JP2010040249A - 燃料電池、流路部材、流路部材の製造方法 - Google Patents

燃料電池、流路部材、流路部材の製造方法 Download PDF

Info

Publication number
JP2010040249A
JP2010040249A JP2008199536A JP2008199536A JP2010040249A JP 2010040249 A JP2010040249 A JP 2010040249A JP 2008199536 A JP2008199536 A JP 2008199536A JP 2008199536 A JP2008199536 A JP 2008199536A JP 2010040249 A JP2010040249 A JP 2010040249A
Authority
JP
Japan
Prior art keywords
concave
flow path
convex
path member
adjacent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008199536A
Other languages
English (en)
Inventor
Yutaka Hotta
裕 堀田
Hirotoshi Imai
博俊 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008199536A priority Critical patent/JP2010040249A/ja
Publication of JP2010040249A publication Critical patent/JP2010040249A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】流路部材によるガス拡散層の損傷を抑制する。
【解決手段】流路部材40は、凹部と凸部とが交互に連続する凹凸形状である凹凸部42が、凹部と凸部の連続方向と直交する方向に千鳥配列かつ一定の勾配をもって連続した形状として構成される。ここで、凹部と凸部とは、2回対称であり、同一周期で連続している。また、凸部の上面(山部43)と勾配の登り方向側で隣接する凹部の底面(谷部44)とは、一体的な平面として構成されている。谷部44は、平坦部47と傾斜部48とから構成され、傾斜部48は、谷部44のうち、流路部材40の勾配の登り方向側に形成される。この傾斜部48は、山部43b及び平坦部47に対して、勾配の登り方向側で隣接する山部43の側へ傾いて形成される。また、流路部材40の凹部の側面の一部には、傾斜部48と隣接する切欠部49が形成される。
【選択図】図4

Description

本発明は、燃料電池の発電反応に係るガスの流路を形成する流路部材に関する。
燃料電池は、例えば、電解質膜・電極接合体の両面にガス拡散層を形成し、その両端を反応ガスの流路となる流路部材、セパレータで挟持して構成される。こうした流路部材として、導電性の多孔質体や3次元網目構造の金属製メッシュ等が用いられていたが、コスト低減、成形や取り扱いの簡便化などの観点から、近年では、金属製の薄板をプレス成形して形成したエキスパンドメタルやラスメタルが用いられることがある(特許文献1等)。
特開2005−19239号公報
ところで、電解質膜・電極接合体は、プロトン伝導性やガス拡散性の確保の観点から、機械的な強度にやや劣る。その一方、電解質膜・電極接合体両側のガス拡散電極に流路部材を重ねた上でこれらをセパレータにて挟持する際には、ガス拡散層と流路部材との接触抵抗、及び、流路部材とセパレータとの接触抵抗を低減するために、一般に、これらの積層方向に所定の押圧力が加えられて、上記各部材が積層される。よって、ガス拡散層に対する流路部材の接触箇所では、流路部材が不用意にガス拡散層に食い込むことも起き得る。特に、流路部材が既述したようにラスメタルなどであると、その製造過程で形成された流路部材の角の部位がガス拡散層に食い込んで、ガス拡散層を損傷させるおそれがあった。
上述の問題の少なくとも一部を考慮し、本発明が解決しようとする課題は、流路部材によるガス拡散層の損傷を抑制することである。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。
[適用例1]電解質膜・電極接合体を備えた燃料電池であって、
少なくとも、前記電解質膜・電極接合体の一方の面側において、
ガス透過性と導電性とを有するガス拡散層と、
凹部と凸部とが交互に連続する凹凸形状である凹凸部が、前記連続する方向と略直交する方向に複数連設され、かつ、前記凹凸部の凸部の上面と、該上面に隣接する前記凹凸部の凹部の底面の一部とが一体的な平面として形成され、前記隣接する凹凸部により形成される開口部が、発電反応に係るガスの流路を形成する流路部材と
を備え、
前記凹部の少なくとも一部は、前記凹部の底面にガス拡散層と略平行に当接する平行面を備えると共に、前記凹部の側面に前記平行面と隣接する切欠部を備えた
燃料電池。
かかる構成の燃料電池は、流路部材がガス拡散層と略平行に当接する平行面を備えているので、ガス拡散層と流路部材との接触面積が大きくなる。したがって、燃料電池の両端からの締結力などの力が作用する場合であっても、流路部材のガス拡散層への食い込みを抑制し、接触単位面積あたりに作用する力を低減できるので、ガス拡散層の損傷を抑制することができる。また、接触面積が増加することにより、流路部材の集電特性を向上させ、また、ガス拡散層との接触抵抗も低減することができ、その結果、燃料電池の発電性能を向上させることができる。また、凹部の側面に平行面と隣接する切欠部を備えているので、平行面を所望の角度や大きさに設定することができ、ガス拡散層の保護性能や発電性能を所望の程度に調節したものとすることができる。
[適用例2]電解質膜・電極接合体を備えた燃料電池であって、
少なくとも、前記電解質膜・電極接合体の一方の面側において、
ガス透過性と導電性とを有するガス拡散層と、
凹部と凸部とが交互に連続する凹凸形状である凹凸部が、前記連続する方向と略直交する方向に複数連設され、かつ、前記凹凸部の凸部の上面と、該上面に隣接する前記凹凸部の凹部の底面の一部とが一体的な平面として形成され、前記隣接する凹凸部により形成される開口部が、発電反応に係るガスの流路を形成する流路部材と
を備え、
前記凹部の少なくとも一部は、前記凹部の底面にガス拡散層と略平行に当接する平行面を備えると共に、前記凹部の側面に、該側面と異なる角度で前記平行面と交わる傾斜面を備えた
燃料電池。
かかる構成の燃料電池は、流路部材がガス拡散層と略平行に当接する平行面を備えているので、適用例1と同様に、ガス拡散層の損傷を抑制することができ、また、燃料電池の発電性能を向上させることができる。また、凹部の側面に傾斜面を備えているので、適用例1のように、切欠部を成形する必要がなく、プレス処理などによる簡単な工程のみで製造することができる。
[適用例3]流路部材は、金属材質からなる適用例1または適用例2記載の燃料電池。
かかる構成の燃料電池は、流路部材をプレス成形により容易に成形することができるので、燃料電池の製造工程を効率化、低コスト化することができる。
[適用例4]燃料電池の発電反応に係るガスの流路を形成する流路部材であって、凹部と凸部とが交互に連続する凹凸形状である凹凸部が、連続する方向と略直交する方向に複数連設され、凹凸部の凸部の上面と、上面に隣接する凹凸部の凹部の底面の一部とが一体的な平面として形成され、隣接する凹凸部により形成される開口部が前記流路を形成し、凹部は、凸部と隣接する側と反対側の端が、平面から上方へ屈折された傾斜面を備えると共に、凹部の側面に傾斜面と隣接する切欠部を備えた流路部材。
かかる構成の流路部材は、ガス拡散層と隣接して積層し、燃料電池を製造する際に、傾斜面をガス拡散層と略平行に当接させることができる。また、凹部の側面に平行面と隣接する切欠部を備えているので、平行面を所望の角度や大きさに設定することができる。したがって、適用例1と同様の効果を奏する。
[適用例5]燃料電池の発電反応に係るガスの流路を形成する流路部材であって、凹部と凸部とが交互に連続する凹凸形状である凹凸部が、連続する方向と略直交する方向に複数連設され、凹凸部の凸部の上面と、上面に隣接する凹凸部の凹部の底面の一部とが一体的な平面として形成され、隣接する凹凸部により形成される開口部が流路を形成し、凹部は、凸部と隣接する側と反対側の端が、平面から上方へ屈折された第1の傾斜面を備えると共に、凹部の側面に、側面と異なる角度で第1の傾斜面と交わる第2の傾斜面を備えた流路部材。
かかる構成の流路部材は、ガス拡散層と隣接して積層し、燃料電池を製造する際に、傾斜面をガス拡散層と略平行に当接させることができる。また、凹部の側面に傾斜面を備えているので、適用例4のように、切欠部を成形する必要がない。したがって、適用例2と同様の効果を奏する。
[適用例6]凹部と凸部とが交互に連続する凹凸形状である凹凸部が、連続する方向と略直交する方向に複数連設され、凹凸部の凸部の上面と、上面に隣接する凹凸部の凹部の底面の一部とが一体的な平面として形成され、隣接する凹凸部により形成される開口部が流路を形成し、凹部は、凸部と隣接する側と反対側の端が、平面から上方へ屈折された傾斜面を備えると共に、凹部の側面に切欠部を備えた流路部材の製造方法であって、略平板状の流路部材の基材を用意する工程と、用意した基材のうち、傾斜面を形成する部位の、凹部と凸部の連続方向の両端側に前記切欠部を形成するための貫通穴を形成して加工基材を得る工程と、凸部の上面と、凹部の底面の一部とが一体的な平面となるように、加工基材を所定幅ずつ順次プレス成形して、凹部、凸部及び傾斜面を成形する工程とを備えた製造方法。
かかる流路部材の製造方法は、傾斜面を形成する部位の、凹部と凸部の連続方向の両端側に貫通穴を形成した上で、プレス成形を行うので、プレス後に、傾斜面周辺でのプレスしわが発生することを抑制する。したがって、成形性を向上させることができる。また、しわの発生が抑制されるので、所望の角度に傾斜面を成形することができる。
A.実施例:
本発明の実施例について説明する。
A−1.燃料電池の概略構成:
本発明の実施例としての燃料電池100の概略構成を図1に示す。燃料電池100は、固体高分子形の燃料電池であり、複数積層された発電体20を両端のエンドプレート95,96で挟持して構成される。この燃料電池100では、燃料ガスとしての水素及び酸化ガスとしての空気が水素供給マニホールド95a、空気供給マニホールド95bから発電体20に供給され、その排ガスが水素排出マニホールド95c及び空気排出マニホールド95dから排出される。また、冷却水が冷却水供給マニホールド95eから発電体20に供給され、その排水が冷却水排出マニホールド95fから排出される。
発電体20は、電解質膜・電極接合体としてのMEA34(Membrane Electrode Assembly)の両面にガス拡散層33a、33bが接合したMEGA35の両面に、流路部材40,60、セパレータ70,80が積層されて構成される。なお、本実施例における発電体20の積層面の寸法は100mm×20mmである。
MEA34は、電解質膜31の表面上に、カソード電極32aとアノード電極32bとを備える。電解質膜31は、湿潤状態で良好なプロトン伝導性を示す固体高分子材料の薄膜であり、セパレータ70,80の外形よりも小さく流路部材40、60の外形よりも大きい長方形に形成されている。本実施例では、電解質膜31には、ナフィオン(登録商標)を用いた。カソード電極32a及びアノード電極32bは、導電性を有する担体上に触媒を担持させた電極であり、本実施例においては、白金触媒を担持したカーボン粒子と、電解質膜31を構成する高分子電解質と同質の電解質とを備えている。
ガス拡散層33a,33bは、ガス透過性を有する導電性部材、例えば、カーボンペーパやカーボンクロス、あるいは金属メッシュや発泡金属によって形成することができる。本実施例においては、ガス拡散層33a,33bは、カーボンペーパを用いた。ガス拡散層33a,33bは、酸化ガスまたは燃料ガスを拡散して、カソード電極32aまたはアノード電極32bの全面に供給する。ガス拡散層33a,33bは、流路部材40,60と比べて小さい気孔率を有しており、ガス拡散機能の他に、集電機能や、MEA34の保護機能も担っている。なお、このガス拡散層33a及び33bには、MEA34の水分量を調節する機能などを持たせてもよい。
かかるMEGA35は、その外周に配されたシールガスケット36と一体形成される。シールガスケット36には、水素供給マニホールド30a、空気供給マニホールド30b、水素排出マニホールド30c、空気排出マニホールド30d、冷却水供給マニホールド30e、冷却水排出マニホールド30fを備えている。また、シールガスケット36には、厚み方向に、各マニホールドを囲む凸状の部位が形成されており、当該部位は、シールガスケット36の両側に積層されるセパレータ70,80と当接し、マニホールド内からの流体(燃料ガス、酸化ガス、冷却水)の漏れを抑制するシールとして機能する。
流路部材40,60は、多数の貫通孔が形成された部材であり、本実施例ではラスメタルを用いた。流路部材40,60の詳細については、後述する。流路部材40は、MEGA35のアノード側とセパレータ70との間に配設され、セパレータ70を介して供給された水素を、MEA34の電極面の側方の一方の側から他方の側に向けた流れで流しつつ、水素をMEGA35のアノード側に供給する。同様に、流路部材60は、空気をMEGA35のカソード側に供給する。かかる流路部材40、60は、耐食性と導電性とを有する金属、例えば、ステンレス鋼やチタン、チタン合金などによって形成されるが、本実施例では、ステンレス鋼を用いた。流路部材40,60の詳細な構造については後述する。なお、本実施例では、MEGA35の両面に流路部材40,60を備える構成としたが、MEGA35の片面のみに備える構成としてもよい。
セパレータ70は、カソード電極32a側に設けられる平坦なカソード側セパレータ71と、アノード電極32b側に設けられる平坦なアノード側セパレータ73と、それらの間に配置される中間セパレータ72とが一体となって構成される。カソード側セパレータ71には、水素供給マニホールド71a、空気供給マニホールド71b、水素排出マニホールド71c、空気排出マニホールド71d、冷却水供給マニホールド71e、冷却水排出マニホールド71f、空気連通孔75,76を備えている。空気供給マニホールド71bに供給された空気は、中間セパレータ72の空気連通孔72b及び空気連通孔75を介して、流路部材60に導かれる。また、その排ガスは、空気連通孔76及び中間セパレータ72の連通孔(図示せず)を介して、空気排出マニホールド71dに排出される。
同様に、水素供給マニホールド71aに供給された水素は、中間セパレータ72の水素連通孔72a及びアノード側セパレータ73の連通孔(図示せず)を介して、流路部材40に導かれ、流路部材40を流れた後、中間セパレータ72及びアノード側セパレータ73の連通孔(図示せず)を介して、水素排出マニホールド71cに排出される。また、中間セパレータ72には、略長方形外形の長辺方向に沿って複数の切欠が形成され、その切欠の両端はそれぞれ、冷却水排出マニホールド71f及び冷却水供給マニホールド71eと連通している。
かかるセパレータ70は、ガス不透過な導電性部材、例えば圧縮カーボンやステンレス鋼から成る部材によって形成されるが、本実施例では、ステンレス鋼を用いた。なお、セパレータ80は、セパレータ70と同様の構成である。
A−2.流路部材の燃料電池の構造:
A−2−1.比較例としての流路部材:
上述した流路部材40,60の構造について説明する前に、従来の流路部材40bの構造を比較例として説明する。流路部材40bは、図示するように、凹部と凸部とが交互に連続する凹凸形状である凹凸部42bが、凹部と凸部の連続方向と直交する方向に千鳥配列かつ一定の勾配をもって連設された形状として構成される。図中では、凹凸部42bに隣接する凹凸部を凹凸部42’bとして示している。ここで、凹部と凸部とは、2回対称であり、同一周期で連続している。また、凸部の上面と勾配の登り方向側で隣接する凹部の底面とは、一体的な平面として構成されている。また、上述の勾配は、角度θでの登り形状となっている。かかる凹凸形状の外形により、同一形状の貫通孔41が多数形成されている。なお、本願において、凹凸部42bのうち、凸部の上面を山部43b、凹部の底面を谷部44bという。また、山部43bのうち、勾配の下り側の端部を山部端45b、谷部44bのうち、勾配の登り側の端部を谷部端46bという。なお、図2では、勾配の登り方向を拡大して示しており、実際の相対的寸法とは、一致しない。
かかる流路部材40bの製造方法について、図3を用いて説明する。ここでは、刃部300とローラ340とを備えるプレス装置を用いて製造する方法を示す。なお、刃部300は、上刃310と下刃320とを備えている。
流路部材40bの製造は、まず、流路部材40bの基材210を用意する。ここでは、基材210は、金属板である。そして、基材210をローラ340により図中のX方向に送り(図3(a))、上刃310をZ軸方向に上下させ(図3(b))て、プレス加工により、山部43bと谷部44bとを形成する。なお、これにより、図2に示した凹凸部42bが形成される。そして、基材210をローラ340によりX方向に送りながら(図3(c))、上刃310をY方向に移動させる(図3(d))。この時の移動量は、凹凸の周期の半分の長さである。
上刃310を移動させると、再度、上刃310を上下させ(図3(e))、図3(b)で形成された山部43bと谷部44bに対して千鳥配列で、新たな山部43bと谷部44bとを形成する。これにより、図2に示した凹凸部42’bが形成される。そして、上刃310をもとの位置に戻す(図3(f))。以後、図3(a)から図3(f)の工程を繰り返すことにより、流路部材40bが得られる。
A−2−2.本発明の実施例としての流路部材:
本発明の実施例としての流路部材40の構造を図4に示す。流路部材40の基本的な構造は、上述した比較例としての流路部材40bと共通するため、流路部材40bと異なる点についてのみ説明する。なお、流路部材40bと同一の部位については、符号「b」を除して、図2と同一の番号を付している。また、流路部材60については、流路部材40と同一の構造であるため、説明を省略する。図示するように、流路部材40の谷部44は、平坦部47と傾斜部48とから構成される。傾斜部48は、谷部44のうち、流路部材40の勾配の登り方向側、すなわち、谷部端46側に形成されている。この傾斜部48は、山部43b及び平坦部47に対して、勾配の登り方向側で隣接する山部43の側へ、すなわち、図中の鉛直上方側へ傾いて形成され、その傾きは、流路部材40の勾配(角度θ)と同一である。なお、図4では、勾配の登り方向を拡大して示しており、実際の相対的寸法とは、一致しない。また、山部43は、請求項の「凸部の上面」、平坦部47は、請求項の「凹部の底面の一部」、傾斜部48は、請求項1の「平行面」、請求項3の「傾斜面」にそれぞれ該当する。
また、流路部材40は、凹部の側面の一部に、傾斜部48と隣接する切欠部49を備えている。なお、本願における切欠とは、切削加工されたものに限らず、プレス加工、エッチングなど種々の方法により、流路部材40の一部を除去することを含む。この切欠部49の詳細は、後述する。
A−2−3.流路部材の積層態様:
上述した比較例としての流路部材40bと、実施例としての流路部材40とについて、発電体20を構成する部材として積層した際の態様について説明する。図5(a)は、ガス拡散層33bの上に、比較例としての流路部材40bを積層した場合の、A−A断面(図2参照)である。前述の通り、流路部材40bは角度θの勾配を有するため、積層断面において、山部43b及び谷部44bとガス拡散層33bとは、角度θの勾配をもって接触する。すなわち、流路部材40bとガス拡散層33bとは、谷部端46bでの線接触となる。
一方、図5(b)は、ガス拡散層33bの上に、実施例としての流路部材40を積層した場合の、B−B断面(図4参照)である。流路部材40の傾斜部48は、上述の通り、流路部材40の勾配(角度θ)と同一の勾配で形成されているので、図示するとおり、傾斜部48がガス拡散層33bと平行に当接する。すなわち、流路部材40とガス拡散層33bとは、傾斜部48での面接触となる。
かかる流路部材40は、山部43及び平坦部47に対して勾配を有する傾斜部48を備えているので、流路部材40をガス拡散層33bと隣接して積層して、発電体20を構成する場合において、傾斜部48とガス拡散層33bとが面接触する。したがって、燃料電池100の締結力などが作用した場合に、接触単位面積あたりに作用する力を低減でき、ガス拡散層33bの損傷を抑制することができる。また、接触面積が増加することにより、流路部材40の集電特性を向上させ、また、流路部材40とガス拡散層33bとの接触抵抗も低減することができ、その結果、発電体20の発電性能が向上する。
また、かかる流路部材40は、凹部の側面の一部に、傾斜部48と隣接する切欠部49を備えているので、傾斜部48の成形が行いやすく、山部43及び平坦部47に対する傾斜部48の勾配や大きさを自由に設定することができる。
本実施例においては、山部43及び平坦部47に対する傾斜部48の勾配は、流路部材40の勾配(角度θ)と同一の勾配としたが、傾斜部48の勾配は、これに限るものではなく、傾斜部48が、山部43及び平坦部47に対して、流路部材40の勾配の登り方向側で隣接する凸部側に傾いていればよい。本実施例において、傾斜部48の勾配を角度θとしたのは、理解を容易にするために、山部43とガス拡散層33bとが交わる角度を、比較例としての流路部材40bと同じにするためである。例えば、かかる勾配を大きく取れば、貫通孔41がガス拡散層33bと平行に近くなる一方で、流路部材40の積層方向の厚みが大きくなる。逆に、勾配を小さく取れば、貫通孔41がガス拡散層33bと垂直に近くなる一方で、流路部材40の積層方向の厚みが小さくなる。すなわち、流路部材40は、切欠部49を備えることによって傾斜部48の勾配を自由に設定することができるので、流路部材40の流路抵抗の低減、発電体20のコンパクト化などの効果を所望の程度に調節したものとすることができるのである。
また、本実施例においては、山部43または谷部44の周期は、1mmとしたが、ガスの拡散性、流通性などを考慮して、適宜設定すればよい。本実施例の発電体20の寸法であれば、周期は2mm程度まで大きくすることも可能である。また、傾斜部48の寸法は、流路部材40の勾配の登り方向の幅を0.25mmとしたが、この幅は適宜設定すればよい。例えば、傾斜部48の幅を大きく取れば、ガスの流通性が低下する一方で、ガス拡散層33bの保護性が向上する。逆に、傾斜部48の幅を小さくとれば、その逆の結果となる。すなわち、流路部材40は、切欠部49を備えることによって傾斜部48の大きさを自由に設定することができるので、流路部材40のガスの流通性、ガス拡散層33bの保護性能などの効果を所望の程度に調節したものとすることができるのである。なお、本実施例の発電体20の寸法であれば、傾斜部48は、1mm程度まで大きくしてもガスの流通性を確保することが可能である。また、ガス拡散層33bと当接する傾斜部48の面積が、ガス拡散層33bの面積の25%程度までであれば、ガスの流通性や拡散性を妨げないことが確認されている。
A−3.流路部材の製造方法:
上述した流路部材40の製造方法について、図6を用いて説明する。流路部材40の製造は、図示するように、まず、流路部材40の基材210を用意する(ステップS110)。本実施例においては、基材210として、ステンレス製の薄板を用意した。
基材210を用意すると、基材210のうち、傾斜部48を形成する部位の両端に貫通穴215を形成する(ステップS120)。本実施例における貫通穴215の形成位置を図7に示す。図中の矢印は、図3に示した基材210の送り方向(X方向)を示している。図示するように、傾斜部48の両端には、傾斜部48の送り方向の幅に相当する長さと、送り方向と直交する方向における、互いに隣接する傾斜部48間の距離に相当する高さの三角形状の貫通穴215を形成した。
なお、上述の例では、三角形状の貫通穴215を形成したが、貫通穴215は、傾斜部48の両端に隣接して設ければよく、貫通穴215の形状やサイズは、適宜設定すればよい。例えば、貫通穴215の形状は、矩形形状としてもよいし、三角形状の高さは、傾斜部48間の距離の半分としてもよい。
また、本実施例においては、貫通穴215は、エッチングにより形成するものとしたが、貫通穴215の形成方法は、特に限定するものではなく、例えば、プレス加工により打ち抜いて形成してもよい。
貫通穴215を形成すると、基材210をプレス処理する(ステップS130)。このプレス処理は、図3を用いて説明した比較例の流路部材40bのプレス処理と同様の内容である。ただし、上刃310の形状は、傾斜部48を成形できる形状としている。かかるプレス処理により貫通穴215は、図4に示した切欠部49を形成する。
かかる流路部材40の製造方法は、傾斜部48の両端に貫通穴215を形成してから、プレス処理を行うので、傾斜部48周辺でのプレスしわの発生を抑制し、成形性を向上させることができる。また、プレスしわの発生が抑制されるので、所望の角度に傾斜部48を成形することができる。
上述の実施例の変形例について説明する。
B:変形例:
B−1.変形例1:
実施例においては、発電体20は、MEGA35とセパレータ70,80との間に、単一の流路部材40,60を積層する構成としたが、MEGA35とセパレータ70,80との間に、複数の流路部材を重ねて積層する構成としてもよい。この場合、MEGA35と直接的に当接する流路部材のみを、本発明の流路部材としてもよい。
B−2.変形例2:
実施例においては、流路部材40の貫通孔41は、6角形形状であったが、貫通孔41の形状は、特に限定するものではなく、例えば、4角形としてもよいし、10角形としてもよい。また、実施例においては、貫通孔41の形状、流路部材40の山部43及び谷部44の周期寸法等は、一律の形状としたが、これらも特に限定するものではない。また、凹凸部42は、全て同一の形状とする必要もなく、例えば、凹凸部42と、それに隣接する凹凸部42’とは、異なる形状であってもよい。また、実施例においては、流路部材40の全ての谷部44が傾斜部48と切欠部49とを備える構成としたが、一部のみが傾斜部48と切欠部49とを備える構成としてもよい。例えば、傾斜部48及び切欠部49を備える谷部44と、傾斜部48及び切欠部49を備えない谷部44とを交互に配置してもよい。こうすれば、ガス拡散層33bの損傷を抑制しつつ、ガスの流通性を調節することができる。
B−3.変形例3:
実施例においては、流路部材40,60としてラスメタルを用いたが、ラスメタルを流路部材40の勾配の方向に圧延加工したエキスパンドメタルでもよい。もとより、流路部材40,60は、金属製に限るものではなく、燃料電池100の締結力に耐えうる強度と、導電性、耐食性とを備えていればよく、樹脂製などであってもよい。
B−4.変形例4:
実施例においては、流路部材40は、凹部の側面に切欠部49を備える構成として示したが、切欠部49に代えて、切欠部49に相当する部分に傾斜面を備えていてもよい。図8に、変形例としての流路部材40cの構造を示す。なお、流路部材40と同一の部位については、符号「c」を付加して、図4と同一の番号を付している。図示するように、流路部材40cは、図4における凹部の側面に、当該側面と異なる角度で傾斜部48と交わる側面50cを備えている。なお、傾斜部48は、請求項2の「平行面」、請求項5の「第1の傾斜面」、側面50cは、請求項2の「傾斜面」、請求項5の「第2の傾斜面」にそれぞれ該当する。
かかる流路部材40cは、図6で示した製造方法における貫通穴215の形成(ステップS120)を省略することができる。すなわち、流路部材40cの基材を用意し、流路部材40cの凹部の形状に応じた刃部300を用いて、プレス加工を行えばよい。かかる構成は、傾斜部48の勾配が比較的小さいなど、プレス加工時にプレスしわが発生しにくい場合に、特に好適である。かかる構成とすれば、流路部材40cの製造工程を簡略化でき、生産コストを削減することができる。
B−5.変形例5:
実施例においては、凹凸部42の連続方向が発電体20の短辺と平行となるように流路部材40を積層した構成としたが、積層時における流路部材40の方向は特に限定するものではなく、例えば、凹凸部42の連続方向が発電体20の長辺と平行となるように積層してもよいし、凹凸部42の連続方向が発電体20の長辺及び短辺と非平行となるように積層してもよい。
B−6.変形例6:
実施例においては、流路部材40について、ガス拡散層33bと平行に当接する傾斜部48と切欠部49とを備える構成について示したが、セパレータ70と平行に当接する平行面と切欠部とを備える構成としてもよい。図9に、変形例としての流路部材40dの構造を示す。なお、流路部材40と同一の部位については、符号「d」を付加して、図4と同一の番号を付している。図示するように、流路部材40dの谷部44dは、実施例(図4)と同様の構成であるが、山部43dが平坦部52dと傾斜部51dとから構成され、その側面に傾斜部51dと隣接する切欠部53dを備える点で、実施例と異なる。傾斜部51dは、山部43dのうち、山部端45d側に形成されている。この傾斜部51dは、平坦部52d及び平坦部47dに対して、流路部材40dの勾配の下り方向側で隣接する谷部44d側、すなわち、図中の鉛直下側に傾いて形成され、その傾きは、傾斜部48dと同一である。
かかる流路部材40dは、発電体20を構成する部材として積層した場合、図10に示すように、傾斜部48dがガス拡散層33bと面接触すると共に、傾斜部51dがセパレータ70と面接触する。したがって、実施例に示した効果を奏することは勿論であるが、これに加えて、流路部材40dとセパレータ70との接触面積が増加するので、セパレータ70の集電特性を向上させ、流路部材40dとセパレータ70との接触抵抗を低減することができ、発電体20の発電性能が向上する。また、切欠部53dを備えることから、実施例と同様に、平坦部47d及び平坦部52dに対する傾斜部51dの勾配や大きさを自由に調節したものとすることができる。
なお、上述の流路部材40dは、傾斜部48d,切欠部49dと傾斜部51d,切欠部53dとを備えているが、傾斜部48d,切欠部49は必須の構成要素ではなく、傾斜部51d,切欠部53dのみを備えた構成としてもよい。勿論、変形例4と同様に、切欠部49dや切欠部53dに代えて、傾斜部を備える構成としてもよい。
以上、本発明の実施の形態について説明したが、本発明はこうした実施例に限られるものではなく、本発明の要旨を脱しない範囲において、種々なる態様で実施できることは勿論である。例えば、本発明は、実施例に示した固体高分子形燃料電池に限らず、ダイレクトメタノール形燃料電池、リン酸形燃料電池など種々の燃料電池に適用することができる。
燃料電池100の概略構成を示す説明図である。 比較例としての流路部材40bの構造を示す説明図である。 流路部材40bの製造工程を示す説明図である。 実施例としての流路部材40の構造を示す説明図である。 流路部材40とガス拡散層33bとの積層状態を示す説明図である。 流路部材40の製造手順を示すフローチャートである。 流路部材40の基材210に貫通穴215を形成する工程を示す説明図である。 変形例としての流路部材40cの構造を示す説明図である。 変形例としての流路部材40dの構造を示す説明図である。 流路部材40dとガス拡散層33bとセパレータ70との積層状態を示す説明図である。
符号の説明
20…発電体
30a,71a,95a…水素供給マニホールド
30b,71b,95b…空気供給マニホールド
30c,71c,95c…水素排出マニホールド
30d,71d,95d…空気排出マニホールド
30e,71e,95e…冷却水供給マニホールド
30f,71f,95f…冷却水排出マニホールド
31…電解質膜
32a…カソード電極
32b…アノード電極
33a,33b…ガス拡散層
36…シールガスケット
40,40b,40c,40d,60…流路部材
41,41b,41c,41d…貫通孔
42,42’,42b,42’b…凹凸部
43,43b,43c,43d…山部
44,44b,44c,44d…谷部
45,45b,45c,45d…山部端
46,46b,46c,46d…谷部端
47,47c,47d,52d…平坦部
48,48c,48d,51d…傾斜部
49,49d,53d…切欠部
50c…側面
70,80…セパレータ
71…カソード側セパレータ
72…中間セパレータ
72a…水素連通孔
72b,75,76…空気連通孔
73…アノード側セパレータ
95,96…エンドプレート
100…燃料電池
210…基材
215…貫通穴
300…刃部
310…上刃
320…下刃
340…ローラ

Claims (6)

  1. 電解質膜・電極接合体を備えた燃料電池であって、
    少なくとも、前記電解質膜・電極接合体の一方の面側において、
    ガス透過性と導電性とを有するガス拡散層と、
    凹部と凸部とが交互に連続する凹凸形状である凹凸部が、前記連続する方向と略直交する方向に複数連設され、かつ、前記凹凸部の凸部の上面と、該上面に隣接する前記凹凸部の凹部の底面の一部とが一体的な平面として形成され、前記隣接する凹凸部により形成される開口部が、発電反応に係るガスの流路を形成する流路部材と
    を備え、
    前記凹部の少なくとも一部は、前記凹部の底面にガス拡散層と略平行に当接する平行面を備えると共に、前記凹部の側面に前記平行面と隣接する切欠部を備えた
    燃料電池。
  2. 電解質膜・電極接合体を備えた燃料電池であって、
    少なくとも、前記電解質膜・電極接合体の一方の面側において、
    ガス透過性と導電性とを有するガス拡散層と、
    凹部と凸部とが交互に連続する凹凸形状である凹凸部が、前記連続する方向と略直交する方向に複数連設され、かつ、前記凹凸部の凸部の上面と、該上面に隣接する前記凹凸部の凹部の底面の一部とが一体的な平面として形成され、前記隣接する凹凸部により形成される開口部が、発電反応に係るガスの流路を形成する流路部材と
    を備え、
    前記凹部の少なくとも一部は、前記凹部の底面にガス拡散層と略平行に当接する平行面を備えると共に、前記凹部の側面に、該側面と異なる角度で前記平行面と交わる傾斜面を備えた
    燃料電池。
  3. 前記流路部材は、金属材質からなる請求項1または請求項2記載の燃料電池。
  4. 燃料電池の発電反応に係るガスの流路を形成する流路部材であって、
    凹部と凸部とが交互に連続する凹凸形状である凹凸部が、前記連続する方向と略直交する方向に複数連設され、
    前記凹凸部の凸部の上面と、該上面に隣接する前記凹凸部の凹部の底面の一部とが一体的な平面として形成され、
    前記隣接する凹凸部により形成される開口部が前記流路を形成し、
    前記凹部は、前記凸部と隣接する側と反対側の端が、前記平面から上方へ屈折された傾斜面を備えると共に、前記凹部の側面に前記傾斜面と隣接する切欠部を備えた
    流路部材。
  5. 燃料電池の発電反応に係るガスの流路を形成する流路部材であって、
    凹部と凸部とが交互に連続する凹凸形状である凹凸部が、前記連続する方向と略直交する方向に複数連設され、
    前記凹凸部の凸部の上面と、該上面に隣接する前記凹凸部の凹部の底面の一部とが一体的な平面として形成され、
    前記隣接する凹凸部により形成される開口部が前記流路を形成し、
    前記凹部は、前記凸部と隣接する側と反対側の端が、前記平面から上方へ屈折された第1の傾斜面を備えると共に、前記凹部の側面に、該側面と異なる角度で前記第1の傾斜面と交わる第2の傾斜面を備えた
    流路部材。
  6. 凹部と凸部とが交互に連続する凹凸形状である凹凸部が、前記連続する方向と略直交する方向に複数連設され、前記凹凸部の凸部の上面と、該上面に隣接する前記凹凸部の凹部の底面の一部とが一体的な平面として形成され、前記隣接する凹凸部により形成される開口部が前記流路を形成し、前記凹部は、前記凸部と隣接する側と反対側の端が、前記平面から上方へ屈折された傾斜面を備えると共に、前記凹部の側面に切欠部を備えた流路部材の製造方法であって、
    略平板状の前記流路部材の基材を用意する工程と、
    該用意した基材のうち、前記傾斜面を形成する部位の、前記凹部と凸部の連続方向の両端側に前記切欠部を形成するための貫通穴を形成して加工基材を得る工程と、
    前記凸部の上面と、前記凹部の底面の一部とが一体的な平面となるように、前記加工基材を所定幅ずつ順次プレス成形して、前記凹部、前記凸部及び前記傾斜面を成形する工程と
    を備えた製造方法。
JP2008199536A 2008-08-01 2008-08-01 燃料電池、流路部材、流路部材の製造方法 Pending JP2010040249A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008199536A JP2010040249A (ja) 2008-08-01 2008-08-01 燃料電池、流路部材、流路部材の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008199536A JP2010040249A (ja) 2008-08-01 2008-08-01 燃料電池、流路部材、流路部材の製造方法

Publications (1)

Publication Number Publication Date
JP2010040249A true JP2010040249A (ja) 2010-02-18

Family

ID=42012596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008199536A Pending JP2010040249A (ja) 2008-08-01 2008-08-01 燃料電池、流路部材、流路部材の製造方法

Country Status (1)

Country Link
JP (1) JP2010040249A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012125804A2 (en) * 2011-03-15 2012-09-20 Pridgeon & Clay, Inc. Method and apparatus for manufacturing a fuel cell electrode
US8634772B2 (en) 2011-03-30 2014-01-21 Sony Corporation Communications device, resonant circuit, and method of applying control voltage
KR101451838B1 (ko) 2012-12-13 2014-10-16 두산중공업 주식회사 용융탄산염 연료전지 및 그 연료전지의 집전판 제조 방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012125804A2 (en) * 2011-03-15 2012-09-20 Pridgeon & Clay, Inc. Method and apparatus for manufacturing a fuel cell electrode
WO2012125804A3 (en) * 2011-03-15 2012-12-27 Pridgeon & Clay, Inc. Method and apparatus for manufacturing a fuel cell electrode
US10164264B2 (en) 2011-03-15 2018-12-25 Pridgeon & Clay, Inc. Method and apparatus for manufacturing a fuel cell electrode
US8634772B2 (en) 2011-03-30 2014-01-21 Sony Corporation Communications device, resonant circuit, and method of applying control voltage
KR101451838B1 (ko) 2012-12-13 2014-10-16 두산중공업 주식회사 용융탄산염 연료전지 및 그 연료전지의 집전판 제조 방법

Similar Documents

Publication Publication Date Title
JP4678359B2 (ja) 燃料電池
US7901829B2 (en) Enhanced catalyst interface for membrane electrode assembly
JP5240282B2 (ja) 燃料電池セル
JP6656999B2 (ja) 燃料電池用多孔性分離板
US9660275B2 (en) Fuel cell including gas flow path layer
KR20180058571A (ko) 그래핀폼을 포함하는 가스유로/가스확산층 복합 기능 연료전지용 부재
JP6280531B2 (ja) 燃料電池
JP2007172953A (ja) 燃料電池
CN1697222A (zh) 燃料电池
JP2010040249A (ja) 燃料電池、流路部材、流路部材の製造方法
JP7001890B2 (ja) 膜電極接合体、それを備える燃料電池、および膜電極接合体の製造方法
JP5565352B2 (ja) 燃料電池と燃料電池用のエキスパンドメタルの製造装置および製造方法
JP4639744B2 (ja) 燃料電池
JP2015079639A (ja) 電解質膜・電極構造体
JP5560470B2 (ja) 燃料電池のガス流路構造
KR101220866B1 (ko) 고분자 전해질 연료전지용 분리판 및 이것을 이용한 고분자 연료전지
JP2008146897A (ja) 燃料電池用セパレータおよび燃料電池
JP2011181442A (ja) 燃料電池用ガス流路形成部材の製造方法およびその製造装置、並びに燃料電池の製造方法
JP2012038569A (ja) 燃料電池
JP7189504B2 (ja) 燃料電池装置
JP7230875B2 (ja) ガス流路構造、支持板、及び、燃料電池
JP6412995B2 (ja) 電解質膜・電極構造体の製造方法
JP2009211927A (ja) 燃料電池
KR102518237B1 (ko) 연료전지용 단위셀
JP2007157573A (ja) 燃料電池