JP2003304019A - Wavelength conversion laser device - Google Patents

Wavelength conversion laser device

Info

Publication number
JP2003304019A
JP2003304019A JP2002108659A JP2002108659A JP2003304019A JP 2003304019 A JP2003304019 A JP 2003304019A JP 2002108659 A JP2002108659 A JP 2002108659A JP 2002108659 A JP2002108659 A JP 2002108659A JP 2003304019 A JP2003304019 A JP 2003304019A
Authority
JP
Japan
Prior art keywords
wavelength conversion
light
laser device
qpm
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002108659A
Other languages
Japanese (ja)
Inventor
Shinji Inoue
信治 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2002108659A priority Critical patent/JP2003304019A/en
Publication of JP2003304019A publication Critical patent/JP2003304019A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wavelength conversion laser device which can retrieve higher harmonic laser beams of a high output while a relative positional regulation to the beam is easy. <P>SOLUTION: Two QPM elements 4a, 4b are used as a wavelength conversion element 4, upper surfaces opposite to an upper part of a bulk crystal of parts having good uniformity of a period of a polarization inversion layer of each QPM element are disposed opposite to each other and brought into contact with each other, and substantially functioned as one QPM element. The element 4 is disposed in an optical resonator so that the close contact surface coincides with an optical axis C in the resonator having a reflecting layer 3a of a laser medium 3 and an output mirror 6. Thus, since the part having the good uniformity of the period of the inversion layer is enlarged about twice around the axis C, a beam alignment is facilitated, and even when the position is slightly deviated, high conversion efficiency is obtained and hence its output can be increased. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、波長変換素子を用
いて基本波光から高調波光を発生させて該高調波光を外
部へ取り出す波長変換レーザ装置に関し、更に詳しく
は、波長変換素子として、擬似位相整合により波長変換
を行う擬似位相整合型の波長変換素子を用いた波長変換
レーザ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wavelength conversion laser device for generating harmonic light from a fundamental wave light by using a wavelength conversion element and taking out the harmonic light to the outside. The present invention relates to a wavelength conversion laser device using a quasi-phase matching type wavelength conversion element that performs wavelength conversion by matching.

【0002】[0002]

【従来の技術】近年、緑色、青色などの短波長レーザ
は、例えば干渉計、光ディスク用の光ピックアップ、印
刷装置など幅広い分野において注目されており、こうし
たレーザ光を発生するレーザ装置の研究・開発が各地で
盛んに進められている。このような短波長レーザ装置の
一つとして、基本波レーザ光の光路中に波長変換素子を
挿入して高調波光を発生させ、その高調波光を外部に取
り出すようにした波長変換レーザ装置が知られている。
2. Description of the Related Art In recent years, short-wavelength lasers such as green and blue have attracted attention in a wide range of fields such as interferometers, optical pickups for optical discs, printing devices, and research and development of laser devices that generate such laser light. Is being actively promoted in various places. As one of such short-wavelength laser devices, there is known a wavelength conversion laser device in which a wavelength conversion element is inserted in the optical path of a fundamental wave laser light to generate harmonic light, and the harmonic light is extracted to the outside. ing.

【0003】従来のこの種の波長変換レーザ装置では、
波長変換素子として非線形光学結晶であるKN(KNb
3)やKTP(KTiO4 )が用いられていたが、こ
のような結晶は、波長の温度依存性が大きい、波長に対
して利用できる結晶が限定される、といった問題があっ
た。これに対し、最近、擬似位相整合(QPM:Quasi-
Phase-Matching)を利用した波長変換素子が注目を集め
ている。
In this type of conventional wavelength conversion laser device,
A nonlinear optical crystal KN (KNb) is used as a wavelength conversion element.
O 3 ) and KTP (KTiO 4 ) have been used, but such crystals have problems that the temperature dependence of the wavelength is large and the crystals that can be used for the wavelength are limited. On the other hand, recently, quasi phase matching (QPM: Quasi-
Wavelength conversion elements that utilize phase-matching) are attracting attention.

【0004】擬似位相整合型波長変換素子(以下、「Q
PM素子」と称す)は、LiNbO 3やLiTaO3など
のバルク結晶の内部に周期的な分極反転層を形成するこ
とで、所定波長のレーザ光に対して擬似的な位相整合を
達成しようとするものであり、その分極反転層の周期を
変えることによりほぼ任意の波長に対応が可能である。
逆に言えば、この分極反転層の周期の均一性が良好でな
いと、波長変換の効率が低くなり、外部に取り出される
高調波光の出力が大きく低下する原因となり得る。
Quasi-phase matching type wavelength conversion element (hereinafter referred to as "Q
"PM element") is LiNbO 3And LiTaO3Such
A periodic domain-inverted layer can be formed inside the bulk crystal of
And, for pseudo-phase matching with laser light of a predetermined wavelength.
To achieve the period of the polarization inversion layer.
By changing it, almost any wavelength can be supported.
Conversely speaking, the uniformity of the period of this domain inversion layer is not good.
If so, the wavelength conversion efficiency will be low and the wavelength will be extracted to the outside.
This can cause a significant decrease in the output of harmonic light.

【0005】[0005]

【発明が解決しようとする課題】こうしたQPM素子に
関し、バルク結晶の内部に周期的な分極反転層を形成す
る方法については種々の研究が為されている(例えば、
「MgO−LiNbO3ドメイン反転バルク結晶を用い
た青・緑色固体レーザーとその応用」(レーザー研究、
1998年3月)参照)。
With respect to such a QPM element, various studies have been made on a method of forming a periodic domain-inverted layer inside a bulk crystal (for example,
"Blue-green solid-state laser using MgO-LiNbO 3 domain-inverted bulk crystal and its application" (Laser research,
(March 1998))).

【0006】図4はQPM素子の製造方法の一例を説明
するための図である。分極反転層の形成方法としては、
例えば、図4(A)に示すように、バルク結晶41上面
及び一側面に所定間隔(分極反転層の周期と同一)でス
リット状の電極40を形成する。なお、この電極40の
形成方法は、スパッタリング、写真製版によるパターニ
ング、エッチングなどの半導体製造プロセスと同様の手
法を用いることができる。そして、上記のように形成し
た電極40に高電圧を印加すると、図4(B)に示すよ
うに、電極40の位置に対応したバルク結晶41内部に
おいて分極反転層42が形成される。
FIG. 4 is a diagram for explaining an example of a method of manufacturing a QPM element. As a method of forming the domain inversion layer,
For example, as shown in FIG. 4A, slit-shaped electrodes 40 are formed on the upper surface and one side surface of the bulk crystal 41 at a predetermined interval (same as the period of the domain inversion layer). As the method of forming the electrode 40, the same method as the semiconductor manufacturing process such as sputtering, patterning by photolithography, and etching can be used. Then, when a high voltage is applied to the electrode 40 formed as described above, as shown in FIG. 4B, the domain-inverted layer 42 is formed inside the bulk crystal 41 corresponding to the position of the electrode 40.

【0007】上記のようなQPM素子をレーザ装置の光
共振器内に配置する場合、光共振器内での発振ビーム径
は数十〜100μm程度であるため、QPM素子の位置
調整作業などを含めた生産性を考えると、数百μm位の
厚さに亘って分極反転層42の周期が均一であることが
望ましい。しかしながら、青色などの短波長レーザ光を
出力するためのQPM素子では、分極反転層42の周期
は数μm程度とかなり短いため、QPM素子の製作に当
たって、400μm乃至それ以上の厚みのあるバルク結
晶41の上部から下部に至るまで均一の周期を有する分
極反転層42を形成することは非常に困難である。その
ため、従来のこの種の波長変換レーザ装置では、光共振
器内部で発振ビームの一部が、QPM素子の分極反転層
が不均一であるような部分に照射されてしまう。その不
均一な分極反転層は所望の波長の変換には寄与しないた
め、そこで光の損失が生じ、変換効率が劣化して外部へ
取り出される高調波光の出力を充分に確保することが難
しいことがある。
When the QPM element as described above is arranged in the optical resonator of the laser apparatus, since the oscillation beam diameter in the optical resonator is about several tens to 100 μm, the position adjusting work of the QPM element is included. Considering productivity, it is desirable that the period of the domain inversion layer 42 be uniform over a thickness of several hundreds of μm. However, in a QPM element for outputting a short-wavelength laser light such as blue, the period of the domain inversion layer 42 is as short as several μm, and therefore, in manufacturing the QPM element, the bulk crystal 41 having a thickness of 400 μm or more is used. It is very difficult to form the domain-inverted layer 42 having a uniform period from the upper part to the lower part. Therefore, in the conventional wavelength conversion laser device of this type, a part of the oscillation beam is irradiated inside the optical resonator to a part where the polarization inversion layer of the QPM element is not uniform. Since the non-uniform polarization inversion layer does not contribute to conversion of a desired wavelength, light loss occurs there, the conversion efficiency deteriorates, and it is difficult to sufficiently secure the output of harmonic light extracted to the outside. is there.

【0008】本発明はこのような課題に鑑みて成された
ものであり、その主たる目的とするところは、QPM素
子の分極反転層の周期の不均一性を解消し、波長変換素
子での出力の損失を出来る限り軽減して高出力の高調波
光を得ることができる波長変換レーザ装置を提供するこ
とにある。
The present invention has been made in view of the above problems, and its main purpose is to eliminate the nonuniformity of the period of the polarization inversion layer of the QPM element and to output the wavelength conversion element. It is an object of the present invention to provide a wavelength conversion laser device capable of obtaining high-output harmonic light by reducing the loss of 1) as much as possible.

【0009】[0009]

【課題を解決するための手段、及び効果】一般に、QP
M素子において、バルク結晶が或る程度(400〜50
0μm以上)の厚さになると分極反転層の形成は困難と
されている。また、分極反転層が形成されるとしても、
その周期の均一性が高いのはバルク結晶の上面から或る
程度の深さまでであって、それよりも下部では周期の乱
れが顕著になる。
[Means and effects for solving the problems] Generally, QP
In the M element, some bulk crystals (400 to 50
When the thickness is 0 μm or more), it is difficult to form the domain inversion layer. Further, even if the domain inversion layer is formed,
The uniformity of the period is high from the upper surface of the bulk crystal to a certain depth, and the disorder of the period becomes significant below that.

【0010】いま一例として、図4(B)に示すQPM
素子を同図中のPの位置で縦に切断した断面を観察した
写真を図3に示す。ここでは、バルク結晶の厚さは約4
00μmであるが、このバルク結晶の上面から厚さ方向
に約1/3程度までの深さの範囲では分極反転層の周期
の均一性は良好であるものの、それよりも下部では周期
乱れが著しくなっている。もちろん、分極反転層の周期
の均一性が良好である部分の深さはその分極反転層の形
成方法などにも依存すると思われるが、一般に、製造コ
ストが低く工程が簡単なプロセスであるほど、バルク結
晶内部の深い部分までの周期の均一性は確保しにくくな
る傾向にある。
As an example, the QPM shown in FIG.
FIG. 3 shows a photograph of a cross section of the device which was cut vertically at the position P in FIG. Here, the bulk crystal thickness is about 4
Although it is 00 μm, the uniformity of the period of the domain inversion layer is good in the range of the depth from the upper surface of the bulk crystal to about 1/3 in the thickness direction, but the period disturbance is significant below that. Has become. Of course, the depth of the portion of the domain inversion layer where the uniformity of the period is good also depends on the method of forming the domain inversion layer, etc., but generally, the lower the manufacturing cost and the simpler the process, the more It tends to be difficult to ensure the uniformity of the period up to the deep part inside the bulk crystal.

【0011】そこで上記課題を解決するために、本発明
は、励起光を発生する励起光源と、該励起光で励起され
て基本波光を放出するレーザ媒質と、該レーザ媒質から
放出される基本波光を共振しつつ増幅する光共振器と、
該光共振器の光路中に介挿され、前記基本波光から高調
波光を生成する波長変換素子とを具備し、前記高調波光
を光共振器の外部に取り出す波長変換レーザ装置におい
て、前記波長変換素子は、バルク結晶の内部に周期的な
分極反転層を形成して成る擬似位相整合型の波長変換結
晶(つまりQPM素子)を複数個用い、その各波長変換
結晶の分極反転層の周期の均一性が良好である部分に面
する面同士を互いに密着させ、その密着面又はその近傍
が前記光共振器内の光軸とほぼ一致するように配置され
たことを特徴とする。
In order to solve the above problems, the present invention provides an excitation light source for generating excitation light, a laser medium excited by the excitation light to emit fundamental wave light, and a fundamental wave light emitted from the laser medium. An optical resonator that amplifies while resonating
A wavelength conversion laser device that is inserted in the optical path of the optical resonator and that generates a harmonic wave from the fundamental wave light, wherein the wavelength conversion laser device extracts the harmonic light to the outside of the optical resonator. Is a plurality of quasi-phase-matching wavelength conversion crystals (that is, QPM elements) formed by forming periodic polarization inversion layers inside a bulk crystal, and the uniformity of the period of the polarization inversion layers of each wavelength conversion crystal is Is adhered to each other, and the contact surface or the vicinity thereof is arranged so as to substantially coincide with the optical axis in the optical resonator.

【0012】本発明の最も単純な態様としては、2個の
QPM素子を用い、各波長変換結晶において周期の均一
性が良好である部分(以下「均一周期部」と称す)、例
えばバルク結晶の上部、に面する平面同士を対向させて
密着し、実質的に1個のQPM素子として機能させる。
そして、その密着面又はその近傍が光共振器内での光軸
と一致するように該波長変換素子を配置することによっ
て、その光軸の周りにおいて分極反転層の周期の均一性
が良好であるようにする。例えば、上記2個のQPM素
子において均一周期部の厚さがほぼ同一であるとすれ
ば、これら2個のQPM素子を組み合わせることによっ
て、均一周期部の厚さは光軸を挟んで略2倍に拡大した
ことになる。
In the simplest mode of the present invention, two QPM elements are used, and a portion having good period uniformity in each wavelength conversion crystal (hereinafter referred to as "uniform period portion"), for example, a bulk crystal is used. The planes facing the upper part are made to face each other and are in close contact with each other, and substantially function as one QPM element.
By arranging the wavelength conversion element so that the contact surface or the vicinity thereof coincides with the optical axis in the optical resonator, the period uniformity of the polarization inversion layer is good around the optical axis. To do so. For example, assuming that the thickness of the uniform periodic portion is substantially the same in the two QPM elements, by combining these two QPM elements, the thickness of the uniform periodic portion is approximately doubled across the optical axis. It will be expanded to.

【0013】したがって、本発明に係る波長変換レーザ
装置によれば、擬似位相整合型波長変換結晶の1個当た
りの均一周期部は、ビーム径やビームの照射位置合わせ
精度等を考慮したときに充分な厚さではなかったとして
も、これを複数個用いて波長変換素子を構成したとき
に、その均一周期部を実質的に拡大して、その部分にビ
ームが確実に当たるようにすることができる。そのた
め、光の損失が少なく波長変換効率が改善され、同一の
光共振器長であっても外部に取り出す高調波光の出力を
大きくすることができる。更に、このように周期性の良
好な部分が拡大されることによって、ビームの位置合わ
せ等が容易になり、生産時の調整コストを低減させるこ
とが可能となる。
Therefore, according to the wavelength conversion laser device of the present invention, the uniform period portion of each quasi phase matching type wavelength conversion crystal is sufficient when the beam diameter, the beam irradiation alignment accuracy, and the like are taken into consideration. Even if the thickness is not large, when the wavelength conversion element is formed by using a plurality of the thicknesses, the uniform period portion can be substantially expanded so that the beam can surely hit the portion. Therefore, the loss of light is small, the wavelength conversion efficiency is improved, and the output of the harmonic light extracted to the outside can be increased even with the same optical resonator length. Further, by enlarging the portion having a good periodicity in this way, the beam alignment and the like can be facilitated, and the adjustment cost during production can be reduced.

【0014】[0014]

【発明の実施の形態】以下、本発明に係る波長変換レー
ザ装置の一実施例について、図面を参照しつつ説明す
る。図1は本実施例による波長変換レーザ装置の概略構
成図、図2は本実施例におけるQPM素子の概略構造図
である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the wavelength conversion laser device according to the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram of a wavelength conversion laser device according to this embodiment, and FIG. 2 is a schematic configuration diagram of a QPM element in this embodiment.

【0015】本装置は、励起光を発生する半導体レーザ
1と、該半導体レーザ1からの励起光を集光するレンズ
2と、励起光で励起されることにより基本波光を含むレ
ーザ光を誘導放出するレーザ媒質3と、誘導放出された
基本波光から第二高調波光(ここでは、これを単に「高
調波光」という)を生成する波長変換素子4と、特定の
波長の光を選択的に透過させるエタロン5と、光を反射
させつつその一部を透過させる出力ミラー6と、上記各
光学部材を温調するサーモモジュール7とを含んで構成
されている。
This device comprises a semiconductor laser 1 for generating pumping light, a lens 2 for collecting the pumping light from the semiconductor laser 1, and a stimulated emission of laser light containing fundamental wave light by being excited by the pumping light. Laser medium 3, a wavelength conversion element 4 that generates second harmonic light (here, simply referred to as "harmonic light") from the stimulated emission fundamental wave light, and selectively transmits light of a specific wavelength. The etalon 5 includes an etalon 5, an output mirror 6 that reflects light and partially transmits the light, and a thermo module 7 that controls the temperature of each optical member.

【0016】上記構成を有する装置の動作を概略的に説
明する。半導体レーザ1から出射された励起光はレンズ
2により集光されてレーザ媒質3に照射される。レーザ
媒質3にあって励起光の入射面には、励起光を効率よく
透過させるとともに基本波光及び高調波光を高反射率で
もって反射させる反射層3aが形成されており、この反
射層3aと出力ミラー6とで光共振器が構成される。し
たがって、励起光によりレーザ媒質3から誘導放出され
た基本波光は、上記光共振器内で発振し増幅される。な
お、レーザ媒質3は、例えば青色発光波長946nmの
発振に対してはNd:YAG、緑色発光波長1064n
mの発振に対してはNd:YVO4、などが用いられ
る。
The operation of the apparatus having the above configuration will be briefly described. The excitation light emitted from the semiconductor laser 1 is condensed by the lens 2 and applied to the laser medium 3. A reflection layer 3a that transmits the excitation light efficiently and reflects the fundamental wave light and the harmonic light with a high reflectance is formed on the incident surface of the laser medium 3 for the excitation light. The mirror 6 constitutes an optical resonator. Therefore, the fundamental wave light that is stimulated and emitted from the laser medium 3 by the excitation light is oscillated and amplified in the optical resonator. The laser medium 3 is, for example, Nd: YAG for a blue emission wavelength of 946 nm and a green emission wavelength of 1064n.
Nd: YVO 4 or the like is used for the oscillation of m.

【0017】光共振器内に介挿された波長変換素子4
は、その非線形光学効果によって、基本波光の1/2の
波長の光、つまり高調波光を生成するから、光共振器内
部では主として基本波光と高調波光とが混在している。
基本波光は出力ミラー6で反射するが、高調波光は出力
ミラー6を透過する。したがって、図1中に示すよう
に、出力ミラー6から右方には高調波光のみが出射され
る。なお、エタロン5は共振における必須の構成要素で
はないが、ここでは発振の過程で複数生じるモードのう
ちの1つのモードを選択する機能を有している。
Wavelength conversion element 4 inserted in the optical resonator
Due to the non-linear optical effect, light having a wavelength half the fundamental wave light, that is, harmonic light, is generated. Therefore, the fundamental wave light and the harmonic light are mainly mixed inside the optical resonator.
The fundamental wave light is reflected by the output mirror 6, while the harmonic light is transmitted through the output mirror 6. Therefore, as shown in FIG. 1, only the harmonic light is emitted from the output mirror 6 to the right. Although the etalon 5 is not an essential component for resonance, it has a function of selecting one of a plurality of modes generated during the oscillation here.

【0018】上記構成において、波長変換素子4は、図
2(A)及び(B)に示すように2個のQPM素子4
a、4bを、その分極反転層42の周期の均一性が良好
である部分(上記均一周期部)、すなわち、図3及び図
4(B)で言えば上部に相当する部分に面した上面を対
向させた状態で、透光性の良好な接着剤4cを用いて貼
り合わせたものである。したがって、各QPM素子4
a、4bにおける均一周期部の厚さがdであるとする
と、波長変換素子4では、均一周期部の実質的な厚さは
境界面を挟んで2dに拡大する。こうして作製した波長
変換素子4の境界面に光軸Cが来るように、該波長変換
素子4を光共振器内部に配置する。
In the above structure, the wavelength conversion element 4 includes two QPM elements 4 as shown in FIGS. 2 (A) and 2 (B).
a and 4b are the upper surfaces facing the portion where the period inversion of the domain-inverted layer 42 is good (the above-mentioned uniform periodic portion), that is, the portion corresponding to the upper portion in FIG. 3 and FIG. 4B. In a state where they face each other, they are pasted together by using an adhesive 4c having a good translucency. Therefore, each QPM element 4
Assuming that the thickness of the uniform periodic portion in a and 4b is d, in the wavelength conversion element 4, the substantial thickness of the uniform periodic portion expands to 2d across the boundary surface. The wavelength conversion element 4 is arranged inside the optical resonator so that the optical axis C comes to the boundary surface of the wavelength conversion element 4 thus manufactured.

【0019】例えば、図3に示したQPM素子の例で
は、1個のQPM素子を波長変換素子として用いた場
合、数十μm程度の径となるビームを100〜150μ
m程度の厚さの均一周期部に照射しなければならず、そ
のための位置調整はかなり厳しくなり、調整が可能であ
ったとしても生産性は上がらない。これに対し、本実施
例の構成では、均一周期部の厚さが200〜300μm
程度に拡大され、ビームに対する位置ずれの許容範囲が
広がるため、この部分にビームを容易に当てることがで
き、生産性も格段に向上する。
For example, in the example of the QPM element shown in FIG. 3, when one QPM element is used as a wavelength conversion element, a beam having a diameter of several tens of μm is 100 to 150 μm.
It is necessary to irradiate a uniform period part having a thickness of about m, and the position adjustment for that purpose is considerably strict, and even if adjustment is possible, the productivity does not increase. On the other hand, in the configuration of this embodiment, the thickness of the uniform periodic portion is 200 to 300 μm.
Since the beam is expanded to some extent and the allowable range of positional deviation with respect to the beam is expanded, the beam can be easily applied to this portion, and the productivity is significantly improved.

【0020】したがって、本実施例の波長変換レーザ装
置では、光共振器の内部で波長変換素子4の分極反転層
の周期の均一性が良好である部分に効率よく基本波光が
当たるため、高い波長変換効率が得られ、それだけ高出
力の高調波光を外部に取り出すことができる。なお、一
般にQPM素子ではウォークオフ角がゼロとなるため、
素子長(素子内部での光路長)を長くとることができれ
ば変換効率を上げることができる。しかしながら、その
ためには光共振器自体が大形になるという不利益がある
が、本構成によれば、同じ変換効率を得るためにQPM
素子の素子長を短くすることができるので、光共振器の
小型化にも有利である。
Therefore, in the wavelength conversion laser device of the present embodiment, since the fundamental wave light efficiently hits the portion where the period inversion of the polarization inversion layer of the wavelength conversion element 4 is good inside the optical resonator, a high wavelength is obtained. Conversion efficiency can be obtained, and higher-power harmonic light can be extracted to the outside. In addition, since the walk-off angle is generally zero in a QPM element,
If the element length (optical path length inside the element) can be increased, the conversion efficiency can be increased. However, this has the disadvantage that the optical resonator itself becomes large, but according to this configuration, in order to obtain the same conversion efficiency, the QPM
Since the element length of the element can be shortened, it is also advantageous for downsizing the optical resonator.

【0021】なお、図2(B)では、上下のQPM素子
4a,4bの分極反転層42の周期を完全に一致させて
いるが、原理的には、波長変換素子4の内部にあって高
調波光が発生した箇所から光軸Cまでの間で位相整合を
とればよいので、上下の周期を厳密に合わせる必要はな
い。また、上記実施例では、2個のQPM素子4a,4
bを接着剤で貼り合わせているが、できるだけ隙間なく
密着させさえすれば接着せずとも同等の効果が達成でき
る。更にまた、上記構成の波長変換素子4では分極反転
層42の周期性が良好でない部分は不要であるため、図
2(C)に示すように、この部分を研磨等によって除去
してもよい。
In FIG. 2B, the periods of the polarization inversion layers 42 of the upper and lower QPM elements 4a and 4b are perfectly matched, but in principle, the harmonics are present inside the wavelength conversion element 4. Since it suffices to perform phase matching between the portion where the wave light is generated and the optical axis C, it is not necessary to strictly match the upper and lower periods. In the above embodiment, the two QPM elements 4a and 4a
Although b is adhered with an adhesive, the same effect can be achieved without adhering as long as it is adhered as closely as possible. Furthermore, in the wavelength conversion element 4 having the above structure, the portion of the domain inversion layer 42 where the periodicity is not good is unnecessary. Therefore, as shown in FIG. 2C, this portion may be removed by polishing or the like.

【0022】また、それ以外にも、本発明の趣旨の範囲
で、適宜の変形や修正など行っても、本発明の請求の範
囲に包含されることは明らかである。
In addition to the above, it is apparent that appropriate changes and modifications made within the scope of the present invention are also included in the scope of the claims of the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例による波長変換レーザ装置
の概略構成図。
FIG. 1 is a schematic configuration diagram of a wavelength conversion laser device according to an embodiment of the present invention.

【図2】 本発明の一実施例におけるQPM素子の概略
構造図。
FIG. 2 is a schematic structural diagram of a QPM element according to an embodiment of the present invention.

【図3】 図4(B)に示す波長変換結晶をPの位置で
縦に切断した面を実際に観察した写真を示す図。
FIG. 3 is a diagram showing a photograph of an actual observation of a plane obtained by vertically cutting the wavelength conversion crystal shown in FIG. 4B at a position P.

【図4】 QPM素子の製造方法の一例を説明するため
の図。
FIG. 4 is a diagram for explaining an example of a method of manufacturing a QPM element.

【符号の説明】[Explanation of symbols]

1…半導体レーザ 2…レンズ 3…レーザ媒質 3a…反射層 4…波長変換素子 4a,4b…QPM素子 4c…接着剤 41…バルク結晶 42…分極反転層 5…エタロン 6…出力ミラー 7…サーモモジュール 1 ... Semiconductor laser 2 ... Lens 3 ... Laser medium 3a ... Reflective layer 4 ... Wavelength conversion element 4a, 4b ... QPM element 4c ... Adhesive 41 ... Bulk crystal 42 ... polarization inversion layer 5 ... Etalon 6 ... Output mirror 7 ... Thermo module

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 励起光を発生する励起光源と、該励起光
で励起されて基本波光を放出するレーザ媒質と、該レー
ザ媒質から放出される基本波光を共振しつつ増幅する光
共振器と、該光共振器の光路中に介挿され、前記基本波
光から高調波光を生成する波長変換素子とを具備し、前
記高調波光を光共振器の外部に取り出す波長変換レーザ
装置において、 前記波長変換素子は、バルク結晶の内部に周期的な分極
反転層を形成して成る擬似位相整合型の波長変換結晶を
複数個用い、その各波長変換結晶の分極反転層の周期の
均一性が良好である部分に面する面同士を互いに密着さ
せ、その密着面又はその近傍が前記光共振器内の光軸と
ほぼ一致するように配置されたことを特徴とする波長変
換レーザ装置。
1. A pumping light source that generates pumping light, a laser medium that is excited by the pumping light to emit fundamental wave light, and an optical resonator that amplifies the fundamental wave light emitted from the laser medium while resonating. A wavelength conversion laser device that is inserted in the optical path of the optical resonator and that generates a harmonic light from the fundamental wave light, and that extracts the harmonic light to the outside of the optical resonator. Is a part in which a plurality of quasi-phase-matching wavelength conversion crystals formed by forming periodic polarization inversion layers inside a bulk crystal are used, and the polarization inversion layers of the respective wavelength conversion crystals have good period uniformity. The wavelength conversion laser device is characterized in that the surfaces facing each other are in close contact with each other, and the contact surface or its vicinity is arranged so as to substantially coincide with the optical axis in the optical resonator.
【請求項2】 前記波長変換素子は、前記波長変換結晶
を2個用い、その各波長変換結晶の分極反転層の周期の
均一性が良好である部分に面する平面同士を対向して密
着させたものであることを特徴とする請求項1に記載の
波長変換レーザ装置。
2. The wavelength conversion element uses two of the wavelength conversion crystals, and the planes facing the portions of the polarization inversion layer of each wavelength conversion crystal where the period uniformity is good are brought into close contact with each other. The wavelength conversion laser device according to claim 1, wherein the wavelength conversion laser device is a laser.
JP2002108659A 2002-04-11 2002-04-11 Wavelength conversion laser device Pending JP2003304019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002108659A JP2003304019A (en) 2002-04-11 2002-04-11 Wavelength conversion laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002108659A JP2003304019A (en) 2002-04-11 2002-04-11 Wavelength conversion laser device

Publications (1)

Publication Number Publication Date
JP2003304019A true JP2003304019A (en) 2003-10-24

Family

ID=29392336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002108659A Pending JP2003304019A (en) 2002-04-11 2002-04-11 Wavelength conversion laser device

Country Status (1)

Country Link
JP (1) JP2003304019A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059964A (en) * 2004-08-19 2006-03-02 Shimadzu Corp Quasi phase-matching wavelength conversion element for wavelength converted laser, and manufacturing method thereof
JP2008218969A (en) * 2007-02-07 2008-09-18 Seiko Epson Corp Light source unit, illumination device, image display apparatus, and monitor apparatus
US8130368B2 (en) 2007-05-25 2012-03-06 Kabushiki Kaisha Topcon Distance measuring apparatus
US8144311B2 (en) 2008-10-01 2012-03-27 Kabushiki Kaisha Topcon Laser apparatus and distance measurement apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059964A (en) * 2004-08-19 2006-03-02 Shimadzu Corp Quasi phase-matching wavelength conversion element for wavelength converted laser, and manufacturing method thereof
JP2008218969A (en) * 2007-02-07 2008-09-18 Seiko Epson Corp Light source unit, illumination device, image display apparatus, and monitor apparatus
US8130368B2 (en) 2007-05-25 2012-03-06 Kabushiki Kaisha Topcon Distance measuring apparatus
US8144311B2 (en) 2008-10-01 2012-03-27 Kabushiki Kaisha Topcon Laser apparatus and distance measurement apparatus

Similar Documents

Publication Publication Date Title
JP4925085B2 (en) Deep ultraviolet laser light generation method and deep ultraviolet laser device
JP3997450B2 (en) Wavelength converter
US20070248136A1 (en) Laser apparatus having multiple synchronous amplifiers tied to one master oscillator
US20080013163A1 (en) Light source with precisely controlled wavelength-converted average power
JP4041782B2 (en) Semiconductor laser pumped solid state laser
US20070264734A1 (en) Solid-state laser device and method for manufacturing wavelength conversion optical member
JP4231829B2 (en) Internal cavity sum frequency mixing laser
JP2005521910A (en) Generation of fourth harmonic with enhanced intracavity resonance using uncoated Brewster surface
JPH05210135A (en) Optical wavelength conversion device
US20120077003A1 (en) Method of nonlinear crystal packaging and its application in diode pumped solid state lasers
JPH06130328A (en) Polarization control element and solid laser device
JP2003304019A (en) Wavelength conversion laser device
JP2001210895A (en) Solid-state laser and its manufacturing method
JPH07273391A (en) Laser beam generator
JPH05121803A (en) Semiconductor excitation solid-state laser
JP5213368B2 (en) Laser light second harmonic generator
JP5855229B2 (en) Laser equipment
JPH04137775A (en) Semiconductor laser excitation solid state laser
JP2000338530A (en) Wavelength conversion device for laser light and method for its conversion
JPH0750442A (en) Laser equipment for processing
JPH05299751A (en) Laser-diode pumping solid-state laser
JP2000114633A (en) Wavelength conversion solid laser device
JP4518843B2 (en) Solid state laser equipment
JP2004219675A (en) Far-infrared solid laser oscillation system
JP2005274980A (en) Wavelength converting element and wavelength conversion laser by polarization inversion