JP2008016833A - Joining method of opttical components, optical component integrated structure, and laser oscillator - Google Patents

Joining method of opttical components, optical component integrated structure, and laser oscillator Download PDF

Info

Publication number
JP2008016833A
JP2008016833A JP2007150335A JP2007150335A JP2008016833A JP 2008016833 A JP2008016833 A JP 2008016833A JP 2007150335 A JP2007150335 A JP 2007150335A JP 2007150335 A JP2007150335 A JP 2007150335A JP 2008016833 A JP2008016833 A JP 2008016833A
Authority
JP
Japan
Prior art keywords
thin film
dielectric
light
film
dielectric thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007150335A
Other languages
Japanese (ja)
Inventor
Taizo Kono
泰造 江野
Yoshiaki Goto
義明 後藤
Masayuki Momiuchi
正幸 籾内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2007150335A priority Critical patent/JP2008016833A/en
Publication of JP2008016833A publication Critical patent/JP2008016833A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for integrating an optical component that is not, which is not degraded by high-output laser beams and high temperature, and also to provide a laser oscillator made of integrated multiple optical components. <P>SOLUTION: The joining method of optical components comprises steps of: forming one dielectric thin film on the junction surface of one optical component 8; forming the other dielectric thin film on the junction surface of the other optical component 9; and joining the one dielectric thin film to the other dielectric thin film without dispersion of light. Predetermined optical wavelength properties are obtained by joining the other dielectric thin film to the one dielectric thin film. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光学部材の接合方法、及び該光学部材により構成されたレーザ発振装置に関するものである。   The present invention relates to a method for joining optical members and a laser oscillation device constituted by the optical members.

近年では、レーザ発振装置の小型化、高出力化が要求されている。小型で簡便にレーザを発振するレーザ発振装置として、固体レーザ発振装置があり、斯かる固体レーザ発振装置は複数の光学部材(固体レーザ媒質)から構成されている。又、該光学部材は小型化に伴い、光学部材間は接合により一体化される様になっている。   In recent years, there has been a demand for miniaturization and high output of laser oscillation devices. There is a solid-state laser oscillation device as a compact and simple laser oscillation device that oscillates a laser, and the solid-state laser oscillation device is composed of a plurality of optical members (solid-state laser medium). Further, as the optical member is downsized, the optical members are integrated by bonding.

従来、複数の光学部材の一体化は、光学部材同士を接着剤で接合することで一体化している。又、小型化の一方でレーザ発振装置の高出力化が推進され、高出力化に伴い光学部材により高エネルギのレーザ光線が入射され、光学部材も高温化している。   Conventionally, a plurality of optical members are integrated by joining the optical members with an adhesive. In addition, the laser oscillator has been increased in output while being downsized, and along with the increase in output, a high-energy laser beam is incident on the optical member, and the optical member is also heated.

一般的に、接着剤は光学部材に比べ、レーザ光線に対して、又高温に対して劣化し易い。低出力のレーザ発振装置では、光学部材の一体化に接着剤が用いられていても、レーザ光線のエネルギが低く、又光学部材の温度も低かったので、接着剤の劣化は特に問題とならなかったが、高出力のレーザ発振装置では接着剤の劣化に伴う光学部材の短寿命化が問題となっていた。   In general, the adhesive is more likely to deteriorate with respect to a laser beam and with respect to a high temperature than an optical member. In a low-power laser oscillation device, even if an adhesive is used to integrate the optical members, the energy of the laser beam is low and the temperature of the optical members is low, so the deterioration of the adhesive is not a problem. However, in the high-power laser oscillation device, there has been a problem of shortening the life of the optical member due to deterioration of the adhesive.

尚、光学部材を用い、高出力のレーザ光線を発生する様にしたレーザ発振装置の例としては、特許文献1に示されるものがある。   An example of a laser oscillation apparatus that uses an optical member and generates a high-power laser beam is disclosed in Patent Document 1.

特開2004−111542号公報JP 2004-111542 A

本発明は斯かる実情に鑑み、高出力レーザ光線、或は高温に対しても劣化のない光学部材一体化方法、及び複数の光学部材を一体化したレーザ発振装置を提供するものである。   In view of such circumstances, the present invention provides an optical member integration method that does not deteriorate even with a high-power laser beam or a high temperature, and a laser oscillation device in which a plurality of optical members are integrated.

本発明は、一方の光学部材の接合面に一方の誘電体薄膜を形成するステップと、他方の光学部材の接合面に他方の誘電体薄膜を形成するステップと、前記一方の誘電体薄膜と前記他方の誘電体薄膜とを光の散乱のない接合をさせるステップとを具備し、前記他方の誘電体薄膜と前記一方の誘電体薄膜とを接合することで所定の光学波長特性が得られる光学部材の接合方法に係り、又前記一方の誘電体薄膜と前記他方の誘電体薄膜との接合で形成される誘電体膜は多層膜である光学部材の接合方法に係り、又前記光の散乱のない接合は、オプティカルコンタクトであり、又前記光の散乱のない接合は、拡散接合であり、又前記光の散乱のない接合は、超音波接合である光学部材の接合方法に係るものである。   The present invention includes a step of forming one dielectric thin film on the bonding surface of one optical member, a step of forming the other dielectric thin film on the bonding surface of the other optical member, the one dielectric thin film, An optical member capable of obtaining a predetermined optical wavelength characteristic by bonding the other dielectric thin film and the one dielectric thin film to each other. In addition, the dielectric film formed by joining the one dielectric thin film and the other dielectric thin film relates to the joining method of the optical member which is a multilayer film, and does not scatter the light. The bonding is an optical contact, the bonding without light scattering is diffusion bonding, and the bonding without light scattering relates to a method for bonding optical members that is ultrasonic bonding.

又本発明は、一方の光学部材の接合面に形成された一方の誘電体薄膜と、他方の光学部材の接合面に形成された他方の誘電体薄膜を具備し、前記両光学部材を前記一方の誘電体薄膜と前記他方の誘電体薄膜とを光の散乱のない接合により接合し、前記一方の誘電体薄膜と前記他方の誘電体薄膜とが接合することで、所要の光学波長特性を有する誘電体膜が形成される光学部材一体構造に係り、又前記誘電体膜は多層の誘電体薄膜から構成され、前記一方の誘電体薄膜と前記他方の誘電体薄膜が光の散乱のない接合により接合することで、多層膜の内の1層が形成される光学部材一体構造に係り、又前記誘電体膜は多層の誘電体薄膜から構成され、前記一方の誘電体薄膜と前記他方の誘電体薄膜を光の散乱のない接合により接合し、前記一方の誘電体薄膜と前記他方の誘電体薄膜により多層膜の内の隣接する2層が形成される光学部材一体構造に係り、又前記一方の光学部材は、光源からの励起光により基本光を発するレーザ結晶であり、前記他方の光学部材は前記基本光を波長変換する波長変換結晶であり、前記誘電体薄膜は基本光を透過し、波長変換光を反射する光学部材一体構造に係り、又前記光の散乱のない接合は、オプティカルコンタクトであり、又前記光の散乱のない接合は、拡散接合であり、又前記光の散乱のない接合は、超音波接合である光学部材一体構造に係るものである。   The present invention also includes one dielectric thin film formed on the joint surface of one optical member and the other dielectric thin film formed on the joint surface of the other optical member, wherein the two optical members are connected to the one optical member. The dielectric thin film and the other dielectric thin film are joined together by a joint that does not scatter light, and the one dielectric thin film and the other dielectric thin film are joined to each other, thereby having a required optical wavelength characteristic. The present invention relates to an optical member integrated structure in which a dielectric film is formed, and the dielectric film is composed of a multilayer dielectric thin film, and the one dielectric thin film and the other dielectric thin film are joined by a light scattering-free joint. The present invention relates to an optical member integrated structure in which one of the multilayer films is formed by bonding, and the dielectric film is composed of a multilayer dielectric thin film, the one dielectric thin film and the other dielectric Bonding the thin film by bonding without light scattering, The present invention relates to an optical member integrated structure in which two adjacent layers of a multilayer film are formed by an electric thin film and the other dielectric thin film, and the one optical member emits basic light by excitation light from a light source. The other optical member is a wavelength conversion crystal that converts the wavelength of the fundamental light, and the dielectric thin film is an optical member integrated structure that transmits the fundamental light and reflects the wavelength-converted light. Bonding without scattering is an optical contact, bonding without light scattering is diffusion bonding, and bonding without light scattering relates to an optical member integrated structure that is ultrasonic bonding. is there.

更に又本発明は、光源からの励起光により基本光を発するレーザ結晶と、第3の誘電体膜を介在して前記レーザ結晶に一体化され基本光を波長変換する波長変換結晶と、前記レーザ結晶の入射面に形成された第1の誘電体膜と、前記波長変換結晶の射出面に形成された第2の誘電体膜とを具備し、前記第1の誘電体膜は励起光を透過し、基本光を反射し、前記第3の誘電体膜はレーザ結晶側膜と波長変換結晶側膜とが光の散乱のない接合により接合されて形成され、前記第3の誘電体膜は基本光を透過し、波長変換光を反射し、前記第2の誘電体膜は基本光を反射し、波長変換光を透過する様構成したレーザ発振装置に係り、又前記光の散乱のない接合は、オプティカルコンタクトであり、又前記光の散乱のない接合は、拡散接合であり、又前記光の散乱のない接合は、超音波接合であるレーザ発振装置に係るものである。   Furthermore, the present invention provides a laser crystal that emits fundamental light by excitation light from a light source, a wavelength conversion crystal that is integrated with the laser crystal via a third dielectric film and converts the wavelength of the fundamental light, and the laser. A first dielectric film formed on an incident surface of the crystal, and a second dielectric film formed on an emission surface of the wavelength conversion crystal, wherein the first dielectric film transmits excitation light. The third dielectric film is formed by joining the laser crystal side film and the wavelength conversion crystal side film by a joint that does not scatter light, and the third dielectric film is a basic film. The present invention relates to a laser oscillation device configured to transmit light, reflect wavelength-converted light, and the second dielectric film reflects basic light and transmits wavelength-converted light. The optical contact and the non-scattering junction are diffusion junctions, and Scattered without joining the serial light is according to a laser oscillation apparatus is an ultrasonic bonding.

本発明によれば、一方の光学部材の接合面に一方の誘電体薄膜を形成するステップと、他方の光学部材の接合面に他方の誘電体薄膜を形成するステップと、前記一方の誘電体薄膜と前記他方の誘電体薄膜とを光の散乱のない接合をさせるステップとを具備し、前記他方の誘電体薄膜と前記一方の誘電体薄膜とを接合することで所定の光学波長特性が得られるので、光学部材の接合に接着剤を排除でき、接着剤の劣化に起因する短寿命化を防止できる。   According to the present invention, the step of forming one dielectric thin film on the bonding surface of one optical member, the step of forming the other dielectric thin film on the bonding surface of the other optical member, and the one dielectric thin film And joining the other dielectric thin film without scattering of light, and joining the other dielectric thin film and the one dielectric thin film provides a predetermined optical wavelength characteristic. Therefore, it is possible to eliminate the adhesive for joining the optical members, and it is possible to prevent the shortening of the life due to the deterioration of the adhesive.

又本発明によれば、一方の光学部材の接合面に形成された一方の誘電体薄膜と、他方の光学部材の接合面に形成された他方の誘電体薄膜を具備し、前記両光学部材を前記一方の誘電体薄膜と前記他方の誘電体薄膜とを光の散乱のない接合により接合し、前記一方の誘電体薄膜と前記他方の誘電体薄膜とが接合することで、所要の光学波長特性を有する誘電体膜が形成されるので、光学部材の接合に接着剤を排除でき、接着剤の劣化に起因する短寿命化を防止できる。   According to the invention, there is provided one dielectric thin film formed on the joint surface of one optical member and the other dielectric thin film formed on the joint surface of the other optical member, The one dielectric thin film and the other dielectric thin film are joined by a joint that does not scatter light, and the one dielectric thin film and the other dielectric thin film are joined together to obtain a required optical wavelength characteristic. Therefore, the adhesive can be eliminated for joining the optical members, and the shortening of the life due to the deterioration of the adhesive can be prevented.

又本発明によれば、前記誘電体膜は多層の誘電体薄膜から構成され、前記一方の誘電体薄膜と前記他方の誘電体薄膜が光の散乱のない接合により接合することで、多層膜の内の1層が形成されるので、オプティカルコンタクトは同質の膜同士で行われ、良質の接合状態が得られる。   According to the present invention, the dielectric film is composed of a multilayer dielectric thin film, and the one dielectric thin film and the other dielectric thin film are joined by a joint that does not scatter light. Since one of the inner layers is formed, the optical contact is performed between films of the same quality, and a high-quality bonded state is obtained.

更に又本発明によれば、光源からの励起光により基本光を発するレーザ結晶と、第3の誘電体膜を介在して前記レーザ結晶に一体化され基本光を波長変換する波長変換結晶と、前記レーザ結晶の入射面に形成された第1の誘電体膜と、前記波長変換結晶の射出面に形成された第2の誘電体膜とを具備し、前記第1の誘電体膜は励起光を透過し、基本光を反射し、前記第3の誘電体膜はレーザ結晶側膜と波長変換結晶側膜とが光の散乱のない接合により接合されて形成され、前記第3の誘電体膜は基本光を透過し、波長変換光を反射し、前記第2の誘電体膜は基本光を反射し、波長変換光を透過する様構成したので、光学部材の接合に接着剤を排除でき、高出力レーザ光線による接着剤の劣化を防止でき、安定したレーザ光線の出力が得られると共にレーザ発振装置に長寿命化が図れる等の優れた効果を発揮する。   Furthermore, according to the present invention, a laser crystal that emits basic light by excitation light from a light source, a wavelength conversion crystal that is integrated with the laser crystal through a third dielectric film and converts the wavelength of the basic light, A first dielectric film formed on an incident surface of the laser crystal; and a second dielectric film formed on an emission surface of the wavelength conversion crystal, wherein the first dielectric film is an excitation light. The third dielectric film is formed by joining the laser crystal side film and the wavelength conversion crystal side film by a joint that does not scatter light, and the third dielectric film. Transmits the fundamental light, reflects the wavelength-converted light, and the second dielectric film is configured to reflect the fundamental light and transmit the wavelength-converted light. Adhesive deterioration due to high-power laser beam can be prevented, and stable laser beam output can be obtained. Both exhibit excellent effects such as attained an extended service life to the laser oscillator.

以下、図面を参照しつつ本発明を実施する為の最良の形態を説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

先ず、図1に於いて、本発明が実施されるレーザ発振装置の概略を説明する。   First, referring to FIG. 1, an outline of a laser oscillation apparatus in which the present invention is implemented will be described.

図1はレーザ発振装置1の一例である、1波長発振型のLD励起固体レーザ装置を示している。   FIG. 1 shows an example of a laser oscillation apparatus 1 which is a one-wavelength oscillation type LD-pumped solid-state laser apparatus.

図1中、2は発光部、3は光共振部である。前記発光部2はLD発光器4、集光レンズ5を具備し、更に前記光共振部3は第1の誘電体反射膜7が形成された第1光学結晶(レーザ結晶8)、第2光学結晶(非線形光学結晶(NLO)(2次高調波用波長変換結晶9))、第2の誘電体反射膜11が形成された凹面鏡12であり、前記光共振部3に於いてレーザ光線をポンピングし、共振、増幅して出力している。尚、前記レーザ結晶8としては、Nd:YVO4 等が用いられ、前記2次高調波用波長変換結晶9としてはKTP(KTiOPO4 リン酸チタニルカリウム)等が用いられる。   In FIG. 1, 2 is a light emission part, 3 is an optical resonance part. The light emitting unit 2 includes an LD light emitter 4 and a condenser lens 5, and the optical resonator 3 further includes a first optical crystal (laser crystal 8) and a second optical crystal on which a first dielectric reflection film 7 is formed. A crystal (nonlinear optical crystal (NLO) (second-harmonic wavelength conversion crystal 9)), a concave mirror 12 on which a second dielectric reflection film 11 is formed, and pumps a laser beam in the optical resonator 3 Then, it is output after resonance and amplification. The laser crystal 8 is Nd: YVO4 or the like, and the second harmonic wavelength conversion crystal 9 is KTP (KTiOPO4 potassium titanyl phosphate) or the like.

前記発光部2は、例えば波長809nmのレーザ光線を射出する為のものであり、半導体レーザである前記LD発光器4が使用されている。又、該LD発光器4は励起光17を発生させるポンプ光発生装置としての機能を有する。尚、前記発光部2は半導体レーザに限ることなく、レーザ光線を生じさせることができれば、何れの光源手段をも採用することができる。   The light emitting unit 2 is for emitting a laser beam having a wavelength of 809 nm, for example, and the LD light emitter 4 which is a semiconductor laser is used. Further, the LD light emitter 4 has a function as a pump light generator for generating the excitation light 17. The light emitting unit 2 is not limited to a semiconductor laser, and any light source means can be employed as long as it can generate a laser beam.

前記レーザ結晶8は励起光17から所定の波長の基本波18を発生させる為のものである。前記レーザ結晶8には、発振線が1064nmのNd:YVO4 が使用される。その他、Nd3+イオンをドープしたYAG(イットリウム アルミニウム ガーネット)等が採用され、YAGは、946nm、1064nm、1319nm等の発振線を有している。又、発振線が700〜900nmのTi(Sapphire)等を使用することができる。   The laser crystal 8 is for generating a fundamental wave 18 having a predetermined wavelength from the excitation light 17. For the laser crystal 8, Nd: YVO4 having an oscillation line of 1064 nm is used. In addition, YAG (yttrium aluminum garnet) doped with Nd3 + ions or the like is adopted, and YAG has oscillation lines such as 946 nm, 1064 nm, and 1319 nm. Further, Ti (Sapphire) having an oscillation line of 700 to 900 nm can be used.

前記レーザ結晶8の前記LD発光器4側の端面(入射面)には、前記第1の誘電体反射膜7が形成され、前記レーザ結晶8の射出面には第3の誘電体反射膜13が形成され、前記凹面鏡12には前記第2の誘電体反射膜11が形成されている。   The first dielectric reflection film 7 is formed on the end surface (incident surface) of the laser crystal 8 on the LD light emitter 4 side, and the third dielectric reflection film 13 is formed on the emission surface of the laser crystal 8. And the second dielectric reflecting film 11 is formed on the concave mirror 12.

前記第1の誘電体反射膜7は、前記LD発光器4からのレーザ光線(励起光17)に対して高透過であり、且つ前記レーザ結晶8の発振波長(基本波18)に対して高反射となっている。   The first dielectric reflecting film 7 is highly transmissive to the laser beam (excitation light 17) from the LD light emitter 4, and is high to the oscillation wavelength (fundamental wave 18) of the laser crystal 8. It is a reflection.

又、前記第3の誘電体反射膜13は、前記基本波18に対して高透過であり、前記2次高調波用波長変換結晶9が変換する2次高調波19(SHG:SECOND HARMONIC GENERATION)に対して高反射となっている。   The third dielectric reflection film 13 is highly transmissive with respect to the fundamental wave 18, and the second harmonic 19 converted by the second harmonic wavelength conversion crystal 9 (SHG: SECOND HARMONIC GENERATION). Is highly reflective.

前記凹面鏡12は、前記レーザ結晶8に対向する様に構成されており、前記凹面鏡12の前記レーザ結晶8側は、適宜の半径を有する凹面球面鏡の形状に加工されており、前記第2の誘電体反射膜11が形成されている。該第2の誘電体反射膜11は、前記基本波18に対して高反射であり、前記2次高調波19に対して高透過となっている。   The concave mirror 12 is configured to face the laser crystal 8, and the laser crystal 8 side of the concave mirror 12 is processed into the shape of a concave spherical mirror having an appropriate radius, and the second dielectric A body reflection film 11 is formed. The second dielectric reflecting film 11 is highly reflective to the fundamental wave 18 and highly transmissive to the second harmonic 19.

尚、反射膜を構成する誘電材料としては、高屈折材料としてTiO2 (n=2.3〜2.55)等、低屈折材料としてMgF2 (n=1.32〜1.39)等の交互多層膜となっている。   The dielectric material constituting the reflective film includes alternating multilayers such as TiO2 (n = 2.3 to 2.55) as a high refractive material and MgF2 (n = 1.32 to 1.39) as a low refractive material. It is a film.

前記発光部2から直線偏光の励起光17が射出され、該励起光17が前記第1の誘電体反射膜7を透過し前記レーザ結晶8に入射することで前記基本波18が発振され、前記第1の誘電体反射膜7と前記第2の誘電体反射膜11間で前記基本波18がポンピングされ、更に該基本波18が前記2次高調波用波長変換結晶9に入射することで前記2次高調波19が発生する。   The linearly polarized excitation light 17 is emitted from the light emitting section 2, and the excitation light 17 passes through the first dielectric reflection film 7 and enters the laser crystal 8, whereby the fundamental wave 18 is oscillated. The fundamental wave 18 is pumped between the first dielectric reflection film 7 and the second dielectric reflection film 11, and further, the fundamental wave 18 is incident on the second harmonic wave wavelength conversion crystal 9. A second harmonic 19 is generated.

該2次高調波19は、前記第2の誘電体反射膜11を透過して射出され、又前記第3の誘電体反射膜13で反射され、前記第2の誘電体反射膜11を透過して射出される。尚、前記レーザ結晶8をレーザ光線が透過することで、偏光状態が変るが、前記第3の誘電体反射膜13で反射される前記2次高調波19は、前記レーザ結晶8を通過しないので、偏光状態が維持され、前記光共振部3から直線偏光の2次高調波(レーザ光線)が射出される。   The second harmonic 19 is transmitted through the second dielectric reflective film 11 and emitted, and is reflected by the third dielectric reflective film 13 and transmitted through the second dielectric reflective film 11. And injected. Although the polarization state is changed by transmitting a laser beam through the laser crystal 8, the second harmonic 19 reflected by the third dielectric reflection film 13 does not pass through the laser crystal 8. The polarization state is maintained, and the second harmonic (laser beam) of linearly polarized light is emitted from the optical resonator 3.

以上の様に、前記レーザ結晶8の前記第1の誘電体反射膜7と、前記凹面鏡12の前記第2の誘電体反射膜11とを組合せ、前記LD発光器4からのレーザ光線を前記集光レンズ5を介して前記レーザ結晶8にポンピングさせると、該レーザ結晶8の前記第1の誘電体反射膜7と、前記凹面鏡12の前記第2の誘電体反射膜11との間で光が往復し、光を長時間閉込めることができるので、光を共振させて増幅させることができる。   As described above, the first dielectric reflection film 7 of the laser crystal 8 and the second dielectric reflection film 11 of the concave mirror 12 are combined, and the laser beam from the LD emitter 4 is collected. When the laser crystal 8 is pumped through the optical lens 5, light is transmitted between the first dielectric reflection film 7 of the laser crystal 8 and the second dielectric reflection film 11 of the concave mirror 12. Since it can reciprocate and confine the light for a long time, it can be amplified by resonating the light.

前記レーザ結晶8の前記第1の誘電体反射膜7と、前記凹面鏡12の前記第2の誘電体反射膜11とから構成された前記光共振部3内に前記2次高調波用波長変換結晶9が挿入されている。該2次高調波用波長変換結晶9にレーザ光線の様に強力なコヒーレント光が入射すると、光周波数を2倍にする2次高調波が発生する。該2次高調波の発生は、SECOND HARMONIC GENERATIONと呼ばれている。従って、前記レーザ結晶8にレーザ光線が入射され、1064nmの基本波18が発振されると、前記レーザ発振装置1からは波長532nmのレーザ光線(グリーンレーザ光線)が射出される。   The wavelength conversion crystal for second-order harmonics is formed in the optical resonance section 3 constituted by the first dielectric reflection film 7 of the laser crystal 8 and the second dielectric reflection film 11 of the concave mirror 12. 9 is inserted. When strong coherent light such as a laser beam is incident on the wavelength conversion crystal 9 for second harmonic, a second harmonic that doubles the optical frequency is generated. The generation of the second harmonic is called SECOND HARMONIC GENERATION. Therefore, when a laser beam is incident on the laser crystal 8 and a fundamental wave 18 having a wavelength of 1064 nm is oscillated, a laser beam having a wavelength of 532 nm (green laser beam) is emitted from the laser oscillation device 1.

図2は、光学部材である前記レーザ結晶8と前記2次高調波用波長変換結晶9とを一体化した光共振部3を示している。図2、図3中、図1中で示したものと同等のものには同符号を付してある。   FIG. 2 shows an optical resonator 3 in which the laser crystal 8 that is an optical member and the wavelength conversion crystal 9 for second harmonic are integrated. In FIG. 2 and FIG. 3, the same components as those shown in FIG.

前記レーザ結晶8と前記2次高調波用波長変換結晶9とは第3の誘電体反射膜13を介して光の散乱のない接合による接合法により一体化されている。尚、光の散乱のない接合としては、オプティカルコンタクト(光の散乱のない光学界面の接合)、拡散接合、超音波接合等が含まれる。   The laser crystal 8 and the second harmonic wave wavelength conversion crystal 9 are integrated with each other through a third dielectric reflection film 13 by a bonding method without light scattering. Note that bonding without light scattering includes optical contact (bonding at an optical interface without light scattering), diffusion bonding, ultrasonic bonding, and the like.

又、前記レーザ結晶8の入射面には前記第1の誘電体反射膜7が形成され、前記2次高調波用波長変換結晶9の射出面には前記第2の誘電体反射膜11が形成されている。尚、該第2の誘電体反射膜11が前記2次高調波用波長変換結晶9の射出面に形成されたことで、前記凹面鏡12は省略される。   The first dielectric reflection film 7 is formed on the incident surface of the laser crystal 8, and the second dielectric reflection film 11 is formed on the emission surface of the second harmonic wavelength conversion crystal 9. Has been. The concave mirror 12 is omitted because the second dielectric reflection film 11 is formed on the emission surface of the second harmonic wavelength conversion crystal 9.

前記レーザ結晶8に入射した前記励起光17は、前記第1の誘電体反射膜7と前記第2の誘電体反射膜11間でポンピングされ、更に前記2次高調波用波長変換結晶9で2次高調波19に発振され、該2次高調波19が前記第2の誘電体反射膜11を透過して射出される。   The excitation light 17 incident on the laser crystal 8 is pumped between the first dielectric reflection film 7 and the second dielectric reflection film 11, and further 2 with the second harmonic wavelength conversion crystal 9. Oscillated by the second harmonic 19, the second harmonic 19 passes through the second dielectric reflection film 11 and is emitted.

次に、図3を参照して前記レーザ結晶8と前記2次高調波用波長変換結晶9との一体化について説明する。   Next, the integration of the laser crystal 8 and the second harmonic wavelength conversion crystal 9 will be described with reference to FIG.

前記第1の誘電体反射膜7、前記第3の誘電体反射膜13、前記第2の誘電体反射膜11等の誘電膜は、それぞれ所要材質の薄膜が所要の光学波長特性を得る様に多層に成膜され、所要の光学性能が発揮される様になっている。   As for the dielectric films such as the first dielectric reflection film 7, the third dielectric reflection film 13, and the second dielectric reflection film 11, a thin film of a required material obtains a required optical wavelength characteristic. The film is formed in multiple layers, and the required optical performance is exhibited.

例えば、Ta2 O5 とSiO2 とを交互に数十層成膜することで、前記第1の誘電体反射膜7が形成される。尚、図3では該第1の誘電体反射膜7、前記第3の誘電体反射膜13、前記第2の誘電体反射膜11を便宜的に各4層で示している。   For example, the first dielectric reflection film 7 is formed by alternately forming several tens of layers of Ta2 O5 and SiO2. In FIG. 3, the first dielectric reflection film 7, the third dielectric reflection film 13, and the second dielectric reflection film 11 are shown in four layers for convenience.

仮に前記第3の誘電体反射膜13は薄膜13a,13b,13c,13dによって構成されるとし、前記薄膜13a,13b,13c,13dのいずれか1つの薄膜に境界面が存在し、前記レーザ結晶8と前記2次高調波用波長変換結晶9とは境界面のオプティカルコンタクトにより接合している。   The third dielectric reflecting film 13 is assumed to be composed of thin films 13a, 13b, 13c, 13d, and any one of the thin films 13a, 13b, 13c, 13d has a boundary surface, and the laser crystal 8 and the second harmonic wavelength conversion crystal 9 are joined by optical contact at the interface.

例えば、境界14が前記薄膜13bの中間にあるとすると、前記レーザ結晶8の射出面には前記薄膜13a及び前記薄膜13bの一部である薄膜13b′が成膜され、前記2次高調波用波長変換結晶9の入射面には前記薄膜13bの残りの一部である薄膜13b′′及び前記薄膜13c,13dが成膜される。   For example, if the boundary 14 is in the middle of the thin film 13b, the thin film 13a and a thin film 13b 'which is a part of the thin film 13b are formed on the emission surface of the laser crystal 8, and the second harmonic wave is used. On the incident surface of the wavelength conversion crystal 9, a thin film 13b '' and the thin films 13c and 13d, which are the remaining part of the thin film 13b, are formed.

前記レーザ結晶8の射出面、前記2次高調波用波長変換結晶9の入射面はオプティカルコンタクト可能な平面度、平面荒さに仕上げられており、更に前記薄膜13b′、前記薄膜13b′′が成膜された後も、オプティカルコンタクト可能な平面度、平面荒さが維持される様にする。   The exit surface of the laser crystal 8 and the incident surface of the wavelength conversion crystal 9 for second harmonic wave are finished to have a flatness and a planar roughness capable of optical contact, and the thin film 13b ′ and the thin film 13b ″ are formed. Even after film formation, the flatness and flatness capable of optical contact are maintained.

前記薄膜13b′の接合面、前記薄膜13b′′の接合面を清浄にし、両薄膜13b′,13b′′を密着させて前記レーザ結晶8と前記2次高調波用波長変換結晶9とを押圧する。   The bonding surface of the thin film 13b ′ and the bonding surface of the thin film 13b ″ are cleaned, and both the thin films 13b ′ and 13b ″ are brought into close contact with each other to press the laser crystal 8 and the second harmonic wave wavelength conversion crystal 9 To do.

両薄膜13b′,13b′′間のオプティカルコンタクトにより、前記レーザ結晶8と前記2次高調波用波長変換結晶9とが接合される。又、接合した状態では、両薄膜13b′,13b′′によって前記薄膜13bが構成される。尚、両薄膜13b′,13b′′間の接合は、同質材料による接合であり、親和性がよく、又両薄膜13b′,13b′′間の熱膨張差等による剪断も生じない。   The laser crystal 8 and the second-harmonic wavelength conversion crystal 9 are joined by optical contact between the thin films 13b ′ and 13b ″. In the joined state, the thin film 13b is constituted by both thin films 13b 'and 13b' '. The thin film 13b 'and the thin film 13b "are joined by the same material and have good affinity, and no shear is caused by the difference in thermal expansion between the thin films 13b' and 13b".

而して、接合後の両薄膜13b′,13b′′は前記薄膜13bとして機能し、更に前記薄膜13a,13b,13c,13dは前記第3の誘電体反射膜13として機能する。   Thus, the thin films 13b ′ and 13b ″ after bonding function as the thin film 13b, and the thin films 13a, 13b, 13c, and 13d function as the third dielectric reflecting film 13.

尚、上記実施の形態では、一層の薄膜の間で接合したが、薄膜と薄膜の境界でオプティカルコンタクトによる接合をしてもよい。例えば、前記薄膜13bと前記薄膜13cとの間で接合してもよい。   In the above-described embodiment, the bonding is performed between the single thin films. However, bonding by optical contact may be performed at the boundary between the thin films. For example, the thin film 13b and the thin film 13c may be joined.

又、光を散乱しない接合方法としては、接合面を加熱した状態で押圧する。或は、両薄膜13b′,13b′′間に所要の液体、例えば純水を介在させて両薄膜13b′,13b′′を押圧し、更に加熱することで液体を除去し、オプティカルコンタクトを得る等がある。更に光を散乱しない接合方法としては、拡散接合、或は超音波接合であってもよい。   As a bonding method that does not scatter light, the bonding surface is pressed in a heated state. Alternatively, a required liquid such as pure water is interposed between the thin films 13b 'and 13b' ', and the thin films 13b' and 13b '' are pressed and further heated to remove the liquid and obtain an optical contact. Etc. Further, the bonding method that does not scatter light may be diffusion bonding or ultrasonic bonding.

又、前記薄膜13b′の接合面、前記薄膜13b′′の接合面を清浄とする為の洗浄、加えて活性化する為の洗浄方法としては、HF或はOH基を利用した洗浄、超音波振動を利用した洗浄、イオンスパッタを利用した洗浄、プラズマを利用した洗浄等が挙げられる。   As a cleaning method for cleaning the bonding surface of the thin film 13b ′ and the bonding surface of the thin film 13b ″, and a cleaning method for activating the thin film 13b ′, cleaning using HF or OH group, ultrasonic Examples include cleaning using vibration, cleaning using ion sputtering, and cleaning using plasma.

本発明が実施されるレーザ発振装置の概略構成図である。It is a schematic block diagram of the laser oscillation apparatus with which this invention is implemented. 2つの光学部材を一体化した光共振部の説明図である。It is explanatory drawing of the optical resonance part which integrated two optical members. 光学部材に形成された誘電体膜を示す模式図である。It is a schematic diagram which shows the dielectric material film formed in the optical member. 図3の部分拡大図である。FIG. 4 is a partially enlarged view of FIG. 3.

符号の説明Explanation of symbols

1 レーザ発振装置
2 発光部
3 光共振部
4 LD発光器
7 第1の誘電体反射膜
8 レーザ結晶
9 2次高調波用波長変換結晶
11 第2の誘電体反射膜
13 第3の誘電体反射膜
17 励起光
18 基本波
19 2次高調波
DESCRIPTION OF SYMBOLS 1 Laser oscillation apparatus 2 Light emission part 3 Optical resonance part 4 LD light emitter 7 1st dielectric reflection film 8 Laser crystal 9 Wavelength conversion crystal for 2nd harmonics 11 2nd dielectric reflection film 13 3rd dielectric reflection Film 17 Excitation light 18 Fundamental wave 19 Second harmonic

Claims (10)

一方の光学部材の接合面に一方の誘電体薄膜を形成するステップと、他方の光学部材の接合面に他方の誘電体薄膜を形成するステップと、前記一方の誘電体薄膜と前記他方の誘電体薄膜とを光の散乱のない接合をさせるステップとを具備し、前記他方の誘電体薄膜と前記一方の誘電体薄膜とを接合することで所定の光学波長特性が得られることを特徴とする光学部材の接合方法。   Forming one dielectric thin film on the bonding surface of one optical member, forming the other dielectric thin film on the bonding surface of the other optical member, the one dielectric thin film and the other dielectric And a step of bonding the thin film to each other without scattering of light, and a predetermined optical wavelength characteristic is obtained by bonding the other dielectric thin film and the one dielectric thin film. Member joining method. 前記一方の誘電体薄膜と前記他方の誘電体薄膜との接合で形成される誘電体膜は多層膜である請求項1の光学部材の接合方法。   2. The method for joining optical members according to claim 1, wherein the dielectric film formed by joining the one dielectric thin film and the other dielectric thin film is a multilayer film. 一方の光学部材の接合面に形成された一方の誘電体薄膜と、他方の光学部材の接合面に形成された他方の誘電体薄膜を具備し、前記両光学部材を前記一方の誘電体薄膜と前記他方の誘電体薄膜とを光の散乱のない接合により接合し、前記一方の誘電体薄膜と前記他方の誘電体薄膜とが接合することで、所要の光学波長特性を有する誘電体膜が形成されることを特徴とする光学部材一体構造。   One dielectric thin film formed on the bonding surface of one optical member, and the other dielectric thin film formed on the bonding surface of the other optical member, the two optical members being the one dielectric thin film The other dielectric thin film is joined by a joint that does not scatter light, and the one dielectric thin film and the other dielectric thin film are joined to form a dielectric film having a required optical wavelength characteristic. An optical member integrated structure characterized by that. 前記誘電体膜は多層の誘電体薄膜から構成され、前記一方の誘電体薄膜と前記他方の誘電体薄膜が光の散乱のない接合により接合することで、多層膜の内の1層が形成される請求項3の光学部材一体構造。   The dielectric film is composed of a multilayer dielectric thin film, and the one dielectric thin film and the other dielectric thin film are joined together by joining without scattering of light, thereby forming one layer of the multilayer film. The optical member integrated structure according to claim 3. 前記誘電体膜は多層の誘電体薄膜から構成され、前記一方の誘電体薄膜と前記他方の誘電体薄膜を光の散乱のない接合により接合し、前記一方の誘電体薄膜と前記他方の誘電体薄膜により多層膜の内の隣接する2層が形成される請求項3の光学部材一体構造。   The dielectric film is composed of a multilayer dielectric thin film, and the one dielectric thin film and the other dielectric thin film are joined together by a non-scattering joint, and the one dielectric thin film and the other dielectric thin film are joined. 4. The optical member integrated structure according to claim 3, wherein two adjacent layers of the multilayer film are formed by the thin film. 前記一方の光学部材は、光源からの励起光により基本光を発するレーザ結晶であり、前記他方の光学部材は前記基本光を波長変換する波長変換結晶であり、前記誘電体薄膜は基本光を透過し、波長変換光を反射する請求項3の光学部材一体構造。   The one optical member is a laser crystal that emits basic light by excitation light from a light source, the other optical member is a wavelength conversion crystal that converts the wavelength of the basic light, and the dielectric thin film transmits basic light. And the optical member integrated structure of Claim 3 which reflects wavelength conversion light. 光源からの励起光により基本光を発するレーザ結晶と、第3の誘電体膜を介在して前記レーザ結晶に一体化され基本光を波長変換する波長変換結晶と、前記レーザ結晶の入射面に形成された第1の誘電体膜と、前記波長変換結晶の射出面に形成された第2の誘電体膜とを具備し、前記第1の誘電体膜は励起光を透過し、基本光を反射し、前記第3の誘電体膜はレーザ結晶側膜と波長変換結晶側膜とが光の散乱のない接合により接合されて形成され、前記第3の誘電体膜は基本光を透過し、波長変換光を反射し、前記第2の誘電体膜は基本光を反射し、波長変換光を透過する様構成したことを特徴とするレーザ発振装置。   Formed on the incident surface of the laser crystal, a laser crystal that emits basic light by excitation light from a light source, a wavelength conversion crystal that is integrated with the laser crystal via a third dielectric film and converts the wavelength of the basic light And a second dielectric film formed on the exit surface of the wavelength conversion crystal, wherein the first dielectric film transmits excitation light and reflects basic light. The third dielectric film is formed by joining a laser crystal side film and a wavelength conversion crystal side film by a joint that does not scatter light, and the third dielectric film transmits fundamental light and has a wavelength of A laser oscillation device characterized in that the second dielectric film reflects the converted light, reflects the basic light, and transmits the wavelength-converted light. 前記光の散乱のない接合は、オプティカルコンタクトである請求項1の光学部材の接合方法、又は請求項3〜5のいずれか1つの光学部材一体構造、又は請求項7のレーザ発振装置。   8. The optical member joining method according to claim 1, or the optical member integrated structure according to any one of claims 3 to 5, or the laser oscillation device according to claim 7, wherein the joining without scattering of light is an optical contact. 前記光の散乱のない接合は、拡散接合である請求項1の光学部材の接合方法、又は請求項3〜5のいずれか1つの光学部材一体構造、又は請求項7のレーザ発振装置。   The optical member bonding method according to claim 1, the optical member integrated structure according to claim 3, or the laser oscillation device according to claim 7, wherein the bonding without scattering of light is diffusion bonding. 前記光の散乱のない接合は、超音波接合である請求項1の光学部材の接合方法、又は請求項3〜5のいずれか1つの光学部材一体構造、又は請求項7のレーザ発振装置。   The joining without light scattering is ultrasonic joining, the optical member joining method according to claim 1, the optical member integrated structure according to any one of claims 3 to 5, or the laser oscillation device according to claim 7.
JP2007150335A 2006-06-06 2007-06-06 Joining method of opttical components, optical component integrated structure, and laser oscillator Pending JP2008016833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007150335A JP2008016833A (en) 2006-06-06 2007-06-06 Joining method of opttical components, optical component integrated structure, and laser oscillator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006157189 2006-06-06
JP2007150335A JP2008016833A (en) 2006-06-06 2007-06-06 Joining method of opttical components, optical component integrated structure, and laser oscillator

Publications (1)

Publication Number Publication Date
JP2008016833A true JP2008016833A (en) 2008-01-24

Family

ID=39073510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007150335A Pending JP2008016833A (en) 2006-06-06 2007-06-06 Joining method of opttical components, optical component integrated structure, and laser oscillator

Country Status (1)

Country Link
JP (1) JP2008016833A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010039317A (en) * 2008-08-07 2010-02-18 Shimadzu Corp Optical element and method for manufacturing optical element
JP4786761B1 (en) * 2010-08-23 2011-10-05 パナソニック株式会社 Laser light source device
JP2011232481A (en) * 2010-04-27 2011-11-17 Disco Abrasive Syst Ltd Optical element
EP2424249A2 (en) 2010-08-31 2012-02-29 Panasonic Corporation Image display device and information processing device including the same
EP2429196A2 (en) 2010-09-13 2012-03-14 Panasonic Corporation Image display system and image display method
JP4924767B1 (en) * 2011-06-28 2012-04-25 パナソニック株式会社 LASER LIGHT SOURCE DEVICE AND IMAGE DISPLAY DEVICE MOUNTING THE SAME
JP2013187212A (en) * 2012-03-06 2013-09-19 Shimadzu Corp Compact solid-state laser element
US8743917B2 (en) 2009-12-14 2014-06-03 Panasonic Corporation Wavelength conversion light source, optical element and image display device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430486A (en) * 1990-05-25 1992-02-03 Sumitomo Metal Mining Co Ltd Manufacture of solid-state laser element provided with shg element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430486A (en) * 1990-05-25 1992-02-03 Sumitomo Metal Mining Co Ltd Manufacture of solid-state laser element provided with shg element

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010039317A (en) * 2008-08-07 2010-02-18 Shimadzu Corp Optical element and method for manufacturing optical element
US8743917B2 (en) 2009-12-14 2014-06-03 Panasonic Corporation Wavelength conversion light source, optical element and image display device
JP2011232481A (en) * 2010-04-27 2011-11-17 Disco Abrasive Syst Ltd Optical element
JP4786761B1 (en) * 2010-08-23 2011-10-05 パナソニック株式会社 Laser light source device
EP2424249A2 (en) 2010-08-31 2012-02-29 Panasonic Corporation Image display device and information processing device including the same
EP2429196A2 (en) 2010-09-13 2012-03-14 Panasonic Corporation Image display system and image display method
US8541729B2 (en) 2010-09-13 2013-09-24 Panasonic Corporation Image display system having a detection of an overlapping in the output timing of laser beams
JP4924767B1 (en) * 2011-06-28 2012-04-25 パナソニック株式会社 LASER LIGHT SOURCE DEVICE AND IMAGE DISPLAY DEVICE MOUNTING THE SAME
JP2013187212A (en) * 2012-03-06 2013-09-19 Shimadzu Corp Compact solid-state laser element

Similar Documents

Publication Publication Date Title
JP4392024B2 (en) Mode-controlled waveguide laser device
JP2008016833A (en) Joining method of opttical components, optical component integrated structure, and laser oscillator
US5574740A (en) Deep blue microlaser
JP4231829B2 (en) Internal cavity sum frequency mixing laser
JP5231806B2 (en) Laser light source and display device using the same
JP2010034413A (en) Solid-state laser apparatus
CN102893465B (en) The method for packing of laser crystal and nonlinear crystal and the application in diode pumped solid state thereof
JP5389169B2 (en) Planar waveguide laser device and display device using the same
JP2007081233A (en) Laser oscillator
JP2004172314A (en) Solid-state laser
JP2005057043A (en) Manufacturing method of solid-state laser apparatus and wavelength conversion optical member
US20120077003A1 (en) Method of nonlinear crystal packaging and its application in diode pumped solid state lasers
EP0957546A2 (en) solid-state laser device and solid-state laser amplifier provided therewith
JP2004172307A (en) Solid-state laser
EP1864954A2 (en) Method for joining optical members, structure for integrating optical members and laser oscillation device
JP2004172315A (en) Solid-state laser
JP2006310743A (en) Laser oscillation device
JPH05267753A (en) Solid laser
JP5855229B2 (en) Laser equipment
JP2006286735A (en) Solid laser oscillation device
JP2003304019A (en) Wavelength conversion laser device
JP4048429B2 (en) Solid state laser oscillator
JPH0555671A (en) Semiconductor laser exciting solid-state laser
JP2012177806A (en) Ultraviolet laser device
JP2008244212A (en) Solid-state laser device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120724