JP5562908B2 - Steam separator and boiling water reactor equipped with the same - Google Patents

Steam separator and boiling water reactor equipped with the same Download PDF

Info

Publication number
JP5562908B2
JP5562908B2 JP2011137243A JP2011137243A JP5562908B2 JP 5562908 B2 JP5562908 B2 JP 5562908B2 JP 2011137243 A JP2011137243 A JP 2011137243A JP 2011137243 A JP2011137243 A JP 2011137243A JP 5562908 B2 JP5562908 B2 JP 5562908B2
Authority
JP
Japan
Prior art keywords
stage
steam
flow path
discharge port
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011137243A
Other languages
Japanese (ja)
Other versions
JP2013003085A (en
Inventor
直行 石田
隆 住川
健一 上遠野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2011137243A priority Critical patent/JP5562908B2/en
Publication of JP2013003085A publication Critical patent/JP2013003085A/en
Application granted granted Critical
Publication of JP5562908B2 publication Critical patent/JP5562908B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Separating Particles In Gases By Inertia (AREA)

Description

本発明は気水分離器及びそれを備えた沸騰水型原子炉に係り、特に、水と炉心で発生した蒸気を分離するために、炉心上部に配置されているものに好適な気水分離器及びそれを備えた沸騰水型原子炉に関する。   The present invention relates to a steam / water separator and a boiling water reactor equipped with the steam / water separator, and more particularly to a steam / water separator suitable for an upper part of a core for separating water and steam generated in the core. And a boiling water reactor including the same.

一般的な沸騰水型原子炉には、水と炉心で発生した蒸気を分離するために、炉心上部に気水分離器が設置されている。この気水分離器では、スワラ(旋回羽根)によって水-蒸気の気液二相流に旋回速度が与えられ、遠心力により気液密度差を利用して水と蒸気が分離される。   In general boiling water reactors, a steam separator is installed in the upper part of the core in order to separate water and steam generated in the core. In this steam separator, swirling speed is given to the water-steam gas-liquid two-phase flow by the swirler (swirl blade), and water and steam are separated by utilizing the gas-liquid density difference by centrifugal force.

分離された水は、気水分離器の下方から排水されてダウンカマに戻り、再循環ポンプにより再び炉心へ送られる。一方、分離された蒸気は、蒸気乾燥器を通して更に湿分が取り除かれた後、タービンへ送られる。つまり、炉心で発生させた蒸気から極力湿分を取り除くことにより、発電効率を向上させている。   The separated water is drained from below the steam separator, returns to the downcomer, and is sent to the core again by the recirculation pump. On the other hand, the separated steam is sent to a turbine after moisture is further removed through a steam dryer. That is, power generation efficiency is improved by removing moisture from the steam generated in the core as much as possible.

ところで、沸騰水型原子炉の大型化を抑制しながら電気出力を向上するためには、炉心のクオリティを大きくして蒸気発生量を増加させることが有効である。気水分離器に流入する二相流のクオリティが変わると、気水分離性能も変化する。一般的に、クオリティが大きくなり蒸気流量が増加すると、スワラによって二相流に与えられる旋回速度が大きくなり、遠心力が増加して気水分離性能は向上する。   By the way, in order to improve the electric output while suppressing the enlargement of the boiling water reactor, it is effective to increase the steam generation amount by increasing the quality of the core. When the quality of the two-phase flow flowing into the steam separator changes, the steam separation performance also changes. In general, when the quality is increased and the steam flow rate is increased, the swirling speed given to the two-phase flow by the swirler is increased, the centrifugal force is increased, and the steam-water separation performance is improved.

改良型沸騰水型原子炉に用いられている三段式の気水分離器では、第一段では蒸気の混入がほとんどない分離水が、第二段及び第三段の気水分離器外筒に設けられた排出口からは、分離水と蒸気が排出される。蒸気流量が大きくなると、第二段及び第三段の排出口から排出される蒸気速度が増加し、分離された水を液滴として巻き込み、そのまま液滴を同伴して蒸気乾燥器へ流入する可能性がある。   In the three-stage steam / water separator used in the improved boiling water reactor, the first and second steam-separated water is almost completely mixed with the second and third steam / water separator outer cylinders. Separated water and steam are discharged from the discharge port provided in. When the steam flow rate increases, the steam velocity discharged from the second and third stage outlets increases, and the separated water can be entrained as droplets and directly flowed into the steam dryer with the droplets. There is sex.

また、気水分離器出口から分離されずに排出された液滴と上記の蒸気に同伴される液滴は、蒸気乾燥器で分離される。これらの蒸気乾燥器へ流入する液滴量は、蒸気との重量比(キャリーオーバー)として定義され、蒸気乾燥器の仕様により、キャリーオーバーに制限値が設けられている。   Moreover, the droplet discharged without being separated from the outlet of the steam separator and the droplet accompanying the steam are separated by a steam dryer. The amount of droplets flowing into these steam dryers is defined as a weight ratio (carry over) with steam, and a limit value is provided for carry over according to the specifications of the steam dryer.

これらの第二段及び第三段の排出口から排出された蒸気に同伴される液滴を取り除く手段として、気水分離器間を覆う液滴捕獲リングを設置することが、特許文献1に記載されている。   It is described in Patent Document 1 that a droplet capturing ring that covers between the steam-water separators is installed as a means for removing droplets accompanying the vapor discharged from the second-stage and third-stage discharge ports. Has been.

特開平8−179077号公報Japanese Patent Laid-Open No. 8-179077

しかしながら、上記の液滴捕獲リングを採用した特許文献1においては、気水分離器間を液滴捕獲リングで覆う必要があるため、物量が大きく増加してコストが増加する。また、気水分離器外部を上昇する蒸気に同伴された粒径の小さい液滴を液滴捕獲リングで捕捉しようとすると、液滴捕獲リングの密度が大きくなり蒸気の通気抵抗が大きくなることが懸念される。   However, in patent document 1 which employ | adopted said droplet capture ring, since it is necessary to cover between steam-water separators with a droplet capture ring, a quantity increases greatly and cost increases. In addition, when trying to capture a droplet with a small particle size entrained by the vapor rising outside the steam separator, the density of the droplet capture ring may increase and the steam ventilation resistance may increase. Concerned.

本発明は上述の点に鑑みなされたもので、その目的とするところは、簡易な構造を用いて気水分離器外で蒸気に同伴される液適量を減少させると共に、蒸気の通気抵抗の増加を抑制しながら、クオリティの高い条件でのキャリーオーバーを低減することのできる気水分離器及びそれを備えた沸騰水型原子炉を提供することにある。   The present invention has been made in view of the above points, and the object of the present invention is to reduce an appropriate amount of liquid entrained by steam outside the steam separator using a simple structure and increase steam ventilation resistance. It is an object of the present invention to provide a steam / water separator and a boiling water reactor equipped with the steam / water separator capable of reducing carryover under high quality conditions while suppressing the above.

本発明の気水分離器は、上記目的を達成するために、気液二相流を下方から上方に向かって導くスタンドパイプと、該スタンドパイプの上側端面に連通して流路を形成し、前記上側端面の流路断面積よりも上方に向けて流路断面積を拡大するディフューザと、該ディフューザの上側端面に連通して流路を形成する第一段内筒と、該第一段内筒を同心円状に間隔を空けて囲んで環状の流路を形成する第一段外筒と、該第一段外筒の上側端面の内周縁を塞ぐと共に前記第一段内筒よりも小径の円形孔を形成した第一段環状板と、該第一段環状板の前記円形孔を形成している内周縁から下方に向けて円筒状に起立させて前記円形孔を第二段内筒への流路として形成する第一段ピックオフリングと、前記第一段環状板上に設置され流路を形成する前記第二段内筒と、該第二段内筒を同心円状に間隔を空けて囲んで環状の第二段排出流路を形成する第二段外筒と、該第二段外筒の上側端面の内周縁を塞ぐと共に前記第二段内筒よりも小径の円形孔を形成した第二段環状板と、前記第二段環状板上に設置され流路を形成する第三段内筒と、前記第二段環状板の前記円形孔を形成している内周縁から下方に向けて円筒状に起立させて前記円形孔を前記第三段内筒への流路として形成する第二段ピックオフリングとを少なくとも備え、気液二相流の流路の軸中心を通るハブ及び前記ハブを中心にして放射状に取り付ける複数の旋回羽根を含み、前記旋回羽根の径方向に内側縁が前記ハブに固定されており、前記ディフューザの内壁又は前記第一段内筒の内壁に前記旋回羽根の径方向に外側縁が固定されているスワラを備えた気水分離器において、前記第二段外筒に前記第二段排出流路に流入した水を排出する第二段分離水排出口と蒸気を排出する第二段蒸気排出口を設けると共に、前記第二段蒸気排出口が前記第二段分離水排出口よりも高い位置に配置され、かつ、前記第二段蒸気排出日の縁に沿って前記第二段排出流路へ突出した突起物が設けられ、該突起物の先端が前記第二段蒸気排出口の流路を塞がない方向に折り曲げられて前記第二段外筒との間で溝状の流路である突起溝が形成されていることを特徴とする。
また、本発明の気水分離器は、上記目的を達成するために、気液二相流を下方から上方に向かつて導くスタンドパイプと、該スタンドバイプの上側端面に連通して流路を形成し、前記上側端面の流路断面積よりも上方に向けて流路断面積を拡大するディフューザと、該ディフューザの上側端面に連通して流路を形成する第一段内筒と、該第一段内筒を同心円状に間隔を空けて囲んで環状の流路を形成する第一段外筒と、該第一段外筒の上側端面の内周縁を塞ぐと共に前記第一段内筒よりも小径の円形孔を形成した第一段環状板と、該第一段環状板の前記円形孔を形成している内周縁から下方に向けて円筒状に起立させて前記円形孔を第二段内筒への流路として形成する第一段ピックオフリングと、前記第一段環状板上に設置され流路を形成する前記第二段内筒と、該第二段内筒を同心円状に間隔を空けて囲んで環状の第二段排出流路を形成する第二段外筒と、該第二段外筒の上側端面の内周縁を塞ぐと共に前記第二段内筒よりも小径の円形孔を形成した第二段環状板と、前記第二段環状板上に設置され流路を形成する第三段内筒と、前記第二段環状板の前記円形孔を形成している内周縁から下方に向けて円筒状に起立させて前記円形孔を前記第三段内筒への流路として形成する第二段ピックオフリングと、前記第三段内筒を同心円状に間隔を空けて囲んで環状の第三段排出流路を形成する第三段外筒と、該第三段外筒の上側端面の内周縁を塞ぐと共に、前記第三段内筒よりも小径の円形孔を形成した第三段環状板と、該第三段環状板の前記円形孔を形成している内周縁から下方に向けて円筒状に起立させて前記円形孔を気水分離器出口流路として形成する第三段ピックオフリングと、気液二相流の流路の軸中心を通るハブ及び前記ハブを中心にして放射状に取り付ける複数の旋回羽根を含み、前記旋回羽根の径方向に内側縁が前記ハブに固定されており、前記ディフューザの内壁又は前記第一段内筒の内壁に前記旋回羽根の径方向に外側縁が固定されているスワラを備えた気水分離器において、前記第二段外筒に前記第二段排出流路に流入した水を排出する第二段分離水排出口と蒸気を排出する第二段蒸気排出口を設けると共に、前記第二段蒸気排出口が前記第二段分離水排出口よりも高い位置に配置され、かつ、前記第三段外筒に前記第三段排出流路に流入した水を排出する第三段分離水排出口と蒸気を排出する第三段蒸気排出口を設け、前記第三段蒸気排出口が前記第三段分離水排出口よりも高い位置に配置され、しかも、前記第二段蒸気排出口及び前記第三段蒸気排出口の縁に沿って前記第二段排出流路及び前記第三段排出流路へ突出した突起物がそれぞれ設けられ、該突起物の先端が前記第二段蒸気排出口及び前記第三段蒸気排出口の流路を塞がない方向に折り曲げられて前記第二段外筒及び前記第三段外筒との間で溝状の流路である突起溝が形成されているか、
或いは、前記第二段外筒に前記第二段排出流路に流入した水を排出する第二段分離水排出口と蒸気を排出する第二段蒸気排出口を設けると共に、前記第二段蒸気排出口が前記第二段分離水排出口よりも高い位置に配置され、かつ、前記第三段外筒に蒸気を排出する第三段蒸気排出口を設け、該第三段蒸気排出口の下端は前記第二段環状板よりも上方に位置していると共に、前記第二段環状板に連通孔が設けられ、かつ、該連通孔から流下する分離水を前記第二段排出流路の下方に導く連通管を前記第二段排出流路内に設けたことを特徴とする。
In order to achieve the above object, the steam-water separator of the present invention forms a flow path in communication with a stand pipe that guides a gas-liquid two-phase flow from below to above, and an upper end face of the stand pipe, A diffuser that expands the cross-sectional area of the channel upward from the cross-sectional area of the channel on the upper end surface, a first-stage inner cylinder that communicates with the upper end surface of the diffuser to form a channel, A first-stage outer cylinder that concentrically surrounds the cylinder to form an annular flow path, and closes the inner peripheral edge of the upper end surface of the first-stage outer cylinder and has a smaller diameter than the first-stage inner cylinder A first-stage annular plate having a circular hole, and a cylindrical standing from the inner peripheral edge forming the circular hole of the first-stage annular plate downward to the second-stage inner cylinder A first-stage pick-off ring formed as a flow path, and a flow path that is installed on the first-stage annular plate A second-stage inner cylinder, a second-stage outer cylinder that concentrically surrounds the second-stage inner cylinder to form an annular second-stage discharge channel, and an upper end surface of the second-stage outer cylinder. A second-stage annular plate that closes the inner periphery and forms a circular hole having a smaller diameter than the second-stage inner cylinder; a third-stage inner cylinder that is installed on the second-stage annular plate and forms a flow path; A second-stage pick-off ring that rises in a cylindrical shape downward from an inner peripheral edge forming the circular hole of the second-stage annular plate and forms the circular hole as a flow path to the third-stage inner cylinder; A hub that passes through the axial center of the gas-liquid two-phase flow path and a plurality of swirl vanes that are attached radially about the hub, and an inner edge of the swirl vane is fixed to the hub in a radial direction. And an outer edge is fixed to the inner wall of the diffuser or the inner wall of the first stage inner cylinder in the radial direction of the swirl vane. In the steam / water separator provided with the swirler, the second-stage separated water discharge port for discharging water that has flowed into the second-stage discharge channel into the second-stage outer cylinder and the second-stage steam discharge for discharging steam. An outlet is provided, and the second-stage steam discharge port is disposed at a position higher than the second-stage separated water discharge port, and the second-stage discharge flow path along an edge of the second-stage steam discharge date A projection projecting toward the second stage, and the tip of the projection is bent in a direction that does not block the flow path of the second-stage steam discharge port, so that a groove-shaped flow path is formed between the second-stage outer cylinder. A protruding groove is formed .
In order to achieve the above object, the steam / water separator according to the present invention forms a flow path in communication with a stand pipe that guides a gas-liquid two-phase flow from the lower side to the upper side and the upper end surface of the stand vip. A diffuser that expands a channel cross-sectional area upward from a channel cross-sectional area of the upper end surface, a first-stage inner cylinder that communicates with the upper end surface of the diffuser to form a channel, and the first A first-stage outer cylinder that concentrically surrounds the inner-stage cylinder to form an annular flow path, and closes the inner peripheral edge of the upper end surface of the first-stage outer cylinder, and more than the first-stage inner cylinder A first-stage annular plate having a small-diameter circular hole, and a cylindrical shape standing downward from an inner peripheral edge of the first-stage annular plate forming the circular hole so that the circular hole is in the second stage. A first-stage pick-off ring formed as a flow path to the cylinder and a flow path installed on the first-stage annular plate The second-stage inner cylinder, a second-stage outer cylinder that concentrically surrounds the second-stage inner cylinder to form an annular second-stage discharge channel, and an upper side of the second-stage outer cylinder A second-stage annular plate that closes the inner peripheral edge of the end face and has a circular hole having a smaller diameter than the second-stage inner cylinder; and a third-stage inner cylinder that is installed on the second-stage annular plate and forms a flow path. A second-stage pick-off in which the circular hole is formed as a flow path to the third-stage inner cylinder by standing upward in a cylindrical shape from the inner peripheral edge forming the circular hole of the second-stage annular plate A ring, a third-stage outer cylinder that concentrically surrounds the third-stage inner cylinder to form an annular third-stage discharge channel, and an inner peripheral edge of the upper end surface of the third-stage outer cylinder. A third-stage annular plate that is closed and formed with a circular hole having a smaller diameter than the third-stage inner cylinder, and is directed downward from an inner peripheral edge that forms the circular hole of the third-stage annular plate. A third-stage pick-off ring that rises in a cylindrical shape to form the circular hole as a gas-water separator outlet flow path, a hub that passes through the axial center of the flow path of the gas-liquid two-phase flow, and a radial shape about the hub A plurality of swirl vanes attached to the inner edge of the swirl vane, and an inner edge of the swirl vane is fixed to the hub. In the steam / water separator having a swirler to which the water is fixed, a second-stage separation water discharge port for discharging water that has flowed into the second-stage discharge flow path into the second-stage outer cylinder and a second for discharging steam. A second stage steam outlet is provided, and the second stage steam outlet is disposed at a position higher than the second stage separated water outlet, and flows into the third stage outlet passage into the third stage outer cylinder. Third-stage separation water discharge port for discharging discharged water and third-stage steam for discharging steam An air discharge port is provided, the third stage steam discharge port is disposed at a position higher than the third stage separated water discharge port, and at the edge of the second stage steam discharge port and the third stage steam discharge port. Along the second stage discharge channel and the third stage discharge channel, respectively, and the tip of the projection is the flow of the second stage steam discharge port and the third stage steam discharge port. Whether a protruding groove that is a groove-like flow path is formed between the second-stage outer cylinder and the third-stage outer cylinder by being bent in a direction that does not block the path,
Alternatively, the second-stage outer cylinder is provided with a second-stage separated water discharge port for discharging water flowing into the second-stage discharge channel and a second-stage steam discharge port for discharging steam, and the second-stage steam A third stage steam outlet for discharging steam to the third stage outer cylinder is provided at a position higher than the second stage separated water outlet, and a lower end of the third stage steam outlet. Is located above the second stage annular plate, and a communication hole is provided in the second stage annular plate, and the separated water flowing down from the communication hole is disposed below the second stage discharge channel. A communication pipe leading to the second stage discharge channel is provided in the second-stage discharge flow path.

また、本発明の沸騰水型原子炉は、上記目的を達成するために、原子炉圧力容器と、該原子炉圧力容器内に設けられ、複数の燃料集合体が装荷された炉心と、該炉心が配置されるシュラウドと、前記原子炉圧力容器内の前記炉心の上方に配置され、前記炉心で発生した蒸気と水の気水混合流を蒸気と水に分離する気水分離器と、該気水分離器の上方に位置し、該気水分離器で分離された湿り蒸気を乾燥させる蒸気乾燥器と、該蒸気乾燥器で乾燥された蒸気をタービンに供給する主蒸気配管と、前記原子炉圧力容器とシュラウド間に形成され、前記気水分離器で分離された水が循環するダウンカマと、該ダウンカマの下方に配置され、該ダウンカマ内の水を前記炉心に供給するインターナルポンプ又はジェットポンプとを備えた沸騰水型原子炉において、前記気水分離器は、上記した構成の気水分離器であることを特徴とする。   In order to achieve the above object, the boiling water reactor of the present invention includes a reactor pressure vessel, a core provided in the reactor pressure vessel and loaded with a plurality of fuel assemblies, and the core. And a steam / water separator disposed above the core in the reactor pressure vessel and separating a steam / water mixture flow generated in the reactor core into steam / water. A steam dryer located above the water separator and drying wet steam separated by the steam separator; a main steam pipe for supplying steam dried by the steam dryer to the turbine; and the nuclear reactor A downcomer formed between the pressure vessel and the shroud and through which the water separated by the steam separator circulates, and an internal pump or a jet pump disposed below the downcoma and supplying water in the downcoma to the core Boiling water reactor with Oite, the steam-water separator, characterized in that it is a steam-water separator of the above configuration.

本発明によれば、簡易な構造を用いて気水分離器外で蒸気に同伴される液適量を減少させると共に、蒸気の通気抵抗の増加を抑制しながら、クオリティの高い条件でのキャリーオーバーを低減することのできるため、低コストで気水分離性能の低下を抑制して沸騰水型原子炉の出力を増加させることができる。   According to the present invention, an appropriate amount of liquid entrained by steam outside the steam / water separator is reduced using a simple structure, and carryover under high quality conditions is suppressed while suppressing increase in steam ventilation resistance. Therefore, it is possible to increase the output of the boiling water reactor at a low cost by suppressing the deterioration of the steam-water separation performance.

本発明の気水分離器が適用される沸騰水型原子炉の概略構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of the boiling water reactor to which the steam-water separator of this invention is applied. 従来の気水分離器を示す縦断面図である。It is a longitudinal cross-sectional view which shows the conventional steam separator. 従来の気水分離器におけるクオリティとキャリーオーバーの関係の一例を示す特性図である。It is a characteristic view which shows an example of the relationship between the quality and carry over in the conventional steam separator. 本発明の気水分離器の実施例1を示す縦断面図である。It is a longitudinal cross-sectional view which shows Example 1 of the steam-water separator of this invention. 実施例1における気水分離器の第二段排出流路出口付近を示す拡大断面図である。FIG. 3 is an enlarged cross-sectional view showing the vicinity of the second-stage discharge flow path outlet of the steam / water separator in the first embodiment. 本発明の気水分離器の実施例1を示す正面図である。It is a front view which shows Example 1 of the steam-water separator of this invention. 本発明の気水分離器の実施例2を示す正面図である。It is a front view which shows Example 2 of the steam-water separator of this invention. 実施例2における第二段蒸気排出口及び第三段分離水排出口における蒸気の鉛直上向きの速度分布を示す図である。It is a figure which shows the vertical upward speed distribution of the vapor | steam in the 2nd stage steam discharge port in Example 2, and a 3rd stage separated water discharge port. 本発明の気水分離器の実施例3を示す正面図である。It is a front view which shows Example 3 of the steam-water separator of this invention. 本発明の気水分離器の実施例4を示す正面図である。It is a front view which shows Example 4 of the steam-water separator of this invention. 実施例4における第二段排出流路内を第二段内筒側から透過した斜視図である。It is the perspective view which permeate | transmitted the inside of the 2nd stage discharge flow path in Example 4 from the 2nd stage inner cylinder side.

以下、図示した実施例に基づいて本発明の気水分離器、特に、沸騰水型原子炉に適用される気水分離器について説明する。   Hereinafter, a steam separator according to the present invention, particularly a steam separator applied to a boiling water reactor, will be described based on the illustrated embodiments.

先ず、本実施例の気水分離器を説明する前に、この気水分離器が適用される沸騰水型原子炉の概略構造について、図1を用いて説明する。   First, before describing the steam-water separator of the present embodiment, the schematic structure of a boiling water reactor to which the steam-water separator is applied will be described with reference to FIG.

図1は、改良型沸騰水型原子炉(以下、ABWRという)を示すものである。   FIG. 1 shows an improved boiling water reactor (hereinafter referred to as ABWR).

該図に示す如く、ABWRは、原子炉圧力容器3を有し、この原子炉圧力容器3の内部に炉心シュラウド2が設置され、複数の燃料集合体(図示せず)が装荷された炉心5が炉心シュラウド2内に配置されている。また、原子炉圧力容器3内の炉心5の上方には、炉心5で発生した蒸気と水の気水混合流を蒸気と水に分離する気水分離器6が配置され、この気水分離器6の上方には、気水分離器6で分離された湿り蒸気を乾燥させる蒸気乾燥器7が配置されている。更に、原子炉圧力容器3と炉心シュラウド2の間に形成される環状のダウンカマ4の下方には、炉心5に水を供給するためのインターナルポンプ10(再循環ポンプ)が配置されており、このインターナルポンプ10を運転することにより、ダウンカマ4にある冷却水が炉心5へ供給される。   As shown in the figure, the ABWR has a reactor pressure vessel 3, a core shroud 2 is installed inside the reactor pressure vessel 3, and a core 5 loaded with a plurality of fuel assemblies (not shown). Is disposed in the core shroud 2. Also, above the core 5 in the reactor pressure vessel 3, an air / water separator 6 for separating the steam / water mixture flow generated in the core 5 into steam and water is disposed. Above 6, a steam dryer 7 for drying the wet steam separated by the steam separator 6 is disposed. Furthermore, an internal pump 10 (recirculation pump) for supplying water to the core 5 is disposed below the annular downcomer 4 formed between the reactor pressure vessel 3 and the core shroud 2. By operating this internal pump 10, the cooling water in the downcomer 4 is supplied to the core 5.

一方、炉心5では、核分裂により発生した熱で冷却水が沸騰し、蒸気と水の二相流状態となる。炉心5で発生した気液二相流は気水分離器6に流入し、気水分離器6内にあるスワラにより旋回速度が与えられ、この旋回速度により二相流に遠心力が作用し、水と蒸気の密度差により水と蒸気が分離される。気水分離器6を通過した二相流は、蒸気乾燥器7に流入し更に湿分が取り除かれる。   On the other hand, in the core 5, the cooling water boils with heat generated by fission, and a two-phase flow state of steam and water is obtained. The gas-liquid two-phase flow generated in the reactor core 5 flows into the steam-water separator 6, and a swirl speed is given by the swirler in the steam-water separator 6, and centrifugal force acts on the two-phase flow by this swirl speed, Water and steam are separated due to the density difference between water and steam. The two-phase flow that has passed through the steam-water separator 6 flows into the steam dryer 7 where moisture is further removed.

このようにして、湿分0.1重量パーセント以下に抑えた蒸気を、主蒸気配管8を通してタービン(図示せず)に送り発電を行っている。   In this way, steam with moisture content reduced to 0.1 weight percent or less is sent to the turbine (not shown) through the main steam pipe 8 to generate electricity.

図2を用いて気水分離器6の構成について詳しく説明する。   The configuration of the steam separator 6 will be described in detail with reference to FIG.

図2に示す如く、気水分離器6は、気液二相流を下方から上方に向かって導くスタンドパイプ61と、スタンドパイプ61の上側端面に連通して流路を形成し、前記上側端面の流路断面積よりも上方に向けて流路断面積を拡大するディフューザ62と、ディフューザ62の上側端面に連通して流路を形成する第一段内筒64と、第一段内筒64を同心円状に間隔を空けて囲んで環状の流路50を形成する第一段外筒66と、第一段外筒66の上側端面の内周縁を塞ぐと共に、第一段内筒64よりも小径の円形孔を形成した第一段環状板67と、第一段環状板67の前記円形孔を形成している内周縁から下方に向けて円筒状に起立させて円形孔を第二段内筒68への流路として形成する第一段ピックオフリング65と、第一段環状板67上に設置され流路を形成する前記第二段内筒68と、第二段内筒68を同心円状に間隔を空けて囲んで環状の第二段排出流路51を形成する第二段外筒70と、第二段外筒70の上側端面の内周縁を塞ぐと共に前記第二段内筒68よりも小径の円形孔を形成した第二段環状板71と、第二段環状板71の前記円形孔を形成している内周縁から下方に向けて円筒状に起立させて前記円形孔を第三段内筒72への流路として形成する第二段ピックオフリング69と、第二段環状板71上に設置され流路を形成する前記第三段内筒72と、第三段内筒72を同心円状に間隔を空けて囲んで環状の第三段排出流路52を形成する第三段外筒74と、第三段外筒74の上側端面の内周縁を塞ぐと共に、前記第三段内筒72よりも小径の円形孔を形成した第三段環状板75と、第三段環状板75の前記円形孔を形成している内周縁から下方に向けて円筒状に起立させて前記円形孔を気水分離器出口流路として形成する第三段ピックオフリング73と、気液二相流の流路の軸中心を通るハブ101及びハブ101を中心にして放射状に取り付ける複数の旋回羽根102を含み、旋回羽根102の径方向に内側縁がハブ101に固定されており、ディフューザ62の内壁又は第一段内筒64の内壁に旋回羽根102の径方向に外側縁が固定されているスワラ63とで構成されている。   As shown in FIG. 2, the steam / water separator 6 includes a stand pipe 61 that guides a gas-liquid two-phase flow from below to above and a flow path that communicates with the upper end face of the stand pipe 61, and the upper end face A diffuser 62 that expands the cross-sectional area of the flow path upward from the cross-sectional area of the first flow pipe, a first-stage inner cylinder 64 that communicates with the upper end surface of the diffuser 62 and forms a flow path, Are closed concentrically with a space therebetween to form an annular flow path 50, and the inner peripheral edge of the upper end surface of the first stage outer cylinder 66 is closed, and moreover than the first stage inner cylinder 64. A first-stage annular plate 67 having a small-diameter circular hole, and a cylindrical hole extending downward from the inner peripheral edge forming the circular hole of the first-stage annular plate 67 to form the circular hole in the second stage A first stage pick-off ring 65 formed as a flow path to the cylinder 68 and a first stage annular plate 67 are provided. The second-stage inner cylinder 68 that forms a flow path, and the second-stage outer cylinder 70 that concentrically surrounds the second-stage inner cylinder 68 to form an annular second-stage discharge flow path 51. A second-stage annular plate 71 that closes the inner peripheral edge of the upper end surface of the second-stage outer cylinder 70 and has a circular hole with a smaller diameter than the second-stage inner cylinder 68; and the circular hole of the second-stage annular plate 71 A second-stage pick-off ring 69 that forms a circular hole as a flow path to the third-stage inner cylinder 72 by standing upright in a cylindrical shape from the inner peripheral edge forming the upper surface, and on the second-stage annular plate 71 The third-stage inner cylinder 72 that is installed in the pipe and forms a flow path, and the third-stage outer cylinder that forms the annular third-stage discharge flow path 52 by concentrically surrounding the third-stage inner cylinder 72 with a space therebetween 74 and a third stage in which a circular hole having a smaller diameter than the third stage inner cylinder 72 is formed while closing the inner peripheral edge of the upper end surface of the third stage outer cylinder 74 And a third stage in which the circular hole is formed as a gas-water separator outlet flow path by standing downward in a cylindrical shape from the inner peripheral edge forming the circular hole of the third-stage annular plate 75 A pick-off ring 73, a hub 101 passing through the axial center of the gas-liquid two-phase flow path, and a plurality of swirling blades 102 attached radially about the hub 101, the inner edge of the swirling blade 102 in the radial direction of the hub 101 And a swirler 63 whose outer edge is fixed to the inner wall of the diffuser 62 or the inner wall of the first stage inner cylinder 64 in the radial direction of the swirl vane 102.

スワラ63は、ハブ101と呼ばれる円柱状の構造物に二相流に旋回速度を与えるための旋回羽根102が複数取り付けられており、旋回羽根102の外側縁は、ディフューザ62に固定されている。このため、スワラ63自身は回転することなく、スワラ63を通過した流体が回転するようになっている。   The swirler 63 is provided with a plurality of swirl blades 102 for imparting a swirl speed to a two-phase flow on a cylindrical structure called a hub 101, and the outer edge of the swirl blades 102 is fixed to the diffuser 62. For this reason, the swirler 63 itself does not rotate, but the fluid that has passed through the swirler 63 rotates.

旋回羽根102は、スワラ63の入口では鉛直方向と平行になっており、スワラ63の出口に向かって鉛直方向に対する角度を増していく。即ち、スワラ63の入口では鉛直方向と平行になっているが、そこからスワラ63の出口に向かって鉛直方向に対する角度を増しながら旋回できる形状になっている。旋回羽根102は、スワラ出口の旋回羽根102の鉛直方向に対する角度をスワラ出口角度と呼び、このスワラ出口角度が大きいほど、流体の大きな旋回速度を与えることができる。   The swirl vane 102 is parallel to the vertical direction at the entrance of the swirler 63, and increases in angle with respect to the vertical direction toward the exit of the swirler 63. That is, at the entrance of the swirler 63, it is parallel to the vertical direction, but from there, the shape can be turned toward the exit of the swirler 63 while increasing the angle with respect to the vertical direction. In the swirl vane 102, the angle of the swirler outlet with respect to the vertical direction of the swirl vane 102 is referred to as a swirler outlet angle, and the larger the swirler outlet angle, the larger the swirl speed of the fluid can be given.

炉心5からの気液二相流はクオリティが約14%であり、スタンドパイプ61に流入した二相流は、スタンドパイプ61の内壁面に液膜を形成し、中心部を蒸気が流れ、その蒸気中に液滴が浮遊している環状噴霧流になっている。スワラ63により気液二相流に旋回速度を与えると、気液密度差による遠心力の違いにより、壁面の液膜内に混在していた蒸気が中心部の蒸気側へ移動すると共に、蒸気中に浮遊していた液滴が壁面へ移動し液膜に取り込まれる。第一段内筒64の壁面に形成された液膜は、第一段ピックオフリング65により、第一段内筒64と第一段外筒66で形成された第一段排出流路50を通って気水分離器6の外に排出される。第一段排出流路50から排出された水は、再びダウンカマ4に流入しインターナルポンプ10により炉心5へ送られる。   The gas-liquid two-phase flow from the core 5 has a quality of about 14%, and the two-phase flow that has flowed into the stand pipe 61 forms a liquid film on the inner wall surface of the stand pipe 61, and steam flows through the center portion. It is an annular spray flow in which droplets are suspended in the vapor. When swirling speed is given to the gas-liquid two-phase flow by the swirler 63, the steam mixed in the liquid film on the wall surface moves to the steam side of the central part due to the difference in centrifugal force due to the gas-liquid density difference, and in the steam The liquid droplet floating on the surface moves to the wall surface and is taken into the liquid film. The liquid film formed on the wall surface of the first stage inner cylinder 64 passes through the first stage discharge channel 50 formed by the first stage inner cylinder 64 and the first stage outer cylinder 66 by the first stage pick-off ring 65. And discharged to the outside of the steam separator 6. The water discharged from the first-stage discharge channel 50 flows into the downcomer 4 again and is sent to the core 5 by the internal pump 10.

一方、第一段内筒64で壁面に到達しなかった蒸気中の液滴は、第二段内筒68又は第三段内筒72で壁面に到達し、第二段ピックオフリング69又は第三段ピックオフリング73から第二段排出流路51又は第三段排出流路52を通って気水分離器6の外へ排出される。第三段ピックオフリング73を通過するまでに内筒壁面に到達しなかった液滴は、そのまま蒸気と共に気水分離器出口55から流出する。   On the other hand, the droplets in the vapor that have not reached the wall surface by the first stage inner cylinder 64 reach the wall surface by the second stage inner cylinder 68 or the third stage inner cylinder 72, and the second stage pick-off ring 69 or the third stage. It is discharged from the stage pick-off ring 73 through the second-stage discharge channel 51 or the third-stage discharge channel 52 to the outside of the steam / water separator 6. The liquid droplets that have not reached the inner cylinder wall surface before passing through the third stage pick-off ring 73 flow out of the steam / water separator outlet 55 together with the steam.

気水分離器6の性能指標の一つにキャリーオーバーがあり、気水分離器6から流出した流体中に含まれる液の重量率として定義される。   Carry over is one of the performance indicators of the steam / water separator 6 and is defined as the weight ratio of the liquid contained in the fluid flowing out of the steam / water separator 6.

蒸気質量流量をWg(kg/s)、液質量流量をWl(kg/s)とすると、キャリーオーバーCOは、次式で表される。   When the vapor mass flow rate is Wg (kg / s) and the liquid mass flow rate is Wl (kg / s), the carry-over CO is expressed by the following equation.

CO=Wl/(Wg+Wl)×100(%) (1)
沸騰水型原子炉では、蒸気乾燥器7の性能を保証するため、気水分離器6のキャリーオーバーを制限している。
CO = Wl / (Wg + Wl) × 100 (%) (1)
In the boiling water reactor, the carry-over of the steam separator 6 is limited in order to guarantee the performance of the steam dryer 7.

第二段排出流路51及び第三段排出流路52には蒸気と分離水が流入し、第二段排出流路出口103及び第三段排出流路出口104から排出される。蒸気流量が少ない(クオリティが小さい)ときは、気水分離器6外部の蒸気の流速が小さいため、気水分離器6外に排出された分離水は、重力により落下し炉水5に戻される。このため、キャリーオーバーのほとんどは、分離されずにセパレータ出口から流出した液滴である。   Steam and separated water flow into the second-stage discharge flow path 51 and the third-stage discharge flow path 52, and are discharged from the second-stage discharge flow path outlet 103 and the third-stage discharge flow path outlet 104. When the steam flow rate is small (the quality is small), the steam flow rate outside the steam / water separator 6 is small, so the separated water discharged outside the steam / water separator 6 falls by gravity and is returned to the reactor water 5. . For this reason, most of the carry-over is a droplet that flows out from the separator outlet without being separated.

蒸気流量が多い(クオリティが大きい)ときは、気水分離器6外部の蒸気流速が大きくなり、蒸気と液滴間の抗力が液滴にかかる重力に打ち勝つようになり、液滴が蒸気に同伴されて蒸気乾燥器7に流入するようになる。   When the steam flow rate is high (quality is high), the steam flow rate outside the steam separator 6 increases, the drag between the steam and the droplets overcomes the gravity applied to the droplets, and the droplets accompany the steam. Then, it flows into the steam dryer 7.

図3にクオリティとキャリーオーバーの関係の一例を示す。該図に示す如く、クオリティが大きくなるとキャリーオーバーが増加するのは、この原理によるものである。   FIG. 3 shows an example of the relationship between quality and carryover. As shown in the figure, it is based on this principle that carryover increases as quality increases.

そして、本発明の実施例1では、図4乃至図6に示すように、第二段排出口を、それぞれ第二段蒸気排出口93と第二段分離水排出口91に分け、この第二段蒸気排出口93を第二段分離水排出口91よりも上方に配置したものである。このとき、第二段分離水排出口91の断面積は、第二段蒸気排出口93の断面積よりも小さくしている。   And in Example 1 of this invention, as shown in FIG. 4 thru | or 6, a 2nd stage discharge port is divided into the 2nd stage steam discharge port 93 and the 2nd stage separated water discharge port 91, respectively, and this 2nd stage discharge port is divided. The stage steam outlet 93 is disposed above the second stage separated water outlet 91. At this time, the cross-sectional area of the second-stage separated water discharge port 91 is smaller than the cross-sectional area of the second-stage steam discharge port 93.

また、第二段蒸気排出口93には、この第二段蒸気排出口93の縁に沿って第二段排出流路51側に突出した突起物が設けられ、該突起物の先端が第二段蒸気排出口93の流路を塞がない方向に折り曲げられて第二段外筒70との間で溝状の流路であるラッパ管状の第二段突起溝81が設けられている。即ち、第二段突起溝81は、後述する液膜25が勢いよく流下し、第二段排出流路51の底部で第二段外筒70側に巻き上がった際に、第二段蒸気排出口93に巻き上がった液膜が流入しないように突出していること、及び第二段外筒70側を流下した液膜が第二段突起溝81に衝突し、該第二段突起溝81に沿って流れて第二段排出流路51の底部に到達するのを案内する溝であれば良い。   Further, the second stage steam discharge port 93 is provided with a projection protruding toward the second stage discharge flow path 51 along the edge of the second stage steam discharge port 93, and the tip of the projection is the second end. A second-stage projection groove 81 having a trumpet shape that is a groove-like flow path is provided between the second-stage outer cylinder 70 and the second-stage outer cylinder 70 that is bent in a direction that does not block the flow path of the stage steam discharge port 93. That is, the second-stage protruding groove 81 causes the second-stage steam exhaust when the liquid film 25 described later flows down vigorously and rolls up to the second-stage outer cylinder 70 side at the bottom of the second-stage discharge channel 51. The liquid film rolled up to the outlet 93 protrudes so as not to flow in, and the liquid film flowing down the second-stage outer cylinder 70 collides with the second-stage protrusion groove 81, and enters the second-stage protrusion groove 81. Any groove that guides the flow along the bottom of the second-stage discharge channel 51 may be used.

次に、このように構成した実施例1における作用について説明する。   Next, the operation of the first embodiment configured as described above will be described.

第一段内筒64で分離されなかった液滴は、第二段内筒68に流入する。遠心力によって第二段内筒68壁に到達した液滴は、第二段内筒68壁面上に液膜23を形成し、第二段ピックオフリング69によって第二段排出流路51へ誘導される。誘導された液膜23は、そのまま第二段内筒68壁に沿って第二段排出流路51内の第二段内筒68壁側を流下する液膜25となる。また、一部の液膜23は慣性により第二段内筒68壁を離脱し、第二段環状板71に衝突して、そのまま第二段排水流路51内の第二段外筒70壁側を流下する液膜26となる。   The liquid droplets that have not been separated by the first stage inner cylinder 64 flow into the second stage inner cylinder 68. The liquid droplets that have reached the wall of the second stage inner cylinder 68 by centrifugal force form the liquid film 23 on the wall surface of the second stage inner cylinder 68 and are guided to the second stage discharge channel 51 by the second stage pickoff ring 69. The The induced liquid film 23 becomes the liquid film 25 flowing down the second-stage inner cylinder 68 wall side in the second-stage discharge channel 51 as it is along the second-stage inner cylinder 68 wall. Further, a part of the liquid film 23 leaves the second-stage inner cylinder 68 wall due to inertia, collides with the second-stage annular plate 71, and remains as it is in the second-stage outer cylinder 70 wall in the second-stage drain channel 51. The liquid film 26 flows down the side.

第二段内筒68壁側を流下した液膜25は、そのまま第二段排水流路51の底部へ到達し、第二段分離水排出口91から分離水21が気水分離器6外へ排出され、炉水5に戻される。液膜25が勢いよく流下し、第二段排水流路51の底部で第二段外筒70側へ巻き上がった場合でも、第二段蒸気排出口93に設けた第二段突起溝81に遮断されるため、第二段内筒68壁側を流下した液膜25が第二段蒸気排出口93から直接流出することはない。   The liquid film 25 flowing down the wall side of the second stage inner cylinder 68 reaches the bottom of the second stage drainage channel 51 as it is, and the separated water 21 is discharged from the second stage separated water discharge port 91 to the outside of the steam / water separator 6. It is discharged and returned to the reactor water 5. Even when the liquid film 25 flows down vigorously and rolls up toward the second-stage outer cylinder 70 at the bottom of the second-stage drainage flow channel 51, the second-stage projection groove 81 provided in the second-stage steam discharge port 93 Therefore, the liquid film 25 flowing down the wall side of the second stage inner cylinder 68 does not flow out directly from the second stage steam outlet 93.

第二段外筒70側を流下した液膜26は、第二段蒸気排出口93に設けた第二段突起溝81に衝突し、第二段突起溝81に沿って流れて第二段排水流路51の底部に到達し、第二段分離水排出口91から気水分離器6外へ排出され炉水5に戻される。このため、第二段外筒70側を流下した液膜26も第二段蒸気排出口93から直接流出することはない。   The liquid film 26 that has flowed down the second-stage outer cylinder 70 collides with the second-stage projection groove 81 provided in the second-stage steam discharge port 93, flows along the second-stage projection groove 81, and is discharged into the second stage. It reaches the bottom of the flow path 51, is discharged from the second-stage separated water discharge port 91 to the outside of the steam / water separator 6, and is returned to the reactor water 5. For this reason, the liquid film 26 that has flowed down the second-stage outer cylinder 70 does not directly flow out of the second-stage steam discharge port 93.

従って、第二段排出流路51に流入した蒸気と水が分離されて各排出口から流出し、更に、第二段蒸気排出口93を第二段分離水排出口91よりも上方に配置しているので、第二段分離水排出口91から排出された分離水21が、第二段蒸気排出口93から排出された蒸気31と接することがないため、分離水21が蒸気31の流れに捕獲されることがない。蒸気流速が大きい場合でも、蒸気に同伴されて蒸気乾燥器7まで運ばれる液滴量を格段に低減できるため、高クオリティ条件でもキャリーオーバーを大幅に低下させることができる。   Therefore, the steam and water that have flowed into the second-stage discharge channel 51 are separated and flow out from the respective discharge ports, and the second-stage steam discharge port 93 is disposed above the second-stage separated water discharge port 91. Therefore, the separated water 21 discharged from the second-stage separated water discharge port 91 does not come into contact with the steam 31 discharged from the second-stage steam discharge port 93, so that the separated water 21 flows into the flow of the steam 31. It is never captured. Even when the steam flow rate is large, the amount of droplets that are entrained in the steam and carried to the steam dryer 7 can be remarkably reduced, so that carryover can be greatly reduced even under high quality conditions.

液流量が少ない場合は、第二段分離水排出口91からも蒸気が流出する。第二段分離水排出口91の断面積は、第二段蒸気排出口93の断面積よりも小さく、更に、液の流出面積分、蒸気の流路面積が小さくなるため、蒸気に対する流動抵抗が大きくなっている。このため、蒸気は第二段蒸気排出口93のほうにより多く流れ、第二段分離水排出口91を流出する蒸気量は少ない。   When the liquid flow rate is small, steam also flows out from the second stage separated water discharge port 91. The cross-sectional area of the second-stage separated water discharge port 91 is smaller than the cross-sectional area of the second-stage steam discharge port 93, and further, the flow out area of the liquid is reduced by the liquid outflow area, so It is getting bigger. For this reason, more steam flows through the second stage steam discharge port 93, and the amount of steam flowing out from the second stage separated water discharge port 91 is small.

従って、第二段分離水排出口91を流れる蒸気が存在しても、その流量は少ないため、蒸気に随伴されて蒸気乾燥器7へ流れていく液滴はほとんど発生しない。   Therefore, even if there is steam flowing through the second-stage separated water discharge port 91, the flow rate is small, so that almost no droplets flow to the steam dryer 7 accompanying the steam.

また、実施例1では、第三段排出流路52にも前述した第二段排出流路51と同様な構造を用いている。即ち、第三段排出口を、第三段蒸気排出口94と第三段分離水排出口92に分け、第三段蒸気排出口94を第三段分離水排出口92よりも上方に配置し、第三段蒸気排出口94の第三段排出流路52側に、第三段蒸気排出口94の縁に沿って、上述した第二段突起溝81と同様な構成のラッパ管状の第三段突起溝82を設け、そして、第三段分離水排出口92の断面積は、第三段蒸気排出口94の断面積よりも小さくしている。   In the first embodiment, the third-stage discharge flow path 52 has the same structure as the second-stage discharge flow path 51 described above. That is, the third stage outlet is divided into a third stage steam outlet 94 and a third stage separated water outlet 92, and the third stage steam outlet 94 is disposed above the third stage separated water outlet 92. In the third-stage steam outlet 94 side of the third-stage steam outlet 94, along the edge of the third-stage steam outlet 94, the third tubular trumpet having the same configuration as the second-stage projection groove 81 described above. A step protrusion groove 82 is provided, and the cross-sectional area of the third-stage separated water discharge port 92 is smaller than the cross-sectional area of the third-stage steam discharge port 94.

このように、第三段排出流路52を第二段排出流路51と同様な機構とすることで、蒸気32は第三段蒸気排出口94から、分離水22は第三段分離水排出口92からそれぞれ排出することができる。   In this way, the third-stage discharge flow path 52 has the same mechanism as the second-stage discharge flow path 51, so that the steam 32 is discharged from the third-stage steam discharge port 94 and the separated water 22 is discharged from the third-stage separated water discharge. Each can be discharged from the outlet 92.

従来の第三段排出口104では、同じ第三段排出口104から蒸気と分離水が排出され、分離水は第三段から排出される蒸気32に第二段から排出された蒸気33が合流したより流速の大きい蒸気34の流れに巻き込まれるため、蒸気流に随伴されて蒸気乾燥器まで流れていく可能性が高くなる。   In the conventional third-stage outlet 104, steam and separated water are discharged from the same third-stage outlet 104, and the separated water joins the steam 33 discharged from the second stage to the steam 32 discharged from the third stage. Therefore, since it is involved in the flow of the steam 34 having a higher flow velocity, there is a high possibility that the steam will flow to the steam dryer accompanying the steam flow.

しかし、上述した実施例1では、第三段分離水排出口92から排出された分離水22は、第二段蒸気排出口93から排出された蒸気33のみにさらされるため、蒸気流に随伴する分離水が少なくなり、キャリーオーバーが低下する。   However, in the first embodiment described above, the separated water 22 discharged from the third-stage separated water discharge port 92 is exposed only to the steam 33 discharged from the second-stage steam discharge port 93, and therefore accompanies the steam flow. Separated water is reduced and carryover is reduced.

以上のように、実施例1によれば、簡易な構造を用いて気水分離器外で蒸気に同伴される液適量を減少させることができると共に、蒸気の通気抵抗の増加を抑制しながら、クオリティの高い条件でのキャリーオーバーを低減することのできるため、低コストで気水分離性能の低下を抑制して沸騰水型原子炉の出力を増加させることができる。   As described above, according to the first embodiment, it is possible to reduce an appropriate amount of liquid entrained by steam outside the steam separator using a simple structure, while suppressing an increase in steam ventilation resistance, Since carry-over under high quality conditions can be reduced, it is possible to increase the output of the boiling water reactor at a low cost by suppressing the deterioration of the steam-water separation performance.

本発明の気水分離器の実施例2について、図7を用いて説明する。   Embodiment 2 of the steam / water separator of the present invention will be described with reference to FIG.

図7に示す如く、実施例2の気水分離器6は、第二段蒸気排出口93と第二段分離水排出口92の開口部が鉛直方向に重ならないように、第二段分離水排出口92を周方向に2つに分け、第二段蒸気排出口93と鉛直方向に重ならないように第二段分離水排出口92a及び92を配置したものである。また、第二段分離水排出口も周方向に2つに分けられて第二段分離水排出口91a、91bが配置されている。 As shown in FIG. 7, the steam separator 6 according to the second embodiment has the second stage separated water so that the openings of the second stage steam outlet 93 and the second stage separated water outlet 92 do not overlap in the vertical direction. divided into two outlet 92 in the circumferential direction, in which the second stage separated water outlet 92a and 92 b arranged so as not to overlap in the vertical direction and the second-stage vapor exhaust outlet 93. Further, the second-stage separated water discharge ports are also divided into two in the circumferential direction, and second-stage separated water discharge ports 91a and 91b are arranged.

前述したように、図6に示した実施例1の構成では、第三段分離水排出口92から排出された分離水22は、第二段蒸気排出口93から排出された蒸気31の流速が大きいと随伴されて蒸気乾燥器7まで運ばれる可能性がある。一方、第二段蒸気排出口93から排出された蒸気31は、上方に流れるときに排出口形状により周方向に分布が生じる。   As described above, in the configuration of the first embodiment shown in FIG. 6, the separation water 22 discharged from the third-stage separation water discharge port 92 has the flow velocity of the steam 31 discharged from the second-stage steam discharge port 93. If it is large, it may be accompanied to the steam dryer 7. On the other hand, the steam 31 discharged from the second stage steam discharge port 93 is distributed in the circumferential direction due to the shape of the discharge port when flowing upward.

即ち、図8に示すように、第二段蒸気排出口93直後では、第二段蒸気排出口93の左右の縁で速度0、中央でピークとなる速度分布をもつ。第二段蒸気排出口93を出た後は、速度分布が第二段蒸気排出口93の幅よりも拡がるが、蒸気が第三段分離水排出口92a、92bの高さに到達したときも分布は残っており、周方向に第二段蒸気排出口93の開口部から最も離れている位置において蒸気流速が最も小さくなっている。   That is, as shown in FIG. 8, immediately after the second stage steam outlet 93, the right and left edges of the second stage steam outlet 93 have a speed distribution of 0 and a peak at the center. After exiting the second stage steam outlet 93, the velocity distribution is wider than the width of the second stage steam outlet 93, but also when the steam reaches the height of the third stage separated water outlets 92a, 92b. The distribution remains, and the steam flow velocity is the smallest at a position farthest from the opening of the second stage steam outlet 93 in the circumferential direction.

従って、周方向のこの位置に第三段分離水排出口92a、92bを配置すると、第二段蒸気排出口93から排出された蒸気31に分離水22a、22bが随伴される割合が最も小さくなり、キャリーオーバーをさらに低下させることができる。   Therefore, when the third-stage separated water discharge ports 92a and 92b are arranged at this position in the circumferential direction, the ratio of the separated water 22a and 22b accompanying the steam 31 discharged from the second-stage steam discharge port 93 becomes the smallest. Carryover can be further reduced.

このような実施例2によれば、上述した実施例1と同様な効果が得られることは勿論、キャリーオーバーをさらに低下させることができるので、更なる効果が期待できる。   According to the second embodiment, the same effect as that of the first embodiment described above can be obtained, and the carryover can be further reduced, so that a further effect can be expected.

本発明の気水分離器の実施例3について、図9を用いて説明する。   Embodiment 3 of the steam / water separator of the present invention will be described with reference to FIG.

図9に示す如く、実施例3の気水分離器6は、上述した実施例2の構成に加え、第二段蒸気排出口93及び第三段蒸気排出口94上方の第二段排出流路51及び第三段排出流路52側に、第二段蒸気排出口93及び第三段蒸気排出口94の中央から左右両端に向かって斜め下方(下向き)に延びるラッパ管状の第二段突起溝81及び第三段突起溝82を設けたものである。   As shown in FIG. 9, the steam separator 6 of the third embodiment has a second-stage discharge flow path above the second-stage steam discharge port 93 and the third-stage steam discharge port 94 in addition to the configuration of the second embodiment described above. 51 and the third-stage discharge flow path 52 side, the second-stage projection groove having a trumpet shape extending obliquely downward (downward) from the center of the second-stage steam discharge port 93 and the third-stage steam discharge port 94 toward the left and right ends. 81 and a third-stage protruding groove 82 are provided.

通常、第二段出流路51及び第三段排出流路52に流入した水のうち、第二段外筒70壁及び第三段外筒74側を流下した水は、第二段突起溝81及び第三段突起溝82に衝突するため、第二段蒸気排出口93及び第三段蒸気排出口94から直接外部へ排出されることはない。   Usually, of the water flowing into the second-stage outlet channel 51 and the third-stage outlet channel 52, the water flowing down the second-stage outer cylinder 70 wall and the third-stage outer cylinder 74 side is the second-stage protruding groove. 81 and the third-stage protruding groove 82, so that they are not directly discharged to the outside from the second-stage steam outlet 93 and the third-stage steam outlet 94.

ところが、第二段突起溝81及び第三段突起溝82に衝突した水が、第二段蒸気排出口93及び第三段蒸気排出口94脇へスムーズに流れない場合には、第二段突起溝81及び第三段突起溝82の水がオーバーフローして該突起溝を乗り越え、第二段蒸気排出口93及び第三段蒸気排出口94から蒸気と一緒に排出される可能性がある。   However, when the water colliding with the second stage projection groove 81 and the third stage projection groove 82 does not flow smoothly to the side of the second stage steam discharge port 93 and the third stage steam discharge port 94, the second stage projection There is a possibility that the water in the groove 81 and the third-stage protruding groove 82 overflows, gets over the protruding groove, and is discharged together with the steam from the second-stage steam outlet 93 and the third-stage steam outlet 94.

そこで、実施例3では、第二段排出流路51及び第三段排出流路52側を流下した水を、第二段蒸気排出口93及び第三段蒸気排出口94の脇へスムーズに流すために、第二段蒸気排出口93及び第三段蒸気排出口94の中央から左右両端方向に斜め下方に延びる第二段突起溝81及び第三段突起溝82を設けたものである。   Therefore, in Example 3, the water flowing down the second-stage discharge flow path 51 and the third-stage discharge flow path 52 is smoothly flowed to the side of the second-stage steam discharge port 93 and the third-stage steam discharge port 94. For this purpose, a second-stage projection groove 81 and a third-stage projection groove 82 are provided that extend obliquely downward from the center of the second-stage steam discharge port 93 and the third-stage steam discharge port 94 in the left and right direction.

このような実施例3の構成によれば、第二段外筒70及び第三段外筒74側を流下した水は、第二段突起溝81及び第三段突起溝82に衝突した後、該第二段突起溝81及び第三段突起溝82に沿って第二段蒸気排出口93及び第三段蒸気排出口94の脇にスムーズに流れ、第二段排出流路51及び第三段排出流路52の底面に到達し、第二段分離水排出口91a、91b及び第三段分離水排出口92a、92bから外部へ排出される。   According to the configuration of the third embodiment, after the water flowing down the second-stage outer cylinder 70 and the third-stage outer cylinder 74 collides with the second-stage protrusion groove 81 and the third-stage protrusion groove 82, It smoothly flows alongside the second-stage projection groove 81 and the third-stage projection groove 82 to the side of the second-stage steam discharge port 93 and the third-stage steam discharge port 94, and the second-stage discharge channel 51 and the third stage. It reaches the bottom surface of the discharge channel 52 and is discharged to the outside through the second-stage separated water discharge ports 91a and 91b and the third-stage separated water discharge ports 92a and 92b.

従って、実施例3では、第二段突起溝81及び第三段突起溝82からのオーバーフローがなくなるので、キャリーオーバーを確実に低下させることができる。   Therefore, in Example 3, since overflow from the second step protrusion groove 81 and the third step protrusion groove 82 is eliminated, carryover can be reliably reduced.

よって、上述した実施例1と同様な効果が得られることは勿論、キャリーオーバーをさらに低下させることができるので、更なる効果が期待できる。   Therefore, the same effect as that of the first embodiment described above can be obtained, and the carryover can be further reduced, so that a further effect can be expected.

なお、第二段蒸気排出口93及び第三段蒸気排出口94の上縁を上に凸形状にして、その上縁に沿って第二段排出流路51及び第三段排出流路52側に第二段突起溝81及び第三段突起溝82を設けてもよい。また、円管から第二段外筒70及び第三段外筒74を製作する場合には、第二段蒸気排出口93及び第三段蒸気排出口94を形成した後、縁を第二段出流路51及び第三段排出流路52側に折り曲げることにより第二段突起溝81及び第三段突起溝82が形成できるため、新たに突起溝を溶接等により取り付ける必要がなくなる効果がある。   The upper edges of the second-stage steam discharge port 93 and the third-stage steam discharge port 94 are convex upward, and the second-stage discharge flow path 51 and the third-stage discharge flow path 52 side along the upper edges. The second step protrusion groove 81 and the third step protrusion groove 82 may be provided. Further, when the second-stage outer cylinder 70 and the third-stage outer cylinder 74 are manufactured from the circular pipe, after the second-stage steam discharge port 93 and the third-stage steam discharge port 94 are formed, the edges are formed at the second stage. Since the second-stage projection groove 81 and the third-stage projection groove 82 can be formed by bending the outlet channel 51 and the third-stage discharge channel 52, there is an effect that it is not necessary to newly attach the projection groove by welding or the like. .

本発明の気水分離器の実施例4について、図10及び図11を用いて説明する。   Embodiment 4 of the steam / water separator of the present invention will be described with reference to FIGS. 10 and 11.

図10及び図11に示す如く、実施例4の気水分離器6は、実施例3の構成に加え、第三段分離水排出口92がなく、第二段環状板71に連通穴98a、98bを設け、その連通穴98a、98bから第二段分離水排出口91a、91bの近傍まで延びる連通管99a、99bを設けたものである。このとき、第三段蒸気排出口94の下端は、第二段環状板71よりも上方に配置されている。   As shown in FIGS. 10 and 11, the steam separator 6 of the fourth embodiment has a third-stage separated water discharge port 92 in addition to the configuration of the third embodiment, and has a communication hole 98 a in the second-stage annular plate 71. 98b is provided, and communication pipes 99a and 99b extending from the communication holes 98a and 98b to the vicinity of the second-stage separated water discharge ports 91a and 91b are provided. At this time, the lower end of the third stage steam outlet 94 is disposed above the second stage annular plate 71.

このような実施例4の構成によれば、第三段排出流路52で底部に流下した水は、連通穴98a、98bから連通管99a、99bを通って第二段排出流路51の底部へ導かれる。連通管99a、99bで第二段排出流路51の底部に導かれた分離水は、第二段ピックオフリング65から第二段排出流路51に流入した分離水と合流して第二段分離水排出口91a、91bから外部へ排出される。   According to the configuration of the fourth embodiment, the water flowing down to the bottom in the third-stage discharge flow path 52 passes through the communication holes 99a and 98b and the communication pipes 99a and 99b, and the bottom of the second-stage discharge flow path 51. Led to. The separated water led to the bottom of the second stage discharge channel 51 by the communication pipes 99a and 99b joins with the separated water flowing into the second stage discharge channel 51 from the second stage pick-off ring 65 and is separated into the second stage. The water is discharged from the water discharge ports 91a and 91b to the outside.

このように第三段排出流路52に流入した分離水を、第二段分離水排出口91a、91bから排出することには次のメリットがある。   Thus, discharging the separated water flowing into the third-stage discharge flow path 52 from the second-stage separated water discharge ports 91a and 91b has the following merit.

即ち、実施例3のように、第三段分離水排出口92a、92bから分離水22を排出させると、分離水22が第二段蒸気排出口93から排出され上昇する蒸気31にさらされるため、蒸気流速が大きい場合には、分離水22の一部が蒸気31に随伴して蒸気乾燥器7へと流れていくことが懸念される。   That is, as in the third embodiment, when the separated water 22 is discharged from the third stage separated water discharge ports 92a and 92b, the separated water 22 is exposed to the rising steam 31 discharged from the second stage steam discharge port 93. When the steam flow rate is high, there is a concern that part of the separated water 22 flows along with the steam 31 to the steam dryer 7.

これに対して、実施例4では、分離水が蒸気に晒されない第二段分離水排出口91a、91bから分離水をまとめて排出することができるため、蒸気に随伴されて蒸気乾燥器7へ流れていく分離水を大幅に低減することができる。   On the other hand, in Example 4, since separated water can be discharged | emitted collectively from the 2nd stage separated water discharge port 91a, 91b from which separation water is not exposed to a vapor | steam, it accompanies with a vapor | steam and is to the steam dryer 7. The separated water that flows can be greatly reduced.

このような実施例4のような構成としても、上述した実施例と同様な効果を得ることができる。   Even with such a configuration as in the fourth embodiment, it is possible to obtain the same effects as in the above-described embodiments.

なお、連通管99a、99bの出口は、第二段蒸気排出口93の下端よりも低い位置にあったほうがよい。即ち、連通管99a、99bの出口が、第二段蒸気排出口93の下端よりも高い位置にあると、連通管99a、99bの出口から流出する分離水が蒸気に随伴され、第二段蒸気排出口93から流出して、そのまま蒸気乾燥器まで流れていく可能性がある。   The outlets of the communication pipes 99a and 99b are preferably located at a position lower than the lower end of the second stage steam discharge port 93. That is, when the outlets of the communication pipes 99a and 99b are located higher than the lower end of the second stage steam discharge port 93, the separated water flowing out from the outlets of the communication pipes 99a and 99b is accompanied by the steam, and the second stage steam. There is a possibility that it flows out from the discharge port 93 and flows to the steam dryer as it is.

そこで、連通管99a、99bの出口を第二段蒸気排出口93よりも低い位置にすれば、連通管99a、99b内を流下した分離水が気水分離器外の蒸気流れに晒されることがなく、そのまま第二段排出流路51の底部に落下するので、分離水を蒸気流れに晒すことなく確実に第二段分離水排出口91a、91bから排出することができる。   Therefore, if the outlets of the communication pipes 99a and 99b are positioned lower than the second stage steam discharge port 93, the separated water flowing down in the communication pipes 99a and 99b may be exposed to the steam flow outside the steam separator. Since it falls to the bottom of the second stage discharge channel 51 as it is, the separated water can be reliably discharged from the second stage separated water discharge ports 91a and 91b without being exposed to the steam flow.

2…炉心シュラウド、3…原子炉圧力容器、4…ダウンカマ、5…炉心、6…気水分離器、7…蒸気乾燥器、8…主蒸気配管、10…インターナルポンプ、21…第二段分離水排出口から排出される分離水、22…第三段分離水排出口から排出される分離水、23…第二段内筒内側に形成された液膜、24…第三段内筒内側に形成された液膜、25…第二段内筒排出流路側に形成された液膜、26…第二段外筒内側に形成された液膜、27…第三段内筒排出流路側に形成された液膜、28…第三段外筒内側に形成された液膜、31…第二段蒸気排出口から排出される蒸気、32…第三段蒸気排出口から排出される蒸気、33…第二段外筒外側を上昇する蒸気、34…第三段外筒外側を上昇する蒸気、50…第一段排出流路、51…第二段排出流路、52…第三段排出流路、55…気水分離器出口、61…スタンドパイプ、62…ディフューザ、63…スワラ、64…第一段内筒、65…第一段ピックオフリング、66…第一段外筒、67…第一段環状板、68…第二段内筒、69…第二段ピックオフリング、70…第二段外筒、71…第二段環状板、72…第三段内筒、73…第三段ピックオフリング、74…第三段外筒、75…第三段環状板、81…第二段突起溝、82…第三段突起溝、91、91a、91b…第二段分離水排出口、92、92a、92b…第三段分離水排出口、93…第二段蒸気排出口、94…第三段蒸気排出口、98a、98b…連通穴、99a、99b…連通管、101…ハブ、102…旋回羽根、103…第二段排出流路出口、104…第三段排出流路出口。   2 ... core shroud, 3 ... reactor pressure vessel, 4 ... downcomer, 5 ... core, 6 ... steam separator, 7 ... steam dryer, 8 ... main steam pipe, 10 ... internal pump, 21 ... second stage Separation water discharged from the separation water discharge port, 22 ... Separation water discharged from the third-stage separation water discharge port, 23 ... Liquid film formed inside the second-stage inner cylinder, 24 ... Inside the third-stage inner cylinder , Liquid film formed on the second-stage inner cylinder discharge flow path side, 26 liquid film formed on the inner side of the second-stage outer cylinder, 27. Liquid film formed 28 ... Liquid film formed inside the third stage outer cylinder, 31 ... Steam discharged from the second stage steam outlet, 32 ... Steam discharged from the third stage steam outlet, 33 ... Steam rising outside the second stage outer cylinder, 34 ... Steam rising outside the third stage outer cylinder, 50 ... First stage discharge flow path, 51 ... Second stage discharge , 52... Third stage discharge channel, 55... Steam outlet, 61. Stand pipe, 62. Diffuser, 63. Swirler, 64 ... First stage inner cylinder, 65 ... First stage pick-off ring, 66. First stage outer cylinder, 67 ... First stage annular plate, 68 ... Second stage inner cylinder, 69 ... Second stage pick-off ring, 70 ... Second stage outer cylinder, 71 ... Second stage annular plate, 72 ... Third Step inner cylinder, 73 ... Third stage pick-off ring, 74 ... Third stage outer cylinder, 75 ... Third stage annular plate, 81 ... Second stage projection groove, 82 ... Third stage projection groove, 91, 91a, 91b ... Second stage separated water discharge port, 92, 92a, 92b ... Third stage separated water discharge port, 93 ... Second stage steam discharge port, 94 ... Third stage steam discharge port, 98a, 98b ... Communication hole, 99a, 99b ... Communication pipe, 101 ... Hub, 102 ... Swirl blade, 103 ... Second stage discharge channel outlet, 104 ... Third stage discharge channel outlet.

Claims (9)

気液二相流を下方から上方に向かって導くスタンドパイプと、該スタンドパイプの上側端面に連通して流路を形成し、前記上側端面の流路断面積よりも上方に向けて流路断面積を拡大するディフューザと、該ディフューザの上側端面に連通して流路を形成する第一段内筒と、該第一段内筒を同心円状に間隔を空けて囲んで環状の流路を形成する第一段外筒と、該第一段外筒の上側端面の内周縁を塞ぐと共に前記第一段内筒よりも小径の円形孔を形成した第一段環状板と、該第一段環状板の前記円形孔を形成している内周縁から下方に向けて円筒状に起立させて前記円形孔を第二段内筒への流路として形成する第一段ピックオフリングと、前記第一段環状板上に設置され流路を形成する前記第二段内筒と、該第二段内筒を同心円状に間隔を空けて囲んで環状の第二段排出流路を形成する第二段外筒と、該第二段外筒の上側端面の内周縁を塞ぐと共に前記第二段内筒よりも小径の円形孔を形成した第二段環状板と、前記第二段環状板上に設置され流路を形成する第三段内筒と、前記第二段環状板の前記円形孔を形成している内周縁から下方に向けて円筒状に起立させて前記円形孔を前記第三段内筒への流路として形成する第二段ピックオフリングとを少なくとも備え、気液二相流の流路の軸中心を通るハブ及び前記ハブを中心にして放射状に取り付ける複数の旋回羽根を含み、前記旋回羽根の径方向に内側縁が前記ハブに固定されており、前記ディフューザの内壁又は前記第一段内筒の内壁に前記旋回羽根の径方向に外側縁が固定されているスワラを備えた気水分離器において、
前記第二段外筒に前記第二段排出流路に流入した水を排出する第二段分離水排出口と蒸気を排出する第二段蒸気排出口を設けると共に、前記第二段蒸気排出口が前記第二段分離水排出口よりも高い位置に配置され、かつ、前記第二段蒸気排出日の縁に沿って前記第二段排出流路へ突出した突起物が設けられ、該突起物の先端が前記第二段蒸気排出口の流路を塞がない方向に折り曲げられて前記第二段外筒との間で溝状の流路である突起溝が形成されていることを特徴とする気水分離器。
A stand pipe that guides the gas-liquid two-phase flow from below to above, and a flow path that communicates with the upper end surface of the stand pipe to form a flow path. A diffuser that expands the area, a first stage inner cylinder that communicates with the upper end surface of the diffuser to form a flow path, and an annular flow path that surrounds the first stage inner cylinder in a concentric manner to form an annular flow path A first-stage outer cylinder, a first-stage annular plate that closes the inner peripheral edge of the upper end surface of the first-stage outer cylinder, and that has a circular hole with a smaller diameter than the first-stage inner cylinder, and the first-stage annular plate A first-stage pick-off ring that rises in a cylindrical shape downward from an inner peripheral edge forming the circular hole of the plate and forms the circular hole as a flow path to a second-stage inner cylinder; and the first stage The second stage inner cylinder that is installed on the annular plate and forms a flow path, and the second stage inner cylinder are concentrically spaced from each other. A second-stage outer cylinder that surrounds and forms an annular second-stage discharge channel, and closes the inner peripheral edge of the upper end surface of the second-stage outer cylinder and has a circular hole with a smaller diameter than the second-stage inner cylinder A second-stage annular plate, a third-stage inner cylinder that is installed on the second-stage annular plate and forms a flow path, and downward from an inner periphery that forms the circular hole of the second-stage annular plate A second-stage pick-off ring that rises in a cylindrical shape and forms the circular hole as a flow path to the third-stage inner cylinder, and a hub that passes through the axial center of the flow path of the gas-liquid two-phase flow, and A plurality of swirl vanes attached radially about a hub, and an inner edge of the swirl vane is fixed to the hub in a radial direction; In the steam-water separator provided with a swirler whose outer edge is fixed in the radial direction of
The second-stage outer cylinder is provided with a second-stage separated water discharge port for discharging water flowing into the second-stage discharge channel and a second-stage steam discharge port for discharging steam, and the second-stage steam discharge port Is provided at a position higher than the second-stage separated water discharge port , and a protrusion protruding to the second-stage discharge passage along the edge of the second-stage steam discharge date is provided, the protrusion A tip groove is bent in a direction that does not block the flow path of the second-stage steam discharge port, and a protruding groove that is a groove-shaped flow path is formed between the second-stage outer cylinder and the second-stage outer cylinder. To steam separator.
気液二相流を下方から上方に向かつて導くスタンドパイプと、該スタンドバイプの上側端面に連通して流路を形成し、前記上側端面の流路断面積よりも上方に向けて流路断面積を拡大するディフューザと、該ディフューザの上側端面に連通して流路を形成する第一段内筒と、該第一段内筒を同心円状に間隔を空けて囲んで環状の流路を形成する第一段外筒と、該第一段外筒の上側端面の内周縁を塞ぐと共に前記第一段内筒よりも小径の円形孔を形成した第一段環状板と、該第一段環状板の前記円形孔を形成している内周縁から下方に向けて円筒状に起立させて前記円形孔を第二段内筒への流路として形成する第一段ピックオフリングと、前記第一段環状板上に設置され流路を形成する前記第二段内筒と、該第二段内筒を同心円状に間隔を空けて囲んで環状の第二段排出流路を形成する第二段外筒と、該第二段外筒の上側端面の内周縁を塞ぐと共に前記第二段内筒よりも小径の円形孔を形成した第二段環状板と、前記第二段環状板上に設置され流路を形成する第三段内筒と、前記第二段環状板の前記円形孔を形成している内周縁から下方に向けて円筒状に起立させて前記円形孔を前記第三段内筒への流路として形成する第二段ピックオフリングと、前記第三段内筒を同心円状に間隔を空けて囲んで環状の第三段排出流路を形成する第三段外筒と、該第三段外筒の上側端面の内周縁を塞ぐと共に、前記第三段内筒よりも小径の円形孔を形成した第三段環状板と、該第三段環状板の前記円形孔を形成している内周縁から下方に向けて円筒状に起立させて前記円形孔を気水分離器出口流路として形成する第三段ピックオフリングと、気液二相流の流路の軸中心を通るハブ及び前記ハブを中心にして放射状に取り付ける複数の旋回羽根を含み、前記旋回羽根の径方向に内側縁が前記ハブに固定されており、前記ディフューザの内壁又は前記第一段内筒の内壁に前記旋回羽根の径方向に外側縁が固定されているスワラを備えた気水分離器において、
前記第二段外筒に前記第二段排出流路に流入した水を排出する第二段分離水排出口と蒸気を排出する第二段蒸気排出口を設けると共に、前記第二段蒸気排出口が前記第二段分離水排出口よりも高い位置に配置され、かつ、前記第三段外筒に前記第三段排出流路に流入した水を排出する第三段分離水排出口と蒸気を排出する第三段蒸気排出口を設け、前記第三段蒸気排出口が前記第三段分離水排出口よりも高い位置に配置され、しかも、前記第二段蒸気排出口及び前記第三段蒸気排出口の縁に沿って前記第二段排出流路及び前記第三段排出流路へ突出した突起物がそれぞれ設けられ、該突起物の先端が前記第二段蒸気排出口及び前記第三段蒸気排出口の流路を塞がない方向に折り曲げられて前記第二段外筒及び前記第三段外筒との間で溝状の流路である突起溝が形成されていることを特徴とする気水分離器。
A stand pipe that guides the gas-liquid two-phase flow once upward from below, and a flow path that communicates with the upper end surface of the stand vip, forming a flow path, and breaking the flow path upward from the cross-sectional area of the upper end face. A diffuser that expands the area, a first stage inner cylinder that communicates with the upper end surface of the diffuser to form a flow path, and an annular flow path that surrounds the first stage inner cylinder in a concentric manner to form an annular flow path A first-stage outer cylinder, a first-stage annular plate that closes the inner peripheral edge of the upper end surface of the first-stage outer cylinder, and that has a circular hole with a smaller diameter than the first-stage inner cylinder, and the first-stage annular plate A first-stage pick-off ring that rises in a cylindrical shape downward from an inner peripheral edge forming the circular hole of the plate and forms the circular hole as a flow path to a second-stage inner cylinder; and the first stage The second stage inner cylinder that is installed on the annular plate and forms a flow path, and the second stage inner cylinder are concentrically spaced from each other. A second-stage outer cylinder that surrounds and forms an annular second-stage discharge channel, and closes the inner peripheral edge of the upper end surface of the second-stage outer cylinder and has a circular hole with a smaller diameter than the second-stage inner cylinder A second-stage annular plate, a third-stage inner cylinder that is installed on the second-stage annular plate and forms a flow path, and downward from an inner periphery that forms the circular hole of the second-stage annular plate A second-stage pick-off ring that rises in a cylindrical shape and forms the circular hole as a flow path to the third-stage inner cylinder, and an annular first ring surrounding the third-stage inner cylinder at a concentric interval. A third-stage outer cylinder that forms a three-stage discharge channel, and a third-stage annular cylinder that closes the inner peripheral edge of the upper end surface of the third-stage outer cylinder and that has a smaller diameter circular hole than the third-stage inner cylinder Plate, and the circular hole is erected in a cylindrical shape downward from the inner peripheral edge forming the circular hole of the third-stage annular plate, and the circular water hole is connected to the steam / water separator outlet flow path. A third stage pick-off ring, a hub passing through the axial center of the gas-liquid two-phase flow path, and a plurality of swirl vanes attached radially about the hub, the radially inner edge of the swirl vanes In the steam-water separator provided with a swirler, the outer edge of which is fixed to the inner wall of the diffuser or the inner wall of the first stage inner cylinder in the radial direction of the swirl vane.
The second-stage outer cylinder is provided with a second-stage separated water discharge port for discharging water flowing into the second-stage discharge channel and a second-stage steam discharge port for discharging steam, and the second-stage steam discharge port Is disposed at a position higher than the second-stage separated water discharge port, and a third-stage separated water discharge port and a steam for discharging water that has flowed into the third-stage discharge channel into the third-stage outer cylinder. setting a third stage steam discharge port for discharging only the third-stage steam outlet is located at a position higher than the third stage separated water outlet, moreover, the second stage vapor exhaust outlet and the third stage Protrusions that protrude to the second-stage discharge channel and the third-stage discharge channel are provided along edges of the steam discharge ports, respectively, and the tips of the projections are provided at the second-stage steam discharge port and the third-stage discharge channel. A groove-like flow between the second-stage outer cylinder and the third-stage outer cylinder is bent in a direction that does not block the flow path of the stage steam discharge port. Steam separator, wherein a projection grooves are formed at.
請求項に記載の気水分離器において、
前記第三段分離水排出口は、前記第二段蒸気排出口の開口部と鉛直方向に重ならないように周方向に分けて配置されていることを特徴とする気水分離器。
The steam separator according to claim 2 ,
The third-stage separated water discharge port is divided into a circumferential direction so as not to overlap the opening of the second-stage steam discharge port in the vertical direction.
請求項2又は3に記載の気水分離器において、
前記第二段蒸気排出口及び前記第三段蒸気排出口の上端縁に沿った前記突起溝は、前記第二段蒸気排出口及び前記第三段蒸気排出口の中央部から両端に向かつて斜め下向きに延びる傾斜を持たせて配置されていることを特徴とする気水分離器。
The steam-water separator according to claim 2 or 3 ,
The protrusion groove along the upper edge of the second-stage steam outlet and the third-stage steam outlet is inclined diagonally from the center of the second-stage steam outlet and the third-stage steam outlet to both ends. A steam-water separator, wherein the steam-water separator is disposed with an inclination extending downward.
気液二相流を下方から上方に向かつて導くスタンドパイプと、該スタンドパイプの上側端面に連通して流路を形成し、前記上側端面の流路断面積よりも上方に向けて流路断面積を拡大するディフューザと、該ディフューザの上側端面に連通して流路を形成する第一段内筒と、該第一段内筒を同心円状に間隔を空けて囲んで環状の流路を形成する第一段外筒と、該第一段外筒の上側端面の内周縁を塞ぐと共に前記第一段内筒よりも小径の円形孔を形成した第一段環状板と、該第一段環状板の前記円形孔を形成している内周縁から下方に向けて円筒状に起立させて前記円形孔を第二段内筒への流路として形成する第一段ピックオフリングと、前記第一段環状板上に設置され流路を形成する前記第二段内筒と、該第二段内筒を同心円状に間隔を空けて囲んで環状の第二段排出流路を形成する第二段外筒と、該第二段外筒の上側端面の内周縁を塞ぐと共に前記第二段内筒よりも小径の円形孔を形成した第二段環状板と、前記第二段環状板上に設置され流路を形成する第三段内筒と、前記第二段環状板の前記円形孔を形成している内周縁から下方に向けて円筒状に起立させて前記円形孔を前記第三段内筒への流路として形成する第二段ピックオフリングと、前記第三段内筒を同心円状に間隔を空けて囲んで環状の第三段排出流路を形成する第三段外筒と、該第三段外筒の上側端面の内周縁を塞ぐと共に、前記第三段内筒よりも小径の円形孔を形成した第三段環状板と、該第三段環状板の前記円形孔を形成している内周縁から下方に向けて円筒状に起立させて前記円形孔を気水分離器出口流路として形成する第三段ピックオフリングと、気液二相流の流路の軸中心を通るハブ及び前記ハブを中心にして放射状に取り付ける複数の旋回羽根を含み、前記旋回羽根の径方向に内側縁が前記ハブに固定されており、前記ディフューザの内壁又は前記第一段内筒の内壁に前記旋回羽根の径方向に外側縁が固定されているスワラを備えた気水分離器において、
前記第二段外筒に前記第二段排出流路に流入した水を排出する第二段分離水排出口と蒸気を排出する第二段蒸気排出口を設けると共に、前記第二段蒸気排出口が前記第二段分離水排出口よりも高い位置に配置され、かつ、前記第三段外筒に蒸気を排出する第三段蒸気排出口を設け、該第三段蒸気排出口の下端は前記第二段環状板よりも上方に位置していると共に、前記第二段環状板に連通孔が設けられ、かつ、該連通孔から流下する分離水を前記第二段排出流路の下方に導く連通管を前記第二段排出流路内に設けたことを特徴とする気水分離器。
A stand pipe that guides the gas-liquid two-phase flow from below to above and a flow path that communicates with the upper end face of the stand pipe to form a flow path, and the flow path breaks upward from the flow path cross-sectional area of the upper end face. A diffuser that expands the area, a first stage inner cylinder that communicates with the upper end surface of the diffuser to form a flow path, and an annular flow path that surrounds the first stage inner cylinder in a concentric manner to form an annular flow path A first-stage outer cylinder, a first-stage annular plate that closes the inner peripheral edge of the upper end surface of the first-stage outer cylinder, and that has a circular hole with a smaller diameter than the first-stage inner cylinder, and the first-stage annular plate A first-stage pick-off ring that rises in a cylindrical shape downward from an inner peripheral edge forming the circular hole of the plate and forms the circular hole as a flow path to a second-stage inner cylinder; and the first stage The second stage inner cylinder that is installed on the annular plate and forms a flow path, and the second stage inner cylinder are concentrically spaced from each other. A second-stage outer cylinder that surrounds and forms an annular second-stage discharge channel, and closes the inner peripheral edge of the upper end surface of the second-stage outer cylinder and has a circular hole with a smaller diameter than the second-stage inner cylinder A second-stage annular plate, a third-stage inner cylinder that is installed on the second-stage annular plate and forms a flow path, and downward from an inner periphery that forms the circular hole of the second-stage annular plate A second-stage pick-off ring that rises in a cylindrical shape and forms the circular hole as a flow path to the third-stage inner cylinder, and an annular first ring surrounding the third-stage inner cylinder at a concentric interval. A third-stage outer cylinder that forms a three-stage discharge channel, and a third-stage annular cylinder that closes the inner peripheral edge of the upper end surface of the third-stage outer cylinder and that has a smaller diameter circular hole than the third-stage inner cylinder Plate, and the circular hole is erected in a cylindrical shape downward from the inner peripheral edge forming the circular hole of the third-stage annular plate, and the circular water hole is connected to the steam / water separator outlet flow path. A third stage pick-off ring, a hub passing through the axial center of the gas-liquid two-phase flow path, and a plurality of swirl vanes attached radially about the hub, the radially inner edge of the swirl vanes In the steam-water separator provided with a swirler, the outer edge of which is fixed to the inner wall of the diffuser or the inner wall of the first stage inner cylinder in the radial direction of the swirl vane.
The second-stage outer cylinder is provided with a second-stage separated water discharge port for discharging water flowing into the second-stage discharge channel and a second-stage steam discharge port for discharging steam, and the second-stage steam discharge port Is disposed at a position higher than the second-stage separated water discharge port, and a third-stage steam discharge port for discharging steam is provided in the third-stage outer cylinder, and the lower end of the third-stage steam discharge port is The second stage annular plate is located above the second stage annular plate, and a communication hole is provided in the second stage annular plate, and the separated water flowing down from the communication hole is guided below the second stage discharge channel. An air / water separator, wherein a communication pipe is provided in the second-stage discharge flow path.
請求項に記載の気水分離器において、
前記連通管の下端は、前記第二段蒸気排出日の下端よりも下方に配置されていることを特徴とする気水分離器。
The steam separator according to claim 5 ,
The steam-water separator, wherein a lower end of the communication pipe is disposed below a lower end of the second stage steam discharge date.
請求項又はに記載の気水分離器において、
前記第二段蒸気排出口及び前記第三段蒸気排出口の縁に沿って前記第二段排出流路及び前記第三段排出流路へ突出した突起物がそれぞれ設けられ、該突起物の先端が前記第二段蒸気排出口及び前記第三段蒸気排出口の流路を塞がない方向に折り曲げられて前記第二段外筒及び前記第三段外筒との間で溝状の流路である突起溝が形成されていることを特徴とする気水分離器。
The steam-water separator according to claim 5 or 6 ,
Protrusions projecting into the second-stage discharge channel and the third-stage discharge channel are provided along edges of the second-stage steam discharge port and the third-stage steam discharge port, respectively, and tips of the projections Is a groove-like flow path between the second stage outer cylinder and the third stage outer cylinder that is bent in a direction that does not block the flow paths of the second stage steam discharge port and the third stage steam discharge port. An air / water separator, characterized in that a protruding groove is formed.
請求項乃至のいずれかに記載の気水分離器において、
前記第二段蒸気排出口及び前記第三段蒸気排出口の上端縁に沿った前記突起溝は、前記第二段蒸気排出口及び前記第三段蒸気排出口の中央部から両端に向かつて斜め下向きに延びる傾斜を持たせて配置されていることを特徴とする気水分離器。
The steam-water separator according to any one of claims 5 to 7 ,
The protrusion groove along the upper edge of the second-stage steam outlet and the third-stage steam outlet is inclined diagonally from the center of the second-stage steam outlet and the third-stage steam outlet to both ends. A steam-water separator, wherein the steam-water separator is disposed with an inclination extending downward.
原子炉圧力容器と、該原子炉圧力容器内に設けられ、複数の燃料集合体が装荷された炉心と、該炉心が配置されるシュラウドと、前記原子炉圧力容器内の前記炉心の上方に配置され、前記炉心で発生した蒸気と水の気水混合流を蒸気と水に分離する気水分離器と、該気水分離器の上方に位置し、該気水分離器で分離された湿り蒸気を乾燥させる蒸気乾燥器と、該蒸気乾燥器で乾燥された蒸気をタービンに供給する主蒸気配管と、前記原子炉圧力容器とシュラウド間に形成され、前記気水分離器で分離された水が循環するダウンカマと、該ダウンカマの下方に配置され、該ダウンカマ内の水を前記炉心に供給するインターナルポンプ又はジェットポンプとを備えた沸騰水型原子炉において、
前記気水分離器は、請求項2乃至のいずれかに記載の気水分離器であることを特徴とする沸騰水型原子炉。
A reactor pressure vessel, a core provided in the reactor pressure vessel and loaded with a plurality of fuel assemblies, a shroud in which the core is disposed, and disposed above the core in the reactor pressure vessel A steam / water separator for separating the steam / water mixture flow generated in the core into steam and water, and a wet steam located above the steam / water separator and separated by the steam / water separator A steam dryer for drying the steam, a main steam pipe for supplying steam dried by the steam dryer to the turbine, water formed between the reactor pressure vessel and the shroud, and separated by the steam separator. In a boiling water nuclear reactor comprising a circulating downcomer and an internal pump or a jet pump disposed below the downcoma and supplying water in the downcoma to the core,
The steam-water separator, a boiling water reactor, which is a steam-water separator according to any one of claims 2 to 8.
JP2011137243A 2011-06-21 2011-06-21 Steam separator and boiling water reactor equipped with the same Active JP5562908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011137243A JP5562908B2 (en) 2011-06-21 2011-06-21 Steam separator and boiling water reactor equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011137243A JP5562908B2 (en) 2011-06-21 2011-06-21 Steam separator and boiling water reactor equipped with the same

Publications (2)

Publication Number Publication Date
JP2013003085A JP2013003085A (en) 2013-01-07
JP5562908B2 true JP5562908B2 (en) 2014-07-30

Family

ID=47671784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011137243A Active JP5562908B2 (en) 2011-06-21 2011-06-21 Steam separator and boiling water reactor equipped with the same

Country Status (1)

Country Link
JP (1) JP5562908B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244729Y2 (en) * 1979-01-31 1987-11-27
JP3183529B2 (en) * 1991-06-27 2001-07-09 三菱電機株式会社 Gas-liquid separator
JP3263266B2 (en) * 1994-12-27 2002-03-04 株式会社東芝 Steam separator
JP2004245656A (en) * 2003-02-13 2004-09-02 Hitachi Ltd Steam separator
JP4422691B2 (en) * 2006-02-28 2010-02-24 日立Geニュークリア・エナジー株式会社 Steam separator, boiling water reactor and swirler assembly
JP2009257770A (en) * 2008-04-11 2009-11-05 Hitachi-Ge Nuclear Energy Ltd Air-water separator and boiling water reactor
JP2010243266A (en) * 2009-04-03 2010-10-28 Hitachi-Ge Nuclear Energy Ltd Boiling water reactor

Also Published As

Publication number Publication date
JP2013003085A (en) 2013-01-07

Similar Documents

Publication Publication Date Title
JP4422691B2 (en) Steam separator, boiling water reactor and swirler assembly
FI127060B (en) A steam separator and a boiling water reactor with steam separator
WO2011129063A1 (en) Gas-water separator and nuclear reactor system using same
KR20210080946A (en) Swirl vane type steam separator
JP5562908B2 (en) Steam separator and boiling water reactor equipped with the same
JP2011191080A (en) Steam separator for nuclear reactor
JP2011099748A (en) Steam separator
JP2000153118A (en) Gas-water separation system
JP2013039501A (en) Multistage type steam-water separator
JP2012058113A (en) Steam separation facility for nuclear reactor
JP2012117917A (en) Steam separation facility for nuclear reactor
JP3762598B2 (en) Steam separator and boiling water reactor
JP2009257770A (en) Air-water separator and boiling water reactor
JP5663324B2 (en) Steam separator and boiling water reactor using the same
JP5297878B2 (en) Boiling water reactor steam separator
JP2013003083A (en) Steam separator and boiling-water reactor with the same
JP3964587B2 (en) Reactor steam separator
JP2010243266A (en) Boiling water reactor
JP2003307584A (en) Steam separation device
JP5517839B2 (en) Steam dryer and boiling water nuclear plant
JP3272142B2 (en) Steam separator and steam separator
JP2013120068A (en) Steam separator and reactor facility
JPH10186079A (en) Steam separator and steam separating device
JP2010210450A (en) Gas-water separator
JP2004245656A (en) Steam separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140611

R150 Certificate of patent or registration of utility model

Ref document number: 5562908

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150