JP2010039317A - Optical element and method for manufacturing optical element - Google Patents

Optical element and method for manufacturing optical element Download PDF

Info

Publication number
JP2010039317A
JP2010039317A JP2008203670A JP2008203670A JP2010039317A JP 2010039317 A JP2010039317 A JP 2010039317A JP 2008203670 A JP2008203670 A JP 2008203670A JP 2008203670 A JP2008203670 A JP 2008203670A JP 2010039317 A JP2010039317 A JP 2010039317A
Authority
JP
Japan
Prior art keywords
substrate
laser
optical element
crystal
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008203670A
Other languages
Japanese (ja)
Other versions
JP5018685B2 (en
Inventor
Mamoru Hisamitsu
守 久光
Katsuhiko Tokuda
勝彦 徳田
Kazutomo Kadokura
一智 門倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2008203670A priority Critical patent/JP5018685B2/en
Publication of JP2010039317A publication Critical patent/JP2010039317A/en
Application granted granted Critical
Publication of JP5018685B2 publication Critical patent/JP5018685B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent generation of peeling and to obtain stable optical characteristics and satisfactory yield. <P>SOLUTION: Groove groups 1g and 2g are formed on sticking surfaces of laser crystal 1 and wavelength conversion crystal 2 of an optical element 10 so that a fundamental wave of laser oscillation by the laser crystal 1 has such action that reflectance to light polarized in a desired polarization direction is made lower than that to light polarized in a direction orthogonal to the desired polarization direction. Thereby, reflection of light polarized in the desired polarization direction by the sticking surfaces can be neglected and laser oscillation is stabilized. The laser oscillation is stabilized due to the definite polarization direction. Since an anchor effect is obtained by adding an adhesive 4 to the groove groups 1g and 2g and strong unification can be attained, peeling is hardly caused and yield can be enhanced. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光学素子および光学素子の製造方法に関し、さらに詳しくは、安定性に優れた光学素子および光学素子の製造方法に関する。   The present invention relates to an optical element and a method for manufacturing the optical element, and more particularly to an optical element having excellent stability and a method for manufacturing the optical element.

レーザ結晶と波長変換結晶とを貼り合わせた構造の光学素子およびその製造方法が知られている(例えば特許文献1、2参照。)。
他方、構造性複屈折を有する構造によって所望の偏光方向の光に対して反射率を小さくする技術が知られている(例えば特許文献3、非特許文献1参照。)。
特開2005−57043号公報 特開2007−225786号公報 特開2008−145457号公報 Daniel H. Raguin and G.Michael Morris "Antirefrection structure d surfaces for the infrared spectral region" Applied Optics, Vol.32, No.7 (1 March 1993)
An optical element having a structure in which a laser crystal and a wavelength conversion crystal are bonded together and a manufacturing method thereof are known (for example, see Patent Documents 1 and 2).
On the other hand, a technique for reducing the reflectance with respect to light in a desired polarization direction by a structure having structural birefringence is known (see, for example, Patent Document 3 and Non-Patent Document 1).
JP 2005-57043 A JP 2007-225786 A JP 2008-145457 A Daniel H. Raguin and G. Michael Morris "Antirefrection structure d surfaces for the infrared spectral region" Applied Optics, Vol.32, No.7 (1 March 1993)

レーザ結晶と波長変換結晶とを貼り合わせた構造の従来の光学素子では、レーザ結晶および波長変換結晶の貼り合わせ面を平面に研磨し、貼り合わせている。
しかし、貼り合わせ面で無視できない反射が起こり、複合共振器が形成され、レーザ発振の安定性に悪影響を及ぼすことがあった。
また、レーザ結晶が偏光依存性を持たない場合(セラミックなど)、偏光が定まらず、不安定になることがあった。
そこで、本発明の目的は、安定性に優れた光学素子および光学素子の製造方法を提供することにある。
In a conventional optical element having a structure in which a laser crystal and a wavelength conversion crystal are bonded, the bonded surfaces of the laser crystal and the wavelength conversion crystal are polished and bonded to a flat surface.
However, reflection that cannot be ignored occurs on the bonding surface, and a composite resonator is formed, which may adversely affect the stability of laser oscillation.
In addition, when the laser crystal does not have polarization dependency (ceramic or the like), the polarization is not fixed and may become unstable.
Therefore, an object of the present invention is to provide an optical element having excellent stability and a method for manufacturing the optical element.

第1の観点では、本発明は、レーザ結晶(1)に波長変換結晶(2)を貼り合わせた光学素子(10)において、前記レーザ結晶(1)および前記波長変換結晶(2)の少なくとも一方の貼り合わせ面に構造性複屈折を有する構造(1g,2g)を設けたことを特徴とする光学素子(10)を提供する。
上記第1の観点による光学素子(10)では、レーザ結晶(1)および波長変換結晶(2)の貼り合わせ面に構造性複屈折を有する構造(1g,2g)を設けた。このため、所望の偏光方向の光に対する反射率を小さくすることが出来る。これにより、所望の偏光方向の光については、複合共振器が形成されず、レーザ発振が安定になる。また、レーザ結晶が偏光依存性を持たない場合でも、偏光が決まり、レーザ発振が安定になる。
In a first aspect, the present invention provides at least one of the laser crystal (1) and the wavelength conversion crystal (2) in the optical element (10) in which the wavelength conversion crystal (2) is bonded to the laser crystal (1). Provided is an optical element (10) characterized in that a structure (1g, 2g) having structural birefringence is provided on the bonding surface.
In the optical element (10) according to the first aspect, structures (1g, 2g) having structural birefringence are provided on the bonding surfaces of the laser crystal (1) and the wavelength conversion crystal (2). For this reason, the reflectance with respect to the light of a desired polarization direction can be made small. As a result, a complex resonator is not formed for light having a desired polarization direction, and laser oscillation becomes stable. Even when the laser crystal does not have polarization dependence, the polarization is determined and the laser oscillation becomes stable.

第2の観点では、本発明は、前記第1の観点による光学素子(10)において、前記構造性複屈折を有する構造(1g,2g)は、前記レーザ結晶(1)でレーザ発振させる基本波について所望の偏光方向に偏光した光に対する反射率が前記所望の偏光方向に直交する方向に偏光した光に対する反射率より小さくなるように形成した溝群(1g,2g)であることを特徴とする光学素子(10)を提供する。
上記第2の観点による光学素子(10)では、溝群(1g,2g)により構造性複屈折を有する構造(1g,2g)を実現するため、他の構造(例えばモスアイ構造)にするよりも製造が容易になる。また、溝群(1g,2g)に接着剤(4)が入ることでアンカー効果が得られ、強固に一体化でき、剥離を生じ難くなる。
In a second aspect, the present invention provides the optical element (10) according to the first aspect, wherein the structure (1g, 2g) having the structural birefringence is a fundamental wave that causes the laser crystal (1) to oscillate. The groove group (1g, 2g) is formed so that the reflectance with respect to light polarized in a desired polarization direction is smaller than the reflectance with respect to light polarized in a direction orthogonal to the desired polarization direction. An optical element (10) is provided.
In the optical element (10) according to the second aspect, since the structure (1g, 2g) having structural birefringence is realized by the groove group (1g, 2g), it is more than the other structure (for example, moth-eye structure). Easy to manufacture. Further, when the adhesive (4) enters the groove group (1g, 2g), an anchor effect can be obtained, which can be firmly integrated and hardly peeled off.

第3の観点では、本発明は、光軸方向辺と幅方向辺と厚さ方向辺とを有する板状体である波長変換結晶大基板(32)の前記光軸方向辺および前記幅方向辺で区画された少なくとも1面に板状体のダミー材大基板(13)を貼り付けて第1複合大基板(21’)とし、該第1複合大基板(21’)の前記光軸方向辺について作用長(L)で切断して複数の第1複合基板を作成し、該第1複合基板の前記幅方向辺と厚さ方向辺とで区画されたレーザ光入射面と板状体であってその一面がレーザ光出射面であるレーザ結晶基板の前記レーザ光出射面とを貼り合わせて第2複合基板とし、該第2複合基板を切断して複数の光学素子(10)を得る光学素子の製造方法であって、前記第1複合基板と前記レーザ結晶基板とを貼り合わせる前に、前記第1複合基板と前記レーザ結晶基板の少なくとも一方の貼り合わせ面に、レーザ結晶でレーザ発振させる基本波について所望の偏光方向に偏光した光に対する反射率が前記所望の偏光方向に直交する方向に偏光した光に対する反射率より小さくなるようにする溝群(1g,2g)を刻設し、前記第1複合基板と前記レーザ結晶基板とを接着剤(4)で貼り付けることを特徴とする光学素子の製造方法を提供する。
上記第3の観点による光学素子の製造方法では、前記第2の観点による光学素子(10)を好適に製造しうる。また、溝群(1g,2g)に接着剤(4)が入ることでアンカー効果が得られ、強固に一体化できるから、第2複合基板を切断して複数の光学素子(10)を得る際に、剥離を生じ難くなり、歩留まりを向上できる。
In a third aspect, the present invention relates to the optical axis direction side and the width direction side of the wavelength conversion crystal large substrate (32) which is a plate-like body having an optical axis direction side, a width direction side, and a thickness direction side. A large dummy substrate (13) of a plate-like body is attached to at least one surface partitioned by (1) to form a first composite large substrate (21 ′), and the optical axis direction side of the first composite large substrate (21 ′) A plurality of first composite substrates are prepared by cutting at a working length (L), and a laser beam incident surface and a plate-like body partitioned by the width direction side and the thickness direction side of the first composite substrate. An optical element in which a plurality of optical elements (10) are obtained by bonding together the laser light emitting surface of a laser crystal substrate whose one surface is a laser light emitting surface to form a second composite substrate. Before the first composite substrate and the laser crystal substrate are bonded to each other. Light having a reflectivity with respect to light polarized in a desired polarization direction with respect to the fundamental wave to be laser-oscillated by the laser crystal on at least one bonding surface of the composite substrate and the laser crystal substrate is polarized in a direction orthogonal to the desired polarization direction A groove group (1g, 2g) is made to be smaller than the reflectance with respect to, and the first composite substrate and the laser crystal substrate are bonded with an adhesive (4). Provide a method.
In the optical element manufacturing method according to the third aspect, the optical element (10) according to the second aspect can be preferably manufactured. Further, when the adhesive (4) enters the groove group (1g, 2g), an anchor effect can be obtained and it can be firmly integrated. Therefore, when the second composite substrate is cut to obtain a plurality of optical elements (10). In addition, it is difficult to cause peeling, and the yield can be improved.

本発明の光学素子によれば、安定な光学特性が得られる。
本発明の光学素子の製造方法によれば、歩留まりを向上することが出来る。
According to the optical element of the present invention, stable optical characteristics can be obtained.
According to the method for manufacturing an optical element of the present invention, the yield can be improved.

以下、図に示す実施例により本発明をさらに詳細に説明する。なお、これにより本発明が限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to the embodiments shown in the drawings. Note that the present invention is not limited thereby.

図1は、実施例1に係る光学素子10を示す斜視図である。図2は、光学素子10の分解斜視図である。
この光学素子10は、半導体レーザからの励起レーザ光Liにより励起されてレーザ光出射面1oから基本波レーザ光を出すレーザ結晶1と、レーザ光入射面2iから入射した基本波レーザ光の高調波である波長変換レーザ光Loを出す波長変換結晶2と、波長変換結晶2をサンドイッチ状に挟むダミー材3とを具備している。
レーザ結晶1と波長変換結晶2およびダミー材3とは、接着剤4により貼り付けられている。
レーザ結晶1と波長変換結晶2およびダミー材3の貼り付け面には、溝群1g,2gが例えばイオンミリングにより刻設されている。
FIG. 1 is a perspective view illustrating an optical element 10 according to the first embodiment. FIG. 2 is an exploded perspective view of the optical element 10.
The optical element 10 is excited by excitation laser light Li from a semiconductor laser to emit fundamental laser light from a laser light emission surface 1o, and harmonics of fundamental laser light incident from a laser light incidence surface 2i. A wavelength conversion crystal 2 for emitting the wavelength conversion laser light Lo, and a dummy material 3 for sandwiching the wavelength conversion crystal 2 in a sandwich shape.
The laser crystal 1, the wavelength conversion crystal 2, and the dummy material 3 are attached with an adhesive 4.
Groove groups 1g and 2g are engraved on the attachment surface of the laser crystal 1, the wavelength conversion crystal 2 and the dummy material 3 by, for example, ion milling.

レーザ結晶1は、例えばNdがドープされたYAG結晶やYVO4結晶である。
波長変換結晶2は、例えば分極反転周期構造が形成された強誘電体結晶(LNやLT基板、MgOをドープしたLNやLT基板)や、KPT基板である。
ダミー材3は、ヒートシンクとして好適に機能するように、ガラスの熱伝導率よりも大きい熱伝導率を有する材料製とすることが好ましい。また、熱膨張した時の悪影響を抑制するため、熱膨張係数がレーザ結晶1や波長変換結晶2と同程度の材料とするのが好ましい。例えば波長変換結晶2と同じ材料(周期的分極反転構造は必要ない)や、石英ガラスや、BK−7である。
The laser crystal 1 is, for example, a YAG crystal or YVO4 crystal doped with Nd.
The wavelength conversion crystal 2 is, for example, a ferroelectric crystal (an LN or LT substrate, an LN or LT substrate doped with MgO) having a domain-inverted periodic structure, or a KPT substrate.
The dummy material 3 is preferably made of a material having a thermal conductivity larger than that of glass so as to function suitably as a heat sink. Further, in order to suppress adverse effects when thermally expanded, it is preferable to use a material having a thermal expansion coefficient comparable to that of the laser crystal 1 and the wavelength conversion crystal 2. For example, the same material as the wavelength conversion crystal 2 (periodic polarization inversion structure is not required), quartz glass, or BK-7.

溝群1g,2gは、貼り合わせ後の状態において、レーザ結晶1でレーザ発振させる基本波(例えば波長1.064μm)について所望の偏光方向に偏光した光に対する反射率が所望の偏光方向に直交する方向に偏光した光に対する反射率より小さくなる作用を持つように形成されている。   In the groove groups 1g and 2g, the reflectance with respect to light polarized in a desired polarization direction with respect to a fundamental wave (for example, wavelength 1.064 μm) laser-oscillated by the laser crystal 1 is orthogonal to the desired polarization direction in a state after bonding. It is formed to have an effect of being smaller than the reflectance with respect to light polarized in the direction.

貼り合わせ面と対向するレーザ結晶1の面、および、貼り合わせ面と対向する波長変換結晶2の面には、基本波(例えば波長1.064μm)に対する高反射膜が成膜されている。   On the surface of the laser crystal 1 facing the bonding surface and the surface of the wavelength conversion crystal 2 facing the bonding surface, a highly reflective film for the fundamental wave (for example, wavelength 1.064 μm) is formed.

図3は、光学素子10の製造手順を示すフロー図である。
ステップS1では、図4に示すように、分極反転方向Drの光軸方向辺の長さL’、分極反転方向Drおよび分極方向Dpに交差する幅方向の幅G、分極方向Dpの厚さ方向の厚さdの板状体である波長変換結晶大基板32を作成する。長さL’は例えば6mm、幅Gは例えば6mm、厚さdは例えば0.4mmである。そして、ステップS3へ進む。
FIG. 3 is a flowchart showing the manufacturing procedure of the optical element 10.
In step S1, as shown in FIG. 4, the length L ′ of the side in the optical axis direction of the polarization inversion direction Dr, the width G in the width direction intersecting the polarization inversion direction Dr and the polarization direction Dp, and the thickness direction of the polarization direction Dp. The wavelength conversion crystal large substrate 32 which is a plate-like body having a thickness d is prepared. The length L ′ is, for example, 6 mm, the width G is, for example, 6 mm, and the thickness d is, for example, 0.4 mm. Then, the process proceeds to step S3.

波長変換結晶大基板32は、例えば所定サイズの強誘電体結晶大基板32aの対向面に周期電極32bとベタ電極32cを形成し、電極間に電圧を印加し、強誘電体結晶大基板32aの内部に周期的分極反転構造を形成することにより作成しうる。電極の対向方向が分極方向Dpになり、周期電極32bの形状の周期パターン方向が分極反転方向Drになる。電極は、そのまま残しておいてもよいし、除去してもよい。ダミー材との接着にオプチカルコンタクトを利用する場合には除去する方が望ましい。   The wavelength conversion crystal large substrate 32 is formed, for example, by forming a periodic electrode 32b and a solid electrode 32c on opposite surfaces of a ferroelectric crystal large substrate 32a of a predetermined size, and applying a voltage between the electrodes to form the ferroelectric crystal large substrate 32a. It can be created by forming a periodically poled structure inside. The opposing direction of the electrodes is the polarization direction Dp, and the periodic pattern direction of the shape of the periodic electrode 32b is the polarization inversion direction Dr. The electrode may be left as it is or may be removed. When using an optical contact for bonding to the dummy material, it is preferable to remove it.

強誘電体結晶大基板32aは、例えば、MgOをドープした、定比組成(ストイキオメトリ)または定比組成に近いタンタル酸リチウム基板(MgOドープ定比組成タンタル酸リチウムj基板)であり、そのモル分率Li2O/(Ta2O5+Li2O)は0.49以上0.5未満である。   The ferroelectric crystal large substrate 32a is, for example, a MgO-doped, stoichiometric composition or stoichiometric lithium tantalate substrate (MgO doped stoichiometric lithium tantalate j substrate), The molar fraction Li2O / (Ta2O5 + Li2O) is 0.49 or more and less than 0.5.

一方、ステップS2では、図5に示すように、長さL’、幅G、厚さWの板状体であるダミー材大基板13を作成する。厚さWは例えば1mmである。そして、ステップS3へ進む。   On the other hand, in step S2, a dummy material large substrate 13 which is a plate-like body having a length L ', a width G, and a thickness W is formed as shown in FIG. The thickness W is 1 mm, for example. Then, the process proceeds to step S3.

ステップS3では、図6に示すように波長変換結晶大基板32とダミー材大基板13とを交互に貼り合わせ、第1複合大基板21’を作成する。貼り合わせた方向の第1複合大基板21’の幅Zは例えば8mmである。
貼り合わせの方法は、接着剤を用いてもよいし、オプチカルコンタクトを用いてもよい。
In step S3, as shown in FIG. 6, the wavelength conversion crystal large substrate 32 and the dummy material large substrate 13 are alternately bonded to form a first composite large substrate 21 ′. The width Z of the first composite large substrate 21 ′ in the bonded direction is, for example, 8 mm.
As the bonding method, an adhesive may be used, or an optical contact may be used.

ステップS4では、図7に示すように分極反転方向Dr(=光軸方向)について所定の作用長Lごとに波長変換結晶大基板32をダイシング装置で切断し、図8に示すごとき第1複合基板21を複数得る。C’は切断線である。作用長Lは例えば2mmである。   In step S4, as shown in FIG. 7, the wavelength conversion crystal large substrate 32 is cut with a dicing apparatus for each predetermined action length L in the polarization inversion direction Dr (= optical axis direction), and the first composite substrate as shown in FIG. A plurality of 21 are obtained. C 'is a cutting line. The action length L is, for example, 2 mm.

ステップS5では、第1複合基板21の分極反転方向Drに対向する2面に光学研磨を施し、一方の面に、使用する基本波に対するHR膜を成膜する。さらに、他方の面に、分極反転方向Drおよび分極方向Dpに直交する方向の溝群2gを、イオンミリング装置を用いて刻設し、図9に示すごとき第1複合基板21”(溝付き)を得る。そして、ステップS11へ進む。   In step S5, optical polishing is performed on two surfaces of the first composite substrate 21 facing the polarization inversion direction Dr, and an HR film for the fundamental wave to be used is formed on one surface. Further, a groove group 2g in the direction perpendicular to the polarization reversal direction Dr and the polarization direction Dp is formed on the other surface by using an ion milling device, and the first composite substrate 21 ″ (with grooves) as shown in FIG. Then, the process proceeds to step S11.

一方、ステップS8では、光軸に垂直な2面間を厚さhとするレーザ結晶大基板を作成する。厚さhは、例えば1mmである。
ステップS9では、レーザ結晶大基板の光軸に垂直な2面に光学研磨を施し、一方の面に、使用する基本波に対するHR膜を成膜する。さらに、他方の面に、第1複合基板21”の溝群2gに対応する溝群1gを、イオンミリング装置を用いて刻設する。
ステップS10では、第1複合基板21”の長さGと幅Zに合わせたサイズにレーザ結晶大基板を切断し、図10に示す如きレーザ結晶基板11を得る。そして、ステップS11へ進む。
On the other hand, in step S8, a large laser crystal substrate having a thickness h between two surfaces perpendicular to the optical axis is formed. The thickness h is 1 mm, for example.
In step S9, two surfaces perpendicular to the optical axis of the laser crystal large substrate are optically polished, and an HR film for the fundamental wave to be used is formed on one surface. Further, a groove group 1g corresponding to the groove group 2g of the first composite substrate 21 ″ is engraved on the other surface using an ion milling device.
In step S10, the large laser crystal substrate is cut to a size matching the length G and width Z of the first composite substrate 21 ″ to obtain the laser crystal substrate 11 as shown in FIG. 10. Then, the process proceeds to step S11.

ステップS11では、図11に示すように第1複合基板21”の溝群2gを形成した面とレーザ結晶基板11の溝群1gを形成した面とを接着剤4により貼り合わせ、第2複合基板22を作成する。   In step S11, as shown in FIG. 11, the surface on which the groove group 2g of the first composite substrate 21 ″ is formed and the surface on which the groove group 1g of the laser crystal substrate 11 is formed are bonded together by the adhesive 4, and the second composite substrate 22 is created.

ステップS12では、図12に示すように切断線Cで第2複合基板22を切断し、図1に示すごとき光学素子10を同時に複数得る。   In step S12, the second composite substrate 22 is cut along the cutting line C as shown in FIG. 12, and a plurality of optical elements 10 as shown in FIG. 1 are obtained simultaneously.

実施例1によれば、レーザ結晶1および波長変換結晶2の貼り合わせ面に設けた溝群1g,2gにより、所望の偏光方向の光に対する反射率を小さくすることが出来るため、所望の偏光方向の光については複合共振器が形成されず、レーザ発振が安定になる。また、レーザ結晶1が偏光依存性を持たない場合でも、偏光が決まり、レーザ発振が安定になる。
また、溝群1g,2gは、構造性複屈折を有する構造を実現するための他の構造(例えばモスアイ構造)よりも製造が容易になる。
さらに、溝群1g,2gに接着剤4が入ることでアンカー効果が得られ、強固に一体化できるから、第2複合基板22を切断して複数の光学素子10を得る際に、剥離を生じ難くなり、歩留まりを向上できる。
According to the first embodiment, the groove group 1g, 2g provided on the bonding surface of the laser crystal 1 and the wavelength conversion crystal 2 can reduce the reflectance with respect to the light in the desired polarization direction, and thus the desired polarization direction. For this light, a composite resonator is not formed, and laser oscillation becomes stable. Even when the laser crystal 1 does not have polarization dependency, the polarization is determined and the laser oscillation becomes stable.
Further, the groove groups 1g and 2g are easier to manufacture than other structures (for example, a moth-eye structure) for realizing a structure having structural birefringence.
Furthermore, since the anchor effect is obtained when the adhesive 4 enters the groove groups 1g and 2g and can be firmly integrated, peeling occurs when the second composite substrate 22 is cut to obtain the plurality of optical elements 10. It becomes difficult and yield can be improved.

溝群1g,2gのいずれか一方だけを形成してもよい。   Only one of the groove groups 1g and 2g may be formed.

ダミー基板3を波長変換結晶2の片面だけに貼り合わせてもよい。   The dummy substrate 3 may be bonded to only one side of the wavelength conversion crystal 2.

レーザ結晶1と波長変換結晶2とダミー材3とを貼り合わせた後、HR膜の成膜を行ってもよい。   After the laser crystal 1, the wavelength conversion crystal 2 and the dummy material 3 are bonded together, the HR film may be formed.

本発明の光学素子および光学素子の製造方法は、例えばSHG波長変換技術を用いた半導体励起固体レーザ等に利用できる。   The optical element and the optical element manufacturing method of the present invention can be used for, for example, a semiconductor-excited solid-state laser using SHG wavelength conversion technology.

実施例1に係る光学素子を示す斜視図である。1 is a perspective view showing an optical element according to Example 1. FIG. 実施例1に係る光学素子を示す分解斜視図である。1 is an exploded perspective view showing an optical element according to Example 1. FIG. 実施例1に係る光学素子の製造手順を示すフロー図である。FIG. 3 is a flowchart showing a manufacturing procedure of the optical element according to Example 1. 波長変換結晶大基板を示す斜視図である。It is a perspective view which shows a wavelength conversion crystal large substrate. ダミー材大基板を示す斜視図である。It is a perspective view which shows a dummy material large board | substrate. 第1複合大基板を示す斜視図である。It is a perspective view which shows a 1st composite large board | substrate. 第1複合大基板の切断を示す斜視図である。It is a perspective view which shows the cutting | disconnection of a 1st composite large board | substrate. 第1複合基板を示す斜視図である。It is a perspective view which shows a 1st composite substrate. 溝群を刻設した第1複合基板を示す斜視図である。It is a perspective view which shows the 1st composite substrate which engraved the groove group. 溝群を刻設したレーザ結晶基板を示す斜視図である。It is a perspective view which shows the laser crystal substrate which engraved the groove group. 第2複合基板を示す斜視図である。It is a perspective view which shows a 2nd composite substrate. 第2複合基板の切断を示す斜視図である。It is a perspective view which shows the cutting | disconnection of a 2nd composite substrate.

符号の説明Explanation of symbols

1 レーザ結晶
1g 溝群
2 波長変換結晶
2g 溝群
3 ダミー材
4 接着剤
10 光学素子
11 レーザ結晶基板
12 波長変換結晶基板
13 ダミー材大基板
21 第1複合基板
21’ 第1複合大基板
22 第2複合基板
32 波長変換結晶大基板
C,C’ 切断線
DESCRIPTION OF SYMBOLS 1 Laser crystal 1g Groove group 2 Wavelength conversion crystal 2g Groove group 3 Dummy material 4 Adhesive 10 Optical element 11 Laser crystal substrate 12 Wavelength conversion crystal substrate 13 Dummy material large substrate 21 1st composite substrate 21 '1st composite large substrate 22 1st 2 Composite substrate 32 Wavelength conversion crystal large substrate C, C 'cutting line

Claims (3)

レーザ結晶(1)に波長変換結晶(2)を貼り合わせた光学素子(10)において、前記レーザ結晶(1)および前記波長変換結晶(2)の少なくとも一方の貼り合わせ面に構造性複屈折を有する構造(1g,2g)を設けたことを特徴とする光学素子(10)。 In the optical element (10) in which the wavelength conversion crystal (2) is bonded to the laser crystal (1), structural birefringence is applied to at least one bonded surface of the laser crystal (1) and the wavelength conversion crystal (2). An optical element (10), characterized in that the structure (1g, 2g) is provided. 請求項1に記載の光学素子(10)において、前記構造性複屈折を有する構造(1g,2g)は、前記レーザ結晶(1)でレーザ発振させる基本波について所望の偏光方向に偏光した光に対する反射率が前記所望の偏光方向に直交する方向に偏光した光に対する反射率より小さくなるように形成した溝群(1g,2g)であることを特徴とする光学素子(10)。 2. The optical element (10) according to claim 1, wherein the structure (1g, 2g) having structural birefringence is for light polarized in a desired polarization direction with respect to a fundamental wave to be oscillated by the laser crystal (1). An optical element (10), wherein the optical element (10) is a groove group (1g, 2g) formed so that a reflectance is smaller than a reflectance with respect to light polarized in a direction orthogonal to the desired polarization direction. 光軸方向辺と幅方向辺と厚さ方向辺とを有する板状体である波長変換結晶大基板(32)の前記光軸方向辺および前記幅方向辺で区画された少なくとも1面に板状体のダミー材大基板(13)を貼り付けて第1複合大基板(21’)とし、該第1複合大基板(21’)の前記光軸方向辺について作用長(L)で切断して複数の第1複合基板を作成し、該第1複合基板の前記幅方向辺と厚さ方向辺とで区画されたレーザ光入射面と板状体であってその一面がレーザ光出射面であるレーザ結晶基板の前記レーザ光出射面とを貼り合わせて第2複合基板とし、該第2複合基板を切断して複数の光学素子(10)を得る光学素子の製造方法であって、前記第1複合基板と前記レーザ結晶基板とを貼り合わせる前に、前記第1複合基板と前記レーザ結晶基板の少なくとも一方の貼り合わせ面に、レーザ結晶でレーザ発振させる基本波について所望の偏光方向に偏光した光に対する反射率が前記所望の偏光方向に直交する方向に偏光した光に対する反射率より小さくなるようにする溝群(1g,2g)を刻設し、前記第1複合基板と前記レーザ結晶基板とを接着剤(4)で貼り付けることを特徴とする光学素子の製造方法。 Plate-shaped on at least one surface defined by the optical axis direction side and the width direction side of the wavelength conversion crystal large substrate (32), which is a plate-like body having an optical axis direction side, a width direction side, and a thickness direction side. A large dummy substrate (13) is attached to form a first composite large substrate (21 ′), and the side of the first composite large substrate (21 ′) in the optical axis direction is cut by an action length (L). A plurality of first composite substrates are formed, and a laser light incident surface and a plate-like body defined by the width direction side and the thickness direction side of the first composite substrate, one surface of which is a laser light emission surface. A method of manufacturing an optical element, wherein the laser crystal substrate is bonded to the laser light emitting surface to form a second composite substrate, and the second composite substrate is cut to obtain a plurality of optical elements (10). Before laminating the composite substrate and the laser crystal substrate, the first composite substrate and the laser crystal The reflectance for light polarized in a desired polarization direction with respect to the fundamental wave to be laser-oscillated by the laser crystal is smaller than the reflectance for light polarized in a direction orthogonal to the desired polarization direction on at least one bonding surface of the plate. A groove group (1g, 2g) to be made is formed, and the first composite substrate and the laser crystal substrate are bonded with an adhesive (4).
JP2008203670A 2008-08-07 2008-08-07 Optical element and optical element manufacturing method Expired - Fee Related JP5018685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008203670A JP5018685B2 (en) 2008-08-07 2008-08-07 Optical element and optical element manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008203670A JP5018685B2 (en) 2008-08-07 2008-08-07 Optical element and optical element manufacturing method

Publications (2)

Publication Number Publication Date
JP2010039317A true JP2010039317A (en) 2010-02-18
JP5018685B2 JP5018685B2 (en) 2012-09-05

Family

ID=42011921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008203670A Expired - Fee Related JP5018685B2 (en) 2008-08-07 2008-08-07 Optical element and optical element manufacturing method

Country Status (1)

Country Link
JP (1) JP5018685B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04320078A (en) * 1991-04-18 1992-11-10 Fuji Photo Film Co Ltd Optical wavelength converter
JPH06204590A (en) * 1992-12-25 1994-07-22 Sony Corp Optical resonator and assembly thereof
JPH07154021A (en) * 1993-12-01 1995-06-16 Ibiden Co Ltd Variable wavelength blue color laser
JP2006292942A (en) * 2005-04-08 2006-10-26 Sony Corp Second higher harmonic generator
WO2007032402A1 (en) * 2005-09-14 2007-03-22 Matsushita Electric Industrial Co., Ltd. Laser light source, and display unit using it
JP2007508686A (en) * 2003-10-09 2007-04-05 オキシウス ソシエテ・アノニム Monolithic solid state laser device pumped by a laser diode and method of using this device
JP2007225786A (en) * 2006-02-22 2007-09-06 Shimadzu Corp Optical element and manufacturing method of optical element
JP2008016833A (en) * 2006-06-06 2008-01-24 Topcon Corp Joining method of opttical components, optical component integrated structure, and laser oscillator
JP2008536322A (en) * 2005-04-15 2008-09-04 オキシウス ソシエテ・アノニム Single frequency monolithic linear laser device and apparatus comprising the device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04320078A (en) * 1991-04-18 1992-11-10 Fuji Photo Film Co Ltd Optical wavelength converter
JPH06204590A (en) * 1992-12-25 1994-07-22 Sony Corp Optical resonator and assembly thereof
JPH07154021A (en) * 1993-12-01 1995-06-16 Ibiden Co Ltd Variable wavelength blue color laser
JP2007508686A (en) * 2003-10-09 2007-04-05 オキシウス ソシエテ・アノニム Monolithic solid state laser device pumped by a laser diode and method of using this device
JP2006292942A (en) * 2005-04-08 2006-10-26 Sony Corp Second higher harmonic generator
JP2008536322A (en) * 2005-04-15 2008-09-04 オキシウス ソシエテ・アノニム Single frequency monolithic linear laser device and apparatus comprising the device
WO2007032402A1 (en) * 2005-09-14 2007-03-22 Matsushita Electric Industrial Co., Ltd. Laser light source, and display unit using it
JP2007225786A (en) * 2006-02-22 2007-09-06 Shimadzu Corp Optical element and manufacturing method of optical element
JP2008016833A (en) * 2006-06-06 2008-01-24 Topcon Corp Joining method of opttical components, optical component integrated structure, and laser oscillator

Also Published As

Publication number Publication date
JP5018685B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
JP4640207B2 (en) Optical element manufacturing method
JP2007256324A (en) Wavelength conversion element
JP2008102228A (en) Optical element and manufacturing method of optical element
JP2009217009A (en) Harmonic wave generator
JP2007183316A (en) Wavelength conversion waveguide element and its manufacturing method
JP4646333B2 (en) Harmonic generator
WO2011140641A1 (en) Packaging method of laser and nonlinear crystal and its application in diode pumped solid state lasers
US20120077003A1 (en) Method of nonlinear crystal packaging and its application in diode pumped solid state lasers
JP5420810B1 (en) Wavelength conversion element
JP2008224972A (en) Optical element and method for manufacturing the same
JP4806427B2 (en) Wavelength conversion element and manufacturing method thereof
JP2008209449A (en) Wavelength conversion element
JP5272700B2 (en) Optical element and optical element manufacturing method
JP5018685B2 (en) Optical element and optical element manufacturing method
JP5267247B2 (en) Optical element for small laser
JP2009222872A (en) Method of manufacturing harmonics generating device
JP2005055528A (en) Method and device for oscillating blue laser beam
JP5464121B2 (en) Optical element manufacturing method
CN101459317A (en) Frequency multiplier for wave-guide structure and manufacturing method thereof
JP4657228B2 (en) Wavelength conversion element
JP5855229B2 (en) Laser equipment
JP5428132B2 (en) Optical element manufacturing method and optical element
JP2004295089A (en) Compound substrate and method for manufacturing the same
JP2009015039A (en) Method for manufacturing optical element
JP2005266703A (en) Wavelength conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R151 Written notification of patent or utility model registration

Ref document number: 5018685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees