JP2010038838A - System for diagnosing degradation in controller - Google Patents

System for diagnosing degradation in controller Download PDF

Info

Publication number
JP2010038838A
JP2010038838A JP2008204630A JP2008204630A JP2010038838A JP 2010038838 A JP2010038838 A JP 2010038838A JP 2008204630 A JP2008204630 A JP 2008204630A JP 2008204630 A JP2008204630 A JP 2008204630A JP 2010038838 A JP2010038838 A JP 2010038838A
Authority
JP
Japan
Prior art keywords
data
corrosion
environmental data
temperature
humidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008204630A
Other languages
Japanese (ja)
Other versions
JP4599439B2 (en
Inventor
Rintaro Minamitani
林太郎 南谷
Akira Onuki
朗 大貫
Takayuki Matsui
孝行 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Building Systems Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Building Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Building Systems Co Ltd filed Critical Hitachi Ltd
Priority to JP2008204630A priority Critical patent/JP4599439B2/en
Priority to CN 200910004942 priority patent/CN101644654B/en
Publication of JP2010038838A publication Critical patent/JP2010038838A/en
Application granted granted Critical
Publication of JP4599439B2 publication Critical patent/JP4599439B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system for diagnosing deterioration which accurately estimates future corrosion in a conductive member. <P>SOLUTION: The system 1 for diagnosing deterioration includes: a diagnosis processor 4 for recording environmental data in a controller 3 measured by sensors and corrosion data of the conductive member 9 for a preset period, estimating the future corrosion of the conductive member 9 based on the recorded environmental data in a housing and the corrosion data, and diagnosing the deterioration; and an external environment database 6 for recording external air environmental data including the previous temperature and humidity outside the controller 3. The diagnosis processor 4 obtains a correlation relationship between the environmental data in the controller 3 and the corrosion data recorded for the preset period, obtains a correspondence relationship between the external air environmental data and the environmental data in the controller 3 at the same time as the preset period, estimates future environmental data within the controller 3 from the correspondence relationship and the previous external air environmental data, and estimates the future corrosion of the conductive member 9 from the estimated environmental data in the controller 3 and the correlation relationship. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、制御装置の劣化診断システムに関する。   The present invention relates to a deterioration diagnosis system for a control device.

エレベーターやプラント等を制御する制御装置の故障の要因として、制御装置に収納され電子部品等が実装されたプリント基板上の配線及び電子部品の接続端子(以下、導電部材と総称する。)の腐食による劣化が挙げられる。そこで、予め導電部材の劣化診断を行って将来の劣化進行度を推定し、劣化による故障が起きる前に劣化部分を交換できるようにすることが望ましい。   As a cause of failure of a control device that controls an elevator, a plant, or the like, corrosion of wiring on a printed circuit board that is housed in the control device and on which electronic components or the like are mounted and connection terminals of electronic components (hereinafter collectively referred to as conductive members). Deterioration due to Therefore, it is desirable to perform a deterioration diagnosis of the conductive member in advance to estimate the degree of progress of the future deterioration so that the deteriorated portion can be replaced before failure due to deterioration occurs.

従来の劣化診断として、導電部材と同じ金属材料を試験片として、制御装置内に一定期間曝露し、腐食厚さを測定し、腐食厚さと曝露期間から平均腐食進行度を求め、求めた平均腐食進行度から将来の腐食量を推定する方法がある。また、特許文献1のように、腐食量の因子である温度、湿度等を測定して、測定値の範囲に対して評価点を与え、評価点の関数から将来の腐食量を求める方法がある。   As a conventional deterioration diagnosis, the same metal material as the conductive member is used as a test piece, exposed to the control device for a certain period, the corrosion thickness is measured, the average corrosion progress is obtained from the corrosion thickness and the exposure period, and the obtained average corrosion is obtained. There is a method to estimate the future corrosion amount from the degree of progress. Further, as disclosed in Patent Document 1, there is a method of measuring temperature, humidity, and the like, which are factors of corrosion amount, giving an evaluation point to a range of measured values, and obtaining a future corrosion amount from a function of the evaluation point. .

特開2001−215187JP 2001-215187 A

ところで、腐食量の因子である温度、湿度は、試験片を曝露する季節により大きく変動し、また、制御装置内の温度、湿度は、制御装置の稼動状態によっても変動することから、実際には腐食進行度は一定ではない。上記従来の方法では、温度及び湿度の変動が考慮されておらず、精度のよい腐食量の推定を行うことが困難であった。   By the way, the temperature and humidity, which are factors of the amount of corrosion, vary greatly depending on the season to which the test piece is exposed, and the temperature and humidity in the control device also vary depending on the operating state of the control device. The degree of corrosion progression is not constant. In the conventional method, fluctuations in temperature and humidity are not taken into consideration, and it is difficult to accurately estimate the corrosion amount.

本発明が解決しようとする課題は、将来の導電部材の腐食量を精度よく推定する劣化診断システムを提供することにある。   The problem to be solved by the present invention is to provide a deterioration diagnosis system that accurately estimates the amount of corrosion of a conductive member in the future.

上記課題を解決するため、本発明の劣化診断システムは、診断対象である導電部材を備えた電子又は電気部品が実装されたプリント基板が収納された筐体内の温度を測定する温度センサと、筐体内の湿度を測定する湿度センサと、診断対象の腐食量を測定する腐食センサと、各センサで測定された筐体内の温度及び湿度からなる筐体内環境データと診断対象の腐食データとを設定期間記録し、その記録された筐体内環境データと腐食データとに基づいて診断対象の将来の腐食量を推定して劣化診断を行う診断処理装置と、筐体外の過去の温度及び湿度からなる外気環境データが記録された外気環境データベースとを備え、診断処理装置は、設定期間に記録された筐体内環境データと腐食データとの相関関係を求め、設定期間における外気環境データと筐体内環境データの対応関係を求め、その対応関係と過去の外気環境データとに基づいて将来の筐体内環境データを推定し、その推定した筐体内環境データとその相関関係とから診断対象の将来の腐食量を推定することを特徴とする。   In order to solve the above problems, a deterioration diagnosis system according to the present invention includes a temperature sensor that measures the temperature in a casing in which a printed circuit board on which an electronic or electrical component including a conductive member to be diagnosed is mounted, a casing, and a casing. A humidity sensor that measures the humidity inside the body, a corrosion sensor that measures the amount of corrosion to be diagnosed, and the internal environment data consisting of the temperature and humidity inside the housing measured by each sensor and the corrosion data to be diagnosed A diagnostic processing device that records and diagnoses deterioration by estimating the future amount of corrosion to be diagnosed based on the recorded environmental data and corrosion data in the enclosure, and the outside air environment consisting of past temperature and humidity outside the enclosure An outside air environment database in which data is recorded, and the diagnostic processing device obtains a correlation between the in-chassis environment data recorded in the set period and the corrosion data, and the outside air environment in the set period The future environment data is estimated based on the correspondence and past outside air environment data, and the diagnosis is based on the estimated environment data and its correlation. It is characterized by estimating the future corrosion amount of the object.

本発明によれば、将来の筐体内環境データを実情に合わせて推定できることから、診断対象の将来の腐食量を精度よく推定できる。すなわち、設定期間と同時期の外気環境データと筐体内環境データの対応関係から、例えば外気環境データと筐体内環境データとの温度差、湿度差、それらの周期的変化を求め、これらを過去の外気環境データに当てはめて、筐体内環境データの周期的変化及び外気環境データの影響を加味した将来の筐体内環境データを推定できる。腐食量は温度及び湿度が因子となることから、将来の筐体内環境データを実情に合わせて精度よく推定できれば、将来の腐食量を精度よく推定することができる。なお、設定期間は、1乃至3ヶ月が目安となるが、高精度推定には3ヶ月以上が望ましい。簡易推定には1週間程度でもよいが、この場合は高精度な腐食センサである電気抵抗式腐食センサを用いるのが好ましい。また、外気環境データベースは、例えば気象庁の気象統計情報を利用することができる。   According to the present invention, since future environmental data in the housing can be estimated according to the actual situation, the future corrosion amount of the diagnosis target can be accurately estimated. That is, from the correspondence relationship between the outside air environment data and the housing environment data at the same time as the set period, for example, the temperature difference, the humidity difference, and the periodic change between the outside air environment data and the housing environment data are obtained. By applying to the outside air environment data, it is possible to estimate the future inside environment data in consideration of the periodic change of the inside environment data and the influence of the outside air environment data. Since the amount of corrosion depends on temperature and humidity, if the future environmental data in the housing can be accurately estimated according to the actual situation, the future corrosion amount can be accurately estimated. The set period is 1 to 3 months as a guide, but 3 months or more is desirable for high-precision estimation. For simple estimation, it may be about one week. In this case, it is preferable to use an electric resistance type corrosion sensor which is a highly accurate corrosion sensor. The outside air environment database can use, for example, weather statistics information of the Japan Meteorological Agency.

ここで、制御装置の設置環境が空調制御されている場合、筐体外の温度及び湿度は、空調の設定温度及び湿度となる。   Here, when the installation environment of the control device is controlled by air conditioning, the temperature and humidity outside the housing are the set temperature and humidity of the air conditioning.

この場合、劣化診断システムを、診断対象である導電部材を備えた電子又は電気部品が実装されたプリント基板が収納され空調雰囲気にある筐体内の温度を測定する温度センサと、筐体内の湿度を測定する湿度センサと、診断対象の腐食量を測定する腐食センサと、各センサで測定された筐体内の温度及び湿度からなる筐体内環境データと診断対象の腐食データとを設定期間記録し、その記録された筐体内環境データと腐食データとに基づいて診断対象の将来の腐食量を推定して劣化診断を行う診断処理装置と、空調の設定温度及び湿度からなる空調データが記録された空調データベースとを備え、診断処理装置を、設定期間に記録された筐体内環境データと腐食データとの相関関係を求め、筐体内環境データと空調データとの対応関係に基づいて、将来の筐体内環境データを推定し、その推定した筐体内環境データとその相関関係とから診断対象の将来の腐食量を推定するように構成することが望ましい。   In this case, the deterioration diagnosis system includes a temperature sensor that measures the temperature in the housing in an air-conditioned atmosphere in which a printed circuit board on which an electronic or electrical component including a conductive member to be diagnosed is mounted, and a humidity in the housing. Record the humidity sensor to be measured, the corrosion sensor to measure the amount of corrosion to be diagnosed, the environmental data in the housing consisting of the temperature and humidity in the housing measured by each sensor, and the corrosion data to be diagnosed for a set period of time. A diagnostic processing device that performs deterioration diagnosis by estimating the future amount of corrosion to be diagnosed based on the recorded environmental data and corrosion data in the casing, and an air conditioning database in which air conditioning data including the set temperature and humidity of the air conditioning is recorded The diagnostic processing apparatus obtains a correlation between the environmental data in the enclosure recorded during the set period and the corrosion data, and is based on the correspondence between the environmental data in the enclosure and the air conditioning data. There are estimates of future enclosure environmental data, it is desirable to configure to estimate future corrosion of the diagnostic object from its estimated enclosure environment data and the correlation.

これにより、外気環境データの場合と同様にして、空調の設定温度及び湿度に合わせて将来の筐体内温度及び湿度の変化を精度よく推定することができ、腐食量を精度よく推定することができる。   Thereby, similarly to the case of the outside air environment data, it is possible to accurately estimate future changes in the temperature and humidity in the casing in accordance with the set temperature and humidity of the air conditioning, and it is possible to accurately estimate the amount of corrosion. .

ところで、制御装置の故障のさらなる要因として、プリント基板上の導電部材間の絶縁劣化が挙げられる。よって、腐食量の推定と同様に、絶縁劣化についても推定する必要がある。   By the way, as a further factor of failure of the control device, there is an insulation deterioration between conductive members on the printed circuit board. Therefore, it is necessary to estimate the insulation deterioration as well as the estimation of the corrosion amount.

この場合、劣化診断システムを、診断対象である導電部材を備えた電子又は電気部品が実装されたプリント基板が収納された筐体内の温度を測定する温度センサと、筐体内の湿度を測定する湿度センサと、診断対象に付着する塵埃量を測定する塵埃センサと、各センサで測定された筐体内の温度及び湿度からなる筐体内環境データと塵埃データとを設定期間記録し、その記録された筐体内環境データと塵埃データとに基づいて診断対象の絶縁劣化の診断を行う診断処理装置と、筐体外の過去の温度及び湿度からなる外気環境データが記録された外気環境データベースとを備え、診断処理装置は、設定期間に記録された筐体内環境データと絶縁劣化の進行度との相関関係を求め、設定期間における外気環境データと筐体内環境データとの対応関係を求め、その対応関係と過去の外気環境データとに基づいて将来の筐体内環境データを推定し、その推定した筐体内環境データとその相関関係とから診断対象の将来の絶縁劣化の進行度を推定するように構成することが望ましい。   In this case, the deterioration diagnosis system includes a temperature sensor that measures the temperature in the housing in which the printed circuit board on which the electronic or electrical component including the conductive member to be diagnosed is mounted, and the humidity that measures the humidity in the housing. The sensor, the dust sensor for measuring the amount of dust attached to the object to be diagnosed, the in-chassis environment data and the dust data including the temperature and humidity in the housing measured by each sensor are recorded for a set period, and the recorded housing A diagnostic processing device for diagnosing insulation deterioration of a diagnosis target based on in-vivo environmental data and dust data, and an outdoor air environment database in which outdoor air environment data consisting of past temperature and humidity outside the housing is recorded. The device obtains the correlation between the environmental data in the enclosure recorded during the set period and the progress of insulation deterioration, and the correspondence between the outside air environmental data and the environmental data in the enclosure during the set period. The future environmental data in the enclosure is estimated based on the correspondence and the past outdoor air environment data, and the degree of progress of the future insulation deterioration of the diagnosis target is determined from the estimated environmental data in the enclosure and the correlation between the estimated environmental data. It is desirable to configure to estimate.

これにより、上記腐食量の推定と同様に、将来の筐体内環境データを精度よく推定することができる。絶縁劣化の主たる要因はイオンマイグレーションであり、イオンマイグレーションの因子は温度及び湿度と塵埃量であることから、推定した筐体内環境データと設定期間に記録された筐体内環境データと絶縁劣化の進行度との相関関係から推定した塵埃量とで、絶縁劣化の進行度を精度よく推定することができる。   As a result, as in the estimation of the corrosion amount, the future environmental data in the housing can be accurately estimated. The main cause of insulation degradation is ion migration, and the factors of ion migration are temperature, humidity, and dust amount. Therefore, the estimated environmental data in the enclosure, the environmental data in the enclosure recorded during the set period, and the progress of insulation degradation. The degree of progress of insulation deterioration can be accurately estimated from the amount of dust estimated from the correlation with.

また、制御装置の設置環境が空調制御されている場合は、上記腐食量の推定と同様に、空調データベースを備えるのが望ましい。   Moreover, when the installation environment of a control apparatus is air-conditioning-controlled, it is desirable to provide an air-conditioning database similarly to the said corrosion amount estimation.

本発明によれば、将来の腐食量を精度よく推定する劣化診断システムを提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the deterioration diagnostic system which estimates the future corrosion amount accurately can be provided.

以下、本発明の第1の実施例を図面に基づいて説明する。   A first embodiment of the present invention will be described below with reference to the drawings.

図1(a)は、劣化診断システム1の構成図であり、図1(b)は、制御装置3に収納されるプリント基板10の平面図である。劣化診断システム1は、環境測定装置2と、診断処理装置4と、外気環境データベース6と、診断結果出力装置8とで構成されている。   FIG. 1A is a configuration diagram of the deterioration diagnosis system 1, and FIG. 1B is a plan view of the printed circuit board 10 accommodated in the control device 3. The degradation diagnosis system 1 includes an environment measurement device 2, a diagnosis processing device 4, an outside air environment database 6, and a diagnosis result output device 8.

環境測定装置2は、エレベーター等を制御する制御装置3内に設置され、制御装置3内には診断対象となる導電部材9を備えたプリント基板10が収納されている。環境測定装置2は、制御装置3内の温度(以下、内部温度という。)を測定する温度センサ12と、制御装置3内の相対湿度(以下、内部相対湿度という。)を測定する湿度センサ14と、導電部材9の腐食量を測定する腐食センサ16と、導電部材9に付着する塵埃量を測定する塵埃センサ18と、各センサのデータを記録するデータベース22とを備えて構成されている。温度センサ12と相対湿度センサ14は、一定間隔で内部温度及び内部相対湿度を測定してデータをデータベース22に送るように構成されている。   The environment measuring device 2 is installed in a control device 3 that controls an elevator or the like, and a printed circuit board 10 including a conductive member 9 to be diagnosed is accommodated in the control device 3. The environment measuring device 2 includes a temperature sensor 12 that measures the temperature in the control device 3 (hereinafter referred to as internal temperature) and a humidity sensor 14 that measures the relative humidity in the control device 3 (hereinafter referred to as internal relative humidity). And a corrosion sensor 16 for measuring the amount of corrosion of the conductive member 9, a dust sensor 18 for measuring the amount of dust adhering to the conductive member 9, and a database 22 for recording data of each sensor. The temperature sensor 12 and the relative humidity sensor 14 are configured to measure the internal temperature and the internal relative humidity at regular intervals and send data to the database 22.

ここで、図1(b)を参照して、腐食センサ16及び塵埃センサ18について説明する。腐食センサ16は電気抵抗式腐食センサであり、ガラス等の基板23と電極パッド24と銀電極25とで構成されており、プリント基板10に実装される。腐食センサ16は、腐食により銀電極25の断面積が減少すると、電気抵抗が増加することを利用して腐食量を一定間隔で測定してデータをデータベース22に送るように構成されている。塵埃センサ18は、ガラス等の基板26と電極パッド27とくし歯電極28とで構成されており、プリント基板10に実装される。塵埃センサ18は、付着した塵埃による電極間の漏れ電流から塵埃量を一定間隔で測定してデータをデータベース22に送るように構成されている。なお、塵埃の種類としては、塵、糸くずに加えエアロゾルが挙げられる。また、基板23,26はプリント基板10で兼用することもできる。   Here, the corrosion sensor 16 and the dust sensor 18 will be described with reference to FIG. The corrosion sensor 16 is an electrical resistance type corrosion sensor, and is composed of a substrate 23 such as glass, an electrode pad 24, and a silver electrode 25, and is mounted on the printed board 10. The corrosion sensor 16 is configured to measure the amount of corrosion at regular intervals and send the data to the database 22 by utilizing the increase in electrical resistance when the cross-sectional area of the silver electrode 25 decreases due to corrosion. The dust sensor 18 includes a substrate 26 such as glass, an electrode pad 27 and a comb electrode 28, and is mounted on the printed board 10. The dust sensor 18 is configured to measure the amount of dust at regular intervals from the leakage current between the electrodes due to attached dust and send the data to the database 22. Examples of the types of dust include aerosols in addition to dust and lint. The substrates 23 and 26 can also be used as the printed circuit board 10.

環境測定装置2による測定結果は、診断処理装置4で処理される。診断処理装置4は、図示しないパソコン等の情報処理端末に組み込まれている。外気環境データベース6には、制御装置3の外部の温度(以下「外部温度」という。)の履歴及び制御装置3の外部の絶対湿度(以下「外部絶対湿度」という。)の履歴が保存されている。外気環境データベース6には、気象庁で公開されている気象統計情報のうち、制御装置3に最も近い測定ポイントの情報を利用してもよい。   The measurement result obtained by the environment measuring device 2 is processed by the diagnostic processing device 4. The diagnostic processing device 4 is incorporated in an information processing terminal such as a personal computer (not shown). A history of the temperature outside the control device 3 (hereinafter referred to as “external temperature”) and a history of the absolute humidity outside the control device 3 (hereinafter referred to as “external absolute humidity”) are stored in the outside air environment database 6. Yes. The outdoor air environment database 6 may use information on the measurement point closest to the control device 3 among the weather statistical information published by the Japan Meteorological Agency.

診断処理装置4は、図1(a)に示すように、環境推定部30と、被害推定部32と、寿命診断部34とで構成されている。環境推定部30は、環境測定装置2による測定結果と、外気環境データベース6のデータとから内部温度及び制御装置3の内部の相対湿度(以下「内部相対湿度」という。)を推定し、推定結果を被害推定部32に出力するように構成されている。被害推定部32は、環境推定部30の推定結果に基づいて、腐食量及び絶縁劣化を推定し、推定結果を寿命診断部34に出力するように構成されている。寿命診断部34は、被害推定部32の推定結果に基づいて寿命を診断し、診断結果を診断結果出力装置8に出力するように構成されている。診断結果出力装置8は、診断結果を図示しない情報処理端末の表示画面に出力するように構成されている。   As shown in FIG. 1A, the diagnosis processing device 4 includes an environment estimation unit 30, a damage estimation unit 32, and a life diagnosis unit 34. The environment estimation unit 30 estimates the internal temperature and the relative humidity inside the control device 3 (hereinafter referred to as “internal relative humidity”) from the measurement result by the environment measurement device 2 and the data in the outside air environment database 6, and the estimation result. Is output to the damage estimation unit 32. The damage estimation unit 32 is configured to estimate the corrosion amount and the insulation deterioration based on the estimation result of the environment estimation unit 30 and to output the estimation result to the life diagnosis unit 34. The life diagnosis unit 34 is configured to diagnose the life based on the estimation result of the damage estimation unit 32 and to output the diagnosis result to the diagnosis result output device 8. The diagnosis result output device 8 is configured to output the diagnosis result to a display screen of an information processing terminal (not shown).

このように構成される劣化診断システム1の動作について、図2を参照して説明する。図2は、劣化診断システム1の処理フローである。ステップ1において、環境測定装置2の温度センサ12、湿度センサ14を制御装置3内に設置し、腐食センサ16、塵埃センサ18をプリント基板10又はプリント基板10付近に図1(b)のように設置する。設置した各センサにより、1乃至3ヶ月間測定を行う。高精度測定の場合は3ヶ月以上、簡易測定の場合は1週間程度でもよい。測定時期は、腐食、絶縁劣化に大きく影響を及ぼす相対湿度の高い時期が好ましい。本実施例では、一例として、2007年の8月から10月までの3ヶ月間測定を行う。また、一般に、導電部材9は銅であるが、ここでは、導電部材9と異なる金属である銀電極25を用いて腐食の推定を行う。その理由としては、銀は銅よりも腐食しやすく、短期に腐食が進行するため、銀の腐食を推定することで、銅である導電部材9の腐食に早めに対処できるためである。無論、銅を用いて腐食の推定を行ってもよい。   The operation of the deterioration diagnosis system 1 configured as described above will be described with reference to FIG. FIG. 2 is a processing flow of the deterioration diagnosis system 1. In step 1, the temperature sensor 12 and the humidity sensor 14 of the environment measuring device 2 are installed in the control device 3, and the corrosion sensor 16 and the dust sensor 18 are placed near the printed circuit board 10 or the printed circuit board 10 as shown in FIG. Install. Measurement is performed for 1 to 3 months by each installed sensor. Three months or more may be used for high-precision measurement, and one week may be used for simple measurement. The measurement period is preferably a period of high relative humidity that greatly affects corrosion and insulation deterioration. In this embodiment, as an example, measurement is performed for three months from August to October in 2007. In general, the conductive member 9 is copper, but here, the corrosion is estimated using a silver electrode 25 which is a metal different from the conductive member 9. The reason for this is that silver is more easily corroded than copper and corrosion proceeds in a short period of time. Therefore, by estimating the corrosion of silver, the corrosion of the conductive member 9 which is copper can be dealt with early. Of course, corrosion may be estimated using copper.

ステップ2について、図3乃至5を参照して説明する。図3は、診断処理装置4の環境推定部30の処理工程であり、図4(a)は、内部温度と外部温度のグラフ、図4(b)は、内部温度と外部温度の周波数特性であり、図5は、制御装置3の内部の絶対湿度(以下、内部絶対湿度という。)と外部絶対湿度のグラフである。環境推定部30には、ステップ1で測定した8月から10月までの内部温度及び内部相対湿度と、外気環境データベース6に保存されている8月から10月までの外部温度及び外部絶対湿度が入力される。   Step 2 will be described with reference to FIGS. 3A and 3B are processing steps of the environment estimation unit 30 of the diagnostic processing apparatus 4. FIG. 4A is a graph of the internal temperature and the external temperature, and FIG. 4B is a frequency characteristic of the internal temperature and the external temperature. FIG. 5 is a graph of the absolute humidity inside the control device 3 (hereinafter referred to as internal absolute humidity) and the external absolute humidity. The environment estimation unit 30 includes the internal temperature and internal relative humidity from August to October measured in Step 1 and the external temperature and external absolute humidity from August to October stored in the outdoor air environment database 6. Entered.

まず、温度について、図4に示すように内部温度と外部温度との温度差ΔTを算出する。温度差ΔTは、8月から10月までの3ヶ月間における平均温度から求める。さらに、離散フーリエ解析により内部温度の周波数特性を抽出する。内部温度は、外部温度と制御装置3の稼動による発熱の影響を受ける。例えば、毎日稼動・停止する制御装置3の内部温度は、外部温度の変動とともに、稼動・停止により1日周期の特徴を有する。また、平日に稼動・停止し、週末に停止する制御装置3では、1日周期の特徴とともに1週間周期の特徴を有する。通常、制御装置3は1週間以上の周期の特徴を有することは少ないが、フーリエ解析によりいずれの周期の周波数特性も取得できる。図4(b)に内部温度、外部温度の周期特性を示す。内部温度、外部温度のいずれも1日周期の特徴を有している。ただし、内部温度は、制御装置3の使用頻度に対応して1週間周期の特徴が顕著に現れている。   First, as for the temperature, as shown in FIG. 4, a temperature difference ΔT between the internal temperature and the external temperature is calculated. The temperature difference ΔT is obtained from the average temperature during the three months from August to October. Further, the frequency characteristic of the internal temperature is extracted by discrete Fourier analysis. The internal temperature is affected by the external temperature and heat generated by the operation of the control device 3. For example, the internal temperature of the control device 3 that operates and stops every day has a characteristic of a one-day cycle due to operation and stop as well as fluctuations in the external temperature. In addition, the control device 3 that operates / stops on weekdays and stops on weekends has a feature of a one-week cycle as well as a feature of a one-day cycle. Normally, the control device 3 rarely has a characteristic of a period of one week or more, but can acquire frequency characteristics of any period by Fourier analysis. FIG. 4B shows periodic characteristics of the internal temperature and the external temperature. Both the internal temperature and the external temperature are characterized by a one-day cycle. However, the internal temperature has a remarkable feature of a one-week cycle corresponding to the frequency of use of the control device 3.

求めた周波数特性を外気環境データベース6に保存されている測定期間より過去の外部温度、例えば、2006年の1月から12月までの外部温度に、上記で求めた温度差ΔTと周波数特性を加味することにより、将来の、例えば、2009年の1月から12月の内部温度の推定ができる。   The calculated frequency characteristics are taken into account in the past external temperatures from the measurement period stored in the outside air environment database 6, for example, the external temperatures from January to December of 2006, with the temperature difference ΔT and the frequency characteristics calculated above. By doing so, the internal temperature in the future, for example, from January to December of 2009 can be estimated.

次に、内部相対湿度の推定について説明する。制御装置3外部の水分は直ちに制御装置3内部に移行するため、外部絶対湿度と内部絶対湿度はほぼ一致する。したがって、外気環境データベース6から得られる外部絶対湿度と、測定した内部温度と内部相対湿度を用いて算出した内部絶対湿度とを比較して同等の値であることを確認できれば、過去の外部絶対湿度、例えば、2006年の1月から12月までの外部絶対湿度から絶対湿度−温度−相対湿度の換算式を用いて、将来の、例えば、2009年の1月から12月の内部相対湿度の推定ができる。   Next, estimation of internal relative humidity will be described. Since the moisture outside the control device 3 immediately moves into the control device 3, the external absolute humidity and the internal absolute humidity are almost the same. Therefore, if the external absolute humidity obtained from the external air environment database 6 and the internal absolute humidity calculated using the measured internal temperature and the internal relative humidity can be compared and confirmed to be equivalent, the past external absolute humidity can be confirmed. For example, using the conversion formula of absolute humidity-temperature-relative humidity from external absolute humidity from January to December in 2006, estimation of internal relative humidity in the future, for example, January to December, 2009 Can do.

以上のように、環境測定部30では、測定期間と同時期の外部温度及び外部絶対湿度と内部温度及び内部相対湿度との対応関係を求め、その対応関係と過去の外部温度及び外部絶対湿度とに基づいて、将来の内部温度及び内部相対湿度を推定することができる。   As described above, the environment measurement unit 30 obtains a correspondence relationship between the external temperature and external absolute humidity, the internal temperature and the internal relative humidity at the same time as the measurement period, and the correspondence relationship with the past external temperature and external absolute humidity. Based on this, the future internal temperature and internal relative humidity can be estimated.

ステップ3の被害推定部32の腐食に関しての処理について、図6を参照して説明する。図6は、環境推定部30の処理工程を示す。環境推定部30には、ステップ1で測定した腐食量、ステップ2で推定した内部温度及び内部相対湿度が入力される。   The processing relating to the corrosion of the damage estimation unit 32 in step 3 will be described with reference to FIG. FIG. 6 shows processing steps of the environment estimation unit 30. The environment estimation unit 30 receives the amount of corrosion measured in step 1, the internal temperature estimated in step 2, and the internal relative humidity.

次に、内部温度及び内部相対湿度と腐食量との相関関係を求める。銀の腐食量Xは硫化銀の生成が主であり、例えば古河電工時報79巻93ページ(1986年)に実験式として式(1)が示されている。
X=X・[H2S]1.0・[RH]・exp(−E/kT)・t (1)
ここでXは係数、[H2S]は硫化水素濃度、[RH]は相対湿度、Eは活性化エネルギ、kはボルツマン定数、Tは絶対温度、tは時間を表す。ここでX・[H2S]1.0を腐食性ガス係数Cと定義すると、腐食量Xは式(2)で与えられる。
X=C・[RH]・exp(−E/kT)・t (2)
ここで、環境測定装置2の各センサの測定の単位時間tUTでの腐食量XUTは、温度T、相対湿度RHの環境において式(3)で与えられる。
UT=C・[RH]・exp(−E/kT)・tUT (3)
ここで銀の腐食量Xは時間に比例することから、腐食センサ16の測定期間tCSでの腐食量XCSは、単位時間tUTの腐食量XUTの積算値として式(4)で与えられる。
CS=ΣXUT=C・Σ{[RH]・exp(−E/kT)・tUT} (4)
は式(4)より、式(5)として与えられる。
=XCS/Σ{[RH]・exp(−E/kT)・tUT} (5)
このように、腐食性ガス係数Cは制御装置の設置環境ごとに固有の値であり、式(5)に測定した内部温度、内部相対湿度、腐食量、測定期間を代入することにより決定できる。実際に計算機を用いて推定する場合は、予め仮の腐食性ガス係数を仮定して推定した積算腐食量と腐食センサ16の測定期間tCSでの腐食量XCSが等しくなるように,腐食性ガス係数を設定する方法を採用してもよい。ここでは腐食性ガス係数Cの季節変動を考慮していないが、ある一定の間隔で測定して腐食性ガス係数Cの季節変動を考慮すれば、より精度の高い推定ができる。決定した腐食性ガス係数Cとステップ2で推定した内部温度及び内部相対湿度の値を式(4)に代入することで積算腐食量を推定することができる。図7(a)に、銀腐食量の実測値と推定値を示す。両者は良く一致しており、本推定方法は妥当である。
Next, the correlation between the internal temperature and internal relative humidity and the amount of corrosion is obtained. The amount of corrosion X of silver is mainly produced by silver sulfide. For example, Furukawa Electric Times Vol. 79, page 93 (1986) shows Equation (1) as an empirical formula.
X = X 0 * [H2S] 1.0 * [RH] n * exp (-E / kT) * t (1)
Where X 0 is a coefficient, [H2 S] is the concentration of hydrogen sulfide, [RH] is the relative humidity, E is the activation energy, k is the Boltzmann constant, T is the absolute temperature, t represents time. Here, when X 0 · [H 2 S] 1.0 is defined as the corrosive gas coefficient C 0 , the corrosion amount X is given by the equation (2).
X = C 0 · [RH] n · exp (-E / kT) · t (2)
Here, the corrosion amount X UT in the unit time t UT of the measurement of each sensor of the environment measuring device 2 is given by the equation (3) in the environment of the temperature T and the relative humidity RH.
X UT = C 0 · [RH] n · exp (−E / kT) · t UT (3)
Here, since the corrosion amount X of silver is proportional to time, the corrosion amount X CS during the measurement period t CS of the corrosion sensor 16 is given by the equation (4) as an integrated value of the corrosion amount X UT of the unit time t UT. It is done.
X CS = ΣX UT = C 0 · Σ {[RH] n · exp (−E / kT) · t UT } (4)
C 0 is given as equation (5) from equation (4).
C 0 = X CS / Σ {[RH] n · exp (−E / kT) · t UT } (5)
As described above, the corrosive gas coefficient C0 is a value specific to each installation environment of the control device, and can be determined by substituting the measured internal temperature, internal relative humidity, corrosion amount, and measurement period into the equation (5). . If estimated using actually a calculator, as previously corroded amount X CS of the measurement period t CS of the integrated amount of corrosion of the corrosive gas coefficient was estimated by assuming a temporary corrosion sensor 16 are equal, corrosive You may employ | adopt the method of setting a gas coefficient. Here does not take into account seasonal variations in the corrosive gas coefficient C 0, but considering the measured at certain intervals Seasonal variation of corrosive gases coefficients C 0, it is more accurate estimation. The internal temperature and the value of the internal relative humidity estimated by the determined corrosive gases coefficients C 0 and Step 2 can be estimated accumulated amount of corrosion by substituting the equation (4). FIG. 7A shows actual measured values and estimated values of the amount of silver corrosion. Both agree well, and this estimation method is appropriate.

ここで、診断対象の金属が銅である場合について説明する。銅の腐食量は時間の1/2乗に比例するため、単純に単位時間における腐食量を積算できない。銅の腐食量XCuは式(6)で与えられる。
X=C・[RH]・exp(−E/kT)・t0.5 (6)
最初の単位時間t=tでの温度をT、相対湿度をRH、膜厚をXとすると、腐食量は式(7)で与えられる。
=C・[RH・exp(−E/kT)・t 0.5 (7)
次の単位時間t=(t−t)での温度をT、相対湿度をRH、膜厚をXとする。銅の表面には膜厚Xの腐食皮膜が形成されている。ここで銅の腐食皮膜の耐食性が温度、相対湿度に依存しないと仮定する。温度T、相対湿度RHの環境で膜厚Xが形成されている換算時間t2cは、式(8)で与えられる。
2c=[X/{C・[RH・exp(−E/kT)}] (8)
したがって、次の単位時間t=(t−t)での腐食量Xは式(9)で与えられる。
=C・[RH・exp(−E/kT)・(t2c+t0.5 (9)
このように経過時間を修正して等価経過時間を求めることにより、銅の様な腐食量が時間に比例しない金属の場合でも、腐食量を精度良く推定できる。
Here, a case where the metal to be diagnosed is copper will be described. Since the corrosion amount of copper is proportional to the 1/2 power of time, the corrosion amount per unit time cannot be simply integrated. Copper corrosion amount XCu is given by equation (6).
X = C 0 · [RH] n · exp (-E / kT) · t 0.5 (6)
When the temperature at the first unit time t = t 1 is T 0 , the relative humidity is RH 0 , and the film thickness is X 0 , the amount of corrosion is given by Equation (7).
X 0 = C 0 · [RH 0] n · exp (-E / kT 0) · t 1 0.5 (7)
The temperature at the next unit time t = (t 2 −t 1 ) is T 1 , the relative humidity is RH 1 , and the film thickness is X 1 . Corrosion coating of thickness X 0 is formed on the surface of the copper. Here, it is assumed that the corrosion resistance of the copper corrosion film does not depend on temperature and relative humidity. The conversion time t 2c during which the film thickness X 0 is formed in the environment of the temperature T 1 and the relative humidity RH 1 is given by Expression (8).
t 2c = [X 0 / {C 0 · [RH 1 ] n · exp (−E / kT 1 )}] 2 (8)
Therefore, the corrosion amount X 1 in the next unit time t = (t 2 −t 1 ) is given by equation (9).
X 1 = C 0 · [RH 1] n · exp (-E / kT 1) · (t 2c + t 1) 0.5 (9)
By correcting the elapsed time in this way and obtaining the equivalent elapsed time, the amount of corrosion can be accurately estimated even in the case of a metal such as copper where the amount of corrosion is not proportional to time.

ステップ4において、寿命診断部34には、ステップ3で推定した腐食量と、腐食データベース36に保存されている腐食許容値の割合が入力される。寿命診断部34は、これらから腐食積算被害率を求め、図7(b)に示すように、腐食積算被害率が1に達した時点を腐食寿命として求める。   In step 4, the life diagnosis unit 34 receives the amount of corrosion estimated in step 3 and the ratio of the corrosion tolerance stored in the corrosion database 36. The life diagnosis unit 34 obtains the corrosion integrated damage rate from these, and obtains the time when the corrosion integrated damage rate reaches 1 as the corrosion life as shown in FIG.

次に、ステップ3´の被害推定部32の絶縁劣化に関しての処理について、図8を参照して説明する。図8は、環境推定部30の絶縁劣化についての処理工程を示し、環境推定部30には、ステップ1で測定した塵埃量、ステップ2で推定した内部温度及び内部相対湿度が入力される。   Next, the process regarding the insulation deterioration of the damage estimation part 32 of step 3 'is demonstrated with reference to FIG. FIG. 8 shows a process for insulation deterioration of the environment estimation unit 30, and the amount of dust measured in step 1, the internal temperature estimated in step 2, and the internal relative humidity are input to the environment estimation unit 30.

絶縁劣化の主たる原因はイオンマイグレーションである。イオンマイグレーションは、アノード金属の電気化学的溶出、金属イオンの輸送、カソードでの電気化学的析出と3段階の反応を経て起こるため、その寿命は各段階の反応に対して評価する必要がある。ここでは3段階の反応をまとめて算出した寿命を用いる。図9(a)に温度一定、電界強度一定でのイオンマイグレーション寿命と相対湿度、塵埃量の関係を示す。イオンマイグレーション寿命Lは、絶対温度T、相対湿度RH、さらに塵埃量Dに依存し、式(10)で与えられる。
L=C・E−m・[RH]−n・D−p・exp(E/kT) (10)
ここでCは定数、m、n、pは指数、Eは活性化エネルギ、kはボルツマン定数である。実環境では温湿度が変動するため、温度と湿度の変動を考慮した寿命推定式が必要となる。そこで疲労寿命の推定で用いられる線形累積損傷則(Miner則)の考え方を導入する。相対湿度RH、RH、RH、・・・における寿命をL、L、L、・・・とする。相対湿度RH、RH、RH、・・・にt、t、t、・・・時間だけ曝されたとき、t/L、t/L、t/L、・・・をマイグレーション損傷と考える。したがって積算イオンマイグレーション被害率は式(11)で与えられる。
(t/L)+(t/L)+(t/L)+・・・ (11)
マイグレーション寿命判定は,式(12)で与えられる。
(t/L)+(t/L)+(t/L)+・・・=1 (12)
イオンマイグレーションの寿命推定式(12)に、ステップ2で推定した内部温度及び内部相対湿度を代入し、塵埃量は、測定期間に付着した塵埃量から単位時間ごとに付着する塵埃量を求めて代入する。このようにして、単位時間、例えば1時間ごとのイオンマイグレーション損傷を求める。
The main cause of insulation deterioration is ion migration. Since ion migration takes place through electrochemical elution of the anode metal, transport of metal ions, electrochemical deposition at the cathode and a three-stage reaction, its lifetime needs to be evaluated for each stage reaction. Here, the lifetime calculated by combining the three-stage reaction is used. FIG. 9A shows the relationship between the ion migration lifetime, the relative humidity, and the amount of dust when the temperature is constant and the electric field strength is constant. The ion migration lifetime L depends on the absolute temperature T, the relative humidity RH, and the dust amount D, and is given by the equation (10).
L = C * E- m * [RH] -n * D- p * exp (E / kT) (10)
Here, C is a constant, m, n, and p are exponents, E is an activation energy, and k is a Boltzmann constant. Since temperature and humidity fluctuate in an actual environment, a life estimation formula that takes into account temperature and humidity fluctuations is required. Therefore, we introduce the concept of linear cumulative damage law (Miner's law) used in fatigue life estimation. Let the lifetimes at relative humidity RH 1 , RH 2 , RH 3 ,... Be L 1 , L 2 , L 3 ,. T 1 / L 1 , t 2 / L 2 , t 3 / L when exposed to relative humidity RH 1 , RH 2 , RH 3 ,..., T 1 , t 2 , t 3 ,. 3 is considered as migration damage. Therefore, the integrated ion migration damage rate is given by equation (11).
(T 1 / L 1 ) + (t 2 / L 2 ) + (t 3 / L 3 ) + (11)
Migration life determination is given by equation (12).
(T 1 / L 1) + (t 2 / L 2) + (t 3 / L 3) + ··· = 1 (12)
Substitute the internal temperature and internal relative humidity estimated in Step 2 into the lifetime estimation formula (12) for ion migration, and substitute the dust amount by finding the amount of dust attached per unit time from the amount of dust attached during the measurement period. To do. In this way, ion migration damage is determined per unit time, for example, every hour.

ステップ4´において、寿命診断部34には、ステップ3´で求めた単位時間ごとのイオンマイグレーション損傷が入力される。寿命診断部34は、これからイオンマイグレーション積算被害率を求め、図9(b)に示すように、イオンマイグレーション積算被害率が1に達した時点を絶縁劣化寿命として求める。   In step 4 ′, ion migration damage per unit time obtained in step 3 ′ is input to the life diagnosis unit 34. The life diagnosis unit 34 obtains the ion migration integrated damage rate from this, and obtains the time when the ion migration integrated damage rate reaches 1 as the insulation deterioration life as shown in FIG. 9B.

ステップ5において、ステップ4及び4´で求めた腐食寿命及び絶縁劣化寿命を図示しない情報処理端末の表示画面に出力する。以上で劣化診断システム1の処理が終了する。   In step 5, the corrosion life and the insulation deterioration life obtained in steps 4 and 4 'are output on the display screen of the information processing terminal (not shown). Thus, the process of the deterioration diagnosis system 1 is completed.

以上説明したように、本実施例の、導電部材9を備えたプリント基板10が収納された制御装置3内の温度を測定する温度センサ12と、相対湿度を測定する湿度センサ14と、導電部材9の腐食量を測定する腐食センサ16と、診断処理装置4と、外気環境データベース6とを備えた劣化診断システム1によれば、測定期間と同時期の外気環境データと制御装置3内環境データの対応関係から、外気環境データと制御装置3内環境データの温度差、湿度差、それらの周期を求め、これらを過去の外気環境データに当てはめて将来の制御装置3内環境データを推定できる。これにより、温度及び相対湿度が因子となる腐食量を精度よく推定することができる。   As described above, the temperature sensor 12 for measuring the temperature in the control device 3 in which the printed circuit board 10 having the conductive member 9 is accommodated, the humidity sensor 14 for measuring the relative humidity, and the conductive member of this embodiment. According to the deterioration diagnosis system 1 including the corrosion sensor 16 for measuring the amount of corrosion 9, the diagnostic processing device 4, and the outside air environment database 6, the outside air environment data and the control device 3 environment data at the same time as the measurement period From the correspondence relationship, the temperature difference, humidity difference, and period between the outside air environment data and the environment data in the control device 3 are obtained, and these are applied to the past outside air environment data to estimate the future environment data in the control device 3. Thereby, the amount of corrosion whose factors are temperature and relative humidity can be accurately estimated.

また、塵埃センサ18を備え、腐食量の場合と同様に将来の制御装置3内環境データを推定し、設定期間に記録された筐体内環境データと絶縁劣化の進行度との相関関係から推定した塵埃量とで、絶縁劣化の進行度を精度よく推定することができる。   Further, a dust sensor 18 is provided, and the future environmental data in the control device 3 is estimated as in the case of the amount of corrosion, and is estimated from the correlation between the environmental data in the casing recorded during the set period and the progress of insulation deterioration. The progress of insulation deterioration can be accurately estimated from the amount of dust.

図10に、本発明の第2の実施例の劣化診断システム1の構成を示す。本実施例では、制御装置3の設置環境が空調制御され、第1の実施例の外気環境データベース6に替えて空調データベース38を備えており、その他の構成については第1の実施例と同様である。空調データベース38には、制御装置3の設置環境の設定温度及び設定相対湿度が保存されている。これら設定温度及び設定相対湿度を用いて、実施例1と同様の手順で、内部温度及び内部相対湿度を推定することができる。   FIG. 10 shows the configuration of the deterioration diagnosis system 1 according to the second embodiment of the present invention. In the present embodiment, the installation environment of the control device 3 is air-conditioned and includes an air-conditioning database 38 instead of the outside air environment database 6 of the first embodiment, and the other configurations are the same as those of the first embodiment. is there. The air conditioning database 38 stores the set temperature and the set relative humidity of the installation environment of the control device 3. Using these set temperature and set relative humidity, the internal temperature and internal relative humidity can be estimated in the same procedure as in the first embodiment.

以上説明したように、本実施例の、外気環境データベース6に替えて空調データベース38を備えた劣化診断システム1によれば、第1の実施例と同様にして、空調の設定温度及び湿度に合わせて将来の内部温度及び内部湿度の変化を精度よく推定することができ、腐食量及び絶縁劣化を精度よく推定することができる。   As described above, according to the deterioration diagnosis system 1 provided with the air conditioning database 38 instead of the outside air environment database 6 according to the present embodiment, in accordance with the set temperature and humidity of the air conditioning as in the first embodiment. Thus, future changes in internal temperature and internal humidity can be accurately estimated, and the amount of corrosion and insulation deterioration can be accurately estimated.

以上、本実施例の劣化診断システム1について説明したが、本発明は、これらの実施例に限らず適宜構成を変更して適用することができる。例えば、本実施例では、腐食センサ16及び塵埃センサ18をプリント基板10に実装して測定を行ったが、腐食センサ16及び塵埃センサ18を備えた測定用の基板を測定キットとして利用してもよい。また、腐食センサ16は、腐食量を比色法、カソード還元法により測定するように構成してもよい。また、塵埃センサ18は、「大気環境の腐食性を評価するための環境因子の測定」(JIS−Z−2382)や、JEIDA−63−2000に示されている曝露ガーゼによる捕集により測定するように構成してもよい。   As described above, the degradation diagnosis system 1 according to the present embodiment has been described. However, the present invention is not limited to these embodiments, and can be applied by appropriately changing the configuration. For example, in this embodiment, the corrosion sensor 16 and the dust sensor 18 are mounted on the printed circuit board 10 and the measurement is performed. However, the measurement substrate including the corrosion sensor 16 and the dust sensor 18 may be used as a measurement kit. Good. The corrosion sensor 16 may be configured to measure the corrosion amount by a colorimetric method or a cathode reduction method. Further, the dust sensor 18 is measured by “measurement of environmental factors for evaluating the corrosiveness of the atmospheric environment” (JIS-Z-2382) or by collection with an exposure gauze shown in JEIDA-63-2000. You may comprise as follows.

また、腐食の診断対象としては導電部材に限らず、制御装置3内の金属部分、例えばブレーカー等を対象とすることができる。その場合は、上記測定キットを利用するとよい。   Further, the diagnosis target of corrosion is not limited to the conductive member, but can be a metal part in the control device 3, for example, a breaker. In that case, the measurement kit may be used.

また、測定した内部温度と外部温度との周期性等をフーリエ解析により求めたが、フーリエ解析により求める方法に限らず、移動平均により平均的な特徴を求め、対象温度データと平均的な特徴の差分から周期的な特徴を求める方法で求めてもよい。また、フーリエ解析による周期的特徴に合わせて移動平均の条件を決定することで、精度の良い推定が可能である。さらに、他の時系列データの解析方法を使用してもよい。   In addition, the periodicity between the measured internal temperature and external temperature was obtained by Fourier analysis, but not limited to the method obtained by Fourier analysis, an average feature is obtained by moving average, and the target temperature data and the average feature You may obtain | require by the method of calculating | requiring a periodic feature from a difference. In addition, it is possible to estimate with high accuracy by determining the moving average condition according to the periodic feature by Fourier analysis. Furthermore, other time series data analysis methods may be used.

さらに、腐食に塵埃が関係する場合には、温度及び湿度に加えて塵埃量を推定して腐食量の推定に用いてもよい。   Furthermore, when dust is related to corrosion, the amount of dust may be estimated in addition to temperature and humidity, and used for estimation of the amount of corrosion.

(a)は、本発明の第1の実施例の劣化診断システムの構成図であり、(b)は、制御装置に収納されるプリント基板の平面図である。(A) is a block diagram of the deterioration diagnostic system of the 1st Example of this invention, (b) is a top view of the printed circuit board accommodated in a control apparatus. 劣化診断システムの処理フローである。It is a processing flow of a deterioration diagnosis system. 診断処理装置の環境推定部の処理工程である。It is a process of the environment estimation part of a diagnostic processing apparatus. (a)は、内部温度と外部温度のグラフであり、(b)は、内部温度と外部温度の周波数特性である。(A) is a graph of internal temperature and external temperature, (b) is a frequency characteristic of internal temperature and external temperature. 制御装置の内部の絶対湿度と外部絶対湿度のグラフであるIt is a graph of the absolute humidity inside a control device, and an external absolute humidity 環境推定部の腐食量推定についての処理工程を示す。The process for estimating the amount of corrosion in the environment estimation unit is shown. (a)は、銀腐食量の実測値と推定値を示す図であり、(b)は、腐食寿命と経過年数の関係図である。(A) is a figure which shows the actual value and estimated value of a silver corrosion amount, (b) is a related figure of a corrosion life and elapsed years. 環境推定部の絶縁劣化の推定についての処理工程を示す図である。It is a figure which shows the process process about estimation of the insulation degradation of an environment estimation part. (a)は、イオンマイグレーション寿命と相対湿度、塵埃量の関係を示す図であり、(b)は、イオンマイグレーション寿命と経過年数の関係図である。(A) is a figure which shows the relationship between an ion migration lifetime, relative humidity, and the amount of dust, (b) is a relationship figure of an ion migration lifetime and elapsed years. 本発明の第2の実施形態に係わる劣化診断システムの環境推定部の処理工程である。It is a process of the environment estimation part of the deterioration diagnostic system concerning the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1 劣化診断システム
2 環境測定装置
4 診断処理装置
6 外気環境データベース
9 導電部材
10 プリント基板
12 温度センサ
14 湿度センサ
16 腐食センサ
18 塵埃センサ
17 腐食積算被害率
18 イオンマイグレーション積算被害率
30 環境推定部
32 被害推定部
34 寿命診断部
36 腐食データベース
38 空調データベース
DESCRIPTION OF SYMBOLS 1 Degradation diagnosis system 2 Environmental measurement apparatus 4 Diagnosis processing apparatus 6 Outside air environment database 9 Conductive member 10 Printed circuit board 12 Temperature sensor 14 Humidity sensor 16 Corrosion sensor 18 Dust sensor 17 Integrated corrosion damage rate 18 Ion migration integrated damage rate 30 Environment estimation part 32 Damage estimation unit 34 Life diagnosis unit 36 Corrosion database 38 Air conditioning database

Claims (5)

診断対象である導電部材を備えた電子又は電気部品が実装されたプリント基板が収納された筐体内の温度を測定する温度センサと、前記筐体内の湿度を測定する湿度センサと、前記診断対象の腐食量を測定する腐食センサと、前記各センサで測定された前記筐体内の温度及び湿度からなる筐体内環境データと前記診断対象の腐食データとを設定期間記録し、該記録された前記筐体内環境データと前記腐食データとに基づいて前記診断対象の将来の腐食量を推定して劣化診断を行う診断処理装置と、前記筐体外の過去の温度及び湿度からなる外気環境データが記録された外気環境データベースとを備え、
前記診断処理装置は、前記設定期間に記録された前記筐体内環境データと前記腐食データとの相関関係を求め、前記設定期間における前記外気環境データと前記筐体内環境データとの対応関係を求め、該対応関係と過去の前記外気環境データとに基づいて将来の前記筐体内環境データを推定し、該推定した筐体内環境データと前記相関関係とから前記診断対象の将来の腐食量を推定する制御装置の劣化診断システム。
A temperature sensor for measuring a temperature in a casing in which a printed circuit board on which an electronic or electrical component including a conductive member to be diagnosed is mounted, a humidity sensor for measuring the humidity in the casing, and the diagnostic target Recording the corrosion sensor for measuring the corrosion amount, the environmental data in the casing composed of the temperature and humidity in the casing measured by each sensor, and the corrosion data to be diagnosed for a set period, and the recorded in the casing A diagnosis processing device that estimates a future corrosion amount of the diagnosis target based on environmental data and the corrosion data and performs a deterioration diagnosis, and an outside air in which outside air environment data including past temperature and humidity outside the housing is recorded Environmental database and
The diagnostic processing device obtains a correlation between the environmental data in the casing and the corrosion data recorded during the setting period, and obtains a correspondence between the outside air environmental data and the environmental data in the casing during the setting period, Control that estimates future environmental data in the casing based on the correspondence and the past outside air environmental data, and estimates the future corrosion amount of the diagnosis target from the estimated environmental data in the casing and the correlation Equipment deterioration diagnosis system.
診断対象である導電部材を備えた電子又は電気部品が実装されたプリント基板が収納され空調雰囲気にある筐体内の温度を測定する温度センサと、前記筐体内の湿度を測定する湿度センサと、前記診断対象の腐食量を測定する腐食センサと、前記各センサで測定された前記筐体内の温度及び湿度からなる筐体内環境データと前記診断対象の腐食データとを設定期間記録し、該記録された前記筐体内環境データと前記腐食データとに基づいて前記診断対象の将来の腐食量を推定して劣化診断を行う診断処理装置と、前記空調の設定温度及び湿度からなる空調データが記録された空調データベースとを備え、
前記診断処理装置は、前記設定期間に記録された前記筐体内環境データと前記腐食データとの相関関係を求め、前記筐体内環境データと前記空調データとの対応関係に基づいて将来の前記筐体内環境データを推定し、該推定した筐体内環境データと前記相関関係とから前記診断対象の将来の腐食量を推定する制御装置の劣化診断システム。
A temperature sensor for measuring a temperature in a housing in an air-conditioned atmosphere containing a printed circuit board on which an electronic or electrical component including a conductive member to be diagnosed is mounted; a humidity sensor for measuring the humidity in the housing; and The corrosion sensor for measuring the corrosion amount of the diagnosis target, the environmental data in the casing composed of the temperature and humidity in the casing measured by each sensor, and the corrosion data of the diagnosis target are recorded for a set period, and the recorded A diagnostic processing device that estimates a future corrosion amount of the diagnosis target based on the environmental data in the housing and the corrosion data and performs a deterioration diagnosis, and an air conditioner in which air conditioning data including the set temperature and humidity of the air conditioner is recorded With a database,
The diagnostic processing device obtains a correlation between the environmental data in the casing and the corrosion data recorded during the set period, and based on the correspondence between the environmental data in the casing and the air conditioning data, A deterioration diagnosis system for a control device that estimates environmental data and estimates a future corrosion amount of the diagnosis target from the estimated environmental data in the housing and the correlation.
診断対象である導電部材を備えた電子又は電気部品が実装されたプリント基板が収納された筐体内の温度を測定する温度センサと、前記筐体内の湿度を測定する湿度センサと、前記診断対象に付着する塵埃量を測定する塵埃センサと、前記各センサで測定された前記筐体内の温度及び湿度からなる筐体内環境データと塵埃データとを設定期間記録し、該記録された前記筐体内環境データと前記塵埃データとに基づいて前記診断対象の絶縁劣化の診断を行う診断処理装置と、前記筐体外の過去の温度及び湿度からなる外気環境データが記録された外気環境データベースとを備え、
前記診断処理装置は、前記設定期間に記録された前記筐体内環境データと前記絶縁劣化の進行度との相関関係を求め、前記設定期間における前記外気環境データと前記筐体内環境データとの対応関係を求め、該対応関係と過去の前記外気環境データとに基づいて将来の前記筐体内環境データを推定し、該推定した筐体内環境データと前記相関関係とから前記診断対象の将来の絶縁劣化の進行度を推定する制御装置の劣化診断システム。
A temperature sensor for measuring a temperature in a housing in which a printed circuit board on which an electronic or electrical component including a conductive member to be diagnosed is mounted, a humidity sensor for measuring the humidity in the housing, and the diagnosis target A dust sensor that measures the amount of dust adhering, and internal environment data and dust data that are measured by each sensor and that includes temperature and humidity inside the housing are recorded for a set period, and the recorded internal environment data A diagnosis processing device for diagnosing insulation deterioration of the diagnosis object based on the dust data, and an outside air environment database in which outside air environment data consisting of past temperature and humidity outside the housing is recorded,
The diagnostic processing device obtains a correlation between the environmental data in the casing recorded in the setting period and the progress of the insulation deterioration, and a correspondence relationship between the outside air environmental data and the environmental data in the casing in the setting period And the future environmental data in the housing is estimated based on the correspondence and the past outside air environment data, and the future insulation deterioration of the diagnosis target is estimated from the estimated environmental data in the housing and the correlation. A deterioration diagnosis system for a control device that estimates the degree of progress.
診断対象である導電部材を備えた電子又は電気部品が実装されたプリント基板が収納され空調雰囲気にある筐体内の温度を測定する温度センサと、前記筐体内の湿度を測定する湿度センサと、前記診断対象に付着する塵埃量を測定する塵埃センサと、前記各センサで測定された前記筐体内の温度及び湿度からなる筐体内環境データと塵埃データとを設定期間記録し、該記録された前記筐体内環境データと前記塵埃データとに基づいて前記診断対象の絶縁劣化の診断を行う診断処理装置と、前記空調の設定温度及び湿度からなる空調データが記録された空調データベースとを備え、
前記診断処理装置は、前記設定期間に記録された前記筐体内環境データと前記絶縁劣化の進行度との相関関係を求め、前記筐体内環境データと前記空調データとの対応関係に基づいて、将来の前記筐体内環境データを推定し、該推定した筐体内環境データと前記相関関係とから前記診断対象の将来の絶縁劣化の進行度を推定する制御装置の劣化診断システム。
A temperature sensor for measuring a temperature in a housing in an air-conditioned atmosphere containing a printed circuit board on which an electronic or electrical component including a conductive member to be diagnosed is mounted; a humidity sensor for measuring the humidity in the housing; and A dust sensor for measuring the amount of dust adhering to the diagnosis object, and environmental data and dust data in the housing composed of the temperature and humidity in the housing measured by each sensor are recorded for a set period, and the recorded housing A diagnostic processing device for diagnosing insulation deterioration of the diagnosis target based on in-vivo environmental data and the dust data; and an air conditioning database in which air conditioning data including the set temperature and humidity of the air conditioning is recorded,
The diagnostic processing device obtains a correlation between the environmental data in the casing recorded during the set period and the progress of the insulation deterioration, and based on the correspondence between the environmental data in the casing and the air conditioning data, A deterioration diagnosis system for a control device that estimates the environmental data in the housing and estimates a progress degree of future insulation deterioration of the diagnosis target from the estimated environmental data in the housing and the correlation.
前記腐食センサは、電気抵抗式腐食センサであることを特徴とする請求項1又は2に記載の制御装置の劣化診断システム。   The deterioration diagnosis system for a control device according to claim 1, wherein the corrosion sensor is an electrical resistance type corrosion sensor.
JP2008204630A 2008-08-07 2008-08-07 Control device deterioration diagnosis system Active JP4599439B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008204630A JP4599439B2 (en) 2008-08-07 2008-08-07 Control device deterioration diagnosis system
CN 200910004942 CN101644654B (en) 2008-08-07 2009-02-20 Aging diagnosis system of control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008204630A JP4599439B2 (en) 2008-08-07 2008-08-07 Control device deterioration diagnosis system

Publications (2)

Publication Number Publication Date
JP2010038838A true JP2010038838A (en) 2010-02-18
JP4599439B2 JP4599439B2 (en) 2010-12-15

Family

ID=41656627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008204630A Active JP4599439B2 (en) 2008-08-07 2008-08-07 Control device deterioration diagnosis system

Country Status (2)

Country Link
JP (1) JP4599439B2 (en)
CN (1) CN101644654B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011214860A (en) * 2010-03-31 2011-10-27 Nec Corp Test material sensing method, sensing device, and sensing set
WO2012102321A1 (en) * 2011-01-28 2012-08-02 株式会社日立製作所 System for analyzing behavior of ions in insulation film
JP2012189356A (en) * 2011-03-09 2012-10-04 Fuji Electric Co Ltd Lifetime estimation method and lifetime estimation system
JP2016528714A (en) * 2013-06-04 2016-09-15 バイオトロニック エスエー アンド カンパニー カーゲー Procedure for calculating the level of corrosion exposure of the sensor part, the electronic module and the respective electronic module
WO2017094080A1 (en) * 2015-11-30 2017-06-08 日本郵船株式会社 Hull maintenance assistance device and hull maintenance method
US20170350807A1 (en) * 2014-12-26 2017-12-07 Hitachi, Ltd. Corrosion environment diagnosis system, corrosion prevention system, corrosion environment diagnosis method, and corrosion prevention method
JP2021051068A (en) * 2019-09-19 2021-04-01 Jfeスチール株式会社 Method and device for predicting corrosion amount
DE112019007478T5 (en) 2019-06-18 2022-03-24 Mitsubishi Electric Corporation SENSOR FOR DETECTING CORROSION, ELECTRICAL DEVICE WITH SENSOR AND METHOD FOR DETECTING CORROSION

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9292023B2 (en) 2012-09-12 2016-03-22 International Business Machines Corporation Decreasing the internal temperature of a computer in response to corrosion
US9400204B2 (en) * 2013-03-13 2016-07-26 Gregory B. Schoenberg Fuel level sensor
CN104157121B (en) * 2014-08-22 2017-01-25 北京机电工程研究所 Wireless data transmission device oriented direct healthy factor construction method
CN109406384A (en) * 2018-10-18 2019-03-01 广西丰林木业集团股份有限公司 Core component forecasting fatigue method and apparatus
WO2020165961A1 (en) * 2019-02-13 2020-08-20 三菱電機株式会社 Method and device for diagnosing remaining life of electric device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05126776A (en) * 1991-11-08 1993-05-21 Hitachi Ltd Corrosion sensor for high electric insulating refrigerant
JPH05142173A (en) * 1991-11-19 1993-06-08 Daikin Ind Ltd Quantity of air detector
JP2000131363A (en) * 1998-10-20 2000-05-12 Toshiba Corp Method and apparatus for diagnosis of service life of electronic device
JP2001215187A (en) * 2000-02-01 2001-08-10 Toshiba Corp Method and apparatus for diagnosing deterioration
JP2002140448A (en) * 2000-11-01 2002-05-17 Toshiba Corp Method for diagnosing deterioration and server for the same and computer readable recording medium with program recorded
JP2002207837A (en) * 2001-01-10 2002-07-26 Toshiba Corp Degradation diagnostic method, degradation diagnosis mediating device, degradation diagnostic device and computer readable recording medium in which program is recorded
JP2002304213A (en) * 2001-04-06 2002-10-18 Kansai Electric Power Co Inc:The Equipment deterioration rate estimating system
JP2005308424A (en) * 2004-04-19 2005-11-04 Meidensha Corp Dielectric deterioration diagnosing method of electric device
JP2006309788A (en) * 2006-06-29 2006-11-09 Toshiba Corp Device for diagnosing installation environment and facility deterioration life
JP2007163324A (en) * 2005-12-14 2007-06-28 Taiheiyo Cement Corp Corrosion detecting member and corrosion sensor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5208162A (en) * 1990-05-08 1993-05-04 Purafil, Inc. Method and apparatus for monitoring corrosion
AU2003304096A1 (en) * 2003-05-12 2004-11-26 Nihon University Method for predicting fatigue life of spot-welded structure

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05126776A (en) * 1991-11-08 1993-05-21 Hitachi Ltd Corrosion sensor for high electric insulating refrigerant
JPH05142173A (en) * 1991-11-19 1993-06-08 Daikin Ind Ltd Quantity of air detector
JP2000131363A (en) * 1998-10-20 2000-05-12 Toshiba Corp Method and apparatus for diagnosis of service life of electronic device
JP2001215187A (en) * 2000-02-01 2001-08-10 Toshiba Corp Method and apparatus for diagnosing deterioration
JP2002140448A (en) * 2000-11-01 2002-05-17 Toshiba Corp Method for diagnosing deterioration and server for the same and computer readable recording medium with program recorded
JP2002207837A (en) * 2001-01-10 2002-07-26 Toshiba Corp Degradation diagnostic method, degradation diagnosis mediating device, degradation diagnostic device and computer readable recording medium in which program is recorded
JP2002304213A (en) * 2001-04-06 2002-10-18 Kansai Electric Power Co Inc:The Equipment deterioration rate estimating system
JP2005308424A (en) * 2004-04-19 2005-11-04 Meidensha Corp Dielectric deterioration diagnosing method of electric device
JP2007163324A (en) * 2005-12-14 2007-06-28 Taiheiyo Cement Corp Corrosion detecting member and corrosion sensor
JP2006309788A (en) * 2006-06-29 2006-11-09 Toshiba Corp Device for diagnosing installation environment and facility deterioration life

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011214860A (en) * 2010-03-31 2011-10-27 Nec Corp Test material sensing method, sensing device, and sensing set
WO2012102321A1 (en) * 2011-01-28 2012-08-02 株式会社日立製作所 System for analyzing behavior of ions in insulation film
JP2012189356A (en) * 2011-03-09 2012-10-04 Fuji Electric Co Ltd Lifetime estimation method and lifetime estimation system
JP2016528714A (en) * 2013-06-04 2016-09-15 バイオトロニック エスエー アンド カンパニー カーゲー Procedure for calculating the level of corrosion exposure of the sensor part, the electronic module and the respective electronic module
US20170350807A1 (en) * 2014-12-26 2017-12-07 Hitachi, Ltd. Corrosion environment diagnosis system, corrosion prevention system, corrosion environment diagnosis method, and corrosion prevention method
US10436701B2 (en) 2014-12-26 2019-10-08 Hitachi, Ltd. Corrosion environment diagnosis system, corrosion prevention system, corrosion environment diagnosis method, and corrosion prevention method
WO2017094080A1 (en) * 2015-11-30 2017-06-08 日本郵船株式会社 Hull maintenance assistance device and hull maintenance method
JPWO2017094080A1 (en) * 2015-11-30 2018-08-30 日本郵船株式会社 Hull maintenance support device and hull maintenance method
DE112019007478T5 (en) 2019-06-18 2022-03-24 Mitsubishi Electric Corporation SENSOR FOR DETECTING CORROSION, ELECTRICAL DEVICE WITH SENSOR AND METHOD FOR DETECTING CORROSION
US11747264B2 (en) 2019-06-18 2023-09-05 Mitsubishi Electric Corporation Corrosion detection sensor, electrical apparatus including the same, and method of detecting corrosion
JP2021051068A (en) * 2019-09-19 2021-04-01 Jfeスチール株式会社 Method and device for predicting corrosion amount
JP7259815B2 (en) 2019-09-19 2023-04-18 Jfeスチール株式会社 Corrosion amount prediction method and device

Also Published As

Publication number Publication date
CN101644654A (en) 2010-02-10
JP4599439B2 (en) 2010-12-15
CN101644654B (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP4599439B2 (en) Control device deterioration diagnosis system
US10436701B2 (en) Corrosion environment diagnosis system, corrosion prevention system, corrosion environment diagnosis method, and corrosion prevention method
JP3895087B2 (en) Deterioration diagnosis method
US10732079B2 (en) Filter replacement lifetime prediction
JP3643521B2 (en) Corrosion environment monitoring device
JP4724649B2 (en) Method for estimating corrosion rate of structures using ACM sensor
JP6506849B2 (en) Corrosion environment monitoring apparatus and method
JP6362920B2 (en) Corrosion environment monitoring apparatus and method
US7457725B1 (en) Electronic component reliability determination system and method
US20050066707A1 (en) Gas detector
JP4045776B2 (en) Life diagnosis method for power distribution facilities
KR101304308B1 (en) Method for predicting a lifetime in continuous varying environment
JP2022139266A (en) Environment temperature change prediction device and environment temperature change prediction method of machine tool
WO2020039611A1 (en) Corrosive environment monitoring method and corrosive environment monitoring system
JP3602782B2 (en) Degradation degree measuring kit and method for diagnosing deterioration life of electronic circuit board using this deterioration degree measuring kit
JP7437286B2 (en) Corrosive environment monitoring system and corrosive environment monitoring method
JPH1090165A (en) Monitoring apparatus for corrosion environment
JP2002333398A (en) Method and apparatus for diagnosing deterioration caused by pollution
Niblock et al. Development of a commercial microcorrosion monitoring system
US20050148081A1 (en) System and method for corrosion maintenance scheduling
JP2011058907A (en) Lifetime estimation method and lifetime estimation system
JP2023058105A (en) Corrosion diagnosis method and corrosion diagnosis system
JP2005257532A (en) Environment diagnosis tool and environment measurement method using the same
CN114002139A (en) Testing device and testing method capable of continuously testing corrosion thinning amount of metal material
JP2017083456A (en) Dew condensation detection method of switch gear

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100927

R150 Certificate of patent or registration of utility model

Ref document number: 4599439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3