JPH0675082A - Multiple steam water separator - Google Patents

Multiple steam water separator

Info

Publication number
JPH0675082A
JPH0675082A JP4225559A JP22555992A JPH0675082A JP H0675082 A JPH0675082 A JP H0675082A JP 4225559 A JP4225559 A JP 4225559A JP 22555992 A JP22555992 A JP 22555992A JP H0675082 A JPH0675082 A JP H0675082A
Authority
JP
Japan
Prior art keywords
steam
separator
water
flow
pressure loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4225559A
Other languages
Japanese (ja)
Inventor
Koji Shiina
孝次 椎名
Shozo Nakamura
昭三 中村
Yasuo Mizushina
靖男 水品
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4225559A priority Critical patent/JPH0675082A/en
Publication of JPH0675082A publication Critical patent/JPH0675082A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Separating Particles In Gases By Inertia (AREA)

Abstract

PURPOSE:To improve the steam/water separator capability for high temperature water steam system two-phase flow and reduce pressure loss by multiplying the steam/water separator, making the bottommost swirl vane angle small, upper one's angle large and the topmost swirl vane angle largest. CONSTITUTION:A steam/water separator is in three steps. Since ascending steam/water two-phase flow from a stand pipe 14 is slug flow with small void fraction, the angle of swirl vane 15a is made small to mainly separate liquid block in this separator 11a and pressure loss is medium grade. Since the above is anular flow with large void fraction, the angle of swirl vane 15b is made slightly large to mainly separate liquid film in this separator 11b and pressure loss is medium grade. Since the topmost is mist flow with large void fraction, the angle of swirl vane 15c is made largest to mainly separate liquid drops in this separator 11c and pressure loss is small. In this manner, the arrangement of the separators 11a to 11c and the angles of the swirl vanes 15a to 15c are determined accordingly to the flow regime of steam/water two-phase flow and the total pressure loss is reduced and the separation capability is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は原子炉の炉内構造物に係
り、特に、気水分離器を多段式にして二相流分離性能の
向上及び二相流圧力損失の低減を図るのに好適な気水分
離機構に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internal structure of a nuclear reactor, and more particularly to a multi-stage steam-water separator for improving two-phase flow separation performance and reducing two-phase flow pressure loss. The present invention relates to a suitable air / water separation mechanism.

【0002】[0002]

【従来の技術】従来の原子炉圧力容器を図5、従来の気
水分離器の概要を図6に示す。本発明の一実施例である
図1及び図2と比べると、気水分離器11は上昇二相流
方向に1段のみ設置されている。本来、気水分離器11
は燃料棒8で発生した熱水・蒸気系二相流Bを旋回羽根
15の遠心力により熱水A流れを胴17内壁に押し付け
て、蒸気Cを中央部へと気水分離を行い、さらにダウン
カマへ戻る熱水A中に含まれる蒸気のキャリーアンダを
抑制するためのものである。また、蒸気乾燥器12は気
水分離器11で相分離された蒸気C中に含まれる湿分ミ
スト液が蒸気タービンへキャリーオーバされるのを抑制
するためのものである。
2. Description of the Related Art A conventional reactor pressure vessel is shown in FIG. 5, and an outline of a conventional steam-water separator is shown in FIG. Compared with FIG. 1 and FIG. 2 which are one embodiment of the present invention, the steam separator 11 is installed only one stage in the ascending two-phase flow direction. Originally, steam separator 11
Applies the hot water / steam system two-phase flow B generated in the fuel rod 8 to the hot water A flow against the inner wall of the body 17 by the centrifugal force of the swirl vanes 15 to separate the steam C into steam and water. This is for suppressing carry under of steam contained in the hot water A returning to the downcomer. Further, the steam dryer 12 is for suppressing carry-over of the moisture mist liquid contained in the steam C phase-separated by the steam separator 11 to the steam turbine.

【0003】したがって、初期の原子炉は1段式気水分
離器11及び1段式蒸気乾燥器12のタイプで妥当なも
のであり、本タイプの実機に関する種々の信頼性に対し
て細心の注意がなされているが、さらに性能向上を考え
ると多くの検討課題もある。例えば、公知例として、特
開昭62−35291 号公報では炉内半径方向に配置する気水
分離器の液排出流路の流動抵抗を調整して気水分離性能
向上を図っている。また、特開昭62−64989 号公報では
流れ方向に沿って流路内径を変化させないようにして圧
力損失の低減を図っている。
Therefore, the early reactors are appropriate for the type of the one-stage steam-water separator 11 and the one-stage steam dryer 12, and are meticulous to pay attention to the various reliability of the actual equipment of this type. However, there are many issues to be considered in order to further improve performance. For example, as a publicly known example, in JP-A-62-35291, the flow resistance of the liquid discharge passage of the steam-water separator arranged in the radial direction of the furnace is adjusted to improve the steam-water separation performance. Further, in Japanese Patent Laid-Open No. 62-64989, the pressure loss is reduced by not changing the inner diameter of the flow passage along the flow direction.

【0004】しかし、従来の1段式気水分離器内での圧
力損失は旋回羽根により二相流を旋回流として急激に曲
げることによる二相流圧力損失が最も大きい。
However, the pressure loss in the conventional one-stage steam-water separator is the largest in the two-phase flow pressure loss due to the sharp bending of the two-phase flow as a swirl flow by the swirl vanes.

【0005】そこで、気水分離器内の分離性能向上及び
圧力損失の低減の両者の技術課題を解決する点、さらに
原子炉の定検時に機器のメンテナンスを容易にするため
の比較的簡単な構造にする必要がある。
Therefore, the technical problems of both improvement of separation performance and reduction of pressure loss in the steam separator are solved, and further, a relatively simple structure for facilitating maintenance of the equipment at the time of regular inspection of the reactor. Need to

【0006】[0006]

【発明が解決しようとする課題】上記従来技術は燃料棒
により発生した気液二相流を自由液面上で相分離するた
めに気水分離器内の旋回羽根角度を大きくし、二相流の
旋回流れの形成により遠心力を利用して気水分離効率を
向上させるように設計されている。そのため、気水分離
器内の流れは旋回羽根部での急激な二相流曲げ損失のた
め、圧力損失が大きいなどの問題が考えられる。また、
1段の気水分離器内で二相流の流動遷移を急激に行うた
め、気水分離効率もそれほど良好ではなく、さらに改善
の余地がある。
In the above-mentioned conventional technique, the swirl vane angle in the water-water separator is increased in order to phase-separate the gas-liquid two-phase flow generated by the fuel rod on the free liquid surface, and the two-phase flow is increased. It is designed to utilize the centrifugal force to improve the water-water separation efficiency by forming the swirling flow of. Therefore, the flow in the steam separator has a large pressure loss due to abrupt two-phase flow bending loss in the swirl vanes. Also,
Since the flow transition of the two-phase flow is rapidly performed in the one-stage steam-water separator, the steam-water separation efficiency is not so good, and there is room for further improvement.

【0007】本発明の目的は、気水分離器を多段式とす
ることにより、気水分離性能の向上はもちろん、二相流
圧力損失を低減させることにある。
An object of the present invention is to improve the steam-water separation performance and reduce the two-phase flow pressure loss by using a multi-stage steam-water separator.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明は従来の気水分離器を数段に分割し、低ボイ
ド率領域では旋回羽根角度を小さく、高ボイド率領域で
は旋回羽根角度を大きくし、燃料棒で発生した熱水・蒸
気系二相流中の流動様式ごとに気水分離性能の向上と圧
力損失の低減を容易にするため、多段式気水分離器とし
たものである。
In order to achieve the above object, the present invention divides a conventional steam separator into several stages, in which the swirl vane angle is small in the low void fraction region and swirl is in the high void fraction region. A multi-stage steam-water separator was used to increase the blade angle and facilitate the improvement of steam-water separation performance and reduction of pressure loss for each flow mode in the hot water / steam system two-phase flow generated in the fuel rod. It is a thing.

【0009】[0009]

【作用】気水分離器を多段式にし、下から上へ旋回羽根
角度を徐々に大きくすると、従来の1段式気水分離器に
比べて、下部の低ボイド率領域での圧力損失を低減する
ことができ、しかも上部に沿って高ボイド率領域が形成
されても流体密度が小さくなるため1段当りの圧力損失
は低減できる。その上、1段式で急激に遠心分離を行う
のに比べ、多段式で徐々に遠心分離を行うと、気水分離
性能、特にキャリーオーバが急激に低減できる。もちろ
ん、キャリーアンダに関しても、熱水排出口の流動抵抗
を小さくするなどして調整すれば、キャリーオーバ及び
キャリーアンダの両者に関して有効な構造となる。
[Operation] By making the steam separator multi-stage and gradually increasing the swirl vane angle from bottom to top, pressure loss in the lower low void fraction region is reduced compared to the conventional one-stage steam separator. Moreover, even if a high void fraction region is formed along the upper portion, the fluid density becomes small, so that the pressure loss per stage can be reduced. Moreover, as compared with the case where the centrifugal separation is performed rapidly in the one-stage system, the water-water separation performance, particularly the carryover can be rapidly reduced when the centrifugal separation is gradually performed in the multi-stage system. Of course, with respect to the carry under, if it is adjusted by reducing the flow resistance of the hot water outlet, the structure becomes effective with respect to both carry over and carry under.

【0010】以上により、原子炉の炉内構造物である気
水分離器の分離効率の向上、圧力損失の低減及びメンテ
ナンスが容易などの長所を有する。これらの作用によ
り、炉内上部の構造物、特にセパレータがコンパクト化
され、さらに原子炉圧力容器の安全性,信頼性を確保す
る。
As described above, there are advantages that the separation efficiency of the steam-water separator, which is the internal structure of the nuclear reactor, is improved, the pressure loss is reduced, and the maintenance is easy. By these actions, the structure in the upper part of the reactor, especially the separator, is made compact, and further the safety and reliability of the reactor pressure vessel are secured.

【0011】[0011]

【実施例】以下、本発明の一実施例を図1,図2及び図
3により説明する。図1は原子炉圧力容器の縦断面図を
示す。まず、原子炉圧力容器の構成について説明する。
この基本構造は原子炉圧力容器1中に核反応を生じるた
めの燃料棒8が容器内下部の炉心シュラウド7の内側に
設置され、燃料棒8の下部には制御棒案内管4及び制御
棒案内管駆動機構3が設置されている。そして、これら
の機器は炉心支持板5及び燃料支持金具6等により固定
されている。さらに、燃料棒8の最上部は上部支持板9
により固定されている。一方、原子炉圧力容器1と炉心
シュラウド7の間には熱水A循環用のインターナルポン
プ2が数台周方向に設置されている。次に、燃料棒8で
沸騰して発生した気液二相流から蒸気を取り出すため
に、炉心シュラウド7の上部にはシュラウドヘッド10
があり、この上部に多数のスタンドパイプ14及び多段
式気水分離器11が設置されている。また、その上部に
は気水分離器11出口のミスト液滴を除去するための蒸
気乾燥器12が設置されている。さらに、原子炉圧力容
器1の上部には炉内で発生した蒸気が流出するための主
蒸気ノズル13も有する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 1, 2 and 3. FIG. 1 shows a vertical sectional view of a reactor pressure vessel. First, the structure of the reactor pressure vessel will be described.
In this basic structure, a fuel rod 8 for causing a nuclear reaction in a reactor pressure vessel 1 is installed inside a core shroud 7 in the lower part of the vessel, and a control rod guide tube 4 and a control rod guide are provided under the fuel rod 8. A tube drive mechanism 3 is installed. And these devices are being fixed by the core support plate 5, the fuel support metal fitting 6, etc. Further, the uppermost portion of the fuel rod 8 is the upper support plate 9
It is fixed by. On the other hand, several internal pumps 2 for circulating hot water A are installed in the circumferential direction between the reactor pressure vessel 1 and the core shroud 7. Next, in order to take out steam from the gas-liquid two-phase flow generated by boiling in the fuel rods 8, a shroud head 10 is provided above the core shroud 7.
There are a number of stand pipes 14 and a multi-stage steam separator 11 on top of this. Further, a steam dryer 12 for removing mist droplets at the outlet of the steam separator 11 is installed above the steam dryer 12. Further, a main steam nozzle 13 for letting out steam generated in the reactor is provided at an upper portion of the reactor pressure vessel 1.

【0012】次に、原子炉圧力容器1内の動作について
説明する。まず、燃料棒8で核反応し発生した気液二相
流Bは燃料チャンネル内の燃料棒8間の流路を上昇し、
これら気液二相流は炉心シュラウド7及びシュラウドヘ
ッド10で構成された空間内に一度集合され、再び、多
数のスタンドパイプ14とその上部の多段式気水分離器
11内で、熱水液Aと蒸気Cに分離される。そして、ミ
スト液滴を含んだ蒸気流Cは蒸気乾燥器12でキャリー
オーバされた液成分がカットされて、主蒸気ノズル13
から蒸気タービンへ流出する。一方、気水分離器11内
で分離された熱水Aは、炉内1と炉心シュラウド7から
構成されるダウンカマ部を下降してインターナルポンプ
2へ吸込まれる。そして、インターナルポンプ2から吐
出された熱水は炉心シュラウド7下部に開口されたレグ
部から炉内へ流入し、制御棒案内管駆動機構3間内を直
交流で流れて再び燃料棒8へ戻る。
Next, the operation inside the reactor pressure vessel 1 will be described. First, the gas-liquid two-phase flow B generated by the nuclear reaction in the fuel rod 8 rises in the flow path between the fuel rods 8 in the fuel channel,
These gas-liquid two-phase flows are once gathered in the space formed by the core shroud 7 and the shroud head 10, and again, in the many stand pipes 14 and the multistage steam-water separator 11 above them, the hot water liquid A And steam C are separated. Then, the vapor stream C containing mist droplets has the liquid component carried over in the vapor dryer 12 cut off, and the main vapor nozzle 13
To the steam turbine. On the other hand, the hot water A separated in the steam separator 11 descends through the downcomer portion composed of the reactor interior 1 and the core shroud 7, and is sucked into the internal pump 2. Then, the hot water discharged from the internal pump 2 flows into the reactor from the leg portion opened at the lower part of the core shroud 7, flows in a cross flow between the control rod guide tube drive mechanisms 3 and again to the fuel rods 8. Return.

【0013】ここで、本発明の特徴を図2により説明す
る。まず、図2は気水分離器11を3段式にした場合の
例である。スタンドパイプ14から上昇する気液二相流
はボイド率が小さいスラグ流領域なので旋回羽根15a
の角度を小さくし、本セパレータ11aでは液塊分離を
主体とし、ここでの圧力損失は中程度となる。さらに、
その上はボイド率が大きい環状流領域なので旋回羽根1
5bは羽根角度をやや大きくし、本セパレータ11bで
は液膜分離を主体とし、ここでの圧力損失も中程度とな
る。そして、最上部ではさらにボイド率の大きい噴霧流
領域となるので旋回羽根15cは最も角度を大きくし、
本セパレータ11cでは液滴分離を主体に行う。ここで
は二相流の流速は大きいが、ボイド率が大きいため流体
密度が小さいので圧力損失は小さくなる。従って、最下
段のセパレータ11aから上段セパレータに沿ってセパ
レータ内を流れる気液二相流の流動様式に応じて、各々
の領域における液成分の分離及びカットを行う分離効率
の点、そして各々の領域における圧力損失の低減の点の
両者から、最適セパレータ配置及び旋回羽根角度を設定
すればよい。図3は図2の3段式気水分離器の性能を示
す説明図である。
The features of the present invention will now be described with reference to FIG. First, FIG. 2 shows an example in which the steam separator 11 is of a three-stage type. Since the gas-liquid two-phase flow rising from the stand pipe 14 is a slag flow region having a small void ratio, the swirling blade 15a
The angle is made small, and the main separator 11a mainly separates liquid lumps, and the pressure loss here is medium. further,
Since it is an annular flow region with a large void fraction, the swirl vane 1
5b has a slightly larger blade angle, the main separator 11b is mainly for liquid film separation, and the pressure loss here is also moderate. Then, the swirl vane 15c has the largest angle because it becomes a spray flow region having a larger void rate at the uppermost portion,
The main separator 11c mainly separates droplets. Here, the flow velocity of the two-phase flow is high, but since the void ratio is high and the fluid density is low, the pressure loss is small. Therefore, according to the flow mode of the gas-liquid two-phase flow flowing in the separator along the upper separator from the lowermost separator 11a, the point of the separation efficiency for separating and cutting the liquid component in each area, and each area. The optimum separator arrangement and the swirl vane angle may be set from both of the viewpoints of reducing the pressure loss in the above. FIG. 3 is an explanatory diagram showing the performance of the three-stage steam separator of FIG.

【0014】(a)が気水分離効率η特性、中図が圧力損
失ΔP特性図である。また、(b)は3段式セパレータ
の図である。セパレータ配置上,下から第1段階,第2
段階、最上部が第3段階となっており、上方に沿って旋
回羽根角度αが徐々に大きくなっている。一方、従来例
は本図の第3段階に旋回羽根角度αの大きなものを1段
のみ設置した場合を示す。これより、従来例と本発明の
気水分離効率η及び圧力損失ΔPの特性を比較すると、
本発明の場合、気水分離特性は大きく、圧力損失は小さ
くなる。このように、気水分離器を多段とすることによ
り、二相流の流動様式に応じて旋回羽根角度αを調整
し、各々の段における気水分離効率の向上と圧力損失の
低減を最適に行う分離機構が構成できる。したがって、
多段式気水分離器は気水分離効率が向上し、圧力損失を
低減し、そして定検時のメンテナンスを容易にすること
ができる。
(A) is a water-water separation efficiency η characteristic, and the middle diagram is a pressure loss ΔP characteristic diagram. Further, (b) is a diagram of a three-stage separator. Separator placement Top to bottom, 1st stage, 2nd
The stage, the uppermost part is the third stage, and the swirl vane angle α gradually increases along the upward direction. On the other hand, the conventional example shows a case in which only one stage with a large swirl vane angle α is installed in the third stage of this figure. From this, comparing the characteristics of the air-water separation efficiency η and the pressure loss ΔP of the conventional example and the present invention,
In the case of the present invention, the water-water separation characteristic is large and the pressure loss is small. In this way, by making the steam-water separator multi-stage, the swirl vane angle α is adjusted according to the flow pattern of the two-phase flow to optimize the steam-water separation efficiency and reduce the pressure loss in each stage. A separation mechanism can be configured. Therefore,
The multi-stage steam separator can improve steam separation efficiency, reduce pressure loss, and facilitate maintenance during regular inspection.

【0015】また、本発明の他の実施例を図4により説
明する。図2の発明に対し、本発明は各段ごとの外筒1
8を同一径とし、下の段ほど環状流路幅19が大きい場
合である。これは、下段ほどボイド率が小さく液成分が
多いので、熱水排出口を大きくし、熱水の戻り流動損失
を小さくするものである。一方、上段ほど熱水の戻り量
は少なくなるので、従来のまま狭い環状流路19cでも
流動損失は小さくなる。
Another embodiment of the present invention will be described with reference to FIG. In contrast to the invention shown in FIG. 2, the present invention uses an outer cylinder 1 for each stage.
8 has the same diameter, and the annular flow path width 19 is larger at the lower level. This is because the void ratio is small and the liquid component is large in the lower part, so that the hot water discharge port is made large and the return flow loss of the hot water is made small. On the other hand, since the amount of return of hot water becomes smaller toward the upper stage, the flow loss becomes small even in the narrow annular flow passage 19c as it is.

【0016】したがって、本構造のように気水分離器1
1を多段式とすることにより、各ボイド率領域に対して
各段ごとの旋回羽根角度を変えることにより、圧力損失
を低減し、さらに気水分離効率が向上する分離機構を提
供できる。その上、定検時のメンテナンスが容易とな
り、安全性・信頼性の高い炉内構造物となる。
Therefore, as in this structure, the steam separator 1
By making 1 a multi-stage type, it is possible to provide a separation mechanism in which the pressure loss is reduced and the steam-water separation efficiency is further improved by changing the swirl vane angle for each stage with respect to each void fraction region. In addition, maintenance at the time of regular inspection becomes easy, and the internal structure of the reactor is highly safe and reliable.

【0017】[0017]

【発明の効果】本発明によれば、気水分離器を多段式と
することにより、気水分離器内の二相流流動様式ごとに
気水分離器の段数を分け、下部におけるボイド率の小さ
な領域では旋回羽根角度を小さくして二相流曲げ損失を
小さくし、上部におけるボイド率の大きな領域では旋回
羽根角度を大きくして二相流曲げ損失を小さくし、気水
分離器全体の圧力損失を低減し、気水分離性能の向上を
図ることができる。
EFFECTS OF THE INVENTION According to the present invention, the steam-water separator is of a multi-stage type, whereby the number of steam-water separators is divided according to the two-phase flow mode in the steam-water separator, and the void fraction in the lower part is In a small region, the swirl vane angle is made small to reduce the two-phase flow bending loss, and in the region with a large void fraction in the upper part, the swirl vane angle is made large to reduce the two-phase flow bending loss, and the pressure of the steam separator It is possible to reduce the loss and improve the steam-water separation performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の原子炉圧力容器の縦断面
図。
FIG. 1 is a vertical sectional view of a reactor pressure vessel according to an embodiment of the present invention.

【図2】図1の多段式気水分離器の断面図。FIG. 2 is a sectional view of the multistage steam-water separator of FIG.

【図3】本発明の気水分離性能,圧力損失特性の説明
図。
FIG. 3 is an explanatory view of steam-water separation performance and pressure loss characteristics of the present invention.

【図4】本発明の他の実施例の多段式気水分離器の断面
図。
FIG. 4 is a sectional view of a multi-stage steam separator according to another embodiment of the present invention.

【図5】従来の原子炉圧力容器の縦断面図。FIG. 5 is a vertical sectional view of a conventional reactor pressure vessel.

【図6】従来の1段式気水分離器の断面図。FIG. 6 is a sectional view of a conventional one-stage steam-water separator.

【符号の説明】[Explanation of symbols]

11…気水分離器、14…スタンドパイプ、15…旋回
羽根、16…ライザ、17…胴、18…外筒、19…環
状流路、20…排出口、21…蒸気排出口、22…蒸気
排出管、23…熱水排出口。
11 ... Steam separator, 14 ... Stand pipe, 15 ... Swirl vane, 16 ... Riser, 17 ... Trunk, 18 ... Outer cylinder, 19 ... Annular flow path, 20 ... Discharge port, 21 ... Steam discharge port, 22 ... Steam Discharge pipe, 23 ... Hot water discharge port.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】原子炉において、シュラウドヘッド上部に
設置されている気水分離器を軸方向に複数段としたこと
を特徴とする多段式気水分離器。
1. A multistage steam-water separator characterized in that a steam-water separator installed in an upper portion of a shroud head is provided with a plurality of stages in an axial direction in a nuclear reactor.
【請求項2】請求項1において、前記気水分離器内の二
相流流動様式ごとに1段ごとの前記気水分離器内の旋回
羽根の角度を変えた多段式気水分離器。
2. The multi-stage steam separator according to claim 1, wherein the angle of swirl vanes in the steam separator for each stage is changed for each two-phase flow mode in the steam separator.
【請求項3】請求項1において、低ボイド率領域では前
記気水分離器内の旋回羽根の角度を小さくし、高ボイド
率領域では前記旋回羽根の角度を大きくした多段式気水
分離器。
3. The multi-stage steam separator according to claim 1, wherein the swirl vanes in the steam / water separator have a small angle in the low void fraction region and the swirl vanes have a large angle in the high void fraction region.
JP4225559A 1992-08-25 1992-08-25 Multiple steam water separator Pending JPH0675082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4225559A JPH0675082A (en) 1992-08-25 1992-08-25 Multiple steam water separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4225559A JPH0675082A (en) 1992-08-25 1992-08-25 Multiple steam water separator

Publications (1)

Publication Number Publication Date
JPH0675082A true JPH0675082A (en) 1994-03-18

Family

ID=16831199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4225559A Pending JPH0675082A (en) 1992-08-25 1992-08-25 Multiple steam water separator

Country Status (1)

Country Link
JP (1) JPH0675082A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5875224A (en) * 1997-09-02 1999-02-23 General Electric Company Swirler attachment for a spacer of a nuclear fuel bundle
US5953387A (en) * 1996-04-01 1999-09-14 General Electric Company Separation device for a vent volume in a nuclear reactor
KR100438284B1 (en) * 2001-05-02 2004-07-02 병 도 김 An Industrial Waste Incinerator Using Vortex Tube Theory
JP2008546529A (en) * 2005-07-02 2008-12-25 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Gas inflow area acting as a pre-filter in the gas filter housing
JP2011099748A (en) * 2009-11-05 2011-05-19 Toshiba Corp Steam separator
WO2011070818A1 (en) * 2009-12-10 2011-06-16 三菱重工業株式会社 Multi-stage gas-water separation device and gas-water separator
CN112377710A (en) * 2020-11-05 2021-02-19 长江大学 Device for converting intermittent slug flow into continuous annular flow
WO2021132918A3 (en) * 2019-12-23 2021-08-19 (주)이엠씨 Swirl vane-type moisture separator

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5953387A (en) * 1996-04-01 1999-09-14 General Electric Company Separation device for a vent volume in a nuclear reactor
US5875224A (en) * 1997-09-02 1999-02-23 General Electric Company Swirler attachment for a spacer of a nuclear fuel bundle
KR100438284B1 (en) * 2001-05-02 2004-07-02 병 도 김 An Industrial Waste Incinerator Using Vortex Tube Theory
JP2008546529A (en) * 2005-07-02 2008-12-25 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Gas inflow area acting as a pre-filter in the gas filter housing
JP2011099748A (en) * 2009-11-05 2011-05-19 Toshiba Corp Steam separator
JP2011120999A (en) * 2009-12-10 2011-06-23 Mitsubishi Heavy Ind Ltd Multi-stage gas-water separation device and gas-water separator
WO2011070818A1 (en) * 2009-12-10 2011-06-16 三菱重工業株式会社 Multi-stage gas-water separation device and gas-water separator
EP2510994A1 (en) * 2009-12-10 2012-10-17 Mitsubishi Heavy Industries, Ltd. Multi-stage gas-water separation device and gas-water separator
US8741014B2 (en) 2009-12-10 2014-06-03 Mitsubishi Heavy Industries, Ltd. Multi-stage steam-water separation device and steam-water separator
KR101434063B1 (en) * 2009-12-10 2014-08-25 미츠비시 쥬고교 가부시키가이샤 Multi-stage gas-water separation device and gas-water separator
EP2510994A4 (en) * 2009-12-10 2015-06-24 Mitsubishi Heavy Ind Ltd Multi-stage gas-water separation device and gas-water separator
WO2021132918A3 (en) * 2019-12-23 2021-08-19 (주)이엠씨 Swirl vane-type moisture separator
CN112377710A (en) * 2020-11-05 2021-02-19 长江大学 Device for converting intermittent slug flow into continuous annular flow

Similar Documents

Publication Publication Date Title
KR101434063B1 (en) Multi-stage gas-water separation device and gas-water separator
JP3142931B2 (en) Gas / liquid separator
US5885333A (en) Low pressure drop steam separators
JPH0675082A (en) Multiple steam water separator
JPH0727053B2 (en) A steam-water separation system for boiling water reactors.
EP0493900A1 (en) Steam dryer
JP2002523716A (en) Separator for steam-water separator
CN108465301B (en) Combined cyclone deflection large-caliber gas-liquid compound separation device of gas compressor
JP3971146B2 (en) Steam separator and boiling water reactor
US3507099A (en) Centrifugal liquid-vapor separator
EP0859368B1 (en) Low pressure drop steam separators
US5976207A (en) Water separating system
JP2012058113A (en) Steam separation facility for nuclear reactor
JPH07232021A (en) Gas-liquid separator
JP3272142B2 (en) Steam separator and steam separator
JPH05346483A (en) Steam water separator for bwr
JP2004245656A (en) Steam separator
US20240183527A1 (en) Steam Separator and Boiling Water Reactor Including Same
CN116981882A (en) Water and steam separator for boiler drum
CN220214277U (en) Gas-water separator of fuel cell
JP2009257770A (en) Air-water separator and boiling water reactor
JP2012117857A (en) Steam separator
JP2000329889A (en) Steam separator
JPH06142424A (en) Vapor/liquid separator
JP2528391B2 (en) Method for separating hot water and steam from a mixed fluid of hot water and steam