JP2013039501A - Multistage type steam-water separator - Google Patents

Multistage type steam-water separator Download PDF

Info

Publication number
JP2013039501A
JP2013039501A JP2011176259A JP2011176259A JP2013039501A JP 2013039501 A JP2013039501 A JP 2013039501A JP 2011176259 A JP2011176259 A JP 2011176259A JP 2011176259 A JP2011176259 A JP 2011176259A JP 2013039501 A JP2013039501 A JP 2013039501A
Authority
JP
Japan
Prior art keywords
steam
outer cylinder
cooling water
water
water separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011176259A
Other languages
Japanese (ja)
Inventor
稔昌 ▲高▼橋
Toshiaki Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2011176259A priority Critical patent/JP2013039501A/en
Publication of JP2013039501A publication Critical patent/JP2013039501A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Degasification And Air Bubble Elimination (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the outflow speed of steam flowing out of a cooling water discharge port formed at the lower end of an outer cylinder located above a cooling water surface and to suppress carryover amount by using a simple and inexpensive means.SOLUTION: The outer cylinder 34 of a second stage steam-water separation part 30 is located above the cooling water surface L. A porous plate 40 is provided to the cooling water discharge port 34a formed at the lower end of the outer cylinder 34. A large number of circular cooling water outflow pores 42 are bored on the porous plate 40. Thereby the outflow speed of the steam flowing out of the discharge port 34a is reduced and shock caused by collision of the steam against the cooling water surface L is alleviated and droplets are prevented from dispersing. As a result, the carryover amount is reduced.

Description

本発明は、水蒸気を冷却水から分離する気水分離器に関し、特に、原子力発電プラントの蒸気発生器に適用されて好適なものである。   The present invention relates to an air / water separator that separates water vapor from cooling water, and is particularly suitable when applied to a steam generator of a nuclear power plant.

原子力発電プラントの蒸気発生器は、蒸気タービンに供給する水蒸気から液分を分離するため、通常、蒸気発生器の上部に気水分離器が設けられ、気水分離器の上方に湿分分離器が設けられている。気水分離器で分離された蒸気に含まれる液滴を湿分分離器で除去した後、蒸気タービンに供給している。特許文献1に、蒸気発生器に設けられる気水分離器の構成が開示されている。以下、特許文献1に開示された気水分離器の構成を図5により説明する。   Since the steam generator of a nuclear power plant separates liquid components from the steam supplied to the steam turbine, a steam separator is usually provided at the top of the steam generator, and a moisture separator above the steam separator. Is provided. The droplets contained in the steam separated by the steam separator are removed by the moisture separator and then supplied to the steam turbine. Patent Document 1 discloses a configuration of a steam separator provided in a steam generator. Hereinafter, the configuration of the steam separator disclosed in Patent Document 1 will be described with reference to FIG.

図5において、気水分離器100は、複数の気水分離部110及び気水分離部120が上下に配置されている。下段に配置された第1段気水分離部110は、内筒(ライザ)112と、内筒112を囲むように、外筒(ダウンカマ)114が配置され、内筒112の上端にオリフィス部116が設けられ、オリフィス部116を介して、気水分離部120の内筒112に連通している。内筒112と外筒114との間には、内筒112の内側空間で気相と分離された冷却水が流下する冷却水流路sが形成されている。第2段気水分離部120も、同様の構成をなし、内筒122、外筒124及びオリフィス部126で構成されている。   In FIG. 5, the steam / water separator 100 has a plurality of steam / water separators 110 and steam / water separators 120 arranged one above the other. The first stage steam-water separation unit 110 disposed in the lower stage includes an inner cylinder (riser) 112 and an outer cylinder (downcomer) 114 so as to surround the inner cylinder 112, and an orifice section 116 at the upper end of the inner cylinder 112. Is provided and communicates with the inner cylinder 112 of the steam / water separator 120 via the orifice 116. Between the inner cylinder 112 and the outer cylinder 114, a cooling water flow path s is formed in which cooling water separated from the gas phase in the inner space of the inner cylinder 112 flows down. The second-stage steam-water separation unit 120 has the same configuration, and includes an inner cylinder 122, an outer cylinder 124, and an orifice portion 126.

内筒112の内部には、複数の旋回羽根118が等間隔で固定されている。その結果、気泡gを含み、内筒112の内部を上昇してくる気液二相流tは、旋回羽根118を通るとき、旋回力を与えられ、旋回流となる。旋回流となることで、重い液相に大きな遠心力が発生するため、液相は内筒112の壁面に沿って流れ、液膜mを形成して外筒114内に流出する。一方、気相は一部の液滴lを含んだ状態で上昇し、さらに上段の第2段気水分離部120で、気相と液相とに分離される。第2段気水分離部120で液相と分離された水蒸気は、蒸気排出管130を介して湿分分離器(図示省略)に流入する。   Inside the inner cylinder 112, a plurality of swirl blades 118 are fixed at equal intervals. As a result, the gas-liquid two-phase flow t containing the bubbles g and rising inside the inner cylinder 112 is given a swirl force when passing through the swirl vanes 118 and becomes a swirl flow. Since a large centrifugal force is generated in the heavy liquid phase due to the swirling flow, the liquid phase flows along the wall surface of the inner cylinder 112, forms a liquid film m, and flows out into the outer cylinder 114. On the other hand, the gas phase rises in a state including some droplets l and is further separated into a gas phase and a liquid phase by the second-stage steam-water separation unit 120 in the upper stage. The water vapor separated from the liquid phase in the second stage water / water separation unit 120 flows into the moisture separator (not shown) via the vapor discharge pipe 130.

このとき、外筒114の内部を重力により下降する液相は、気泡gなどの形で一部の気相を同伴する(キャリアンダ)。また、内筒112を上昇する気相に液滴などの形で液相が同伴する(キャリオーバ)。気水分離器100では、第1段気水分離部110の外筒114の下部に設けられた冷却水排出口に、ラビリンス構造をなす抵抗119を設けて、キャリアンダされる気相を低減している。   At this time, the liquid phase descending due to gravity inside the outer cylinder 114 is accompanied by a part of the gas phase in the form of bubbles g or the like (Caranda). Further, the liquid phase is accompanied in the form of droplets or the like in the gas phase rising up the inner cylinder 112 (carryover). In the steam / water separator 100, a resistance 119 having a labyrinth structure is provided at a cooling water discharge port provided at a lower portion of the outer cylinder 114 of the first-stage steam / water separation unit 110 to reduce a gas phase to be carried. ing.

なお、気水分離部を複数段設ける理由は、1段のみの場合よりも気水分離部が増えるため、気水分離性能を向上させることができること、また、各段の流動状況に応じて旋回羽根等の形状を最適化することにより気水分離性能を向上させ、かつ流れの圧力損失を低減させることができるためである。   The reason for providing a plurality of air / water separators is that the number of air / water separators increases compared to the case of only one stage, so that the air / water separation performance can be improved, and the swirl depends on the flow situation of each stage. This is because the air-water separation performance can be improved and the pressure loss of the flow can be reduced by optimizing the shape of the blades and the like.

特許文献2には、多段型気水分離器において、上段側気水分離部の内筒及び外筒に、多数の流路孔を穿設し、該内筒と外筒との間に、デミスタを充填させる構成が開示されている。この構成を図6により説明する。この気水分離器200の第1段気水分離部210は、スタンドパイプ202の上端にディフューザ212が設けられ、ディフューザ212内には、ハブ214と、該ハブ214及びディフューザ内壁間に接続された旋回羽根216を備えている。ディフューザ212の上端には内筒218が接続されている。   In Patent Document 2, in a multi-stage type steam / water separator, a large number of flow passage holes are formed in the inner cylinder and the outer cylinder of the upper stage side water / water separator, and a demister is provided between the inner cylinder and the outer cylinder. A structure for filling is disclosed. This configuration will be described with reference to FIG. The first-stage steam-water separator 210 of the steam-water separator 200 is provided with a diffuser 212 at the upper end of the stand pipe 202. Inside the diffuser 212, a hub 214 is connected between the hub 214 and the diffuser inner wall. A swirl vane 216 is provided. An inner cylinder 218 is connected to the upper end of the diffuser 212.

内筒218と外筒220との間には、仕切板222で区画された複数の排水流路が形成されている。外筒220の上端には、オリフィス部224が設けられている。内筒218は、オリフィス部224を介して第2段気水分離部230の内筒232に連通している。外筒234は、内筒232と間隔を有して配置され、内筒232と外筒234との間にデミスタ236が充填されている。該間隔の上端は遮蔽用円板238で遮蔽されている。内筒232及び外筒234には、全域に多数の流路孔240が穿設されている。   A plurality of drainage channels partitioned by a partition plate 222 are formed between the inner cylinder 218 and the outer cylinder 220. An orifice portion 224 is provided at the upper end of the outer cylinder 220. The inner cylinder 218 communicates with the inner cylinder 232 of the second stage steam-water separation unit 230 via the orifice unit 224. The outer cylinder 234 is disposed with a space from the inner cylinder 232, and a demister 236 is filled between the inner cylinder 232 and the outer cylinder 234. The upper end of the interval is shielded by a shielding disc 238. The inner cylinder 232 and the outer cylinder 234 are provided with a large number of flow path holes 240 throughout the entire area.

かかる構成において、第2段気水分離部230の内筒232に流入してきた冷却水の液滴と蒸気の一部は、内筒232の流路孔240に流入し、デミスタ236で液滴だけが捕獲される。デミスタ236で捕獲された液滴は、内筒232と外筒234間の排水流路を重力降下し、外筒234の下端開口から冷却水面Lに落下する。デミスタ236を通過した蒸気は、外筒234の流路孔240から気水分離器200の外側へ抜け、蒸気乾燥器(図示省略)に流入していく。   In such a configuration, the cooling water droplets and a part of the steam that have flowed into the inner cylinder 232 of the second-stage steam-water separator 230 flow into the flow path hole 240 of the inner cylinder 232, and only the droplets are discharged by the demister 236. Is captured. The liquid droplets captured by the demister 236 gravity drop in the drainage flow path between the inner cylinder 232 and the outer cylinder 234, and drop onto the cooling water surface L from the lower end opening of the outer cylinder 234. The steam that has passed through the demister 236 passes through the flow passage hole 240 of the outer cylinder 234 to the outside of the steam separator 200 and flows into a steam dryer (not shown).

特開2002−326002号公報JP 2002-326002 A 特開2004−245656号公報JP 2004-245656 A

多段型気水分離器において、上段側の気水分離部では、外筒(ダウンカマ)の冷却水排出口が液面Lより上方に位置する場合がある。この場合には、該冷却水排出口より液滴を含む蒸気が下向きに流出し、その勢いのまま下方の冷却水面に衝突する。これによって、冷却水面から液滴が飛散する。飛散した液滴は、気相と共に気水分離器の上方へ流出してキャリオーバされる湿分を増加させ、気水分離性能を悪化させるという問題がある。   In the multi-stage air / water separator, the cooling water discharge port of the outer cylinder (downcomer) may be located above the liquid level L in the upper-stage air / water separator. In this case, the vapor containing droplets flows downward from the cooling water discharge port, and collides with the lower cooling water surface with its momentum. As a result, droplets are scattered from the cooling water surface. The scattered droplets flow out to the upper part of the steam separator along with the gas phase and increase the moisture that is carried over, thereby deteriorating the steam separator performance.

特許文献2に開示された気水分離器の第2段気水分離部では、内筒と外筒間に流入した冷却水の液滴と蒸気の一部は、デミスタで気液分離され、蒸気は流路孔240から外筒234の外側へ流出するので、外筒234の下端排出口から冷却水面Lに流下する液滴の流下速度は緩和されると思われる。しかし、内筒及び外筒の全域に流路孔240を穿設する必要があるので、加工に手間がかかる。またデミスタを内筒と外筒間の隙間に充填するので、製造費が高コストとなるという問題がある。   In the second-stage steam-water separator of the steam-water separator disclosed in Patent Document 2, a part of the cooling water droplets and steam flowing between the inner cylinder and the outer cylinder are gas-liquid separated by a demister, Flows out from the flow path hole 240 to the outside of the outer cylinder 234, so it is considered that the flow speed of the liquid droplet flowing down from the lower end discharge port of the outer cylinder 234 to the cooling water surface L is reduced. However, since it is necessary to make the flow path hole 240 in the entire area of the inner cylinder and the outer cylinder, it takes time and effort for processing. Further, since the demister is filled in the gap between the inner cylinder and the outer cylinder, there is a problem that the manufacturing cost becomes high.

本発明は、かかる従来技術の課題に鑑み、冷却水面上方に位置する外筒の下端に形成された排出口から流出する液滴を含む蒸気の速度を低減させることで、冷却水面から液滴が飛散するのを防止し、キャリオーバ量を低減させると共に、これを簡素かつ低コストな手段で実現することを目的とする。   In view of the problems of the prior art, the present invention reduces the velocity of steam including droplets flowing out from the discharge port formed at the lower end of the outer cylinder located above the cooling water surface, so that the droplets from the cooling water surface. An object of the present invention is to prevent scattering and reduce the carryover amount, and to realize this by simple and low-cost means.

かかる目的を達成するため、本発明の気水分離器は、気液二相流の上昇流路を形成する内筒と、内筒との間に下向きの冷却水流路を形成する外筒とからなる気水分離部が上下方向に複数段に配置され、上下に隣接して配置された内筒の内部空間は連絡通路を介して連通されてなる気水分離器において、気水分離部のうち、外筒の下端部に形成される排出口が冷却水面より上方に位置する気水分離部において、排出口又は排出口直下の前段気水分離部の外筒、若しくは排出口直上の外筒周囲に流下速度低減機構を設けたものである。   In order to achieve such an object, the steam separator of the present invention comprises an inner cylinder that forms a gas-liquid two-phase flow ascending flow path and an outer cylinder that forms a downward cooling water flow path between the inner cylinder and the inner cylinder. In the steam / water separator, the internal space of the inner cylinder arranged adjacent to the top and bottom is communicated via a communication passage. In the air / water separator where the outlet formed in the lower end of the outer cylinder is located above the cooling water surface, the outer cylinder of the front stage air / water separator immediately below the outlet or the outlet, or around the outer cylinder just above the outlet Is provided with a flow velocity reduction mechanism.

本発明の気水分離器では、前記流下速度低減機構を設けたことにより、液滴を含む蒸気が冷却水面に衝突するときの衝撃を緩和できる。これによって、冷却水面からの液滴の飛散を防止し、飛散した液滴が気相側に取り込まれ、キャリオーバ量が増加するのを防止できる。   In the steam / water separator according to the present invention, by providing the flow velocity reduction mechanism, it is possible to mitigate the impact when the vapor containing the droplet collides with the cooling water surface. As a result, it is possible to prevent the droplets from scattering from the cooling water surface, and to prevent the scattered droplets from being taken into the gas phase side and the carryover amount from increasing.

本発明装置において、流下速度低減機構は、外筒の冷却水排出口に取り付けられた多孔性リング部材からなり、この多孔性リング部材で冷却水流路から流出する蒸気に抵抗を与え、蒸気の流下速度を低減させるものであるとよい。これによって、簡素かつ低コストな手段で、液滴を含む蒸気が冷却水面に衝突するときの衝撃を防止できる。また、多孔性リング部材を排出口に取り付けることで、蒸気の流下速度を確実に低減できる。なお、多孔性リング部材に穿設される孔の形状は、例えば、円形又はスリット形状等とすればよい。   In the apparatus of the present invention, the flow velocity reduction mechanism is composed of a porous ring member attached to the cooling water discharge port of the outer cylinder, and the porous ring member gives resistance to the steam flowing out from the cooling water flow path, It would be good to reduce the speed. Thereby, it is possible to prevent an impact when the vapor containing the droplet collides with the cooling water surface by a simple and low-cost means. Further, by attaching the porous ring member to the discharge port, the flow rate of the steam can be reliably reduced. The shape of the hole drilled in the porous ring member may be, for example, a circle or a slit shape.

本発明装置において、冷却水排出口直下の前段気水分離部の外筒周囲に、外筒の軸方向と交差する方向に設けられた多孔性リング部材からなり、該多孔性リング部材で冷却水流路から流出する蒸気に抵抗を与え、蒸気の流下速度を低減させるものであるとよい。これによって、多孔性リング部材を用いただけの簡素かつ低コストな構成で、外筒の冷却水排出口から排出される蒸気の流下速度を確実に減速できる。また、流下する蒸気に対する多孔性リング部材の抵抗を低減できる。   In the apparatus of the present invention, a porous ring member provided in a direction intersecting the axial direction of the outer cylinder is provided around the outer cylinder of the front-stage steam-water separator immediately below the cooling water discharge port. It is preferable that resistance is given to the steam flowing out from the path and the flow rate of the steam is reduced. Accordingly, the flow rate of the steam discharged from the cooling water discharge port of the outer cylinder can be surely reduced with a simple and low-cost configuration using only the porous ring member. Moreover, the resistance of the porous ring member to the flowing-down steam can be reduced.

本発明装置において、流下速度低減機構は、外筒の冷却水排出口直上領域を多孔性筒状体で構成し、該多孔性筒状体に穿設された蒸気排出用孔から蒸気を排出することで、冷却水排出口から流下する蒸気の流下速度を低減するものであるとよい。蒸気排出用孔から蒸気を逃がすことで、徐々に外筒の外へ液滴を含む蒸気が流出し、全体として流速が低下するので、冷却水面から液滴が飛散するのを防止できる。また、外筒の内部を流下する冷却水の抵抗とならない。   In the apparatus of the present invention, the flow velocity reduction mechanism is configured by forming a region immediately above the cooling water discharge port of the outer cylinder with a porous cylindrical body, and discharging the steam from a steam exhaust hole formed in the porous cylindrical body. Thus, it is preferable that the flow rate of the steam flowing down from the cooling water discharge port is reduced. By letting the steam escape from the steam discharge hole, the steam containing the droplets gradually flows out of the outer cylinder, and the flow velocity is lowered as a whole, so that the droplets can be prevented from scattering from the cooling water surface. Moreover, it does not become resistance of the cooling water flowing down the inside of the outer cylinder.

さらに、外筒の冷却水排出口直上領域に蒸気排出用孔を穿設するだけの簡素かつ低コストな構成で、蒸気の流下速度を低減できる。また、外筒の下端に多孔性リング部材を設ける場合と比べて、圧力損失を低減できると共に、蒸気排出用孔の数を調節することで、蒸気の落下流速を調整できる。   Furthermore, the steam flow rate can be reduced with a simple and low-cost configuration in which a steam discharge hole is provided in the region directly above the cooling water discharge port of the outer cylinder. Moreover, pressure loss can be reduced as compared with the case where a porous ring member is provided at the lower end of the outer cylinder, and the steam falling flow rate can be adjusted by adjusting the number of steam discharge holes.

本発明の多段型気水分離器によれば、気液二相流の上昇流路を形成する内筒と、内筒との間に下向きの冷却水流路を形成する外筒とからなる気水分離部が上下方向に複数段に配置され、上下に隣接して配置された内筒の内部空間は連絡通路を介して連通されてなる気水分離器において、気水分離部のうち、外筒の下端部に形成される排出口が冷却水面より上方に位置する気水分離部において、排出口又は排出口直下の前段気水分離部の外筒、若しくは排出口直上の外筒周囲に流下速度低減機構を設けたので、簡素かつ低コストな手段で、外筒下端の排出口から流下する蒸気の流下速度を低減し、該蒸気が冷却水面に衝突するときの衝撃を緩和し、これによって、液滴の飛散をなくして液滴のキャリオーバを防止できる。   According to the multistage type steam-water separator of the present invention, steam-water comprising an inner cylinder that forms a gas-liquid two-phase flow rising channel and an outer cylinder that forms a downward cooling water channel between the inner cylinder and the inner cylinder. In the steam-water separator, in which the separation part is arranged in a plurality of stages in the vertical direction, and the inner space of the inner cylinder arranged adjacent to the top and the bottom is communicated via a communication passage, the outer cylinder of the steam-water separation part In the steam / water separation section where the discharge port formed at the lower end of the water is positioned above the cooling water surface, the flow velocity flows around the discharge tube or the outer cylinder of the front-stage steam / water separation unit immediately below the discharge port, or the outer tube just above the discharge port Since the reduction mechanism is provided, the flow speed of the steam flowing down from the outlet at the lower end of the outer cylinder is reduced by simple and low-cost means, and the impact when the steam collides with the cooling water surface is reduced. It is possible to prevent droplet carry-over by eliminating the scattering of the droplet.

本発明装置の第1実施形態に係る正面視断面図である。It is a front view sectional view concerning a 1st embodiment of the device of the present invention. 第1実施形態の一部拡大図である。It is a partially expanded view of 1st Embodiment. 本発明装置の第2実施形態に係る正面視断面図である。It is front view sectional drawing concerning 2nd Embodiment of this invention apparatus. 本発明装置の第3実施形態に係る正面視断面図である。It is front view sectional drawing concerning 3rd Embodiment of this invention apparatus. 従来の気水分離器の正面視断面図である。It is a front view sectional view of the conventional steam separator. 従来の別な構成の気水分離器の正面視断面図である。It is front view sectional drawing of the conventional steam-water separator of another structure.

以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではない。   Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this embodiment are not intended to limit the scope of the present invention to that unless otherwise specified.

(実施形態1)
本発明装置の第1実施形態を図1及び図2に基づいて説明する。図1において、本実施形態の気水分離器10は2段の気水分離部からなる。気水分離器10は、原子力発電プラントの蒸気発生器の上部に設けられている。蒸気発生器で、原子炉格納容器を冷却する一次冷却加圧水と二次冷却水とを熱交換し、二次冷却水を沸騰させる。二次冷却水の温度は、高圧下で飽和温度が300℃付近に達する。沸騰した二次冷却水を気水分離器10及び湿分分離器で気水分離し、分離した蒸気で蒸気タービンを駆動する。
(Embodiment 1)
A first embodiment of the device of the present invention will be described with reference to FIGS. In FIG. 1, the steam-water separator 10 of this embodiment consists of a two-stage steam-water separator. The steam separator 10 is provided in the upper part of the steam generator of a nuclear power plant. In the steam generator, heat is exchanged between the primary cooling pressurized water for cooling the reactor containment vessel and the secondary cooling water, and the secondary cooling water is boiled. The temperature of the secondary cooling water reaches a saturation temperature near 300 ° C. under high pressure. The boiled secondary cooling water is separated into steam and water by the steam separator 10 and the moisture separator, and the steam turbine is driven by the separated steam.

気水分離器10の第1段気水分離部20は、円筒形状の内筒22及び外筒24が同心円状に配置され、内筒22との内筒22の間に、気相と分離され熱水となった冷却水を排出する冷却水流路sが形成されている。内筒22の内側空間には、旋回羽根26が装着されている。下方から内筒22の内部を上昇してくる気液二相流tは、この固定された旋回羽根24を通過することで、旋回力を付与され、旋回流となる。外筒24の下端は開放され、冷却水の排出口34aを形成している。外筒24の上端にはオリフィス部28が設けられている。   In the first stage steam / water separator 20 of the steam / water separator 10, a cylindrical inner cylinder 22 and an outer cylinder 24 are arranged concentrically and separated from the gas phase between the inner cylinder 22 and the inner cylinder 22. A cooling water flow path s for discharging the cooling water that has become hot water is formed. A swirl vane 26 is mounted in the inner space of the inner cylinder 22. The gas-liquid two-phase flow t rising from the lower side of the inner cylinder 22 passes through the fixed swirl vanes 24 and is given a swirl force to become a swirl flow. The lower end of the outer cylinder 24 is opened to form a cooling water discharge port 34a. An orifice portion 28 is provided at the upper end of the outer cylinder 24.

第1段気水分離部20の上方には、第2段気水分離部30が設けられている。第2段気水分離部30は、第1段気水分離部20と同様の構成をなし、内筒32及び外筒34とからなり、内筒32と外筒34との間に、冷却水流路sが形成されている。内筒32と内筒22とはオリフィス部28を介して連通している。外筒34の上端にはオリフィス部36が設けられ、内筒32の内側空間は、オリフィス部36に接続された蒸気排出管38を介して湿分分離器(図示省略)に接続されている。   A second stage steam / water separator 30 is provided above the first stage steam / water separator 20. The second-stage steam-water separation unit 30 has the same configuration as the first-stage steam-water separation unit 20, and includes an inner cylinder 32 and an outer cylinder 34, and a cooling water flow is provided between the inner cylinder 32 and the outer cylinder 34. A path s is formed. The inner cylinder 32 and the inner cylinder 22 communicate with each other via the orifice portion 28. An orifice 36 is provided at the upper end of the outer cylinder 34, and the inner space of the inner cylinder 32 is connected to a moisture separator (not shown) via a steam discharge pipe 38 connected to the orifice 36.

第2段気水分離部30の外筒34の下端にある排出口34aは、冷却水面Lの上方に位置している。排出口34aには、排出口34aを覆うようにリング状の多孔板40が装着されている。多孔板40には、図2に示すように、多数の円形の冷却水流出孔42が穿設されている。   The discharge port 34 a at the lower end of the outer cylinder 34 of the second stage steam / water separator 30 is located above the cooling water surface L. A ring-shaped perforated plate 40 is attached to the discharge port 34a so as to cover the discharge port 34a. As shown in FIG. 2, a large number of circular cooling water outflow holes 42 are formed in the porous plate 40.

かかる構成において、第1段気水分離部20の内筒22の下方から上昇してきた気液二相流tは、蒸気gを含み、旋回羽根26を通過して旋回力を付与され、旋回流となる。これによって、重量が大きい液相に遠心力が付与され、内筒22の内壁に液膜mを形成する。一部の蒸気gを含む液相は、冷却水流路sに流出する。   In such a configuration, the gas-liquid two-phase flow t rising from the lower side of the inner cylinder 22 of the first-stage steam-water separation unit 20 includes the steam g and is given a swirl force through the swirl vanes 26, It becomes. Accordingly, centrifugal force is applied to the liquid phase having a large weight, and a liquid film m is formed on the inner wall of the inner cylinder 22. The liquid phase containing a part of the vapor g flows out into the cooling water flow path s.

残りの液滴lを含む蒸気は、オリフィス部28から第2段気水分離部30の内筒32の内側空間に流入する。ここで残りの液滴が分離され、一部の蒸気とともに冷却水流路sに流出する。残りの蒸気はオリフィス部36を介して湿分分離器に流出する。   The steam containing the remaining droplets 1 flows from the orifice portion 28 into the inner space of the inner cylinder 32 of the second stage steam / water separation portion 30. Here, the remaining droplets are separated and flow out into the cooling water channel s together with a part of the steam. The remaining steam flows out through the orifice 36 to the moisture separator.

本実施形態では、外筒34の排出口34aに多孔板40を設け、液滴を含む蒸気gを多孔板40で受け止めるようにしている。図2に示すように、多孔板40には、多数の円形の冷却水流出孔42が穿設されている。排出口34aから流下した蒸気を冷却水流出孔42に流出させることによって、流出する蒸気に圧力損失を生じさせ、蒸気の流下速度を低減できる。そのため、この蒸気が冷却水面Lに衝突して液滴を飛散させるのを防止できる。従って、液滴のキャリオーバ量を低減できる。また、多孔板40を排出口34aを覆うように配置しているので、蒸気の流出速度を確実に低減できる。   In the present embodiment, the porous plate 40 is provided at the discharge port 34 a of the outer cylinder 34, and the vapor g containing droplets is received by the porous plate 40. As shown in FIG. 2, a large number of circular cooling water outflow holes 42 are formed in the porous plate 40. By causing the steam that has flowed down from the discharge port 34a to flow into the cooling water outflow hole 42, pressure loss is caused in the flowing steam, and the flow speed of the steam can be reduced. Therefore, it is possible to prevent the vapor from colliding with the cooling water surface L and scattering the droplets. Therefore, the carry-over amount of the droplet can be reduced. Moreover, since the perforated plate 40 is disposed so as to cover the discharge port 34a, the outflow speed of the steam can be reliably reduced.

なお、排水空間sの断面積および気水分離器内の流量に応じて蒸気の流出速度は異なるが、例えば流出速度は2.0m/s近辺になる。これに対し、図2に示すような冷却水流出孔42を有するステンレス鋼の多孔板を用い、冷却水流出孔42の孔径12.7mm、ピッチ15.0mmとし、開口率を0.65としたとき、蒸気の流出速度を0.3m/sに以下に低減できる。   In addition, although the outflow speed of a vapor | steam changes according to the cross-sectional area of the drainage space s, and the flow volume in a steam-water separator, for example, the outflow speed becomes 2.0 m / s vicinity. On the other hand, a stainless steel perforated plate having cooling water outflow holes 42 as shown in FIG. 2 was used, the cooling water outflow holes 42 had a hole diameter of 12.7 mm, a pitch of 15.0 mm, and an opening ratio of 0.65. When the steam outflow rate can be reduced to 0.3 m / s or less.

(実施形態2)
次に、本発明装置の第2実施形態を図3により説明する。本実施形態は、リング状の多孔板50を、第1段気水分離部20の外筒24の外周面上端に水平方向に設けた例である。多孔板50には、第1実施形態と同様に、多数の円形の冷却水流出孔が穿設されている。その他の構成は第1実施形態と同一である。
(Embodiment 2)
Next, a second embodiment of the device of the present invention will be described with reference to FIG. The present embodiment is an example in which a ring-shaped perforated plate 50 is provided in the horizontal direction at the upper end of the outer peripheral surface of the outer cylinder 24 of the first stage steam-water separation unit 20. As in the first embodiment, the circular perforated plate 50 has a large number of circular cooling water outflow holes. Other configurations are the same as those of the first embodiment.

このように、第2段気水分離部30の排水口に対向する位置にある外筒24の上面外側に、多孔板50を設けたことにより、排出口から冷却水面に向かう蒸気に対して確実に抵抗を与えることができる。そのため、蒸気の流出速度を低減できる。従って、この冷却水が冷却水面Lに衝突して液滴を飛散させるのを防止できる。さらに、多孔板50を排出口34aから離して配置してあるので、第1実施形態と比べて、気水分離器の外側に設置されており排出口を塞ぐ配置ではないため圧力損失を低減できる長所がある。   Thus, by providing the perforated plate 50 outside the upper surface of the outer cylinder 24 at the position facing the drain port of the second stage water / water separator 30, it is possible to reliably prevent steam from the discharge port toward the cooling water surface. Can give resistance. Therefore, the outflow speed of steam can be reduced. Accordingly, it is possible to prevent the cooling water from colliding with the cooling water surface L and scattering the droplets. Furthermore, since the perforated plate 50 is disposed away from the discharge port 34a, the pressure loss can be reduced because the perforated plate 50 is disposed outside the steam-water separator and does not close the discharge port as compared with the first embodiment. There are advantages.

(実施形態3)
次に、本発明装置の第3実施形態を図4に基づいて説明する。本実施形態は、第2段気水分離部30の外筒34の下側半分の領域を、多数の円形の蒸気排出孔62を分散配置した多孔性円筒体60で構成したものである。これによって、蒸気が外筒34内を流下中に、蒸気排出孔62から蒸気を逃がすことで、徐々に外筒の外へ液滴を含む蒸気が流出し、排出口34aから流出する蒸気の流出速度を低減でき、蒸気が冷却水面Lに衝突して液滴を飛散させるのを防止できる。
(Embodiment 3)
Next, 3rd Embodiment of this invention apparatus is described based on FIG. In the present embodiment, the lower half region of the outer cylinder 34 of the second-stage steam-water separation unit 30 is configured with a porous cylindrical body 60 in which a large number of circular steam discharge holes 62 are dispersedly arranged. As a result, when the steam flows down through the outer cylinder 34, the steam escapes from the steam discharge hole 62, so that the steam including droplets gradually flows out of the outer cylinder, and the outflow of steam flowing out from the discharge port 34a. The speed can be reduced, and it is possible to prevent the steam from colliding with the cooling water surface L and scattering the droplets.

また、本実施形態では、排出口34aを開放したままであるので、冷却水の流出抵抗が増加せず、かつ蒸気排出孔62の配置領域及び数を調節することにより、排出口34aから流出する蒸気の流出速度を調節するのが容易になるという利点がある。なお、本実施形態では、既設の外筒34の下側領域に蒸気排出孔62を穿設するようにしてもよい。   Moreover, in this embodiment, since the discharge port 34a is kept open, the outflow resistance of the cooling water does not increase, and it flows out of the discharge port 34a by adjusting the arrangement region and the number of the steam discharge holes 62. There is an advantage that it becomes easy to adjust the flow rate of the steam. In the present embodiment, the steam discharge hole 62 may be formed in the lower region of the existing outer cylinder 34.

なお、前記第1〜第3実施形態では、多孔板40,50に設けられる冷却水流出孔42、又は多孔性円筒体60に穿設される排水流出孔42を円形としているが、その他の形状でもよく、例えば、スリット形状としてもよい。また、第1〜第3実施形態では、いずれも2段の気水分離部を備えた例であるが、本発明は、3段以上の気水分離部を備えたものにも適用できる。   In the first to third embodiments, the cooling water outflow holes 42 provided in the porous plates 40 and 50 or the drainage outflow holes 42 formed in the porous cylindrical body 60 are circular, but other shapes are used. For example, it may be a slit shape. In the first to third embodiments, each is an example provided with a two-stage steam-water separator, but the present invention can also be applied to one provided with three or more stages of steam-water separators.

さらに、第1〜第3実施形態では、いずれも第1段気水分離部20の内筒22の内側空間に旋回羽根26が装着された例であるが、2段目以降の気水分離部に旋回羽根を設けるようにしてもよい。これによって、各段の流動状況に応じて旋回羽根の形状を最適化することにより気水分離性能を向上させ、かつ流れの圧力損失を低減させることができる。   Furthermore, in 1st-3rd embodiment, all are the examples by which the swirl | wing blade 26 was mounted | worn in the inner space of the inner cylinder 22 of the 1st stage steam-water separation part 20, However, The steam-water separation part after the 2nd stage You may make it provide a turning blade | wing in. Thereby, by optimizing the shape of the swirl vanes according to the flow situation of each stage, the steam-water separation performance can be improved and the pressure loss of the flow can be reduced.

本発明によれば、複数の気水分離部を備えた気水分離器において、上段側気水分離部から流出する蒸気の流出速度を簡素かつ低コストな手段で低減し、液滴の飛散によるキャリオーバ量の増加を効果的に抑えることができる。   According to the present invention, in the steam / water separator having a plurality of steam / water separators, the outflow speed of the steam flowing out from the upper-stage steam / water separator is reduced by simple and low-cost means, and the droplets are scattered. An increase in carryover amount can be effectively suppressed.

10,100,200 気水分離器
20,110,210 第1段気水分離部
30,120,230 第2段気水分離部
22,32,112,122、218,232 内筒
24,34,114,124,220,234 外筒
26,118,216 旋回羽根
28,36,116,126,224 オリフィス部
34a 排出口
38,130 蒸気排出管
40,50 多孔板(多孔性リング部材)
42 冷却水流出孔
60 多孔性円筒体
62 蒸気排出孔
202 スタンドパイプ
212 ディフューザ
214 ハブ
222 仕切板
236 デミスタ
238 遮蔽用円板
240 流路孔
g 蒸気
l 液滴
m 液膜
s 冷却水流路
t 気液二相流
10, 100, 200 Air / water separators 20, 110, 210 First stage air / water separators 30, 120, 230 Second stage air / water separators 22, 32, 112, 122, 218, 232 Inner cylinders 24, 34, 114, 124, 220, 234 Outer cylinder 26, 118, 216 Swivel blade 28, 36, 116, 126, 224 Orifice portion 34a Discharge port 38, 130 Steam discharge pipe 40, 50 Perforated plate (porous ring member)
42 Cooling water outflow hole 60 Porous cylindrical body 62 Steam discharge hole 202 Stand pipe 212 Diffuser 214 Hub 222 Partition plate 236 Demister 238 Shielding disc 240 Channel hole g Steam l Droplet m Liquid film s Cooling water channel t Gas liquid Two-phase flow

Claims (4)

気液二相流の上昇流路を形成する内筒と、該内筒との間に下向きの冷却水流路を形成する外筒とからなる気水分離部が上下方向に複数段に配置され、上下に隣接して配置された内筒の内部空間は連絡通路を介して連通されてなる気水分離器において、
前記気水分離部のうち、外筒の下端部に形成される排出口が冷却水面より上方に位置する気水分離部において、前記排出口又は該排出口直下の前段気水分離部の外筒、若しくは排出口直上の外筒周囲に流下速度低減機構を設けたことを特徴とする気水分離器。
A steam / water separation section composed of an inner cylinder that forms an ascending flow path for a gas-liquid two-phase flow and an outer cylinder that forms a downward cooling water flow path between the inner cylinder and the inner cylinder is arranged in multiple stages in the vertical direction In the steam-water separator, the inner space of the inner cylinder arranged adjacent to the upper and lower sides is communicated via a communication passage.
Among the steam / water separators, in the steam / water separator where the outlet formed in the lower end of the outer cylinder is located above the cooling water surface, the outer cylinder of the outlet / water separator immediately below the outlet or the outlet Or a steam / water separator, wherein a flow velocity reduction mechanism is provided around the outer cylinder directly above the discharge port.
前記流下速度低減機構は、前記外筒の排出口に取り付けられた多孔性リング部材からなり、該多孔性リング部材で前記冷却水流路から流出する蒸気に抵抗を与え、蒸気の流出速度を低減させるものであることを特徴とする請求項1に記載の気水分離器。   The flow rate reduction mechanism is composed of a porous ring member attached to the discharge port of the outer cylinder. The porous ring member gives resistance to the steam flowing out from the cooling water flow path, and reduces the flow rate of steam. The steam-water separator according to claim 1, wherein the steam-water separator is one. 前記流下速度低減機構は、前記排出口直下の前段気水分離部の外筒周囲に、外筒の軸方向と交差する方向に設けられた多孔性リング部材からなり、該多孔性リング部材で前記冷却水流路から流出する蒸気に抵抗を与え、蒸気の流出速度を低減させるものであることを特徴とする請求項1に記載の気水分離器。   The flow velocity reduction mechanism is composed of a porous ring member provided in a direction intersecting the axial direction of the outer cylinder around the outer cylinder of the front-stage steam-water separation unit immediately below the discharge port. The steam-water separator according to claim 1, wherein resistance is provided to the steam flowing out from the cooling water flow path to reduce the flow rate of the steam. 前記流下速度低減機構は、前記外筒の排出口直上領域を多孔性筒状体で構成し、該多孔性筒状体に穿設された蒸気排出用孔から蒸気を排出することで、前記排出口から流出する蒸気の流出速度を低減するものであることを特徴とする請求項1に記載の気水分離器。   The flow velocity reduction mechanism is configured by forming a region directly above the discharge port of the outer cylinder with a porous cylindrical body and discharging the steam from a steam discharge hole formed in the porous cylindrical body. The steam-water separator according to claim 1, wherein the steam-outflow rate of the steam flowing out from the outlet is reduced.
JP2011176259A 2011-08-11 2011-08-11 Multistage type steam-water separator Withdrawn JP2013039501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011176259A JP2013039501A (en) 2011-08-11 2011-08-11 Multistage type steam-water separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011176259A JP2013039501A (en) 2011-08-11 2011-08-11 Multistage type steam-water separator

Publications (1)

Publication Number Publication Date
JP2013039501A true JP2013039501A (en) 2013-02-28

Family

ID=47888421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011176259A Withdrawn JP2013039501A (en) 2011-08-11 2011-08-11 Multistage type steam-water separator

Country Status (1)

Country Link
JP (1) JP2013039501A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104014202A (en) * 2014-05-15 2014-09-03 华东理工大学 Combined vapor-liquid separation method and device in pressurized water reactor nuclear power station vapor generator
JP2020041724A (en) * 2018-09-07 2020-03-19 富士電機株式会社 Steam generating heat pump device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104014202A (en) * 2014-05-15 2014-09-03 华东理工大学 Combined vapor-liquid separation method and device in pressurized water reactor nuclear power station vapor generator
CN104014202B (en) * 2014-05-15 2016-02-03 华东理工大学 Vapour-liquid separation method and device is combined in pressurized water reactor nuclear power station steam generator
JP2020041724A (en) * 2018-09-07 2020-03-19 富士電機株式会社 Steam generating heat pump device
JP7135618B2 (en) 2018-09-07 2022-09-13 富士電機株式会社 Steam generating heat pump device

Similar Documents

Publication Publication Date Title
JP5550318B2 (en) Multistage air-water separator and air-water separator
JP6336478B2 (en) Cyclone, cyclone mist removing device and method of use
RU2553837C2 (en) Outlet unit for axial steam turbine
CN206881174U (en) A kind of detachable type high-efficiency gas-liquid separation device
JP2013039501A (en) Multistage type steam-water separator
JP2010043969A (en) Steam separator, and boiling water reactor equipped therewith
CA2933526C (en) Method and wet scrubber for removing particles from gases
CN114259799B (en) Steam-water separator for fuel cell
SE541197C2 (en) Venting device at a reservoir for a hydraulic system
JP3762598B2 (en) Steam separator and boiling water reactor
CN206587509U (en) A kind of gas-liquid two-stage cyclone separator
JP2004245656A (en) Steam separator
JP2013063388A (en) Gas/liquid separator
JPWO2018198516A1 (en) Oil separator and refrigeration cycle apparatus
JP5774334B2 (en) Gas-liquid separator
KR101588882B1 (en) Scrubber Nozzle with an Annular Diffuser and Wet Scrubbing Method Using the Combined Scrubber Nozzle
JP2013120068A (en) Steam separator and reactor facility
RU2392033C1 (en) Separator
JP5562908B2 (en) Steam separator and boiling water reactor equipped with the same
CN109966806B (en) Preseparator based on vertical steam-water separation reheater
JP2010243266A (en) Boiling water reactor
RU2392034C1 (en) Separator
JP2003307584A (en) Steam separation device
JP2012239993A (en) Gas liquid separator
JP2013003083A (en) Steam separator and boiling-water reactor with the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104