JP2006059964A - Quasi phase-matching wavelength conversion element for wavelength converted laser, and manufacturing method thereof - Google Patents

Quasi phase-matching wavelength conversion element for wavelength converted laser, and manufacturing method thereof Download PDF

Info

Publication number
JP2006059964A
JP2006059964A JP2004239401A JP2004239401A JP2006059964A JP 2006059964 A JP2006059964 A JP 2006059964A JP 2004239401 A JP2004239401 A JP 2004239401A JP 2004239401 A JP2004239401 A JP 2004239401A JP 2006059964 A JP2006059964 A JP 2006059964A
Authority
JP
Japan
Prior art keywords
wavelength conversion
refractive index
wavelength
light
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004239401A
Other languages
Japanese (ja)
Other versions
JP2006059964A5 (en
Inventor
Akira Tateno
亮 立野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2004239401A priority Critical patent/JP2006059964A/en
Publication of JP2006059964A publication Critical patent/JP2006059964A/en
Publication of JP2006059964A5 publication Critical patent/JP2006059964A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Physical Vapour Deposition (AREA)
  • Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve generation efficiency of laser in a wavelength converted laser device that converts basic wave light into harmonic beams, using a quasi phase-matching wavelength converting element. <P>SOLUTION: A thin film whose material is a mixture of silicon oxide and silicon nitride is formed at end faces 4a and 4b, to reduce the reflectivity of both end faces 4a and 4b of a quasi phase-matching wavelength conversion (QPM) element 4 arranged in an optical resonator 7. The mixing ratio of the mixture is so controlled as to be a specified refractive index, which is acquired from the refractive index of base body of QPM element at a used wavelength and that of air which is an incident (or outgoing) medium. So, the reflectivity of the end faces 4a and 4b can be suppressed, down to 0.01% or smaller, amounting to improvement by one digit or more as compared to before. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、励起光により励起されたレーザ媒質から放出される基本波光を共振しつつ増幅する光共振器の光路中に介挿され、その基本波光から高調波光を生成するための疑似位相整合を利用した波長変換素子、及びその製造方法に関する。   The present invention is inserted in the optical path of an optical resonator that resonates and amplifies fundamental wave light emitted from a laser medium pumped by pumping light, and performs quasi-phase matching for generating harmonic light from the fundamental wave light. The present invention relates to a wavelength conversion element used and a manufacturing method thereof.

近年、緑色、青色などの短波長レーザは、例えば干渉計、光ディスク用の光ピックアップ、印刷装置など幅広い分野において注目されており、こうしたレーザ光を発生するレーザ装置の研究・開発が各地で盛んに進められている。このような短波長レーザ装置の一つとして、基本波レーザ光の光路中に波長変換素子を挿入して高調波光を発生させ、その高調波光を外部に取り出すようにした波長変換レーザ装置が知られている。   In recent years, short-wavelength lasers such as green and blue have been attracting attention in a wide range of fields such as interferometers, optical pickups for optical disks, and printing devices. It is being advanced. As one of such short wavelength laser devices, there is known a wavelength conversion laser device in which a wavelength conversion element is inserted in an optical path of a fundamental laser beam to generate harmonic light, and the harmonic light is extracted outside. ing.

従来のこの種の波長変換レーザ装置では、波長変換素子として非線形光学結晶であるKN(KNbO3)やKTP(KTiO4 )が用いられていたが、このような結晶は、波長の温度依存性が大きい、波長に対して利用できる結晶が限定される、といった問題があった。これに対し、近年、擬似位相整合(QPM:Quasi Phase Matching)作用を利用した波長変換素子が注目を集めている。このような擬似位相整合型波長変換素子(以下、「QPM素子」と称す)は、LiNbO3やLiTaO3などのバルク結晶の内部に周期的な分極反転層を形成することで、所定波長のレーザ光に対して擬似的な位相整合を達成しようとするものであり、その分極反転層の周期を変えることによってほぼ任意の波長に対応が可能となっている。 In this type of conventional wavelength conversion laser apparatus, KN (KNbO 3 ) or KTP (KTiO 4 ), which is a nonlinear optical crystal, is used as a wavelength conversion element. However, such a crystal has a temperature dependency of wavelength. There is a problem that crystals that can be used with respect to wavelength are limited. On the other hand, in recent years, a wavelength conversion element using a quasi phase matching (QPM) action has attracted attention. Such a quasi-phase-matching wavelength conversion element (hereinafter referred to as “QPM element”) is a laser having a predetermined wavelength by forming a periodic polarization inversion layer inside a bulk crystal such as LiNbO 3 or LiTaO 3. It is intended to achieve pseudo phase matching with light, and it is possible to cope with almost any wavelength by changing the period of the polarization inversion layer.

図1はQPM素子を用いた波長変換レーザ装置の一般的な構成を示す概略図である(例えば特許文献1など参照)。このレーザ装置は、励起光を発生する半導体レーザ1と、該半導体レーザ1からの励起光を集光するレンズ2と、励起光で励起されることにより基本波光を含むレーザ光を誘導放出するレーザ媒質3と、誘導放出された基本波光から第二高調波光を生成するQPM素子4と、特定の波長の光を選択的に透過させるエタロン5と、光を反射させつつその一部を透過させる出力ミラー6とを含む。   FIG. 1 is a schematic view showing a general configuration of a wavelength conversion laser device using a QPM element (see, for example, Patent Document 1). The laser device includes a semiconductor laser 1 that generates excitation light, a lens 2 that collects the excitation light from the semiconductor laser 1, and a laser that stimulates and emits laser light including fundamental light by being excited by the excitation light. Medium 3, QPM element 4 that generates second harmonic light from stimulated fundamental wave light, etalon 5 that selectively transmits light of a specific wavelength, and output that transmits part of the light while reflecting light And mirror 6.

このレーザ装置の動作を概略的に説明する。半導体レーザ1から出射された励起光はレンズ2により集光されてレーザ媒質3に照射される。レーザ媒質3にあって励起光の入射面には、励起光を効率よく透過させるとともに基本波光及び高調波光を高反射率で以て反射させる反射層3aが形成されており、この反射層3aと出力ミラー6とで光共振器7が構成される。これにより、励起光によってレーザ媒質3から誘導放出された基本波光は、光共振器7内で発振し増幅される。なお、レーザ媒質3としては、取り出したいレーザ波長の2倍の波長の発振に対応した物質が使用され、例えば青色発光波長473nmを取り出すためにはNd:YAG(946nm)、緑色発光波長523nmを取り出すためにはNd:YVO4(1064nm)などが用いられる。 The operation of this laser apparatus will be schematically described. The excitation light emitted from the semiconductor laser 1 is condensed by the lens 2 and irradiated to the laser medium 3. In the laser medium 3, a reflection layer 3 a that efficiently transmits the excitation light and reflects the fundamental wave light and the harmonic light with high reflectivity is formed on the incident surface of the excitation light. An optical resonator 7 is constituted by the output mirror 6. Thereby, the fundamental wave light stimulated and emitted from the laser medium 3 by the excitation light is oscillated and amplified in the optical resonator 7. As the laser medium 3, a substance corresponding to oscillation having a wavelength twice the laser wavelength to be extracted is used. For example, in order to extract a blue emission wavelength of 473 nm, Nd: YAG (946 nm) and a green emission wavelength of 523 nm are extracted. For this purpose, Nd: YVO 4 (1064 nm) or the like is used.

光共振器7内に介挿されたQPM素子4は、その非線形光学効果によって、基本波光の1/2の波長の光つまり2倍の高調波光を生成する。したがって、光共振器7内部では基本波光と高調波光とが混在している。基本波光は出力ミラー6で反射するが、高調波光は出力ミラー6を透過する。それにより、図1中に示すように、出力ミラー6から右方には高調波光のみが選択的に出射される。なお、エタロン5は共振における必須の構成要素ではないが、ここでは発振の過程で複数生じるモードのうちの1つのモードを選択する機能を有している。   The QPM element 4 inserted in the optical resonator 7 generates light having a wavelength half that of the fundamental wave light, that is, double harmonic light, by the nonlinear optical effect. Therefore, the fundamental wave light and the harmonic light are mixed inside the optical resonator 7. The fundamental light is reflected by the output mirror 6, but the harmonic light is transmitted through the output mirror 6. As a result, as shown in FIG. 1, only the harmonic light is selectively emitted from the output mirror 6 to the right. The etalon 5 is not an essential component in resonance, but here has a function of selecting one mode among a plurality of modes generated in the process of oscillation.

こうした構成の波長変換レーザ装置において、効率良く高調波光を取り出すためには、QPM素子4における疑似位相整合条件を安定化することが重要である。そのためには、QPM素子4における波長変換の際に最大変換効率を与える基本波波長にレーザ発振波長を一致させ、QPM素子4の両端面4a、4bでの反射率を抑制して光共振器7中のフレネル反射損失を低く抑えるとともに、発振波長の帰還効率を高めて発振閾値を十分に高くする必要がある。   In the wavelength conversion laser device having such a configuration, it is important to stabilize the quasi phase matching condition in the QPM element 4 in order to efficiently extract harmonic light. For this purpose, the laser oscillation wavelength is made to coincide with the fundamental wavelength that gives the maximum conversion efficiency at the time of wavelength conversion in the QPM element 4, and the reflectance at the both end faces 4 a and 4 b of the QPM element 4 is suppressed to reduce the optical resonator 7. It is necessary to keep the Fresnel reflection loss low and raise the oscillation wavelength feedback efficiency to a sufficiently high value.

特開2003−304019号公報JP 2003-304019 A

QPM素子4の端面4a、4bでの反射率を抑制するのは、端面での反射波が増加すると光共振器7内で理想的な定在波でなくなるためである。しかしながら、従来、波長変換レーザ装置に使用されるQPM素子の端面は1%程度の反射率を示すのが一般的であり、特に低反射を狙ったものでも0.1%程度以上の反射率を示す。反射率は低いほど好ましいが、実用的には反射率が0.01%程度以下であれば殆ど無反射であるとみなし得る範囲であり、これが1つの目標となり得るが、従来、QPM素子の端面をこうした低反射とし得るような方法は確立されていない。   The reason why the reflectance at the end faces 4a and 4b of the QPM element 4 is suppressed is that an ideal standing wave is not obtained in the optical resonator 7 when the reflected wave at the end face increases. However, conventionally, the end face of a QPM element used in a wavelength conversion laser device generally has a reflectivity of about 1%, and a reflectivity of about 0.1% or more is particularly intended for low reflection. Show. The lower the reflectance, the better. However, practically, if the reflectance is about 0.01% or less, it is a range that can be regarded as almost non-reflecting, and this can be one target. There is no established method that can achieve such low reflection.

本発明はこうした課題に鑑みて成されたものであり、波長変換レーザ用のQPM素子において、光の入射面及び出射面となる端面での反射をきわめて小さく抑えることによって高調波レーザの生成効率を高めることを主たる目的としている。   The present invention has been made in view of these problems, and in the QPM element for wavelength conversion laser, the generation efficiency of the harmonic laser is reduced by suppressing the reflection at the end face as the light incident surface and the light exit surface extremely small. The main purpose is to increase.

上記課題を解決するために成された第1発明は、励起光により励起されたレーザ媒質から放出される基本波光を共振しつつ増幅する光共振器の光路中に介挿され、前記基本波光から高調波光を生成するための波長変換レーザ用の疑似位相整合型波長変換素子において、
高調波を発生する基体の光入射面及び光出射面となる両端面に、所定物質の酸化物と窒化物との混合物を材料とする薄膜を有し、該酸化物と窒化物との混合割合を調整することにより、使用するレーザ波長における前記薄膜の屈折率を、該薄膜を挟んだ入射側物質の屈折率と出射側物質の屈折率とに基づいて算出される所定値になるようにしたことを特徴としている。
The first invention made to solve the above problems is inserted in an optical path of an optical resonator that resonates and amplifies fundamental light emitted from a laser medium pumped by pumping light. In a quasi phase matching wavelength conversion element for a wavelength conversion laser for generating harmonic light,
A thin film made of a mixture of an oxide and a nitride of a predetermined material is formed on both end surfaces of the light incident surface and the light emission surface of a substrate that generates harmonics, and the mixing ratio of the oxide and nitride Is adjusted so that the refractive index of the thin film at the laser wavelength to be used becomes a predetermined value calculated based on the refractive index of the incident side substance and the refractive index of the outgoing side substance sandwiching the thin film. It is characterized by that.

また上記課題を解決するために成された第2発明は、励起光により励起されたレーザ媒質から放出される基本波光を共振しつつ増幅する光共振器の光路中に介挿され、前記基本波光から高調波光を生成するための波長変換レーザ用疑似位相整合型波長変換素子を製造する方法であって、
高調波を発生する基体の光入射面及び光出射面となる両端面に、酸素ガスと窒素ガスとを所定割合で混合した雰囲気ガス中で所定物質をターゲットとした成膜処理を実行することにより、該所定物質の酸化物と窒化物との混合物を材料とする薄膜を形成し、その成膜処理時に酸素ガスと窒素ガスとの混合割合を調整することにより、使用するレーザ波長における前記薄膜の屈折率を、該薄膜を挟んだ入射側物質の屈折率と出射側物質の屈折率とに基づいて算出される所定値になるようにしたことを特徴としている。
Further, the second invention made to solve the above-mentioned problem is inserted in an optical path of an optical resonator that resonates and amplifies fundamental light emitted from a laser medium excited by excitation light, and the fundamental light A method of manufacturing a quasi phase matching type wavelength conversion element for wavelength conversion laser for generating harmonic light from
By performing a film forming process using a predetermined substance as a target in an atmosphere gas in which oxygen gas and nitrogen gas are mixed in a predetermined ratio on both end surfaces which are a light incident surface and a light output surface of a substrate that generates harmonics. And forming a thin film made of a mixture of the oxide and nitride of the predetermined substance, and adjusting the mixing ratio of oxygen gas and nitrogen gas during the film forming process, so that the thin film at the laser wavelength to be used is adjusted. The refractive index is set to a predetermined value calculated based on the refractive index of the incident-side material and the refractive index of the output-side material sandwiching the thin film.

具体的に、前記所定物質としては酸化物や窒化物が形成される物質であれば各種の物質を利用することができるが、生成された薄膜の安定性や成膜時間の妥当性を考慮すると、例えば、シリコン、チタン又はアルミニウムなどが好適である。   Specifically, as the predetermined substance, various substances can be used as long as they form oxides and nitrides, but considering the stability of the generated thin film and the validity of the film formation time. For example, silicon, titanium, or aluminum is preferable.

例えば所定物質がシリコン(Si)である場合、基体の両端面に形成される薄膜は酸化シリコン(SiO2)と窒化シリコン(Si34)との混合物となる。波長にも依存するが、酸化シリコンの屈折率は1.44、窒化シリコンの屈折率は2.02であり、その混合物の屈折率は両者の混合比によって変わる。一方、この薄膜での反射率は薄膜を挟んだ両物質の屈折率とこの薄膜自体の屈折率とに依存しており、いま、薄膜を挟んだ一方の物質(典型的には空気)の屈折率がn0、他方の物質(典型的には基体)の屈折率がnsであるとき、薄膜での反射率が極小となる条件は、薄膜の屈折率n1が次式を満たすときである。
n1=(n0・ns)1/2 …(1)
For example, when the predetermined substance is silicon (Si), the thin films formed on both end faces of the base body are a mixture of silicon oxide (SiO 2 ) and silicon nitride (Si 3 N 4 ). Although depending on the wavelength, the refractive index of silicon oxide is 1.44, the refractive index of silicon nitride is 2.02, and the refractive index of the mixture varies depending on the mixing ratio of the two. On the other hand, the reflectivity of this thin film depends on the refractive index of both materials sandwiching the thin film and the refractive index of this thin film itself, and now the refraction of one material (typically air) sandwiching the thin film. When the refractive index is n0 and the refractive index of the other substance (typically the substrate) is ns, the condition that the reflectance at the thin film is minimized is that the refractive index n1 of the thin film satisfies the following equation.
n1 = (n0 · ns) 1/2 (1)

上述のように屈折率は波長に依存するため、実際に使用するレーザ光の波長に対応して上記(1)式より目的とする薄膜の屈折率n1を算出し、その値になるように混合物の混合比を制御すればよい。具体的には、成膜処理時に酸素ガスと窒素ガスとの混合割合を調整することにより混合物の割合を変えることが可能であるから、予め所定の成膜条件の下での酸素ガス流量と窒素ガス流量との比率と薄膜の屈折率との関係を実験的に調べておき、目標となる屈折率を得るための酸素ガス流量と窒素ガス流量との比率を求めて、これを成膜条件の1つとすればよい。   As described above, since the refractive index depends on the wavelength, the refractive index n1 of the target thin film is calculated from the above equation (1) corresponding to the wavelength of the laser light to be actually used, and the mixture is set to the value. The mixing ratio may be controlled. Specifically, since it is possible to change the ratio of the mixture by adjusting the mixing ratio of oxygen gas and nitrogen gas during the film forming process, the oxygen gas flow rate and nitrogen under predetermined film forming conditions in advance. The relationship between the ratio of the gas flow rate and the refractive index of the thin film is experimentally investigated, and the ratio of the oxygen gas flow rate and the nitrogen gas flow rate for obtaining the target refractive index is obtained. One is enough.

このようにして本発明に係る波長変換レーザ用疑似位相整合型波長変換素子及びその製造方法によれば、QPM素子の基体の両端面に形成した薄膜によって、該素子に対して光が入射する際及び出射する際に端面での反射を極めて小さく抑えることができる。具体的には、その反射率を従来よりも1桁以上小さな0.01%程度又はそれ以下のレベルに抑えることができる。それによって、共振器内での損失が小さくなり、QPM素子での波長変換効率が改善されて、外部に取り出す高調波レーザの出力を大きくすることができる。   Thus, according to the quasi phase matching wavelength conversion element for wavelength conversion laser and the method for manufacturing the same according to the present invention, when light is incident on the element by the thin films formed on both end faces of the base of the QPM element. In addition, reflection at the end face can be suppressed to an extremely low level when the light is emitted. Specifically, the reflectance can be suppressed to a level of about 0.01% or less, which is one digit or more smaller than the conventional one. Thereby, the loss in the resonator is reduced, the wavelength conversion efficiency in the QPM element is improved, and the output of the harmonic laser extracted to the outside can be increased.

以下、本発明の一実施例である波長変換レーザ用QPM素子について具体的に説明する。   Hereinafter, the QPM element for wavelength conversion laser which is one Example of this invention is demonstrated concretely.

一般に、屈折率nsを有する基体の上に、屈折率nsよりも小さな屈折率n1を有する物質を材料とする薄膜を一層形成すると、その薄膜は反射率を抑制するのに寄与する。いま、その薄膜の幾何学的厚さをd1とすると、光学的膜厚はn1・d1であり、この光学的膜厚が次の(2)式を満たす波長λ0において反射率は極小となる。
n1・d1=(1/4)・λ0+(m/2)・λ0 …(2)
但し、m=0,1,2,…
このときの反射率Rminは、次の(3)式で与えられる。
Rmin={(n12−n0・ns )/(n12+n0・ns ) 2 …(3)
ここで、n0は入射媒質の屈折率である。
(3)式より、反射率Rminが極小(理論的にはゼロ)となる条件は、
n12−n0・ns=0
であり、これから上記(1)式が求まる。
Generally, when a thin film made of a material having a refractive index n1 smaller than the refractive index ns is formed on a substrate having a refractive index ns, the thin film contributes to suppressing the reflectance. Assuming that the geometric thickness of the thin film is d1, the optical film thickness is n1 · d1, and the reflectance is minimal at a wavelength λ0 that satisfies the following equation (2).
n1 · d1 = (1/4) · λ0 + (m / 2) · λ0 (2)
However, m = 0, 1, 2,...
The reflectance Rmin at this time is given by the following equation (3).
Rmin = {(n1 2 −n0 · ns ) / (N1 2 + n0 · ns ) } 2 … (3)
Here, n0 is the refractive index of the incident medium.
From equation (3), the condition for the reflectance Rmin to be minimal (theoretically zero) is
n1 2 −n0 · ns = 0
From this, the above equation (1) is obtained.

いま、QPM素子の基体として第2高調波発生素子であるMgO:LiTaO3 を用いる場合を例示して考える。このMgO:LiTaO3 の屈折率nsは2.143(λ=946nmにおいて)である。一方、図1に示すような構成のレーザ装置では入射媒質は空気であるから屈折率n0は約1である。したがって、反射率が極小となるような薄膜の屈折率n1は、(1)式より1.46と求まる。図2は酸化シリコン(SiO2)と窒化シリコン(Si34)との混合比率と屈折率との関係を示す概念図である。酸化シリコンの屈折率は1.44、窒化シリコンの屈折率2.02であり、両者の混合比率によって屈折率を1.44〜2.02の間で任意に制御することが可能である。ここでは、目的とする屈折率1.46を得るには、大部分が酸化シリコンであって、これに少量の窒化シリコンが混合した薄膜を形成すればよいことが分かる。なお、図2のグラフでは直線を引いているが、実際にはこれは直線であるとは限らず、所定の成膜条件の下で実際に予備実験を行って物質の混合比率と屈折率との関係を求める必要がある。 Consider a case where MgO: LiTaO 3 , which is a second harmonic generation element, is used as the base of the QPM element. The refractive index ns of this MgO: LiTaO 3 is 2.143 (at λ = 946 nm). On the other hand, in the laser apparatus configured as shown in FIG. 1, since the incident medium is air, the refractive index n0 is about 1. Accordingly, the refractive index n1 of the thin film having a minimum reflectance is obtained as 1.46 from the equation (1). FIG. 2 is a conceptual diagram showing the relationship between the mixing ratio of silicon oxide (SiO 2 ) and silicon nitride (Si 3 N 4 ) and the refractive index. The refractive index of silicon oxide is 1.44, and the refractive index of silicon nitride is 2.02. The refractive index can be arbitrarily controlled between 1.44 and 2.02 by the mixing ratio of both. Here, it can be seen that in order to obtain the target refractive index of 1.46, a thin film in which most of the silicon oxide is mixed with a small amount of silicon nitride may be formed. Note that although a straight line is drawn in the graph of FIG. 2, this is not necessarily a straight line, and a preliminary experiment is actually performed under predetermined film formation conditions to determine the mixing ratio and refractive index of the substance. It is necessary to seek the relationship.

一般に基板上に薄膜を形成する方法として蒸着やスパッタリングなどが用いられるが、ここでもこれら従来から使用されている一般的な方法で成膜を行うことができる。具体的に、上述したように酸化シリコンと窒化シリコンとの混合物の薄膜を形成するには、例えば、シリコンをターゲットとして酸素ガスと窒素ガスとの混合ガスの雰囲気中で蒸着を行えばよいが、その際に、雰囲気ガスとして供給する酸素ガスの流量と窒素ガスの流量とを調整することで酸化物と窒化物との混合比率、つまり基体の表面に積層される薄膜の組成(SiO2x(Si341-x を制御することができる。 In general, vapor deposition or sputtering is used as a method for forming a thin film on a substrate. However, it is also possible to form a film by these conventional methods. Specifically, in order to form a thin film of a mixture of silicon oxide and silicon nitride as described above, for example, vapor deposition may be performed in an atmosphere of a mixed gas of oxygen gas and nitrogen gas using silicon as a target. At that time, by adjusting the flow rate of oxygen gas and nitrogen gas supplied as the atmospheric gas, the mixing ratio of oxide and nitride, that is, the composition of the thin film laminated on the surface of the substrate (SiO 2 ) x (Si 3 N 4 ) 1-x can be controlled.

図3は(SiO2x(Si341-x の成膜条件と屈折率及び付着速度との関係の実測結果の一例である。成膜条件としては、窒素ガス流量:20sccm/min、温度:130℃、高周波電力:500Wで固定し、酸素ガス流量を3〜20sccm/minの範囲内で変化させている。酸素ガス流量が増加するに従い、屈折率の小さな酸化シリコンの混合比率が増加するため、膜の屈折率は減少してゆく。ここでは屈折率が3.5である基体としており、極小の反射率を与える屈折率は1.87となる。したがって、図3中に示すように屈折率を1.87とするように酸素ガスの流量を決定すればよい。 FIG. 3 is an example of an actual measurement result of the relationship between the film forming conditions of (SiO 2 ) x (Si 3 N 4 ) 1-x , the refractive index, and the deposition rate. The film forming conditions are as follows: nitrogen gas flow rate: 20 sccm / min, temperature: 130 ° C., high frequency power: 500 W, and oxygen gas flow rate is changed within a range of 3-20 sccm / min. As the oxygen gas flow rate increases, the mixing ratio of silicon oxide having a small refractive index increases, so that the refractive index of the film decreases. Here, the base has a refractive index of 3.5, and the refractive index giving a minimum reflectance is 1.87. Therefore, as shown in FIG. 3, the flow rate of the oxygen gas may be determined so that the refractive index is 1.87.

但し、屈折率は波長に依存している。図4は、946nmの波長で反射率が極小となるように薄膜を形成した場合の、反射率の波長依存性を計算した結果である。この図で分かるように、波長に応じて屈折率が変わるため、或る波長で反射率を極小になるように定めても他の波長では反射率は極小とはならないどころか、非常に大きくなってしまう。したがって、(1)式に基づいて屈折率の目標値を決める際に、目的とする波長における屈折率を算出することが重要である。   However, the refractive index depends on the wavelength. FIG. 4 shows the result of calculating the wavelength dependence of the reflectance when a thin film is formed so that the reflectance is minimized at a wavelength of 946 nm. As can be seen in this figure, since the refractive index changes according to the wavelength, even if the reflectance is determined to be minimal at a certain wavelength, the reflectance does not become minimal at other wavelengths, but becomes very large. End up. Therefore, it is important to calculate the refractive index at the target wavelength when determining the target value of the refractive index based on the equation (1).

以上のようにして、図1に示すQPM素子4の両端面4a、4bにそれぞれ適切な屈折率を有する薄膜を形成することによって、その端面での反射率を非常に小さく、具体的には0.01%以下にまで抑制することが可能である。なお、薄膜の膜厚は、屈折率n1が決まれば(2)式に基づいて一義的に導出することが可能である。   As described above, by forming thin films having appropriate refractive indexes on both end faces 4a and 4b of the QPM element 4 shown in FIG. 1, the reflectance at the end faces is very small, specifically 0. It is possible to suppress it to 0.01% or less. The thickness of the thin film can be uniquely derived based on the formula (2) if the refractive index n1 is determined.

また、それ以外にも、本発明の趣旨の範囲で適宜の変形や修正など行っても、本発明の請求の範囲に包含されることは明らかである。   In addition, it is obvious that any appropriate modification or modification within the scope of the present invention is included in the scope of the claims of the present invention.

QPM素子を用いた一般的な波長変換レーザ装置の概略構成図。The schematic block diagram of the general wavelength conversion laser apparatus using a QPM element. 酸化シリコンと窒化シリコンとの混合比率と屈折率との関係を示す概念図。The conceptual diagram which shows the relationship between the mixing ratio of silicon oxide and silicon nitride, and a refractive index. (SiO2x(Si341-x の成膜条件と屈折率及び付着速度との関係の実測結果の一例を示す図。 (SiO 2) x (Si 3 N 4) shows an example of a measurement result of the relationship between the film formation conditions of the 1-x and the refractive index and deposition rate. 946nmの波長で反射率が極小となるように薄膜を形成した場合の反射率の波長依存性を計算した結果を示す図。The figure which shows the result of having calculated the wavelength dependence of the reflectance at the time of forming a thin film so that a reflectance may become the minimum at a wavelength of 946 nm.

符号の説明Explanation of symbols

1…半導体レーザ
2…レンズ
3…レーザ媒質
3a…反射層
4…QPM素子
4a、4b…端面
5…エタロン
6…出力ミラー
7…光共振器
DESCRIPTION OF SYMBOLS 1 ... Semiconductor laser 2 ... Lens 3 ... Laser medium 3a ... Reflective layer 4 ... QPM element 4a, 4b ... End face 5 ... Etalon 6 ... Output mirror 7 ... Optical resonator

Claims (3)

励起光により励起されたレーザ媒質から放出される基本波光を共振しつつ増幅する光共振器の光路中に介挿され、前記基本波光から高調波光を生成するための波長変換レーザ用の疑似位相整合型波長変換素子において、
高調波を発生する基体の光入射面及び光出射面となる両端面に、所定物質の酸化物と窒化物との混合物を材料とする薄膜を有し、該酸化物と窒化物との混合割合を調整することにより、使用するレーザ波長における前記薄膜の屈折率を、該薄膜を挟んだ入射側物質の屈折率と出射側物質の屈折率とに基づいて算出される所定値になるようにしたことを特徴とする波長変換レーザ装置用の疑似位相整合型波長変換素子。
Quasi-phase matching for wavelength conversion laser for generating harmonic light from the fundamental wave light inserted in the optical path of the optical resonator that resonates and amplifies the fundamental wave light emitted from the laser medium pumped by the pumping light Type wavelength conversion element,
A thin film made of a mixture of an oxide and a nitride of a predetermined material is formed on both end surfaces of the light incident surface and the light emission surface of a substrate that generates harmonics, and the mixing ratio of the oxide and nitride Is adjusted so that the refractive index of the thin film at the laser wavelength to be used becomes a predetermined value calculated based on the refractive index of the incident side substance and the refractive index of the outgoing side substance sandwiching the thin film. A quasi phase matching wavelength conversion element for a wavelength conversion laser device.
励起光により励起されたレーザ媒質から放出される基本波光を共振しつつ増幅する光共振器の光路中に介挿され、前記基本波光から高調波光を生成するための波長変換レーザ用疑似位相整合型波長変換素子を製造する方法であって、
高調波を発生する基体の光入射面及び光出射面となる両端面に、酸素ガスと窒素ガスとを所定割合で混合した雰囲気ガス中で所定物質をターゲットとした成膜処理を実行することにより、該所定物質の酸化物と窒化物との混合物を材料とする薄膜を形成し、その成膜処理時に酸素ガスと窒素ガスとの混合割合を調整することにより、使用するレーザ波長における前記薄膜の屈折率を、該薄膜を挟んだ入射側物質の屈折率と出射側物質の屈折率とに基づいて算出される所定値になるようにしたことを特徴とする波長変換レーザ用疑似位相整合型波長変換素子の製造方法。
Pseudo phase matching type for wavelength conversion laser for generating harmonic light from the fundamental wave light inserted in the optical path of an optical resonator that resonates and amplifies the fundamental wave light emitted from the laser medium pumped by the pumping light A method for manufacturing a wavelength conversion element, comprising:
By performing a film forming process using a predetermined substance as a target in an atmosphere gas in which oxygen gas and nitrogen gas are mixed in a predetermined ratio on both end surfaces which are a light incident surface and a light output surface of a substrate that generates harmonics. And forming a thin film made of a mixture of the oxide and nitride of the predetermined substance, and adjusting the mixing ratio of oxygen gas and nitrogen gas during the film forming process, so that the thin film at the laser wavelength to be used is adjusted. A quasi phase matching wavelength for wavelength conversion laser, characterized in that the refractive index is a predetermined value calculated based on the refractive index of the incident side material and the refractive index of the output side material sandwiching the thin film A method for manufacturing a conversion element.
前記所定の物質はシリコン、チタン又はアルミニウムのいずれかであることを特徴とする請求項1に記載の波長変換レーザ用疑似位相整合型波長変換素子、又は請求項2に記載の波長変換レーザ用疑似位相整合型波長変換素子の製造方法。   The said predetermined substance is either silicon, titanium, or aluminum, The quasi phase matching type | mold wavelength conversion element for wavelength conversion lasers of Claim 1, or the pseudo | simulation for wavelength conversion lasers of Claim 2 characterized by the above-mentioned. A manufacturing method of a phase matching type wavelength conversion element.
JP2004239401A 2004-08-19 2004-08-19 Quasi phase-matching wavelength conversion element for wavelength converted laser, and manufacturing method thereof Pending JP2006059964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004239401A JP2006059964A (en) 2004-08-19 2004-08-19 Quasi phase-matching wavelength conversion element for wavelength converted laser, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004239401A JP2006059964A (en) 2004-08-19 2004-08-19 Quasi phase-matching wavelength conversion element for wavelength converted laser, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006059964A true JP2006059964A (en) 2006-03-02
JP2006059964A5 JP2006059964A5 (en) 2007-02-08

Family

ID=36107194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004239401A Pending JP2006059964A (en) 2004-08-19 2004-08-19 Quasi phase-matching wavelength conversion element for wavelength converted laser, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2006059964A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008042178A (en) * 2006-07-06 2008-02-21 Matsushita Electric Ind Co Ltd Fiber device, wavelength converter, and image displaying apparatus
DE102009028819A1 (en) 2009-08-21 2011-02-24 Forschungsverbund Berlin E.V. Apparatus for frequency conversion of laser radiation by four-wave mixing, comprises quasi-phase matching medium equipped with hollow cylinder during four-wave mixing of light waves

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04154647A (en) * 1990-10-16 1992-05-27 Asahi Glass Co Ltd Transparent electrically conductive laminate
JPH06308472A (en) * 1993-02-23 1994-11-04 Dainippon Ink & Chem Inc Liquid crystal display element
JPH09162496A (en) * 1995-12-12 1997-06-20 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser and its manufacture
JPH1152442A (en) * 1997-08-01 1999-02-26 Fuji Photo Film Co Ltd Optical wavelength conversion element and optical wavelength conversion device
JPH11149664A (en) * 1997-11-19 1999-06-02 Sharp Corp Optical disk
JP2001288562A (en) * 2000-04-03 2001-10-19 Nippon Sheet Glass Co Ltd Silicon compound thin film deposition method, and article obtained by using it
JP2001303246A (en) * 2000-04-27 2001-10-31 Nippon Sheet Glass Co Ltd Deposition method for water repellent film and article deposited with water repellent film obtained by this method
JP2003304019A (en) * 2002-04-11 2003-10-24 Shimadzu Corp Wavelength conversion laser device
JP2003344886A (en) * 2003-05-29 2003-12-03 Matsushita Electric Ind Co Ltd Second harmonic generator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04154647A (en) * 1990-10-16 1992-05-27 Asahi Glass Co Ltd Transparent electrically conductive laminate
JPH06308472A (en) * 1993-02-23 1994-11-04 Dainippon Ink & Chem Inc Liquid crystal display element
JPH09162496A (en) * 1995-12-12 1997-06-20 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser and its manufacture
JPH1152442A (en) * 1997-08-01 1999-02-26 Fuji Photo Film Co Ltd Optical wavelength conversion element and optical wavelength conversion device
JPH11149664A (en) * 1997-11-19 1999-06-02 Sharp Corp Optical disk
JP2001288562A (en) * 2000-04-03 2001-10-19 Nippon Sheet Glass Co Ltd Silicon compound thin film deposition method, and article obtained by using it
JP2001303246A (en) * 2000-04-27 2001-10-31 Nippon Sheet Glass Co Ltd Deposition method for water repellent film and article deposited with water repellent film obtained by this method
JP2003304019A (en) * 2002-04-11 2003-10-24 Shimadzu Corp Wavelength conversion laser device
JP2003344886A (en) * 2003-05-29 2003-12-03 Matsushita Electric Ind Co Ltd Second harmonic generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008042178A (en) * 2006-07-06 2008-02-21 Matsushita Electric Ind Co Ltd Fiber device, wavelength converter, and image displaying apparatus
DE102009028819A1 (en) 2009-08-21 2011-02-24 Forschungsverbund Berlin E.V. Apparatus for frequency conversion of laser radiation by four-wave mixing, comprises quasi-phase matching medium equipped with hollow cylinder during four-wave mixing of light waves

Similar Documents

Publication Publication Date Title
WO2006028078A1 (en) Passive q switch laser device
JPH11258645A (en) Wavelength converting device
US20120236894A1 (en) Wavelength conversion device, solid-state laser apparatus, and laser system
JPH08186316A (en) Single longitudinal-mode laser
JPH1093182A (en) Frequency conversion solid-state laser, frequency-doubling solid-state laser device, and frequency conversion coupling resonance cavity
US20100135345A1 (en) Wavelength conversion laser device and nonlinear optical crystal used in the same
JP2000133863A (en) Solid-state laser
US20120077003A1 (en) Method of nonlinear crystal packaging and its application in diode pumped solid state lasers
JP3683360B2 (en) Polarization control element and solid-state laser
JPH08334803A (en) Uv laser beam source
JP2006059964A (en) Quasi phase-matching wavelength conversion element for wavelength converted laser, and manufacturing method thereof
JP5213368B2 (en) Laser light second harmonic generator
JP2006310743A (en) Laser oscillation device
JP5001598B2 (en) Solid-state laser oscillation device and solid-state laser amplification device
JPH05183220A (en) Semiconductor laser-excited solid-laser device
US6233260B1 (en) Reduced-noise second-harmonic generator and laser application device
JPWO2007013134A1 (en) Semiconductor laser pumped solid-state laser device
JP2007242974A (en) Semiconductor-laser exciting solid laser device
JP2003258341A (en) Linear polarized fiber laser and second harmonic output resonator structure
JPH06265955A (en) Wavelength converting element
JP2006237530A (en) Light stimulation solid-state laser apparatus
JP2002062555A (en) Laser beam generator
JP2000261101A (en) Wavelength converting device
JPH05299751A (en) Laser-diode pumping solid-state laser
JPH08102564A (en) Wavelength converting laser device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090609