JP2010043969A - Steam separator, and boiling water reactor equipped therewith - Google Patents

Steam separator, and boiling water reactor equipped therewith Download PDF

Info

Publication number
JP2010043969A
JP2010043969A JP2008208492A JP2008208492A JP2010043969A JP 2010043969 A JP2010043969 A JP 2010043969A JP 2008208492 A JP2008208492 A JP 2008208492A JP 2008208492 A JP2008208492 A JP 2008208492A JP 2010043969 A JP2010043969 A JP 2010043969A
Authority
JP
Japan
Prior art keywords
stage
gas
steam
liquid
inner cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008208492A
Other languages
Japanese (ja)
Inventor
Koji Nishida
浩二 西田
Kenichi Katono
健一 上遠野
Kiyoshi Fujimoto
清志 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2008208492A priority Critical patent/JP2010043969A/en
Publication of JP2010043969A publication Critical patent/JP2010043969A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Separating Particles In Gases By Inertia (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steam separator capable of reducing a pressure loss, while keeping high steam separation performance, and a boiling water reactor equipped with the steam separator and having improved reactor power and cost benefit. <P>SOLUTION: This steam separator having a multistage constitution, by connecting at least the second stage steam separation part 4 over a first stage steam separation part 3 is equipped with a hub 9 formed in a rod shape as a diffuser 6 or a swirler 12 provided in the first stage inner cylinder 7 and arranged on the center of the first stage inner cylinder 7; the first swirl vane 8 for imparting a centrifugal force to the outer peripheral part of a vapor-liquid mixture flow flowing inside the first stage inner cylinder 7; and the second swirl vane 10 for imparting centrifugal force to the inner peripheral part. The second swirl vane 10 is constituted so as to impart a larger centrifugal force to the vapor-liquid mixture flow than the centrifugal force imparted to the vapor-liquid mixture flow by the first swirl vane 8. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、原子炉で発生した気液混合流から冷却水を分離する気水分離器と、原子炉圧力容器内に炉心と複数の気水分離器とを配置した沸騰水型原子炉に関する。   The present invention relates to a steam separator for separating cooling water from a gas-liquid mixed flow generated in a nuclear reactor, and a boiling water reactor in which a reactor core and a plurality of steam separators are arranged in a reactor pressure vessel.

原子力発電プラントでは、蒸気タービン翼部分でのエロージョンやコロージョン現象をなくしてタービンの健全性を維持するため、炉心の発熱で発生した気液混合流から冷却水を分離する気水分離器と、分離された蒸気に含まれる液滴を除去する蒸気乾燥器とで構成される気水分離システムが使用されており、蒸気に含まれる液滴量を一定値以下にして蒸気タービンに供給する。   In a nuclear power plant, in order to maintain the soundness of the turbine by eliminating the erosion and corrosion phenomenon in the steam turbine blade part, an air-water separator that separates the cooling water from the gas-liquid mixed flow generated by the heat generation of the core, and the separation A steam-water separation system configured with a steam dryer that removes droplets contained in the generated steam is used, and the amount of droplets contained in the steam is set to a predetermined value or less to be supplied to the steam turbine.

図5は、気水分離器を用いた改良型沸騰水型原子炉の一例を示す図であり、原子炉圧力容器101内には冷却水が所定の水位まで満たされ、シュラウド102内に炉心103が設置されている。炉心103の発熱で発生した蒸気は、冷却水と混合状態で上部プレナム104を経由し、スタンドパイプ2によりシュラウドヘッド105に多数設置された気水分離器1に流入して液滴を含む蒸気と冷却水に分離される。   FIG. 5 is a diagram showing an example of an improved boiling water reactor using a steam / water separator. The reactor pressure vessel 101 is filled with cooling water up to a predetermined level, and the core 103 is placed in the shroud 102. Is installed. Steam generated by heat generation in the core 103 is mixed with cooling water through the upper plenum 104 and flows into the steam-water separator 1 installed in a large number on the shroud head 105 by the standpipe 2 and contains steam containing droplets. Separated into cooling water.

液滴を含む蒸気は、蒸気乾燥器106で液滴が除去された上で主蒸気管107を経由して、図示していない蒸気タービンに供給されて発電機を駆動する。   The steam containing the droplets is removed by the steam dryer 106 and then supplied to a steam turbine (not shown) via the main steam pipe 107 to drive the generator.

このとき、蒸気乾燥器106で除去された液滴は、蒸気乾燥器スカート108と原子炉圧力容器101との間から下方にある冷却水中に戻される。一方、発電機の駆動に使用された蒸気は、図示していない復水器で凝縮され、給水加熱器で加熱された後、給水管109から原子炉圧力容器101内に給水として戻される。   At this time, the droplets removed by the steam dryer 106 are returned to the cooling water below from between the steam dryer skirt 108 and the reactor pressure vessel 101. On the other hand, the steam used to drive the generator is condensed by a condenser (not shown), heated by a feed water heater, and then returned as feed water from the feed water pipe 109 into the reactor pressure vessel 101.

気水分離器1で分離された冷却水は、給水管109から供給される給水と混合された上でダウンカマ110内を降下し、インターナルポンプ111にて運動エネルギーを与えられ、下部プレナム112を経由して炉心103に再循環される。   The cooling water separated by the steam separator 1 is mixed with the feed water supplied from the feed water pipe 109 and then descends in the downcomer 110 and is given kinetic energy by the internal pump 111 to pass through the lower plenum 112. It is recirculated to the core 103 via.

ところで、沸騰水型原子炉に適用される気水分離器1は、気水分離部が多段構成されているものを使用し、これにより必要な気水分離性能が確保出来るようにするのが一般的である(例えば、特許文献1参照。)。この多段構成の気水分離器では、大略、次のようにして気水分離が行われる。   By the way, the steam-water separator 1 applied to the boiling water reactor uses a steam-water separator having a multi-stage structure, so that necessary steam-water separation performance can be ensured. (For example, refer to Patent Document 1). In this multi-stage steam / water separator, steam / water separation is generally performed as follows.

原子炉で発生した蒸気と冷却水との気液混合流は、気水分離器の下端に位置するスタンドパイプに流入し、次いでスタンドパイプの上端に接続されるディフューザ内に配置されたハブ及びその周囲に固定設置された複数の旋回羽根からなるスワラーを通過することにより遠心力を付与されて旋回流となる。さらに、旋回流になった気液混合流は、ディフューザの上端に接続される第1段内筒に流入し、密度が高い冷却水は外周側に液膜を形成して、中心側の液滴を含む蒸気から分離される。分離された蒸気は、第1段ピックオフリングの内側を通過し、液膜の大部分は第1段ピックオフリングの外側を通過して第1段外筒により外部に排水される。   The gas-liquid mixed flow of steam and cooling water generated in the nuclear reactor flows into the stand pipe located at the lower end of the steam separator, and then the hub disposed in the diffuser connected to the upper end of the stand pipe and its By passing through a swirler composed of a plurality of swirl blades fixedly installed around, a centrifugal force is applied to form a swirl flow. Further, the gas-liquid mixed flow that has become a swirling flow flows into the first stage inner cylinder connected to the upper end of the diffuser, and the cooling water having a high density forms a liquid film on the outer peripheral side to form a droplet on the center side. Separated from the vapor containing. The separated steam passes through the inside of the first stage pick-off ring, and most of the liquid film passes through the outside of the first stage pick-off ring and is drained to the outside by the first stage outer cylinder.

第1段ピックオフリングを通過した液滴を含む蒸気は、遠心力を有しており、第1段気水分離部と同様の構成である第2段気水分離部に流入して遠心力により蒸気から液滴が分離され外部に排水される。このように、従来の気水分離器は必要な気水分離性能が確保できるように気水分離部を多段で設置する構成となっている。   The steam containing droplets that have passed through the first stage pick-off ring has a centrifugal force and flows into the second stage steam-water separator having the same configuration as that of the first-stage steam-water separator. Droplets are separated from the steam and drained to the outside. Thus, the conventional steam separator is configured to install the steam / water separator in multiple stages so that the necessary steam / water separation performance can be ensured.

一方、近年においては、原子炉炉心の熱的な余裕を確保しながら発電量を大きくできるようにするため、冷却水の再循環経路中に配置される気水分離器について、圧力損失を低減することが要望されている。   On the other hand, in recent years, in order to increase the amount of power generation while ensuring the thermal margin of the reactor core, the pressure loss is reduced with respect to the steam separator disposed in the cooling water recirculation path. It is requested.

気水分離器の圧力損失を低減する公知技術としては、スタンドパイプと第1段内筒との間にディフーサがなく、流速が相対的に低い第1段内筒にスワラーを設置することにより圧力損失を低減するもの(例えば、特許文献2参照。)、スワラーを第1段円筒内に設け、ハブ径を小さくすることにより圧力損失を大幅に低減するもの(例えば、特許文献3参照。)、及び気液分離性能を維持しながら、圧力損失を低減できるハブ径及びスワラー旋回羽根の出口角度等の寸法・形状について規定したもの(例えば、特許文献4参照。)がある。
特開平10―197678号公報 実開平8―1361号公報 特開2000−153118号公報 特開2003−114293号公報
As a known technique for reducing the pressure loss of the steam / water separator, there is no diffuser between the stand pipe and the first stage inner cylinder, and pressure is set by installing a swirler in the first stage inner cylinder having a relatively low flow rate. Those that reduce the loss (for example, see Patent Document 2), those that provide a swirler in the first-stage cylinder and reduce the hub diameter to significantly reduce the pressure loss (for example, see Patent Document 3). In addition, there are those that define the dimensions and shapes such as the hub diameter and the outlet angle of the swirler swirl blade that can reduce the pressure loss while maintaining the gas-liquid separation performance (see, for example, Patent Document 4).
JP-A-10-197678 Japanese Utility Model Publication No. 8-1361 JP 2000-153118 A JP 2003-114293 A

しかしながら、特許文献2に開示の技術は、加圧水型原子炉の蒸気発生器を対象としており、ディフューザや直径の細いスタンドパイプを備える構成ではないので、沸騰水型原子炉や改良型沸騰水型原子炉には適用することができない。また、特許文献3に開示の技術は、ハブ径を小さくするほど、またスワラー羽根の出口角度を小さくするほど圧力損失を低減することができるが、その反面、気液混合流に与える遠心力が小さくなるため、気水分離性能が低下する。さらに、特許文献4に開示の技術は、ハブ径をある大きさ以上に維持しながら気液分離性能の維持と圧力損失の低減とを図るものであるので、ハブ径の小径化を図ることが困難で、ハブ径の小径化による圧力損失の低減に改良の余地がある。   However, since the technique disclosed in Patent Document 2 is intended for a steam generator of a pressurized water reactor and is not configured to include a diffuser or a stand pipe with a small diameter, a boiling water reactor or an improved boiling water atom It cannot be applied to the furnace. The technique disclosed in Patent Document 3 can reduce pressure loss as the hub diameter is reduced and the outlet angle of the swirler blades is reduced. However, on the other hand, the centrifugal force applied to the gas-liquid mixed flow is reduced. Since it becomes small, air-water separation performance falls. Furthermore, since the technique disclosed in Patent Document 4 is intended to maintain the gas-liquid separation performance and reduce the pressure loss while maintaining the hub diameter at a certain size or more, the hub diameter can be reduced. It is difficult and there is room for improvement in reducing pressure loss by reducing the hub diameter.

本発明は、このような従来技術の実情に鑑みてなされたものであり、その第1の目的は、ハブ径の小径化による圧力損失のより一層の低減を図りつつ、気液分離性能の低下抑制を可能とすることにある。   The present invention has been made in view of the situation of the prior art as described above, and a first object of the present invention is to reduce the gas-liquid separation performance while further reducing the pressure loss by reducing the hub diameter. It is to enable suppression.

また、本発明の第2の目的は、気水分離器の圧力損失を低減すると共に高い気水分離性能を維持して、原子炉出力の向上及び経済性の向上を可能とする沸騰水型原子炉を提供することにある。   In addition, the second object of the present invention is to reduce the pressure loss of the steam separator and maintain high steam / water separation performance to improve the reactor power and improve the economic efficiency. To provide a furnace.

本発明は、前記第1の目的を達成するため、第1に、気液混合流の流れ方向に沿って複数段の気水分離部を配置してなり、最も上流側に配置される第1段の気水分離部は、ディフューザを介してスタンドパイプの上端に接続された円筒状の第1段内筒と、該第1段内筒の下方に配置され、気液混合流に遠心力を与えて、気液混合流から分離された液体で該第1段内筒の内面に液膜を形成するスワラーと、前記第1段内筒の上方に配置され、前記第1段内筒の内面に形成された液膜を気液混合流から分離する第1段ピックオフリングと、前記第1段内筒の外部を取り囲むように配置され、前記第1段外筒との間に、前記第1段ピックオフリングにより気液混合流から分離された液膜を排出するための第1段排水流路を構成する第1段外筒とからなる気水分離器において、前記スワラーは、棒状に形成され、前記第1段内筒の中心に配置されるハブと、前記第1段内筒の内部を流れる気液混合流の外周部分に遠心力を与える第1旋回羽根と、内周部分に遠心力を与える第2旋回羽根とを備え、前記第2旋回羽根は、前記第1旋回羽根が気液混合流に与える遠心力よりも大きな遠心力を気液混合流に与えるという構成にした。   In order to achieve the first object, according to the present invention, firstly, a plurality of stages of steam-water separators are arranged along the flow direction of the gas-liquid mixed flow, and the first arranged at the most upstream side. The stage air-water separator is disposed below the first stage inner cylinder connected to the upper end of the standpipe via a diffuser and a centrifugal force is applied to the gas-liquid mixed flow. A swirler that forms a liquid film on the inner surface of the first stage inner cylinder with the liquid separated from the gas-liquid mixed flow; and an inner surface of the first stage inner cylinder that is disposed above the first stage inner cylinder. The first stage pick-off ring that separates the liquid film formed from the gas-liquid mixed flow and the first stage inner cylinder is disposed so as to surround the first stage outer cylinder, and the first stage outer cylinder is disposed between the first stage outer cylinder and the first stage outer cylinder. From the first stage outer cylinder constituting the first stage drainage flow path for discharging the liquid film separated from the gas-liquid mixed flow by the stage pick-off ring In the steam separator, the swirler is formed in a rod-like shape, and a hub disposed at the center of the first stage inner cylinder and a peripheral part of the gas-liquid mixed flow flowing inside the first stage inner cylinder are centrifuged. A first swirl vane that applies force and a second swirl vane that imparts centrifugal force to the inner peripheral portion, and the second swirl vane has a larger centrifugal force than the centrifugal force that the first swirl vane imparts to the gas-liquid mixed flow. The force was applied to the gas-liquid mixed flow.

本構成によると、ハブを棒状に形成するので、ハブ径を最小限まで小径化でき、気液分離器の圧力損失を最大限まで低減することができる。また、スワラーに第1及び第2の旋回羽根を備え、第2旋回羽根が気液混合流に与える遠心力を、第1旋回羽根が気液混合流に与える遠心力よりも大きくするので、気液混合流の中心部分に含まれる冷却水を効率良く第1段内筒の内面に向かわせることができ、第1段内筒の内面に液膜を形成することができて、高い気水分離性能を発揮することができる。   According to this configuration, since the hub is formed in a rod shape, the hub diameter can be reduced to the minimum, and the pressure loss of the gas-liquid separator can be reduced to the maximum. In addition, the swirler includes the first and second swirl vanes, and the centrifugal force that the second swirl vane imparts to the gas-liquid mixed flow is greater than the centrifugal force that the first swirl vane imparts to the gas-liquid mixed flow. Cooling water contained in the central part of the liquid mixture flow can be efficiently directed to the inner surface of the first stage inner cylinder, and a liquid film can be formed on the inner surface of the first stage inner cylinder, thus achieving high air-water separation. Performance can be demonstrated.

本発明は第2に、前記第1の気水分離器において、前記スワラーは、前記棒状に形成されたハブと、該ハブの外周にこれと同心に配置された円筒体と、該円筒体の外面に形成された第1旋回羽根と、前記ハブの外面と前記円筒体の内面との間に形成された第2旋回羽根とからなるという構成にした。   Secondly, in the first steam separator, the swirler includes a hub formed in a rod shape, a cylindrical body arranged concentrically on the outer periphery of the hub, and the cylindrical body. The first swirl vane is formed on the outer surface, and the second swirl vane is formed between the outer surface of the hub and the inner surface of the cylindrical body.

本構成によると、第2旋回羽根の外周に円筒体を備えるので、ハブ及び第2旋回羽根に対する第1旋回羽根の取り付けを容易化することができ、スワラーの製造を容易なものにすることができる。   According to this configuration, since the cylindrical body is provided on the outer periphery of the second swirl vane, the first swirl blade can be easily attached to the hub and the second swirl vane, and the swirler can be easily manufactured. it can.

本発明は第3に、前記第1の気水分離器において、前記スワラーは、前記棒状に形成されたハブと、該ハブの外面に形成された第2旋回羽根と、該第2旋回羽根の先端から外向きに形成された第1旋回羽根とからなるという構成にした。   Thirdly, according to the present invention, in the first steam separator, the swirler includes a hub formed in the rod shape, a second swirling blade formed on an outer surface of the hub, and a second swirling blade. The first swirl vane is formed outward from the tip.

本構成によると、円筒体を有しないので、円筒体を有する場合に比べて、気液分離器の圧力損失を低減することができると共に、第2旋回羽根側の流路から第1旋回羽根側の流路への気液混合流の移動が容易となるので、気液分離を促進することができる。   According to this configuration, since the cylindrical body is not provided, the pressure loss of the gas-liquid separator can be reduced as compared with the case where the cylindrical body is provided, and the first swirl blade side from the flow path on the second swirl blade side. Since the movement of the gas-liquid mixed flow into the flow path becomes easy, gas-liquid separation can be promoted.

本発明は第4に、前記第1乃至第3の気水分離器において、前記第1旋回羽根の先端が、前記第1段内筒の内面に接合されているという構成にした。   Fourthly, according to the present invention, in the first to third air / water separators, a tip end of the first swirl vane is joined to an inner surface of the first stage inner cylinder.

本構成によると、スワラーをディヒューザの大径部と等しい直径を有する第1段内筒の内面に備えるので、スワラーをディヒューザ内に備える場合に比べて、気液分離器の圧力損失を低減することができる。   According to this configuration, since the swirler is provided on the inner surface of the first stage inner cylinder having the same diameter as the large diameter portion of the diffuser, the pressure loss of the gas-liquid separator can be reduced as compared with the case where the swirler is provided in the diffuser. Can do.

本発明は第5に、前記第1乃至第3の気水分離器において、前記第1旋回羽根の先端が、前記ディフューザの内面に接合されているという構成にした。   According to the fifth aspect of the present invention, in the first to third air / water separators, the tip of the first swirl vane is joined to the inner surface of the diffuser.

本構成によると、スワラーをディヒューザ内に備えるので、気液混合流に遠心力を付与しやすく、高い気水分離性能を発揮できると共に、スワラーの小型化及び軽量化を図ることができ、気水分離器の耐震性を高めることができる。   According to this configuration, since the swirler is provided in the diffuser, it is easy to apply a centrifugal force to the gas-liquid mixed flow, and high steam / water separation performance can be achieved, and the swirler can be made smaller and lighter. The seismic resistance of the separator can be increased.

本発明は第6に、前記第1乃至第5の気水分離器において、前記ハブは、気液混合流の流れ方向に関して、上流側の端部の曲率半径が小さく、下流側の端部の曲率半径が大きい流線形に形成されているという構成にした。   Sixthly, in the first to fifth steam separators according to the present invention, the hub has a small radius of curvature at the upstream end with respect to the flow direction of the gas-liquid mixed flow, and the hub at the downstream end. The configuration is such that it has a streamlined shape with a large radius of curvature.

本構成によると、棒状のハブを流線型に形成したので、ハブが気液混合流の抵抗要因になりにくく、気液分離器の圧力損失を低減することができる。   According to this configuration, since the rod-shaped hub is formed in a streamline shape, the hub hardly becomes a resistance factor of the gas-liquid mixed flow, and the pressure loss of the gas-liquid separator can be reduced.

本発明は第7に、冷却水が所定の水位まで満たされた原子炉圧力容器と、シュラウド内に設置された炉心と、炉心の発熱で発生した気液混合流を液滴を含む蒸気と冷却水とに分離する気水分離器と、気水分離器にて分離された液滴を含む蒸気から液滴を除去する蒸気乾燥器とを備えた沸騰水型原子炉において、前記気水分離器として、気液混合流の流れ方向に沿って複数段の気水分離部を配置してなり、最も上流側に配置される第1段の気水分離部は、ディフューザを介してスタンドパイプの上端に接続された円筒状の第1段内筒と、該第1段内筒の下方に配置され、気液混合流に遠心力を与えて、気液混合流から分離された液体で該第1段内筒の内面に液膜を形成するスワラーと、前記第1段内筒の上方に配置され、前記第1段内筒の内面に形成された液膜を気液混合流から分離する第1段ピックオフリングと、前記第1段内筒の外部を取り囲むように配置され、前記第1段外筒との間に、前記第1段ピックオフリングにより気液混合流から分離された液膜を排出するための第1段排水流路を構成する第1段外筒とからなり、前記スワラーは、棒状に形成され、前記第1段内筒の中心に配置されるハブと、前記第1段内筒の内部を流れる気液混合流の外周部分に遠心力を与える第1旋回羽根と、内周部分に遠心力を与える第2旋回羽根とを備え、前記第2旋回羽根は、前記第1旋回羽根が気液混合流に与える遠心力よりも大きな遠心力を気液混合流に与えるものを備えるという構成にした。   Seventh, the present invention provides a reactor pressure vessel in which cooling water is filled to a predetermined water level, a core installed in the shroud, a gas-liquid mixed flow generated by heat generation of the core, and steam containing droplets and cooling In a boiling water reactor comprising a steam-water separator that separates into water and a steam dryer that removes droplets from steam containing droplets separated by the steam-water separator, the steam-water separator As described above, a plurality of stages of steam / water separation sections are arranged along the flow direction of the gas-liquid mixed flow, and the first stage steam / water separation section disposed on the most upstream side is connected to the upper end of the stand pipe via the diffuser. A cylindrical first-stage inner cylinder connected to the first-stage inner cylinder, the first-stage inner cylinder being disposed below the first-stage inner cylinder, applying a centrifugal force to the gas-liquid mixed flow, and the liquid separated from the gas-liquid mixed flow A swirler that forms a liquid film on the inner surface of the inner cylinder, and an inner surface of the first inner cylinder that is disposed above the first inner cylinder. The first stage pick-off ring that separates the formed liquid film from the gas-liquid mixed flow and the first stage outer cylinder are disposed so as to surround the first stage outer cylinder, and the first stage outer cylinder is disposed between the first stage outer cylinder and the first stage outer cylinder. A first-stage outer cylinder constituting a first-stage drainage channel for discharging a liquid film separated from the gas-liquid mixed flow by a pick-off ring, and the swirler is formed in a rod shape, A hub disposed at the center of the cylinder, a first swirl vane that applies centrifugal force to the outer peripheral part of the gas-liquid mixed flow that flows inside the first stage inner cylinder, and a second swirl vane that applies centrifugal force to the inner peripheral part The second swirl vane is configured to include a component that applies a centrifugal force to the gas-liquid mixed flow larger than the centrifugal force that the first swirl vane imparts to the gas-liquid mixed flow.

上述のように、本発明に係る気水分離器は、ハブを棒状に形成するので、ハブ径を最小限まで小径化できて、気液分離器の圧力損失を最大限まで低減できると共に、スワラーに第1及び第2の旋回羽根を備え、第2旋回羽根が気液混合流に与える遠心力を、第1旋回羽根が気液混合流に与える遠心力よりも大きくするので、気液混合流の中心部分に含まれる冷却水を効率良く第1段内筒の内面に向かわせることができて、高い気水分離性能を発揮することができる。よって、この気水分離器を備えた沸騰水型原子炉は、気水混合流の流量の増加を図ることができて、出力の向上及び経済性の向上を図ることができる。   As described above, since the steam-water separator according to the present invention has a hub-like shape, the hub diameter can be reduced to the minimum, the pressure loss of the gas-liquid separator can be reduced to the maximum, and the swirler can be reduced. The first and second swirl vanes have a centrifugal force applied to the gas-liquid mixed flow by the second swirl blades greater than the centrifugal force imparted to the gas-liquid mixed flow by the first swirl vane. The cooling water contained in the central portion of the first can be efficiently directed toward the inner surface of the first stage inner cylinder, and high steam-water separation performance can be exhibited. Therefore, the boiling water reactor equipped with this steam separator can increase the flow rate of the steam-water mixed flow, and can improve the output and the economy.

発明の気水分離器は、ハブを棒状に形成すると共に、スワラーに第1及び第2の旋回羽根を備え、第2旋回羽根が気液混合流に与える遠心力を、第1旋回羽根が気液混合流に与える遠心力よりも大きくするので、気液分離器の圧力損失を低減できると共に、高い気水分離性能を発揮することができる。   The air / water separator according to the invention has a hub formed in a rod shape, and a swirler having first and second swirl vanes, and the second swirl vanes generate centrifugal force applied to the gas-liquid mixed flow by the first swirl vanes. Since it is larger than the centrifugal force applied to the liquid mixture flow, the pressure loss of the gas-liquid separator can be reduced, and high gas-water separation performance can be exhibited.

本発明の沸騰水型原子炉は、気水分離器に備えられるスワラーのハブを棒状に形成すると共に、スワラーに第1及び第2の旋回羽根を備え、第2旋回羽根が気液混合流に与える遠心力を、第1旋回羽根が気液混合流に与える遠心力よりも大きくするので、気水分離器の気水分離性能を高レベルに維持しつつ、圧力損失を大幅に低減することができ、気水混合流の流量の増加、ひいては沸騰水型原子炉の出力の向上及び経済性の向上を図ることができる。   The boiling water reactor of the present invention forms a swirler hub provided in a steam separator into a rod shape, and includes a swirler with first and second swirl vanes, and the second swirl vanes are in a gas-liquid mixed flow. Since the centrifugal force to be applied is made larger than the centrifugal force that the first swirl vane gives to the gas-liquid mixed flow, the pressure loss can be greatly reduced while maintaining the steam-water separation performance of the steam-water separator at a high level. It is possible to increase the flow rate of the gas-water mixed flow, thereby improving the output of the boiling water reactor and improving the economy.

以下、本発明に係る気水分離器及び沸騰水型原子炉の第1実施形態を、図1を参照して説明する。図1は第1実施形態に係る気水分離器の説明図である。なお、第1実施形態に係る沸騰水型原子炉は、図5に示した改良型沸騰水型原子炉に図1の気水分離器を適用したものである。   Hereinafter, a first embodiment of a steam-water separator and a boiling water reactor according to the present invention will be described with reference to FIG. FIG. 1 is an explanatory diagram of a steam separator according to the first embodiment. The boiling water reactor according to the first embodiment is obtained by applying the steam-water separator of FIG. 1 to the improved boiling water reactor shown in FIG.

図1(a)に示すように、第1実施形態に係る気水分離器1は、第1段気水分離部3と第2段気水分離部4と、第3段気水分離部5とからなる3段構成になっている。第1段気水分離部3は、シュラウドヘッド105上に設置され、上部プレナム104(図5参照)内に連通したスタンドパイプ2の上端に接続されたディフューザ6を備えている。ディフューザ6の上端には第1段内筒7が接続され、この第1段内筒7には複数の第1旋回羽根8が接合されている。そして、この第1旋回羽根とハブ9との間には図1(b),(c)に示すらせん状の第2旋回羽根10が円筒体11を介して第1旋回羽根と接合されたスワラー12となる。第1旋回羽根8の内側に第2旋回羽根10を設けることにより、気液分離性能を維持しながら、更に低圧損化を図っている。   As shown in FIG. 1A, the steam / water separator 1 according to the first embodiment includes a first-stage steam / water separator 3, a second-stage steam / water separator 4, and a third-stage steam / water separator 5. It has a three-stage configuration consisting of The first-stage steam-water separation unit 3 includes a diffuser 6 that is installed on the shroud head 105 and connected to the upper end of the stand pipe 2 that communicates with the upper plenum 104 (see FIG. 5). A first stage inner cylinder 7 is connected to the upper end of the diffuser 6, and a plurality of first swirl vanes 8 are joined to the first stage inner cylinder 7. A swirler in which a spiral second swirl blade 10 shown in FIGS. 1B and 1C is joined to the first swirl blade via a cylindrical body 11 between the first swirl blade and the hub 9. 12 By providing the second swirl vane 10 inside the first swirl vane 8, further reducing the low pressure loss while maintaining the gas-liquid separation performance.

この第1段内筒7の外周には、周方向に配置した複数の仕切り板13を介して第1段外筒14が設置されている。そして、第1段内筒7と第1段外筒14との間には、仕切り板13によって流路が形成され、第1段外筒14の下端は下方に開口している。   A first-stage outer cylinder 14 is installed on the outer periphery of the first-stage inner cylinder 7 via a plurality of partition plates 13 arranged in the circumferential direction. A flow path is formed by the partition plate 13 between the first stage inner cylinder 7 and the first stage outer cylinder 14, and the lower end of the first stage outer cylinder 14 opens downward.

第2段気水分離部4は、第1段ピックオフリング15の上に組み立てられた第2段内筒16、第2段外筒17及び第2段ピックオフリング18を有し、第2段外筒17の下端には、第2段排水口が設けてある。   The second stage steam-water separation unit 4 includes a second stage inner cylinder 16, a second stage outer cylinder 17, and a second stage pick off ring 18 assembled on the first stage pick-off ring 15. A second-stage drain port is provided at the lower end of the cylinder 17.

第3段気水分離部5は、第2段ピックオフリング18上に組み立てられた第3段内筒19、第3段外筒20及び第3段ピックオフリング21を有し、第3段外筒18の下端には、第3段排水口が設けてある。   The third-stage steam-water separation unit 5 includes a third-stage inner cylinder 19, a third-stage outer cylinder 20, and a third-stage pick-off ring 21 assembled on the second-stage pick-off ring 18. At the lower end of 18, a third stage drainage port is provided.

次に、以上のように構成された本実施形態に係る気水分離器1内を流れる気液混合流の動作について説明する。蒸気と冷却水との気液混合流が、上部プレナム104からシュラウドヘッド105に接続したスタンドパイプ2に流入し、第1段内筒7内部に設置され第1旋回羽根8、第2旋回羽根10及びハブ9から構成されるスワラー12に供給される。気液混合流の外周部分は、第1旋回羽根8にて遠心力を付与され、中央部分は、第2旋回羽根10にて第1旋回羽根8よりも大きな遠心力が付与され、第1旋回羽根8の流路からの流れに合流して第1段内筒内7で蒸気中の液滴から液膜への変換が促進される。分離された液膜の80〜90%以上は、第1段ピックオフリング15で分離され、第1内筒内側7と第1外筒14外側の圧力差により第1段内筒7と第1段外筒14の間を流下し、排水される。第1段ピックオフリング15を通過した液滴を含んだ蒸気及び液膜は、第2段内筒16に流入し、遠心力により第1段内筒の時と同じ様に液滴から液膜への変換が促進され、液膜は第2段ピックオフリング18で液膜が分離される。分離された液膜は、第2内筒16内側と第2外筒17外側の圧力差により第2段内筒16と第2段外筒17の間を流下して第2段排水口から排出され、第1段外筒14の外面に沿って流下する。このとき、排水とともに第2段排水口から流出した蒸気は気水分離器1の外部を上昇する。   Next, the operation of the gas-liquid mixed flow flowing in the steam-water separator 1 according to this embodiment configured as described above will be described. A gas-liquid mixed flow of steam and cooling water flows from the upper plenum 104 into the stand pipe 2 connected to the shroud head 105 and is installed inside the first stage inner cylinder 7 so as to have the first swirl blade 8 and the second swirl blade 10. And a swirler 12 composed of the hub 9. A centrifugal force is applied to the outer peripheral portion of the gas-liquid mixed flow by the first swirl vane 8, and a centrifugal force greater than that of the first swirl blade 8 is imparted to the central portion by the second swirl blade 10, The flow from the flow path of the blade 8 joins, and the conversion from the droplet in the vapor to the liquid film is promoted in the first stage inner cylinder 7. 80 to 90% or more of the separated liquid film is separated by the first stage pick-off ring 15, and the first stage inner cylinder 7 and the first stage are separated by the pressure difference between the first inner cylinder inner side 7 and the first outer cylinder 14 outer side. It flows down between the outer cylinders 14 and is drained. The vapor and liquid film containing droplets that have passed through the first-stage pick-off ring 15 flow into the second-stage inner cylinder 16, and from the droplets to the liquid film in the same manner as in the first-stage inner cylinder by centrifugal force. The liquid film is separated by the second stage pick-off ring 18. The separated liquid film flows down between the second stage inner cylinder 16 and the second stage outer cylinder 17 due to the pressure difference between the inner side of the second inner cylinder 16 and the outer side of the second outer cylinder 17 and is discharged from the second stage drain port. Then, it flows down along the outer surface of the first stage outer cylinder 14. At this time, the steam flowing out from the second-stage drain outlet together with the drainage rises outside the steam / water separator 1.

第2段ピックオフリング18を通過して第3段内筒19に流入する蒸気に含まれる液滴は、遠心力によって第3段内筒19の内壁に付着し、第3段ピックオフリング21で分離され、第3段内筒19内側と第3段外筒20外側の圧力差により第3段内19筒と第3段外筒の間を流下して第3段排水口から排出され、第2段外筒17の外面に沿って流下する。このとき、排水とともに第3段排水口から流出した蒸気は気水分離器1の外部を上昇する。   The droplets contained in the steam that passes through the second stage pick-off ring 18 and flows into the third stage inner cylinder 19 adhere to the inner wall of the third stage inner cylinder 19 by centrifugal force, and are separated by the third stage pick-off ring 21. Due to the pressure difference between the inside of the third stage inner cylinder 19 and the outside of the third stage outer cylinder 20, it flows down between the third stage inner cylinder 19 and the third stage outer cylinder and is discharged from the third stage drain port. It flows down along the outer surface of the stepped outer cylinder 17. At this time, the steam that flows out from the third-stage drain outlet together with the drainage rises outside the steam / water separator 1.

本実施形態の気水分離器におけるスワラー12の詳細を図1(b)及び図1(c)に示す。スワラー12は、第1旋回羽根8、第2旋回羽根10、ハブ9及び円筒体11とで構成される。なお、図(b)においては、8枚の第1旋回羽根8が備えられているが、本発明の要旨は8枚に限定されるものではなく、6枚乃至8枚程度にすればよい。第2旋回羽根10は、円筒11内に設けたらせん状の構造であり、ハブ9は円錐と半球で構成される流線形の下端部9a、円柱状の本体部9b、円錐と半球で構成される流線形の上端部9cで構成されている。第2旋回羽根10は円柱状の本体部9bに設置されている。なお、前記ハブの上端部9cは平坦状にカットしてもよい。また、円筒体11には、円筒体11の内周側から外周側に貫通する切込みを入れることもできる。このようにすると、切込みを通して円筒体11の内外に気液混合流を移動させることができるので、より高い気液分離性能が得られる。   Details of the swirler 12 in the steam separator of the present embodiment are shown in FIG. 1 (b) and FIG. 1 (c). The swirler 12 includes a first swirl vane 8, a second swirl vane 10, a hub 9, and a cylindrical body 11. In FIG. 2B, eight first swirl vanes 8 are provided, but the gist of the present invention is not limited to eight, and may be about six to eight. The second swirl vane 10 has a spiral structure provided in the cylinder 11, and the hub 9 is composed of a streamlined lower end 9a composed of a cone and a hemisphere, a columnar main body 9b, and a cone and a hemisphere. This is composed of a streamlined upper end portion 9c. The 2nd swirl | wing blade 10 is installed in the column-shaped main-body part 9b. The upper end portion 9c of the hub may be cut flat. Further, the cylindrical body 11 can be provided with a notch penetrating from the inner peripheral side of the cylindrical body 11 to the outer peripheral side. If it does in this way, since a gas-liquid mixed stream can be moved to the inside and outside of the cylindrical body 11 through a notch, a higher gas-liquid separation performance can be obtained.

本実施形態に係る気液分離器は、ハブ9を棒状に形成しているので、ハブ径を最小限まで小径化でき、気液分離器の圧力損失を最大限まで低減することができる。また、スワラー12に第1及び第2の旋回羽根8,10を備え、第2旋回羽根10が気液混合流に与える遠心力を、第1旋回羽根8が気液混合流に与える遠心力よりも大きくするので、気液混合流の中心部分に含まれる冷却水を効率良く第1段内筒7の内面に向かわせることができ、第1段内筒7の内面に液膜を形成することができて、高い気水分離性能を発揮することができる。また、本例の気水分離器は、第2旋回羽根10の外周に円筒体11を備えるので、ハブ9及び第2旋回羽根10に対する第1旋回羽根8の取り付けを容易化することができ、スワラーの製造を容易なものにすることができる。さらに、本例の気水分離器は、スワラー12を第1段内筒7の内面に備えるので、スワラー12をディヒューザ6内に備える場合に比べて、気液分離器の圧力損失を低減することができる。   In the gas-liquid separator according to this embodiment, since the hub 9 is formed in a rod shape, the hub diameter can be reduced to the minimum, and the pressure loss of the gas-liquid separator can be reduced to the maximum. Further, the swirler 12 includes first and second swirl vanes 8 and 10, and the centrifugal force that the second swirl blade 10 imparts to the gas-liquid mixed flow is greater than the centrifugal force that the first swirl vane 8 imparts to the gas-liquid mixed flow. Therefore, the cooling water contained in the central portion of the gas-liquid mixed flow can be efficiently directed toward the inner surface of the first stage inner cylinder 7, and a liquid film is formed on the inner surface of the first stage inner cylinder 7. And can exhibit high air-water separation performance. Moreover, since the steam separator of this example is provided with the cylindrical body 11 on the outer periphery of the second swirl vane 10, it is possible to facilitate the attachment of the first swirl vane 8 to the hub 9 and the second swirl vane 10, The swirler can be easily manufactured. Furthermore, since the steam separator of this example is provided with the swirler 12 on the inner surface of the first stage inner cylinder 7, the pressure loss of the gas-liquid separator can be reduced as compared with the case where the swirler 12 is provided in the diffuser 6. Can do.

以下、本発明に係る気水分離器及び沸騰水型原子炉の第2実施形態を、図2を参照して説明する。図2は第2実施形態に係る気水分離器の説明図である。なお、第2実施形態に係る沸騰水型原子炉は、図5に示した改良型沸騰水型原子炉に図1の気水分離器を適用したものである。   Hereinafter, a second embodiment of a steam separator and a boiling water reactor according to the present invention will be described with reference to FIG. FIG. 2 is an explanatory diagram of a steam separator according to the second embodiment. The boiling water reactor according to the second embodiment is obtained by applying the steam-water separator of FIG. 1 to the improved boiling water reactor shown in FIG.

図2(a),(b),(c)に示すように、第2実施形態に係る気液分離器は、第2旋回羽根10を複数枚の羽根をもって構成すると共に、円筒体11を省略し、第2旋回羽根10の先端部に直接第1旋回羽根8を形成したことを特徴とする。   As shown in FIGS. 2A, 2B, and 2C, the gas-liquid separator according to the second embodiment includes the second swirl blade 10 having a plurality of blades and omits the cylindrical body 11. The first swirl vane 8 is directly formed at the tip of the second swirl vane 10.

本例の気液分離器は、第1旋回羽根8と第2旋回羽根10との間に円筒体11を有しないので、円筒体11を有する場合に比べて、気液分離器の圧力損失を低減できると共に、第2旋回羽根10側の流路から第1旋回羽根8側の流路への気液混合流の移動が容易で、気液分離を促進することができる。   Since the gas-liquid separator of this example does not have the cylindrical body 11 between the first swirl vane 8 and the second swirl vane 10, the pressure loss of the gas-liquid separator can be reduced as compared with the case of having the cylindrical body 11. While being able to reduce, the movement of the gas-liquid mixed flow from the flow path on the second swirl vane 10 side to the flow path on the first swirl vane 8 side is easy, and gas-liquid separation can be promoted.

以下、本発明に係る気水分離器及び沸騰水型原子炉の第3実施形態を、図3を参照して説明する。図3は第3実施形態に係る気水分離器の説明図である。なお、第3実施形態に係る沸騰水型原子炉は、図5に示した改良型沸騰水型原子炉に図1の気水分離器を適用したものである。   Hereinafter, a third embodiment of the steam-water separator and the boiling water reactor according to the present invention will be described with reference to FIG. FIG. 3 is an explanatory view of a steam separator according to the third embodiment. The boiling water reactor according to the third embodiment is obtained by applying the steam-water separator of FIG. 1 to the improved boiling water reactor shown in FIG.

図3に示すように、第3実施形態に係る気液分離器は、ディフューザ6の内部にスワラー12を備えたことを特徴とする。   As shown in FIG. 3, the gas-liquid separator according to the third embodiment is characterized in that a swirler 12 is provided inside the diffuser 6.

本例の気液分離器は、流路面積の小さいスタンドパイプ2内を流れる高速の気液混合流に第1旋回羽根8、第2旋回羽根10及びハブ9から構成されるスワラー12を配置して旋回力を与えるため、第1段気液分離部3での気液分離性能を向上さえると共に、スワラー12の重量を低減でき、耐震性を向上することができる。   In the gas-liquid separator of this example, a swirler 12 including a first swirl vane 8, a second swirl vane 10, and a hub 9 is arranged in a high-speed gas-liquid mixed flow that flows in the stand pipe 2 having a small flow path area. Since the turning force is applied, the gas-liquid separation performance in the first stage gas-liquid separation unit 3 can be improved, the weight of the swirler 12 can be reduced, and the earthquake resistance can be improved.

なお、図3においては、図1に示した第1実施形態に係るスワラー12をディフューザ6の内部に備えた例が示されているが、本発明の要旨はこれに限定されるものではなく、図2に示した第2実施形態に係るスワラー12をディフューザ6の内部に備えることも、もちろん可能である。   In addition, in FIG. 3, although the example which equipped the inside of the diffuser 6 with the swirler 12 which concerns on 1st Embodiment shown in FIG. 1 is shown, the summary of this invention is not limited to this, It is of course possible to provide the swirler 12 according to the second embodiment shown in FIG.

以下に、本発明に係る気液分離器の特徴と機能とを、従来技術と対比して説明する。   The features and functions of the gas-liquid separator according to the present invention will be described below in comparison with the prior art.

気水分離器の圧力損失の大部分を示す加速損失を低減する方法の一つに、ハブ径を小さくして軸方向の流速を低減する方法がある。しかし、ハブ径を小さくする方法では軸方向の流速の低減と共に、気液分離に影響する周方向の流速も低下するために、気液分離性能が悪くなる。さらに、ハブ径が小さくなると、ハブに接合している旋回羽根の出口角度が小さくなるために、気液分離の設計要求値を確保しながら圧力損失を低減するには限界がある。   One of the methods for reducing the acceleration loss, which shows most of the pressure loss of the steam separator, is to reduce the axial velocity by reducing the hub diameter. However, in the method of reducing the hub diameter, since the flow velocity in the axial direction is reduced and the flow velocity in the circumferential direction that affects the gas-liquid separation is also lowered, the gas-liquid separation performance is deteriorated. Further, when the hub diameter is reduced, the exit angle of the swirl vane joined to the hub is reduced, so there is a limit to reducing the pressure loss while securing the design requirement value for gas-liquid separation.

図4(a)に従来技術の第1段内筒、ハブ及び旋回羽根を下流(上方)から見た時の横断面図を模式的に示す。また、図4(b)に、そのときの内筒に接合する旋回羽根の外側出口角度とハブに接合する内側出口角度の関係を旋回羽根8枚の場合について模式的に示す。   FIG. 4A schematically shows a cross-sectional view of the prior art first-stage inner cylinder, hub, and swirl vane when viewed from the downstream (above). FIG. 4B schematically shows the relationship between the outer exit angle of the swirl vane joined to the inner cylinder and the inner exit angle joined to the hub at the time of eight swirl vanes.

従来技術では、外側出口角度は大きいにも係わらず、内側出口角度はハブ径が小さく、周方向の長さが短いために大きくできない。ハブ径を小さくすると、内側出口角度が小さくなるために、周方向の旋回速度が低下し、ハブ近傍の円筒中心部では混合流体に遠心力が十分に与えられず気液分離性能が低下する。   In the prior art, although the outer outlet angle is large, the inner outlet angle cannot be increased because the hub diameter is small and the circumferential length is short. When the hub diameter is reduced, the inner exit angle is reduced, so that the rotational speed in the circumferential direction is reduced, and the centrifugal force is not sufficiently applied to the mixed fluid in the central portion of the cylinder in the vicinity of the hub, thereby reducing the gas-liquid separation performance.

これに対して、第1旋回羽根8、第2旋回羽根10及びハブ9によりスワラー12を構成し、気液混合流の流路を確保しながら遠心力を大きくした第2旋回羽根10を第1旋回羽根8の内側に設けている本発明では、ハブ9の近くにおける円筒中心部の遠心力を確保できるので、気液分離の設計要求値を満足しながら、更に圧力損失を低減することができる。   On the other hand, the swirler 12 is comprised by the 1st swirl | wing blade 8, the 2nd swirl | wing blade 10, and the hub 9, and the 2nd swirl | wing blade 10 which enlarged the centrifugal force was ensured, ensuring the flow path of a gas-liquid mixed flow. In the present invention provided inside the swirl vane 8, since the centrifugal force at the center of the cylinder near the hub 9 can be secured, the pressure loss can be further reduced while satisfying the design requirement of gas-liquid separation. .

なお、本発明に係る気水分離器は、新設される原子炉のみならず、現在運転されている原子炉の気水分離器と交換することにより、原子炉の出力向上及び経済性向上を図ることが可能である。   Note that the steam-water separator according to the present invention is intended to improve not only the newly installed reactor but also the steam-water separator of the currently operating reactor, thereby improving the power output and economic efficiency of the reactor. It is possible.

第1実施形態に係る気水分離器の説明図である。It is explanatory drawing of the steam-water separator which concerns on 1st Embodiment. 第2実施形態に係る気水分離器の説明図である。It is explanatory drawing of the steam-water separator which concerns on 2nd Embodiment. 第3実施形態に係る気水分離器の説明図である。It is explanatory drawing of the steam-water separator which concerns on 3rd Embodiment. 旋回羽根の外側の出口角度と内側の出口角度の関係を示す図である。It is a figure which shows the relationship between the exit angle of the outer side of a turning blade, and the exit angle of an inner side. 改良型沸騰水型原子炉の縦断面図である。It is a longitudinal cross-sectional view of an improved boiling water reactor.

符号の説明Explanation of symbols

1…気水分離器、2…スタンドパイプ、3…第1段気水分離部、4…第2段気水分離、5…第3段気水分離部、6…ディフューザ、7…第1段内筒、8…第1旋回羽根、9…ハブ 10…第2旋回羽根、11…円筒、12…スワラー、13…仕切り板、14…第1段外筒、15…第1段ピックオフリング、16…第2段内筒、17…第2段外筒、18…第2段ピックオフリング、19…第3段内筒、20…第3段外筒、21…第3段ピックオフリング、101…原子炉圧力容器、102…シュラウド、103…炉心、104…上部プレナム、105…シュラウドヘッド、106…蒸気乾燥器、107…主蒸気配管、108…蒸気乾燥器スカート、109…給水管、110…ダウンカマ、111…インターナルポンプ、112…下部プレナム。   DESCRIPTION OF SYMBOLS 1 ... Steam separator, 2 ... Stand pipe, 3 ... 1st stage steam / water separation part, 4 ... 2nd stage steam / water separation, 5 ... 3rd stage steam / water separation part, 6 ... Diffuser, 7 ... 1st stage Inner cylinder, 8 ... first swirling blade, 9 ... hub 10 ... second swirling blade, 11 ... cylindrical, 12 ... swirler, 13 ... partition plate, 14 ... first stage outer cylinder, 15 ... first stage pick-off ring, 16 2nd stage inner cylinder, 17 ... 2nd stage outer cylinder, 18 ... 2nd stage pickoff ring, 19 ... 3rd stage inner cylinder, 20 ... 3rd stage outer cylinder, 21 ... 3rd stage pickoff ring, 101 ... Atom Furnace pressure vessel, 102 ... shroud, 103 ... core, 104 ... upper plenum, 105 ... shroud head, 106 ... steam dryer, 107 ... main steam pipe, 108 ... steam dryer skirt, 109 ... feed pipe, 110 ... downcomer, 111 ... Internal pump, 112 ... Lower plenum.

Claims (7)

気液混合流の流れ方向に沿って複数段の気水分離部を配置してなり、最も上流側に配置される第1段の気水分離部は、ディフューザを介してスタンドパイプの上端に接続された円筒状の第1段内筒と、該第1段内筒の下方に配置され、気液混合流に遠心力を与えて、気液混合流から分離された液体で該第1段内筒の内面に液膜を形成するスワラーと、前記第1段内筒の上方に配置され、前記第1段内筒の内面に形成された液膜を気液混合流から分離する第1段ピックオフリングと、前記第1段内筒の外部を取り囲むように配置され、前記第1段外筒との間に、前記第1段ピックオフリングにより気液混合流から分離された液膜を排出するための第1段排水流路を構成する第1段外筒とからなる気水分離器において、
前記スワラーは、棒状に形成され、前記第1段内筒の中心に配置されるハブと、前記第1段内筒の内部を流れる気液混合流の外周部分に遠心力を与える第1旋回羽根と、内周部分に遠心力を与える第2旋回羽根とを備え、前記第2旋回羽根は、前記第1旋回羽根が気液混合流に与える遠心力よりも大きな遠心力を気液混合流に与えることを特徴とする気液分離器。
A plurality of stages of steam / water separation sections are arranged along the flow direction of the gas-liquid mixture flow, and the first stage steam / water separation section disposed at the most upstream side is connected to the upper end of the standpipe via a diffuser. A cylindrical first-stage inner cylinder, which is disposed below the first-stage inner cylinder, applies a centrifugal force to the gas-liquid mixed flow, and the liquid separated from the gas-liquid mixed flow in the first stage A swirler that forms a liquid film on the inner surface of the cylinder, and a first-stage pick-off that is disposed above the first-stage inner cylinder and separates the liquid film formed on the inner surface of the first-stage inner cylinder from the gas-liquid mixed flow For discharging the liquid film separated from the gas-liquid mixed flow by the first stage pick-off ring between the ring and the first stage outer cylinder, which is disposed so as to surround the outside of the first stage inner cylinder. In the air / water separator comprising the first stage outer cylinder constituting the first stage drainage channel of
The swirler is formed in a rod shape, a hub disposed at the center of the first stage inner cylinder, and a first swirl vane that applies centrifugal force to the outer peripheral portion of the gas-liquid mixed flow that flows inside the first stage inner cylinder. And a second swirl vane that applies a centrifugal force to the inner peripheral portion, and the second swirl vane generates a centrifugal force that is greater than the centrifugal force that the first swirl vane imparts to the gas-liquid mixed flow. A gas-liquid separator characterized by giving.
前記スワラーは、前記棒状に形成されたハブと、該ハブの外周にこれと同心に配置された円筒体と、該円筒体の外面に形成された第1旋回羽根と、前記ハブの外面と前記円筒体の内面との間に形成された第2旋回羽根とからなることを特徴とする請求項1に記載の気液分離器。   The swirler includes a hub formed in the shape of a rod, a cylindrical body disposed concentrically on the outer periphery of the hub, a first swirl vane formed on an outer surface of the cylindrical body, an outer surface of the hub, and the The gas-liquid separator according to claim 1, comprising a second swirl blade formed between the inner surface of the cylindrical body. 前記スワラーは、前記棒状に形成されたハブと、該ハブの外面に形成された第2旋回羽根と、該第2旋回羽根の先端から外向きに形成された第1旋回羽根とからなることを特徴とする請求項1に記載の気液分離器。   The swirler includes a hub formed in the rod shape, a second swirl blade formed on the outer surface of the hub, and a first swirl blade formed outward from the tip of the second swirl blade. The gas-liquid separator according to claim 1, wherein 前記第1旋回羽根の先端が、前記第1段内筒の内面に接合されていることを特徴とする請求項1乃至請求項3のいずれか1項に記載の気液分離器。   The gas-liquid separator according to any one of claims 1 to 3, wherein a tip end of the first swirl vane is joined to an inner surface of the first stage inner cylinder. 前記第1旋回羽根の先端が、前記ディフューザの内面に接合されていることを特徴とする請求項1乃至請求項3のいずれか1項に記載の気液分離器。   The gas-liquid separator according to any one of claims 1 to 3, wherein a tip end of the first swirl vane is joined to an inner surface of the diffuser. 前記ハブは、気液混合流の流れ方向に関して、上流側の端部の曲率半径が小さく、下流側の端部の曲率半径が大きい流線形に形成されていることを特徴とする請求項1乃至請求項5のいずれか1項に記載の気液分離器。   The hub is formed in a streamline shape with a small radius of curvature at the upstream end and a large radius of curvature at the downstream end in the flow direction of the gas-liquid mixed flow. The gas-liquid separator according to claim 5. 冷却水が所定の水位まで満たされた原子炉圧力容器と、シュラウド内に設置された炉心と、炉心の発熱で発生した気液混合流を液滴を含む蒸気と冷却水とに分離する気水分離器と、気水分離器にて分離された液滴を含む蒸気から液滴を除去する蒸気乾燥器とを備えた沸騰水型原子炉において、
前記気水分離器として、気液混合流の流れ方向に沿って複数段の気水分離部を配置してなり、最も上流側に配置される第1段の気水分離部は、ディフューザを介してスタンドパイプの上端に接続された円筒状の第1段内筒と、該第1段内筒の下方に配置され、気液混合流に遠心力を与えて、気液混合流から分離された液体で該第1段内筒の内面に液膜を形成するスワラーと、前記第1段内筒の上方に配置され、前記第1段内筒の内面に形成された液膜を気液混合流から分離する第1段ピックオフリングと、前記第1段内筒の外部を取り囲むように配置され、前記第1段外筒との間に、前記第1段ピックオフリングにより気液混合流から分離された液膜を排出するための第1段排水流路を構成する第1段外筒とからなり、前記スワラーは、棒状に形成され、前記第1段内筒の中心に配置されるハブと、前記第1段内筒の内部を流れる気液混合流の外周部分に遠心力を与える第1旋回羽根と、内周部分に遠心力を与える第2旋回羽根とを備え、前記第2旋回羽根は、前記第1旋回羽根が気液混合流に与える遠心力よりも大きな遠心力を気液混合流に与えるものを備えたことを特徴とする沸騰水型原子炉。
Reactor pressure vessel filled with cooling water to a predetermined water level, core installed in the shroud, and steam that separates the gas-liquid mixed flow generated by the heat generation of the core into steam containing droplets and cooling water In a boiling water reactor comprising a separator and a steam dryer for removing droplets from steam containing droplets separated by a steam separator,
As the steam / water separator, a plurality of steam / water separators are disposed along the flow direction of the gas / liquid mixed flow, and the first steam / water separator disposed at the most upstream side is provided with a diffuser. A cylindrical first-stage inner cylinder connected to the upper end of the standpipe and a lower part of the first-stage inner cylinder, which is separated from the gas-liquid mixture flow by applying a centrifugal force to the gas-liquid mixture flow A swirler that forms a liquid film on the inner surface of the first stage inner cylinder with liquid, and a liquid film that is disposed above the first stage inner cylinder and that is formed on the inner surface of the first stage inner cylinder. Between the first stage pick-off ring and the first stage outer cylinder, and is separated from the gas-liquid mixed flow by the first stage pick-off ring. A first-stage outer cylinder that constitutes a first-stage drainage channel for discharging the liquid film, and the swirler has a rod shape A hub that is formed and disposed at the center of the first stage inner cylinder, a first swirl vane that applies centrifugal force to the outer peripheral part of the gas-liquid mixed flow that flows inside the first stage inner cylinder, and an inner peripheral part A second swirl vane that applies a centrifugal force, and the second swirl vane includes a component that applies a greater centrifugal force to the gas-liquid mixed flow than the centrifugal force imparted to the gas-liquid mixed flow by the first swirl vane. Boiling water reactor characterized by.
JP2008208492A 2008-08-13 2008-08-13 Steam separator, and boiling water reactor equipped therewith Pending JP2010043969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008208492A JP2010043969A (en) 2008-08-13 2008-08-13 Steam separator, and boiling water reactor equipped therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008208492A JP2010043969A (en) 2008-08-13 2008-08-13 Steam separator, and boiling water reactor equipped therewith

Publications (1)

Publication Number Publication Date
JP2010043969A true JP2010043969A (en) 2010-02-25

Family

ID=42015464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008208492A Pending JP2010043969A (en) 2008-08-13 2008-08-13 Steam separator, and boiling water reactor equipped therewith

Country Status (1)

Country Link
JP (1) JP2010043969A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012117857A (en) * 2010-11-30 2012-06-21 Hitachi-Ge Nuclear Energy Ltd Steam separator
CN106345186A (en) * 2016-08-26 2017-01-25 上海核工程研究设计院 Pressurized water reactor steam generator steam-water separator
WO2021149370A1 (en) 2020-01-21 2021-07-29 富士電機株式会社 Exhaust gas treatment device
WO2022018957A1 (en) 2020-07-21 2022-01-27 富士電機株式会社 Exhaust gas treatment device
CN113996123A (en) * 2021-11-26 2022-02-01 中国核动力研究设计院 Separation blade and catch water
CN114423993A (en) * 2019-09-16 2022-04-29 法玛通公司 Repair method and assembly for repairing a steam generator of a nuclear reactor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012117857A (en) * 2010-11-30 2012-06-21 Hitachi-Ge Nuclear Energy Ltd Steam separator
CN106345186A (en) * 2016-08-26 2017-01-25 上海核工程研究设计院 Pressurized water reactor steam generator steam-water separator
CN114423993A (en) * 2019-09-16 2022-04-29 法玛通公司 Repair method and assembly for repairing a steam generator of a nuclear reactor
WO2021149370A1 (en) 2020-01-21 2021-07-29 富士電機株式会社 Exhaust gas treatment device
KR20220015464A (en) 2020-01-21 2022-02-08 후지 덴키 가부시키가이샤 exhaust gas treatment device
WO2022018957A1 (en) 2020-07-21 2022-01-27 富士電機株式会社 Exhaust gas treatment device
KR20220101728A (en) 2020-07-21 2022-07-19 후지 덴키 가부시키가이샤 exhaust gas treatment device
CN113996123A (en) * 2021-11-26 2022-02-01 中国核动力研究设计院 Separation blade and catch water

Similar Documents

Publication Publication Date Title
JP5550318B2 (en) Multistage air-water separator and air-water separator
JP4422691B2 (en) Steam separator, boiling water reactor and swirler assembly
JP2010043969A (en) Steam separator, and boiling water reactor equipped therewith
JP3142931B2 (en) Gas / liquid separator
US4322233A (en) Apparatus for separating entrained liquid from a liquid gas mixture
CN108815927B (en) Multifunctional wide-flow-path efficient gas-liquid separation device combining gravity and centrifugal technology
US20130028366A1 (en) Steam separator and nuclear reactor system using the same
WO2007100041A1 (en) Gas-water separator
CN110075622A (en) A kind of twin-tub gas-liquid separator
KR20210080946A (en) Swirl vane type steam separator
JP3971146B2 (en) Steam separator and boiling water reactor
JPH0727053B2 (en) A steam-water separation system for boiling water reactors.
JP2001208301A (en) Steam separator and boiling water reactor
JP3762598B2 (en) Steam separator and boiling water reactor
CN206262255U (en) A kind of steam generator steam-water separator
JP2011099748A (en) Steam separator
JPH0675082A (en) Multiple steam water separator
JP5663324B2 (en) Steam separator and boiling water reactor using the same
JP2013039501A (en) Multistage type steam-water separator
JP2012117917A (en) Steam separation facility for nuclear reactor
JP2000153118A (en) Gas-water separation system
JP2009257770A (en) Air-water separator and boiling water reactor
JP2004245656A (en) Steam separator
JP5089485B2 (en) Jet pump and reactor
JP2012117857A (en) Steam separator