section of one divided time is referred to as “time zone” here), and one time zone. The amount of generated water used (assumed to have a corresponding relationship with the generator output) is considered constant, and the amount of generated water used at each power plant at each time zone and the amount of water stored at each dam at each time The objective function is given as a linear expression for the state variable, giving the upper and lower limits of the water storage amount of each dam, the upper and lower limits of the amount of water used by each power plant, the flow rate relation and the relational expression A method for obtaining the amount of water used for power generation in each time zone of each power plant that minimizes or maximizes (that is, optimal) can be considered.

特開平5−91799号公報([0010]〜[0018]、図1等)JP-A-5-91799 ([0010] to [0018], FIG. 1 etc.)

線形計画法を用いて連接水系における日間発電計画を実際に立案する場面では、制約条件として、各ダムの貯水量上下限等の静的な制約条件の他に、運用上の制約条件(動的な制約条件)が存在する。
この運用上の制約条件とは、例えば、ある時刻で発電機出力(発電使用水量)を0から100%に立ち上げる計画が立案されたとしても、実際の運用上は発電機出力を経時的に徐々に増加させる(発電使用水量を段階的に増加させる)ような運転しかできなかったり、発電機の出力下限値を下回るような運転計画が作成されてもそのような運転はできないといった制約条件であり、主として発電機の運転・停止条件に伴うものである。
これらの運用上の制約条件を静的制約条件と同時に扱って線形計画法を実行するためには、想定されるあらゆる時間帯にわたって各種の制約条件を定義しなければならず、その結果、制約条件式の数が非常に多くなると共に、それ以前に制約条件の定式化自体が非常に煩雑かつ困難になる。
In the actual planning of a daily power generation plan in a connected water system using linear programming, in addition to static constraints such as the upper and lower limits of water storage capacity of each dam, operational constraints (dynamic There are some constraints).
For example, even if a plan to raise the generator output (the amount of water used for power generation) from 0 to 100% at a certain time is formulated, the generator output is changed over time in actual operation. It can only be operated with a gradual increase (increase the amount of water used for power generation), or even if an operation plan that makes the output lower than the lower limit value of the generator is created, such operation is not possible. Yes, mainly due to generator operation / stop conditions.
In order to handle these operational constraints at the same time as static constraints and execute linear programming, various constraints must be defined over all possible time zones, resulting in constraints. As the number of expressions becomes very large, it becomes very complicated and difficult to formulate the constraint conditions before that.

また、前述した特許文献1に記載された日間発電計画立案方式は、発電計画の立案、シミュレーションによる発電価値の評価、放流ルート・時間帯・単位時間使用水量ごとの発電価値補正係数の見直しという一連の処理を複数回繰り返すことで最適な発電計画を立案する方式であるため、処理時間の長期化が予想されると共に、上述したような運用上の制約条件まで考慮したものではなかった。   Further, the daily power generation planning method described in Patent Document 1 described above is a series of power generation planning, evaluation of power generation value by simulation, and review of power generation value correction coefficient for each discharge route / time zone / unit time water consumption. Since this method is a method for creating an optimal power generation plan by repeating the above process a plurality of times, the processing time is expected to be prolonged, and the above-described operational constraints are not taken into consideration.

本発明は、上述した種々の問題を解決するためになされたものであり、その目的は、線形計画法を二段階で実行することとし、ます仮発電計画を作成した後に運用上の制約条件を作成し、その後、すべての制約条件を考慮して最終的な発電計画を作成することにより、水力発電所群の日間発電計画を現実的な処理時間で負担なく立案可能とした立案システムを提供することにある。   The present invention has been made to solve the above-described various problems, and its purpose is to execute linear programming in two stages, and moreover, after creating a temporary power generation plan, operational constraints are set. Providing a planning system that makes it possible to create a daily power generation plan for hydroelectric power stations without burdening it with realistic processing time by creating a final power generation plan after taking into account all the constraints There is.

上記課題を解決するため、請求項1に記載した発明は、複数の水力発電所が同一の河川水系を介して接続された連接水系における各発電所の時間帯ごとの発電使用水量を計算機により決定して日間発電計画を作成する日間発電計画立案システムであって、
ダム貯水量の上下限値、発電使用水量の上下限値、流下時間を考慮したダム貯水量関係式、ダム貯水量の初期値及び最終値等の制約条件を満たし、かつ、時間帯ごとの発電機出力を状態変数とする目的関数を最大化するような各発電機の発電使用水量を線形計画法により求める日間発電計画立案システムにおいて、
前記連接水系のモデルが記憶された連接水系モデルデータ記憶手段と、
この記憶手段に記憶された連接水系モデルを対象として、前記目的関数及び前記制約条件を計算機に設定する運用データ設定手段と、
前記目的関数及び前記制約条件を用いて線形計画法を実行し、暫定的な仮発電計画を作成する仮発電計画作成手段と、
前記仮発電計画により立案された発電使用水量の発電分布に対し、各発電機の運転・停止条件及び段階的起動パターンを考慮して発電使用水量に関する運用上の制約条件を生成する制約条件生成手段と、
前記仮発電計画作成手段が用いた制約条件に上記運用上の制約条件を追加して新たな制約条件を生成する制約条件追加手段と、
この制約条件追加手段により生成された新たな制約条件と前記目的関数とを用いて線形計画法を実行し、最終的な発電計画を作成する最終発電計画作成手段と、
最終発電計画が出力される入出力手段と、を備えたものである。
In order to solve the above-mentioned problem, the invention described in claim 1 is to determine the amount of water used for power generation for each time zone of each power plant in a connected water system in which a plurality of hydro power plants are connected through the same river system. A daily power generation planning system for creating a daily power generation plan,
The upper and lower limits of the dam reservoir volume, the upper and lower limits of the amount of water used for power generation, the dam reservoir relational expression considering the flow time, the initial and final values of the dam reservoir volume, and the power generation for each time zone In the daily power generation planning system that uses linear programming to determine the amount of water used for each generator that maximizes the objective function with the machine output as the state variable,
A connected water model data storage means in which a model of the connected water system is stored;
Operation data setting means for setting the objective function and the constraint conditions in a computer for the connected water system model stored in the storage means,
A temporary power generation plan creating means for executing a linear programming using the objective function and the constraint condition, and creating a temporary power generation plan,
Constraint condition generating means for generating operational constraint conditions regarding the amount of water used for power generation in consideration of the operation / stop conditions and stepwise start patterns of each generator for the power generation distribution of the amount of water used for power generation prepared by the temporary power generation plan When,
Constraint condition adding means for adding the above operational constraint condition to the constraint condition used by the temporary power generation plan creating means and generating a new constraint condition;
A final power generation plan creating means for executing a linear programming method using the new constraint condition generated by the constraint condition adding means and the objective function, and creating a final power generation plan;
Input / output means for outputting the final power generation plan.

請求項2に記載した発明は、請求項1に記載した水力発電所群の日間発電計画立案システムにおいて、
前記制約条件生成手段が、仮発電計画により立案された前記発電分布のうち、時間帯ごとの発電使用水量を閾値と比較してその結果により発電機の運転・停止を決定し、これらの運転・停止状態を新たな制約条件として生成すると共に、発電機の起動時間より前の時間帯において、発電機の段階的起動パターンに応じた当該時間帯の発電使用水量を新たな制約条件として生成するものである。
The invention described in claim 2 is the daily power generation planning system for the hydroelectric power station group described in claim 1,
The constraint condition generation means determines the operation / stop of the generator based on the result of comparing the generated water consumption for each time period with the threshold value in the power generation distribution prepared by the temporary power generation plan. Generates a stop state as a new constraint condition, and generates a generated water consumption amount as a new constraint condition in the time zone corresponding to the stepwise startup pattern of the generator in a time zone before the generator startup time. It is.

本発明においては、まず、ダム貯水量及び発電使用水量の上下限値等の静的な制約条件を用いて線形計画問題を定式化して暫定的な仮発電計画を作成したうえで、この仮発電計画に基づき各発電機の運転・停止条件及び段階的起動パターンを考慮した運用上の制約条件を作成し、その後に、これら全ての制約条件を用いた線形計画法の実行により最終発電計画を作成するため、運用上の制約条件をも考慮して当初の定式化を行う場合に比べて制約条件式を減らすことができ、線形計画問題の定式化に伴う負担を軽減することができる。また、立案の自動化により計画立案者の負担を軽減することができると共に、処理時間の短縮も可能になる。   In the present invention, first, the provisional power generation plan is formulated by formulating the linear programming problem using static constraints such as the upper and lower limit values of the dam water storage amount and the generation water use amount, and then this temporary power generation plan is created. Based on the plan, create operational constraints that take into account each generator's operation / shutdown conditions and staged start patterns, and then create a final power plan by executing linear programming using all these constraints. Therefore, it is possible to reduce the constraint formulas compared to the case where the initial formulation is performed in consideration of the operational constraint conditions, and it is possible to reduce the burden associated with the formulation of the linear programming problem. Further, the automation of the planning can reduce the burden on the planner, and the processing time can be shortened.

以下、図に沿って本発明の実施形態を説明する。
まず、図1はこの実施形態が適用される連接水系モデルを示す図である。図1において、D1〜D6,D51はダム、V1〜V6はダムD1〜D6の貯水量[ton/s・H]、G1〜G4,G6はダムD1〜D4,D6の下流にそれぞれ設けられたダム式発電所の発電機、G5はダムD51の下流に設けられた流込式発電所の発電機、P1〜P6は発電機G1〜G6の出力[MW]、R1〜R6,R51はダムD1〜D6,D51にそれぞれ流入する河川水の流入量[ton/s]、R51outはダムD51の溢水量[ton/s]、Q1〜Q6はダムD1〜D6からの流出量[ton/s]、T12,T23,T36,T45,T55,T56はそれぞれ上流ダムから下流ダムまでの流下時間[min]である。
なお、発電機G5は水調運転(ダムD51への流入量Q5=発電使用水量Q51となるように調整されている運転)を行っているものと仮定し、ダムD51は流込式発電所の水槽であるので単に水の通過点と考え、水槽の貯水量は考慮していない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, FIG. 1 is a diagram showing a connected water system model to which this embodiment is applied. In FIG. 1, D1 to D6 and D51 are dams, V1 to V6 are water storage [ton / s · H] of dams D1 to D6, and G1 to G4 and G6 are provided downstream of the dams D1 to D4 and D6, respectively. The generator of the dam type power plant, G5 is the generator of the inflow type power plant provided downstream of the dam D51, P1 to P6 are the outputs [MW] of the generators G1 to G6, and R1 to R6 and R51 are the dam D1. ~ River water inflow [ton / s] flowing into D6 and D51, R51 out is the overflow [ton / s] of dam D51, and Q1 to Q6 are the outflow [ton / s] from dams D1 to D6 , T12, T23, T36, T45, T55, and T56 are the downflow time [min] from the upstream dam to the downstream dam, respectively.
It is assumed that the generator G5 is performing water conditioning operation (inflow Q5 into the dam D51 = operation adjusted so as to be the amount of water used for power generation Q51), and the dam D51 is an inflow power plant. Since it is a water tank, it is simply considered as a water passing point, and the amount of water stored in the water tank is not considered.

ここで、流出量Q1〜Q4,Q51,Q6は発電機G1〜G6の発電使用水量Q1〜Q4,Q51,Q6に等しく、流出量Q5は発電機G5の発電のための取水量に等しい。更に、発電機出力P1〜P6は発電使用水量Q1〜Q4,Q51,Q6と対応関係にあり、貯水量V1〜V6は水位と対応関係にある。   Here, the outflow amounts Q1 to Q4, Q51, and Q6 are equal to the power generation use water amounts Q1 to Q4, Q51, and Q6 of the generators G1 to G6, and the outflow amount Q5 is equal to the intake amount of the generator G5 for power generation. Furthermore, the generator outputs P1 to P6 have a corresponding relationship with the power generation usage water amounts Q1 to Q4, Q51, and Q6, and the stored water amounts V1 to V6 have a corresponding relationship with the water level.

次に、上記連接水系モデルを対象として、線形計画法により各発電機G1〜G6の日間発電計画を立案するための定式化について説明する。
(1)目的関数
発電機出力1[MW]当たりの価値を、時間帯ごとの水力への発電要求度合いを表す係数としての発電価値Kにより表し、以下の数式1に示すように、時間帯ごとの発電価値Kと発電機出力PjTとの積をすべての時間帯について総計した値を目的関数Zとし、この目的関数Zを最大化するものとする。
なお、上記発電価値Kは、例えば(発電電力量/単位時間使用水量)×単位電力量価値で表され、単位電力量価値は、発電所別、時間帯別に火力増分燃料費(同量の電力を火力発電により発生させた場合の燃料費)等を考慮して決定される。従って、単位時間使用水量に対する発電電力量が大きく、同量の電力を火力発電によりまかなう場合の燃料費が高いほど発電価値Kは大きくなり、それだけ水力発電による発電要求が高いと考えることができる。
Next, formulation for creating a daily power generation plan for each of the generators G1 to G6 by the linear programming method for the above-described connected water system model will be described.
(1) the value per objective function generator output 1 [MW], it represents the power value K T as coefficients representing the electrical generation demand degree of hydropower per time slot, as shown in Equation 1 below, the time zone A value obtained by summing up the product of the power generation value KT and the generator output PjT for each time zone is defined as an objective function Z, and the objective function Z is maximized.
The power generation value KT is represented by, for example, (power generation amount / water consumption per unit time) × unit power amount value, and the unit power amount value is a thermal power increase fuel cost (by the same amount) for each power plant and each time zone. It is determined in consideration of the fuel cost when electric power is generated by thermal power generation. Accordingly, large power generation amount per unit time water consumption, power generation value K T the same amount of power higher fuel costs when covered by thermal power generation is increased, it can be considered that the more power required hydropower is high .

Figure 2005285032
Figure 2005285032

ここで、PjT=ajT+bであり、変数、係数に関しては、
jT:発電機出力[MW]
jT:発電使用水量[ton/s]
:発電価値[円/MW]
,b:線形近似した発電使用水量Qと発電機出力Pとの特性式の係数
である。
また、添字に関しては、
j:発電機台数(j=1〜6)
T:時間帯(1時間の幅を持つ時間帯であり、1日についてT=1〜24)
である。
Here, P jT = a j Q jT + b j , and regarding variables and coefficients,
P jT : Generator output [MW]
Q jT : Power generation water consumption [ton / s]
K T : Power generation value [yen / MW]
a j , b j are coefficients of a characteristic equation between the power generation use water amount Q and the generator output P that are linearly approximated.
For subscripts,
j: Number of generators (j = 1-6)
T: Time zone (a time zone having a width of 1 hour, T = 1 to 24 for one day)
It is.

(2)状態変数・制約条件
発電機出力Pは発電使用水量Qの関数として、また、ダム水位Hは貯水量Vの関数として表現でき、更に、各ダムの流入量R・流出量Qと貯水量Vとの関係は線形式で表現することができる。そこで、本実施形態では、発電使用水量Q、貯水量V、及び一部のダムD51の取水量Q5及び溢水量R51outを線形計画法で扱う状態変数とする。
また、第1回目の線形計画法の実行時に用いる制約条件は、状態変数である貯水量Vの上下限値、同じく発電使用水量Qの上下限値、一部の発電機(流込式発電所)G5の流量関係式、ダムD1〜D6の貯水量関係式、及び、貯水量Vの初期値並びに最終値とする。
ここで、流込式発電所のダムD51に設けられた発電機G5は、ダムD51よりも更に上流のダムD5からの取水量Q5が流下時間T55を経て発電機G5の発電使用水量Q51となり、他の発電機G1〜G4,G6とは異なる発電使用水量Qの考察が必要であるため、流量関係式として上記発電使用水量Q51を制約条件に組み込んだものである。
(2) State variables / constraints The generator output P can be expressed as a function of the amount of water used for power generation Q, and the dam water level H can be expressed as a function of the amount of stored water V. The relationship with the quantity V can be expressed in a linear form. Therefore, in the present embodiment, the power generation use water amount Q, the stored water amount V, the intake amount Q5 and the overflow amount R51 out of some dams D51 are set as state variables to be handled by the linear programming method.
In addition, the constraints used during the execution of the first linear programming are the upper and lower limits of the water storage amount V, which is a state variable, the upper and lower limits of the generated water consumption Q, and some generators (flow-type power plants). ) The flow rate relational expression of G5, the relational expression of the water storage amount of the dams D1 to D6, and the initial value and final value of the water storage quantity V.
Here, in the generator G5 provided in the dam D51 of the inflow type power plant, the water intake amount Q5 from the dam D5 further upstream than the dam D51 becomes the power generation use water amount Q51 of the generator G5 after the downflow time T55, Since it is necessary to consider the amount of water used for power generation Q different from that of the other generators G1 to G4, G6, the amount of water used for power generation Q51 is incorporated into the constraint as a flow rate relational expression.

図1に示した連接水系モデルにおける制約条件を、以下に示す。
まず、各ダムの貯水量Vの上下限値に関する制約条件(不等式制約条件)は、数式2の通りである。
[数2]
jmin≦Vjt≦Vjmax
jmin:各ダムの貯水量の下限値
jmax:各ダムの貯水量の上限値
The constraint conditions in the connected water system model shown in FIG. 1 are shown below.
First, the constraint condition (inequality constraint condition) regarding the upper and lower limit values of the water storage amount V of each dam is as shown in Formula 2.
[Equation 2]
V jmin ≦ V jt ≦ V jmax
V jmin : Lower limit value of water storage capacity of each dam
V jmax : Upper limit value of the amount of water stored in each dam

各発電機の発電使用水量Qの上下限値に関する制約条件(不等式制約条件)は、数式3の通りである。
[数3]
jmin≦Qjt≦Qjmax
jmin:各発電機の発電使用水量の下限値
jmax:各発電機の発電使用水量の上限値
The constraint condition (inequality constraint condition) regarding the upper and lower limit values of the generated water usage amount Q of each generator is as in Expression 3.
[Equation 3]
Q jmin ≦ Q jt ≦ Q jmax
Q jmin : Lower limit value of the amount of water used by each generator
Q jmax : Upper limit value of water used by each generator

流量関係式として、発電機G5の発電使用水量に関する制約条件(等式制約条件)は、数式4の通りである。
[数4]
Q51=Q5×{(60−T55)/60}+Q5T−1×(T55/60)+R51−R51outT
As a flow rate relational expression, a constraint condition (equation constraint condition) regarding the amount of water used for power generation of the generator G5 is as shown in Formula 4.
[Equation 4]
Q51 T = Q5 T × {( 60-T55) / 60} + Q5 T-1 × (T55 / 60) + R51 T -R51 outT

数式4における右辺の第1項、第2項は、ダムD5からの取水量Q5が、流下時間T55を経て発電機G5の発電使用水量Q51となる影響分を近似的に表したものである。この例では、流下時間T55は0分〜60分の範囲であることを想定した式の形となっており、右辺の第1項は、現在の時間帯の取水量Q5のうち、現在の時間帯の発電使用水量Q51に含まれる分、右辺の第2項は、一つ前の時間帯の取水量Q5T−1のうち、現在の時間帯の発電使用水量Q51に含まれる分、右辺の第3項、第4項は、現在の時間帯におけるダムD51への流入量及び溢水量を示している。
仮に、流下時間T55が60分〜120分の範囲である場合には、上記流量関係式は数式5のようになる。
[数5]
Q51=Q5T−1×{(120−T55)/60}+Q5T−2×{(T55−60)/60}+R51−R51outT
The first term and the second term on the right side of Formula 4 approximately represent the influence of the amount of water intake Q5 from the dam D5 becoming the amount of water used for power generation Q51 of the generator G5 after the flow-down time T55. In this example, the flow time T55 is in the form of an equation that assumes a range of 0 minutes to 60 minutes, and the first term on the right side is the current amount of water intake Q5 T in the current time zone. power water consumption amount contained in Q51 T, the second term of the right side of the intervals among the previous time zone of water intake Q5 T-1, minute included in the power generation using water Q51 T of current time zone The third term and the fourth term on the right side indicate the inflow amount and the overflow amount to the dam D51 in the current time zone.
If the flow-down time T55 is in the range of 60 minutes to 120 minutes, the flow rate relational expression is as shown in Equation 5.
[Equation 5]
Q51 T = Q5 T-1 × {(120-T55) / 60} + Q5 T-2 × {(T55-60) / 60} + R51 T -R51 outT

貯水量関係式として、各ダムD1〜D6の貯水量に関する制約条件(等式制約条件)は、数式6の通りである。
[数6]
・V1=V1t−1+(R1−Q1)×ΔT
・V2=V2t−1+[R2+Q1×{(60−T12)/60}+Q1T−1×(T12/60)−Q2]×ΔT
・V3=V3t−1+[R3+Q2×{(60−T23)/60}+Q2T−1×(T23/60)−Q3]×ΔT
・V4=V4t−1+(R4−Q4)×ΔT
・V5=V5t−1+[R5+Q4×{(60−T45)/60}+Q4T−1×(T45/60)−Q5]×ΔT
・V6=V6t−1+[R6+Q3×{(60−T36)/60}+Q3T−1×(T36/60)+Q51×{(60−T56)/60}+Q51T−1×(T56/60)−Q6]×ΔT
As a water storage amount relational expression, a constraint condition (equal constraint condition) regarding the water storage amount of each dam D1 to D6 is as shown in Equation 6.
[Equation 6]
· V1 t = V1 t-1 + (R1 T -Q1 T) × ΔT
· V2 t = V2 t-1 + [R2 T + Q1 T × {(60-T12) / 60} + Q1 T-1 × (T12 / 60) -Q2 T] × ΔT
· V3 t = V3 t-1 + [R3 T + Q2 T × {(60-T23) / 60} + Q2 T-1 × (T23 / 60) -Q3 T] × ΔT
・ V4 t = V4 t−1 + (R4 T −Q4 T ) × ΔT
· V5 t = V5 t-1 + [R5 T + Q4 T × {(60-T45) / 60} + Q4 T-1 × (T45 / 60) -Q5 T] × ΔT
· V6 t = V6 t-1 + [R6 T + Q3 T × {(60-T36) / 60} + Q3 T-1 × (T36 / 60) + Q51 T × {(60-T56) / 60} + Q51 T-1 × (T56 / 60) −Q6 T ] × ΔT

数式6の制約条件のうち、例えば2番目の等式制約条件(V2=……)は、ある時刻tにおけるダムD2の貯水量V2が、一つ前の時刻(t−1)における貯水量V2t−1と、時刻(t−1)から時刻tまでの貯水量変化分である[R2+Q1×{(60−T12)/60}+Q1T−1×(T12/60)−Q2]×ΔTとの和に等しくなければならないという制約条件であり、上記貯水量変化分は、時刻tの直前の時間帯Tにおける流入量R2及び流出量(発電使用水量)Q2と、ダムD1からD2までの流下時間T12を考慮した流出量であるQ1×{(60−T12)/60}+Q1T−1×(T12/60)との和に、時間帯の幅であるΔT(=1時間)を乗じたものである。
数式6におけるその他の制約条件についても、それぞれの意味は同様に類推解釈できる。
なお、上述した各制約条件における添字のTは、前述したように1時間の幅を持つ時間帯(T=1〜24)を示し、添字のtは1日のうちの時刻(t=0〜23)を示す。
Among the constraints of Equation 6, for example, the second equality constraint (V2 t =...) Is that the water storage amount V2 t of the dam D2 at a certain time t is the water storage at the previous time (t−1). amount V2 t-1, the time (t-1) is a water storage amount variation of the time t from [R2 T + Q1 T × { (60-T12) / 60} + Q1 T-1 × (T12 / 60) - Q2 T ] × ΔT must be equal to the sum of the above, and the amount of change in the amount of stored water is determined by the amount of inflow R2 T and the amount of outflow (water used for power generation) Q2 T in the time zone T immediately before time t. The sum of Q1 T × {(60−T12) / 60} + Q1 T−1 × (T12 / 60), which is an outflow amount considering the flow time T12 from the dam D1 to D2, is the width of the time zone. Multiplyed by ΔT (= 1 hour).
The meanings of the other constraints in Equation 6 can be similarly inferred.
Note that the subscript T in each constraint described above indicates a time zone (T = 1 to 24) having a width of one hour as described above, and the subscript t is a time of day (t = 0 to 0). 23).

ここで、数式4〜数式6における発電使用水量の計算において、流下時間を考慮した計算方法を概念的に示すと、図4及び図5のようになる。これらの図は、地点A(上流)から地点B(下流)まで水が流れる場合の流下時間TABを考慮して、地点Bにおける時間帯Tの到達水量QBを求める方法を表している。 Here, in the calculation of the amount of water used for power generation in Formulas 4 to 6, conceptually a calculation method in consideration of the flow-down time is as shown in FIGS. These figures, in consideration of the flow time T AB where from the point A (upstream) water flows to the point B (downstream), represents a method for determining the arrival water QB T time period T at the point B.

図4はTAB≦60分の場合であり、前述した数式4と同じケースである。なお、図4では、数式4におけるダムD51への流入量R51及び溢水量R51outTを考慮していない。
図4に示すように、上流の地点Aにおける隣接時間帯(T−1)及びTにおける水量QAT−1,QAと流下時間TABとを用いて、太線内の面積に相当する地点Bの時間帯Tの水量QBを求めることができる。
なお、図5は60分≦TAB≦120分の場合であり、前述した数式5と同じケースである。この場合には、地点Aにおける隣接時間帯(T−2)及び(T−1)における水量QAT−2,QAT−1と流下時間TABとを用いて、太線内の面積に相当する地点Bの時間帯Tの水量QBを求めることができる。
よって、図4または図5に示した考え方を用いて数式4〜数式6の制約条件式を作成することができる。
FIG. 4 shows a case where T AB ≦ 60 minutes, which is the same case as Equation 4 described above. In FIG. 4, not considering the inflow R51 T and overflow amount R51 OUTT to dam D51 in equation 4.
As shown in FIG. 4, the point B corresponding to the area within the bold line using the adjacent time zone (T-1) at the upstream point A and the water amounts QA T-1 , QA T and the flow time T AB at T. it is possible to determine the amount of water QB T of the time zone T.
FIG. 5 shows a case where 60 minutes ≦ T AB ≦ 120 minutes, which is the same case as Equation 5 described above. In this case, using the water amounts QA T-2 and QA T-1 and the flow time T AB in the adjacent time zones (T-2) and (T-1) at the point A, this corresponds to the area within the bold line. it is possible to determine the amount of water QB T of the time period T of the point B.
Therefore, the constraint condition expressions of Expressions 4 to 6 can be created using the concept shown in FIG. 4 or FIG.

なお、貯水量Vの初期値及び最終値に関する制約条件は、各ダムごとに、水位の値を貯水量に換算し、0時の貯水量を初期値とし、24時(翌日の0時)の貯水量を最終値として与えるものとする。   In addition, the constraint condition regarding the initial value and the final value of the water storage amount V is that the water level value is converted into the water storage amount for each dam, the water storage amount at 0 o'clock is the initial value, and it is 24:00 (0 o'clock the next day). The amount of water storage shall be given as the final value.

次に、図2はこの実施形態による日間発電計画の立案手順を示すフローチャートである。以下に、その内容を説明する。
(1)初期設定及び運用データ設定ステップ(S1)
日間発電計画を作成するべき連接水系モデルを対象として、計算機に、線形計画法に関する基本的なデータを設定するステップであり、上記基本的なデータとしては、目的関数として前述した数式1を設定し、制約条件として、状態変数である発電使用水量Qの上下限値、同じく貯水量Vの上下限値、前述した発電機G5の流量関係式、同じくダムD1〜D6の貯水量関係式、及び、貯水量Vの初期値並びに最終値を設定する。なお、これらの制約条件を便宜的に静的制約条件というものとする。また、このステップでは、日々の運用で変動する発電価値や各ダムへの流入量Rなども運用データとして入力される。
状態変数である発電使用水量Q、貯水量V、及び一部のダムD51の取水量Q5並びに溢水量R51outについては、各発電機及びダム等について、それぞれ所定の時間帯または時刻における値を示す記号として与えるものとする(例えば、Q1〜Q124,V1〜V124等)。
Next, FIG. 2 is a flowchart showing a procedure for making a daily power generation plan according to this embodiment. The contents will be described below.
(1) Initial setting and operation data setting step (S1)
This is a step of setting basic data related to linear programming in a computer for a connected water system model for which a daily power generation plan is to be created. As the basic data, the above-described Equation 1 is set as an objective function. The upper and lower limit values of the power generation water usage amount Q, which is a state variable, the upper and lower limit values of the water storage amount V, the flow rate relational expression of the generator G5, the water volume relational expression of the dams D1 to D6, and The initial value and final value of the water storage amount V are set. These constraints are referred to as static constraints for convenience. In this step, the power generation value that fluctuates in daily operation, the inflow amount R into each dam, and the like are also input as operation data.
Regarding the state-variable water use amount Q, the stored water amount V, the intake amount Q5 of some dams D51, and the overflow amount R51 out , the values at each predetermined time zone or time are shown for each generator and dam, etc. It shall be given as a symbol (for example, Q1 1 to Q1 24 , V1 1 to V1 24, etc.).

(2)線形計画法の実行ステップ(S2)
ステップS1により設定したデータを用いて、線形計画法を実行する。具体的には、周知のシンプレックス法や内点法を用いて、上述した静的制約条件に違反することなく数式1の目的関数を最大化するような発電使用水量Qを求める。
これにより暫定的な仮発電計画として、各発電機の各時間帯における発電使用水量を求めた大枠の発電計画(発電分布)を求めることができる。
図8は、図1の水系モデルを対象とした仮発電計画を例示したものであり、各発電機G1〜G6について、時間帯ごとの発電使用水量(発電機出力)Qを縦軸にとって示してある。
(2) Linear programming execution step (S2)
Linear programming is executed using the data set in step S1. Specifically, using a known simplex method or interior point method, a power generation water consumption amount Q that maximizes the objective function of Formula 1 without violating the static constraint described above is obtained.
Thereby, as a provisional temporary power generation plan, a large-scale power generation plan (power generation distribution) in which the amount of water used for power generation in each time zone of each generator is obtained can be obtained.
FIG. 8 exemplifies a provisional power generation plan for the water system model of FIG. 1, and for each of the generators G <b> 1 to G <b> 6, the generated water usage (generator output) Q for each time zone is shown on the vertical axis. is there.

(3)動的制約条件の生成ステップ(S3)
このステップでは、上述した仮発電計画による発電分布を基に、2回目の線形計画法の実行(S5)へ与える運用上の制約条件を生成する。
この運用上の制約条件には、発電機の運転・停止条件を考慮して生成される等式制約条件(S31)と、発電機の段階的起動パターンを考慮して生成される等式制約条件(S32)とがある。
(3) Dynamic constraint generation step (S3)
In this step, based on the power generation distribution by the temporary power generation plan described above, an operational constraint condition to be given to the execution of the second linear programming method (S5) is generated.
The operational constraint conditions include an equation constraint condition (S31) generated in consideration of the generator operation / stop condition, and an equation constraint condition generated in consideration of the stepwise startup pattern of the generator. (S32).

発電機の運転・停止条件を考慮して生成される等式制約条件(S31)とは、例えば、仮発電計画によって立案されたある時間帯の発電機出力が発電機の特性により決まる所定の閾値を下回る場合には、発電機の運転が不可能であると判断して発電機を停止させ、前記閾値を上回る場合にのみ発電機を運転させるために、停止と判断した場合には当該時間帯の発電使用水量=0とおくような制約条件である。
すなわち、図6の上段におけるハッチング部分の発電を停止して図6の下段に示すような発電分布を得るために、時間帯09については当該発電機の発電使用水量を0とするべく生成される制約条件である。
The equation constraint condition (S31) generated in consideration of the generator operation / stop condition is, for example, a predetermined threshold in which the generator output in a certain time zone created by the provisional power generation plan is determined by the characteristics of the generator. If it is determined that the generator is not operating, the generator is stopped, and the generator is stopped only when the threshold is exceeded. This is a constraint condition such that the amount of water used for power generation = 0.
That is, in order to stop the power generation in the hatched portion in the upper part of FIG. 6 and obtain the power generation distribution as shown in the lower part of FIG. 6, the power generation water consumption of the generator is generated to be zero in time zone 09. It is a constraint condition.

また、発電機の段階的起動パターンを考慮して生成される等式制約条件(S32)とは、発電機出力(発電使用水量)を急激に100%まで立ち上げられない等の理由により、新たに追加される制約条件である。
例えば、図7の上段に示す如く発電機ごとに定められている段階的な起動パターンを考慮して、上述したステップS31の処理で決定された発電機の起動時刻(図6,図7の例では09時)よりも手前の時間帯(同じく時間帯08,09)に対して、図7の下段に示すように当該発電機の段階的な起動パターンを1時間平均値に変換してそれぞれ追加することにより、時間帯08,09の発電使用水量を新たに等式制約条件として生成する。
In addition, the equation constraint (S32) generated in consideration of the gradual start pattern of the generator is a new one because the generator output (water used for power generation) cannot be rapidly increased to 100%. It is a constraint condition added to.
For example, taking into account the stepwise start pattern determined for each generator as shown in the upper part of FIG. 7, the generator start time determined in the above-described step S31 (examples of FIGS. 6 and 7). In the time zone before (09 o'clock) (also in the time zone 08, 09), as shown in the lower part of FIG. As a result, the amount of water used for power generation in the time periods 08 and 09 is newly generated as an equality constraint condition.

(4)制約条件の追加ステップ(S4)
このステップでは、ステップS2の仮発電計画の作成に用いた静的制約条件に上記ステップS3により生成した運用上の制約条件を追加する処理である。
(4) Step of adding constraint conditions (S4)
This step is a process of adding the operational constraint condition generated in step S3 to the static constraint condition used for creating the temporary power generation plan in step S2.

(5)線形計画法の実行ステップ(S5)
ステップS4により得られたすべての制約条件と目的関数(仮発電計画の作成時のものと同一)とを用いて線形計画法を実行し、最終的な発電計画を作成する。
すなわち、静的制約条件及び運用上の制約条件の何れにも違反することなく、数式1の目的関数を最大化するような発電使用水量Qをシンプレックス法等を用いて求めることにより、最終的な発電計画として図9に示すような発電分布が求められる。
図9に示す最終発電計画は、図8の仮発電計画において停止扱いとされた時間帯の発電使用水量を0とし、また、発電機の段階的な起動パターンを考慮してこの段階的起動パターンを図8に付加した計画であり、各ダムの貯水量上下限値等の静的制約条件や、発電機の運転・停止に伴う運用上の制約条件の何れも満足して目的関数を最大化する各発電機の各時間帯ごとの発電使用水量を決定することが可能になる。
(5) Linear programming execution step (S5)
The linear programming method is executed using all the constraints obtained in step S4 and the objective function (the same as that at the time of creating the temporary power generation plan) to create a final power generation plan.
That is, the final determination is made by using a simplex method or the like to obtain a power generation water quantity Q that maximizes the objective function of Formula 1 without violating any of the static constraint condition and the operational constraint condition. A power generation distribution as shown in FIG. 9 is obtained as a power generation plan.
The final power generation plan shown in FIG. 9 sets the amount of water used for power generation in the time zone treated as being stopped in the temporary power generation plan of FIG. 8 to 0, and takes into account the stepwise start pattern of the generator. Is added to Fig. 8, and the objective function is maximized by satisfying both static constraints such as the upper and lower limits of the water storage capacity of each dam and operational constraints associated with generator operation and shutdown. It becomes possible to determine the amount of water used for power generation for each time zone of each generator.

図3は、上記の各ステップを実行するためのシステム構成を示す図であり、その全体は入出力装置を備えた計算機のハードウェア及びソフトウェアによって構成されている。
図3において、連接水系モデルデータ記憶手段10には、日発電計画を作成する対象となる図1のような連接水系モデルがデータベースとして記憶されている。
運用データ設定手段20は、例えば図1の連接水系モデルを対象として、線形計画問題を定式化した数式1の目的関数と、貯水量及び発電使用水量の上下限値、ダムの貯水量関係式、貯水量の初期値及び最終値等の静的制約条件とを設定するものであり、後述する入出力手段60にマン・マシン・インターフェース50を介して接続されていると共に、設定データをテーブルとして記憶する記憶装置を含んでいる。
この運用データ設定手段20により設定された目的関数及び静的制約条件は、発電計画作成手段30に入力される。
FIG. 3 is a diagram showing a system configuration for executing each of the above steps, and the whole is configured by hardware and software of a computer including an input / output device.
In FIG. 3, the connected water system model data storage means 10 stores a connected water system model as shown in FIG. 1 as a database for creating a daily power generation plan.
The operation data setting means 20 includes, for example, the connected water system model of FIG. 1, the objective function of Formula 1 formulating the linear programming problem, the upper and lower limits of the stored water amount and the amount of water used for power generation, Static constraint conditions such as the initial and final values of the water storage amount are set, and connected to the input / output means 60 described later via the man-machine interface 50 and the setting data is stored as a table. Storage device.
The objective function and static constraints set by the operation data setting unit 20 are input to the power generation plan creation unit 30.

発電計画作成手段30は、仮発電計画作成手段31、制約条件追加手段32及び最終発電計画作成手段33から構成されており、線形計画問題を解くプログラムを実行するCPUや仮発電計画、最終発電計画、目的関数、制約条件等を記憶する記憶装置を備えている。
仮発電計画作成手段31は、上記目的関数及び静的制約条件を用いて線形計画問題を解き、図8に示したような仮発電計画を作成して出力すると共に、この仮発電計画を一時的に記憶する。また、目的関数を最終発電計画作成手段33に送ると共に、静的制約条件を制約条件追加手段32に送ってそれぞれ記憶させる。
The power generation plan creation means 30 is composed of a temporary power generation plan creation means 31, a constraint condition addition means 32, and a final power generation plan creation means 33, and a CPU, a temporary power generation plan, and a final power generation plan that execute a program for solving a linear programming problem. And a storage device for storing objective functions, constraint conditions, and the like.
The temporary power generation plan creating means 31 solves the linear programming problem using the objective function and the static constraint conditions, creates and outputs a temporary power generation plan as shown in FIG. 8, and temporarily outputs the temporary power generation plan. To remember. Further, the objective function is sent to the final power generation plan creation means 33 and the static constraint condition is sent to the constraint condition adding means 32 and stored therein.

制約条件生成手段40は、仮発電計画を基にして、各時間帯の発電使用水量と予め設定された閾値とを比較し、その結果に応じて発電機の運転・停止状態を決定することにより新たな制約条件を生成し、また、予め記憶されている発電機の段階的起動起動パターンを考慮して仮発電計画上の各時間帯の発電使用水量を平均化し、得られた発電分布を新たな運用上の制約条件として生成する手段であり、比較・演算処理を行うプログラム及び記憶装置を備えている。   Based on the temporary power generation plan, the constraint condition generation means 40 compares the amount of water used for power generation in each time zone with a preset threshold value, and determines the operation / stop state of the generator according to the result. A new constraint condition is generated, and the amount of water used in each time zone on the temporary power generation plan is averaged in consideration of the pre-stored step-by-step activation pattern of the generator, and the obtained power generation distribution is updated. This is a means for generating various operational constraints, and includes a program for performing comparison / arithmetic processing and a storage device.

制約条件追加手段32は、先に記憶している静的制約条件に、制約条件生成手段40から出力された運用上の制約条件を追加して保持する手段である。   The constraint condition adding unit 32 is a unit that adds and holds the operational constraint condition output from the constraint condition generating unit 40 to the previously stored static constraint condition.

最終発電計画作成手段33は、先に記憶している仮発電計画作成時の目的関数と制約条件追加手段32から出力された新たな制約条件とを用いて線形計画問題を解き、運用上の制約条件をも考慮して図9に示すような最終的な発電計画を作成する。この発電計画は、マン・マシン・インターフェース50を介して入出力手段60のディスプレイ表示装置に表示したり、印字出力される。
入出力手段60は、初期設定データや運用データの設定入力、最終発電計画の表示出力等を行うものであり、周知のキーボード入力装置やディスプレイ表示装置により構成されている。
The final power generation plan creation means 33 solves the linear programming problem using the previously stored objective function at the time of the temporary power generation plan creation and the new constraint condition output from the constraint condition addition means 32, and the operational constraints. Considering the conditions, a final power generation plan as shown in FIG. 9 is created. This power generation plan is displayed on the display device of the input / output means 60 via the man-machine interface 50 or printed out.
The input / output means 60 performs setting input of initial setting data and operation data, display output of a final power generation plan, and the like, and includes a known keyboard input device and display display device.

なお、仮発電計画作成手段31及び最終発電計画作成手段33は機能的に共通する部分が多いため、両者の機能を一体化しても良い。
また、図3は本実施形態のシステムを機能的に分離して表したものであり、各手段が有する機能を一体化しても良いのは言うまでもない。
Note that the provisional power generation plan creation means 31 and the final power generation plan creation means 33 have many functionally common parts, and thus the functions of both may be integrated.
FIG. 3 is a functionally separated representation of the system of the present embodiment, and it goes without saying that the functions of each means may be integrated.

本発明の実施形態が適用される連接水系モデルを示す図である。It is a figure which shows the articulated water system model with which embodiment of this invention is applied. 本発明の実施形態による日間発電計画の立案手順を示すフローチャートである。It is a flowchart which shows the planning procedure of the daily power generation plan by embodiment of this invention. 本発明の実施形態を示すシステム構成図である。It is a system configuration figure showing an embodiment of the present invention. 本発明の実施形態において、流下時間を考慮した発電使用水量の計算方法を概念的に示す図である。In embodiment of this invention, it is a figure which shows notionally the calculation method of the electric power generation water consumption which considered the flow-down time. 本発明の実施形態において、流下時間を考慮した発電使用水量の計算方法を概念的に示す図である。In embodiment of this invention, it is a figure which shows notionally the calculation method of the electric power generation water consumption which considered the flow-down time. 本発明の実施形態において、発電機の運転・停止条件を考慮した制約条件の生成方法の説明図である。In embodiment of this invention, it is explanatory drawing of the production | generation method of the constraint condition which considered the driving | operation / stop conditions of the generator. 本発明の実施形態において、発電機の段階的起動パターンを考慮した制約条件の生成方法の説明図である。In embodiment of this invention, it is explanatory drawing of the production | generation method of the constraint condition which considered the stepwise starting pattern of the generator. 本発明の実施形態により作成される仮発電計画の説明図である。It is explanatory drawing of the temporary power generation plan produced by embodiment of this invention. 本発明の実施形態により作成される最終発電計画の説明図である。It is explanatory drawing of the final electric power generation plan produced by embodiment of this invention.

符号の説明Explanation of symbols

10:連接水系モデルデータ記憶手段
20:運用データ設定手段
30:発電計画作成手段
31:仮発電計画作成手段
32:制約条件追加手段
33:最終発電計画作成手段
40:制約条件生成手段
50:マン・マシン・インターフェース
60:入出力手段
D1〜D6:ダム
D51:ダム(水槽)
G1〜G4,G6:ダム式発電所の発電機
G5:流込式発電所の発電機
10: articulated water system model data storage means 20: operation data setting means 30: power generation plan creation means 31: provisional power generation plan creation means 32: constraint condition addition means 33: final power generation plan creation means 40: restriction condition generation means 50: man Machine interface 60: Input / output means D1-D6: Dam D51: Dam (water tank)
G1 to G4, G6: Generators for dam type power plants G5: Generators for inflow type power plants

Claims (2)

複数の水力発電所が同一の河川水系を介して接続された連接水系における各発電所の時間帯ごとの発電使用水量を計算機により決定して日間発電計画を作成する日間発電計画立案システムであって、
ダム貯水量の上下限値、発電使用水量の上下限値、流下時間を考慮したダム貯水量関係式、ダム貯水量の初期値及び最終値等の制約条件を満たし、かつ、時間帯ごとの発電機出力を状態変数とする目的関数を最大化するような各発電機の発電使用水量を線形計画法により求める日間発電計画立案システムにおいて、
前記連接水系のモデルが記憶された連接水系モデルデータ記憶手段と、
この記憶手段に記憶された連接水系モデルを対象として、前記目的関数及び前記制約条件を計算機に設定する運用データ設定手段と、
前記目的関数及び前記制約条件を用いて線形計画法を実行し、暫定的な仮発電計画を作成する仮発電計画作成手段と、
前記仮発電計画により立案された発電使用水量の発電分布に対し、各発電機の運転・停止条件及び段階的起動パターンを考慮して発電使用水量に関する運用上の制約条件を生成する制約条件生成手段と、
前記仮発電計画作成手段が用いた制約条件に上記運用上の制約条件を追加して新たな制約条件を生成する制約条件追加手段と、
この制約条件追加手段により生成された新たな制約条件と前記目的関数とを用いて線形計画法を実行し、最終的な発電計画を作成する最終発電計画作成手段と、
最終発電計画が出力される入出力手段と、
を備えたことを特徴とする水力発電所群の日間発電計画立案システム。
A daily power generation planning system that creates a daily power generation plan by determining the amount of water used for power generation at each power station in a connected water system in which multiple hydroelectric power stations are connected via the same river water system by a computer. ,
The upper and lower limits of the dam reservoir volume, the upper and lower limits of the amount of water used for power generation, the dam reservoir relational expression considering the flow time, the initial and final values of the dam reservoir volume, and the power generation for each time zone In the daily power generation planning system that uses linear programming to determine the amount of water used for each generator that maximizes the objective function with the machine output as the state variable,
A connected water model data storage means in which a model of the connected water system is stored;
Operation data setting means for setting the objective function and the constraint conditions in a computer for the connected water system model stored in the storage means,
A temporary power generation plan creating means for executing a linear programming using the objective function and the constraint condition, and creating a temporary power generation plan,
Constraint condition generating means for generating operational constraint conditions regarding the amount of water used for power generation in consideration of the operation / stop conditions and stepwise start patterns of each generator for the power generation distribution of the amount of water used for power generation prepared by the temporary power generation plan When,
Constraint condition adding means for adding the above operational constraint condition to the constraint condition used by the temporary power generation plan creating means and generating a new constraint condition;
A final power generation plan creating means for executing a linear programming method using the new constraint condition generated by the constraint condition adding means and the objective function, and creating a final power generation plan;
Input / output means for outputting the final power generation plan;
A daily power generation planning system for hydroelectric power plants characterized by comprising
請求項1に記載した水力発電所群の日間発電計画立案システムにおいて、
前記制約条件生成手段は、
仮発電計画により立案された前記発電分布のうち、時間帯ごとの発電使用水量を閾値と比較してその結果により発電機の運転・停止を決定し、これらの運転・停止状態を新たな制約条件として生成すると共に、発電機の起動時間より前の時間帯において、発電機の段階的起動パターンに応じた当該時間帯の発電使用水量を新たな制約条件として生成することを特徴とする水力発電所群の日間発電計画立案システム。
In the daily power generation planning system of the hydroelectric power station group described in claim 1,
The constraint generation means is
Among the power generation distributions prepared by the temporary power generation plan, the amount of water used for each time period is compared with a threshold value, and the operation / stop state of the generator is determined based on the result. And generating the amount of water used for power generation in the time zone according to the stepwise startup pattern of the generator as a new constraint condition in a time zone before the startup time of the generator. Group daily power generation planning system.
JP2004101724A 2004-03-31 2004-03-31 Daily power generation planning system for hydroelectric power station group Withdrawn JP2005285032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004101724A JP2005285032A (en) 2004-03-31 2004-03-31 Daily power generation planning system for hydroelectric power station group

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004101724A JP2005285032A (en) 2004-03-31 2004-03-31 Daily power generation planning system for hydroelectric power station group

Publications (1)

Publication Number Publication Date
JP2005285032A true JP2005285032A (en) 2005-10-13

Family

ID=35183304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004101724A Withdrawn JP2005285032A (en) 2004-03-31 2004-03-31 Daily power generation planning system for hydroelectric power station group

Country Status (1)

Country Link
JP (1) JP2005285032A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007282431A (en) * 2006-04-10 2007-10-25 Chugoku Electric Power Co Inc:The Hydro-electric power generation planning method and hydro-electric power generation planning device
JP2009153275A (en) * 2007-12-19 2009-07-09 Chugoku Electric Power Co Inc:The Apparatus for calculating generated power
JP2009223692A (en) * 2008-03-17 2009-10-01 Chugoku Electric Power Co Inc:The Operation support system, operation support method and program for water storage facility,
JP2010044551A (en) * 2008-08-12 2010-02-25 Chugoku Electric Power Co Inc:The Device and program for calculating water type power generation output
JP2010165346A (en) * 2008-12-19 2010-07-29 Chugoku Electric Power Co Inc:The System for aiding operation of reservoir facility, method for aiding operation of reservoir facility, and program
JP2010211527A (en) * 2009-03-10 2010-09-24 Chugoku Electric Power Co Inc:The Inflow prediction system, inflow prediction method, and program
JP2010237745A (en) * 2009-03-30 2010-10-21 Tokyo Gas Co Ltd Method and device for optimizing energy system, and program
JP2011065379A (en) * 2009-09-16 2011-03-31 Chugoku Electric Power Co Inc:The Operation support system, operation support method, and program for water storage facility
JP2011170808A (en) * 2010-02-22 2011-09-01 Chugoku Electric Power Co Inc:The System and method for support of operation in water storage facility, and program
JP2011170807A (en) * 2010-02-22 2011-09-01 Chugoku Electric Power Co Inc:The System and method for support of operation in water storage facility, and program
JP2011170806A (en) * 2010-02-22 2011-09-01 Chugoku Electric Power Co Inc:The System and method for support of operation in water storage facility, and program
KR20140035112A (en) * 2012-09-13 2014-03-21 한국전력공사 Apparatus for calculating power generating available time and method for operating thereof
CN104537217A (en) * 2014-12-17 2015-04-22 东南大学 Optimization method of spectral power distribution of illuminant and optimization method of spectral power distribution of displayer backlight
JP2015125665A (en) * 2013-12-27 2015-07-06 株式会社日立製作所 Water system planning apparatus and water system planning method
JP2019169064A (en) * 2018-03-26 2019-10-03 東芝エネルギーシステムズ株式会社 Output distribution apparatus of hydroelectric power station and hydroelectric power generation system
JP2023100054A (en) * 2022-01-05 2023-07-18 東芝エネルギーシステムズ株式会社 Hydroelectric power station operation schedule generation device and hydroelectric power station operation schedule generation method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007282431A (en) * 2006-04-10 2007-10-25 Chugoku Electric Power Co Inc:The Hydro-electric power generation planning method and hydro-electric power generation planning device
JP4514726B2 (en) * 2006-04-10 2010-07-28 中国電力株式会社 Hydroelectric power generation plan creation method and hydroelectric power generation plan creation device
JP2009153275A (en) * 2007-12-19 2009-07-09 Chugoku Electric Power Co Inc:The Apparatus for calculating generated power
JP2009223692A (en) * 2008-03-17 2009-10-01 Chugoku Electric Power Co Inc:The Operation support system, operation support method and program for water storage facility,
JP2010044551A (en) * 2008-08-12 2010-02-25 Chugoku Electric Power Co Inc:The Device and program for calculating water type power generation output
TWI490811B (en) * 2008-12-19 2015-07-01 Chugoku Electric Power Support facilities for storage facilities, use of reservoir support facilities and support facilities for storage facilities
JP2010165346A (en) * 2008-12-19 2010-07-29 Chugoku Electric Power Co Inc:The System for aiding operation of reservoir facility, method for aiding operation of reservoir facility, and program
JP2010211527A (en) * 2009-03-10 2010-09-24 Chugoku Electric Power Co Inc:The Inflow prediction system, inflow prediction method, and program
JP2010237745A (en) * 2009-03-30 2010-10-21 Tokyo Gas Co Ltd Method and device for optimizing energy system, and program
JP2011065379A (en) * 2009-09-16 2011-03-31 Chugoku Electric Power Co Inc:The Operation support system, operation support method, and program for water storage facility
JP2011170808A (en) * 2010-02-22 2011-09-01 Chugoku Electric Power Co Inc:The System and method for support of operation in water storage facility, and program
JP2011170807A (en) * 2010-02-22 2011-09-01 Chugoku Electric Power Co Inc:The System and method for support of operation in water storage facility, and program
JP2011170806A (en) * 2010-02-22 2011-09-01 Chugoku Electric Power Co Inc:The System and method for support of operation in water storage facility, and program
JP2012256360A (en) * 2010-02-22 2012-12-27 Chugoku Electric Power Co Inc:The Operation supporting system, operation supporting method, and program for water storage facility
KR102042786B1 (en) * 2012-09-13 2019-11-08 한국전력공사 Apparatus for calculating power generating available time and method for operating thereof
KR20140035112A (en) * 2012-09-13 2014-03-21 한국전력공사 Apparatus for calculating power generating available time and method for operating thereof
JP2015125665A (en) * 2013-12-27 2015-07-06 株式会社日立製作所 Water system planning apparatus and water system planning method
CN104537217A (en) * 2014-12-17 2015-04-22 东南大学 Optimization method of spectral power distribution of illuminant and optimization method of spectral power distribution of displayer backlight
CN104537217B (en) * 2014-12-17 2017-04-26 青岛海信电器股份有限公司 Optimization method of spectral power distribution of illuminant and optimization method of spectral power distribution of displayer backlight
JP2019169064A (en) * 2018-03-26 2019-10-03 東芝エネルギーシステムズ株式会社 Output distribution apparatus of hydroelectric power station and hydroelectric power generation system
JP7023766B2 (en) 2018-03-26 2022-02-22 東芝エネルギーシステムズ株式会社 Hydropower plant output distribution device and hydropower system
JP2023100054A (en) * 2022-01-05 2023-07-18 東芝エネルギーシステムズ株式会社 Hydroelectric power station operation schedule generation device and hydroelectric power station operation schedule generation method
JP7362793B2 (en) 2022-01-05 2023-10-17 東芝エネルギーシステムズ株式会社 Hydropower plant operation plan generation device and hydropower plant operation plan generation method

Similar Documents

Publication Publication Date Title
JP2005285032A (en) Daily power generation planning system for hydroelectric power station group
Zhuo et al. Incorporating massive scenarios in transmission expansion planning with high renewable energy penetration
Dorfner et al. Large-scale district heating network optimization
Cai et al. Piece-by-piece approach to solving large nonlinear water resources management models
Ruzic et al. A flexible approach to short-term hydro-thermal coordination. I. Problem formulation and general solution procedure
CN104123589A (en) Short-term optimized dispatching method for cascade hydropower station
CN107844864A (en) A kind of mixed-integer nonlinear programming model of Solving Hydropower Unit Commitment Problem
CN107609679A (en) The preferred method for drafting of multi-parameter and system of a kind of annual-storage reservoir power generation dispatching figure
Zhao et al. A MILP based framework for the hydro unit commitment considering irregular forbidden zone related constraints
CN104538993A (en) Cascaded automatic generation control method for hydropower station group
Wang et al. Quarter-hourly operation of large-scale hydropower reservoir systems with prioritized constraints
JP2017050972A (en) Power generation plan creation apparatus, power generation plan creation program, and power generation plan creation method
CN105162116B (en) A kind of section economic load dispatching Nonlinear Dual optimization method of the solution containing wind-powered electricity generation
CN106447124A (en) Time-sharing electricity price pricing method based on control parameters and feedback adjustment
Wang Short-term generation scheduling model of Fujian hydro system
CN115566680B (en) New energy power system time sequence production simulation operation optimization method and device
JPH11215702A (en) Apparatus for preparing supply and demand planning in power system
CN104993503A (en) Island microgrid frequency control method
CN108075494A (en) A kind of Unit Combination method a few days ago taken into account new energy consumption and performed with transaction
JPH1031504A (en) Automatic preparation method for optimum production schedule and optimum production schedule preparation device
JP2005031821A (en) Hydroelectric power station operation plan preparing device, method, and program
CN110414721B (en) Power plant daily power generation plan decomposition method based on electric power spot market price
Pîrăianu et al. Development of a decision system support based on genetic algorithms for the optimal operation of hydroelectric power plants on the day ahead market
Trawicki et al. Hybrid GA-MIL algorithm for optimization of integrated quality and quantity in water distribution systems
Read et al. Constructive dual DP for reservoir optimization

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605