JP2005308424A - Dielectric deterioration diagnosing method of electric device - Google Patents

Dielectric deterioration diagnosing method of electric device Download PDF

Info

Publication number
JP2005308424A
JP2005308424A JP2004122399A JP2004122399A JP2005308424A JP 2005308424 A JP2005308424 A JP 2005308424A JP 2004122399 A JP2004122399 A JP 2004122399A JP 2004122399 A JP2004122399 A JP 2004122399A JP 2005308424 A JP2005308424 A JP 2005308424A
Authority
JP
Japan
Prior art keywords
degree
deterioration
tested
insulation deterioration
diagnosing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004122399A
Other languages
Japanese (ja)
Other versions
JP4400293B2 (en
Inventor
Takehiro Hamamura
武広 浜村
Naoko Hosono
奈穂子 細野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2004122399A priority Critical patent/JP4400293B2/en
Publication of JP2005308424A publication Critical patent/JP2005308424A/en
Application granted granted Critical
Publication of JP4400293B2 publication Critical patent/JP4400293B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Testing Relating To Insulation (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dielectric deterioration diagnosing method of an electric device capable of simply and properly grasping the degree of hydrolysis by an efficient procedure. <P>SOLUTION: When the dielectric deterioration of a material to be tested is diagnosed from the amount of the hydrolytic product of the material to be tested due to an accelerated test, the degree of advance of dielectric deterioration is judged on the basis of each of the size of the surface precipitate of the material to be tested to an accelerated test time, the acid production concentration of organic matter per a unit sample, absorbancy ratio and a pH value or a combination of an arbitrary number of the measured values. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電気機器の絶縁劣化診断方法に関するものである。   The present invention relates to an insulation degradation diagnosis method for electrical equipment.

回転機等の電気機器においては、絶縁劣化による故障が発生すると、当該機器の復旧に要する時間と費用以外に、社会的に大きな損失が発生するため、従来からこの故障を未然に防ぐための絶縁劣化診断方法の開発が行われている。
特に電気機器のうちでも、回転機の巻線交換には多大な時間と費用がかかるため、巻線の寿命を適切に予測し、計画的に更新することが重要となる。
回転機の絶縁劣化は、物理的劣化と化学的劣化との和によって表される。ここで物理的劣化要因としては、ヒートサイクルや電磁振動に伴う機械的なものと、コロナによる電気的なものがある。また、化学的劣化要因としては、吸湿や加水分解による環境と熱的なものがある。
In electrical equipment such as rotating machines, when a failure occurs due to insulation deterioration, a large social loss occurs in addition to the time and cost required to restore the equipment. Deterioration diagnostic methods are being developed.
Especially in electrical equipment, it takes a lot of time and money to replace the windings of a rotating machine. Therefore, it is important to properly predict the life of the windings and update them systematically.
The insulation deterioration of a rotating machine is represented by the sum of physical deterioration and chemical deterioration. Here, the physical deterioration factors include mechanical ones associated with heat cycles and electromagnetic vibrations, and electric ones due to corona. Further, chemical deterioration factors include the environment due to moisture absorption and hydrolysis and thermal factors.

上記絶縁劣化条件をもとに診断がおこなわれるが、回転機の固定子巻線に対する非破壊試験としては、固定子巻線非破壊絶縁劣化診断試験(以下、従来試験法という)が存在する。また、非特許文献1や特許文献1のようなものが公知となっている。この特許文献1のものは、絶縁層を構成する樹脂の加水分解生成物量をイオンクロマトグラフ分析、若しくは赤外線吸収分析法によって測定することにより絶縁層の劣化状態を検出するものであり、非特許文献1のものは、成極指数、誘電正接、最大放電電荷量等を注目した検討結果を示したものである。
特開2003−107075号公報 平成13年電気学会全国大会2−082
Diagnosis is performed based on the above-described insulation deterioration condition. As a non-destructive test for the stator winding of the rotating machine, there is a stator winding non-destructive insulation deterioration diagnosis test (hereinafter referred to as a conventional test method). Moreover, the thing like a nonpatent literature 1 and the patent document 1 is well-known. The thing of this patent document 1 detects the degradation state of an insulating layer by measuring the amount of hydrolysis products of the resin which comprises an insulating layer by an ion chromatograph analysis or an infrared absorption analysis, and is a nonpatent literature. No. 1 shows the result of examination focusing on the polarization index, dielectric loss tangent, maximum discharge charge amount, and the like.
JP 2003-107075 A 2001 IEEJ National Conference 2-082

図9は従来法による絶縁診断項目と劣化現象の相関図を示したものである。
同図から明らかなように、絶縁材料のボイド、はくりといった物理的劣化については従来法で検知可能であるが、材料変質等の化学的劣化については把握することができない。
また、各文献で記載されているように、近年、これらに関連して回転機の絶縁劣化診断の課題とされていることは、物理的な劣化が単独で進行した際には従来法で評価できるが、物理的と化学的な劣化が同時進行すると、化学的な劣化が物理的な劣化指標(Qmax.△tanδ.△I)に影響を与えるため、結果として真の劣化進行よりも過小評価になる場合がある。
特にポリエステル樹脂を使用した回転機用含浸樹脂は、水と熱により加水分解劣化により材料の変質が生じて絶縁材料の機能が満足しなくなり、終には機器破壊する。このため、劣化進行の度合いを適切に把握する方法の開発が強く要望されている。
FIG. 9 shows a correlation diagram between the insulation diagnosis items by the conventional method and the deterioration phenomenon.
As is clear from the figure, physical deterioration such as voids and peeling of the insulating material can be detected by a conventional method, but chemical deterioration such as material alteration cannot be grasped.
In addition, as described in each document, in recent years, it has been considered that the problem of diagnosis of insulation deterioration of rotating machines in relation to these is evaluated by the conventional method when physical deterioration progresses alone. However, if physical and chemical degradation progress simultaneously, the chemical degradation will affect the physical degradation index (Qmax. △ tanδ. △ I), resulting in an underestimation over the true progress of degradation. It may become.
In particular, the impregnating resin for a rotating machine using a polyester resin is deteriorated by hydrolysis and degradation due to water and heat, so that the function of the insulating material is not satisfied, and the equipment is eventually destroyed. For this reason, there is a strong demand for the development of a method for appropriately grasping the degree of progress of deterioration.

したがって、本発明が目的とするところは、効率的な手順によって加水分解の度合いを簡易的に適切に把握できる絶縁劣化診断方法を提供することにある。   Therefore, an object of the present invention is to provide an insulation deterioration diagnosis method capable of easily and appropriately grasping the degree of hydrolysis by an efficient procedure.

本発明の第1は、ポリエステル樹脂を被試験材料とし、加速試験によって被試験材料の加水分解生成物量から絶縁劣化度を診断するものにおいて、
前記加速試験時間に対する被試験材料の表面に析出した白色の析出物の大きさを測定すると共に、予め絶縁破壊電圧試験による保持率と時間の関係に基づいて判定基準を作成し、この判定基準をもとに前記析出物の大きさより絶縁劣化の進行度を判定することを特徴としたものである。
The first of the present invention uses polyester resin as a material to be tested, and diagnoses the degree of insulation deterioration from the amount of hydrolysis product of the material to be tested by an accelerated test.
While measuring the size of the white precipitate deposited on the surface of the material to be tested with respect to the accelerated test time, a criterion is prepared in advance based on the relationship between the retention rate and time by the dielectric breakdown voltage test. Based on the size of the precipitate, the degree of progress of the insulation deterioration is determined.

本発明の第2は、析出物の最大径が0.02mm以下は劣化度小、析出物の最大径が0.02〜0.1mmは劣化度中、析出物の最大径が0.1mm以上では劣化度大と判定することを特徴としたものである。   In the second aspect of the present invention, the maximum diameter of the precipitate is 0.02 mm or less, the degree of deterioration is small, and the maximum diameter of the precipitate is 0.02 to 0.1 mm, while the maximum diameter of the precipitate is 0.1 mm or more. Is characterized by determining that the degree of deterioration is large.

本発明の第3は、ポリエステル樹脂を被試験材料とし、加速試験によって被試験材料の加水分解生成物量から絶縁劣化度を診断するものにおいて、
前記加速試験時間に対する単位試料当たりの有機酸類生成濃度(mg/L)をICによって測定すると共に、予め絶縁破壊電圧試験による保持率と時間の関係に基づいて判定基準を作成し、この判定基準をもとに測定された有機酸濃度(mg/L)によって絶縁劣化の進行度を判定することを特徴としたものである。
In the third aspect of the present invention, a polyester resin is used as a material to be tested, and the degree of insulation deterioration is diagnosed from the amount of hydrolysis products of the material to be tested by an accelerated test.
The organic acid generation concentration per unit sample (mg / L) with respect to the accelerated test time is measured by IC, and a determination criterion is created in advance based on the relationship between the retention rate and time in the dielectric breakdown voltage test. The degree of progress of insulation deterioration is determined based on the organic acid concentration (mg / L) measured from the beginning.

本発明の第4は、測定された有機酸量(mg/L)が0.15以下は劣化度小、有機酸量0.15〜1.0は劣化度中、有機酸量1.0以上では劣化度大と判定することを特徴としたものである。   In the fourth aspect of the present invention, the measured amount of organic acid (mg / L) is 0.15 or less, the degree of deterioration is small, and the amount of organic acid 0.15 to 1.0 is the degree of deterioration, while the amount of organic acid is 1.0 or more. Is characterized by determining that the degree of deterioration is large.

本発明の第5は、ポリエステル樹脂を被試験材料とし、加速試験によって被試験材料の加水分解生成物量から絶縁劣化度を診断するものにおいて、
前記FT−IRにての測定結果に基づく被試験材料の吸光度比を求め、かつ加速試験時間に対する吸光度比を求めると共に、予め絶縁破壊電圧試験による保持率と時間の関係に基づいて判定基準を作成し、この判定基準をもとに測定された吸光度比の大きさによって絶縁劣化の進行度を判定することを特徴としたものである。
In the fifth aspect of the present invention, a polyester resin is used as a material to be tested, and the degree of insulation deterioration is diagnosed from the amount of hydrolysis products of the material to be tested by an acceleration test.
Obtain the absorbance ratio of the material to be tested based on the measurement results in the FT-IR, obtain the absorbance ratio with respect to the accelerated test time, and create a criterion based on the relationship between retention rate and time in the dielectric breakdown voltage test in advance. In addition, the degree of progress of insulation deterioration is determined based on the magnitude of the absorbance ratio measured based on this determination criterion.

本発明の第6は、吸光度比は、有機酸の吸収スペクトル1710cm−1をポリエステルの吸収スペクトル1740cm−1にて除して求め、この値が0.37以下では劣化度小、吸光度比0.37〜0.6は劣化度中、吸光度比0.6以上では劣化度大と判定することを特徴としたものである。   In the sixth aspect of the present invention, the absorbance ratio is obtained by dividing the organic acid absorption spectrum 1710 cm −1 by the polyester absorption spectrum 1740 cm −1. 37 to 0.6 are characterized in that it is determined that the degree of deterioration is large when the absorbance ratio is 0.6 or more.

本発明の第7は、ポリエステル樹脂を被試験材料とし、加速試験によって被試験材料の加水分解生成物量から絶縁劣化度を診断するものにおいて、
前記加速試験時間に対する被試験材料のpH値を測定すると共に、予め絶縁破壊電圧試験による保持率と時間の関係に基づいて判定基準を作成し、この判定基準をもとに測定されたpH値によって絶縁劣化の進行度を判定することを特徴としたものである。
In the seventh aspect of the present invention, a polyester resin is used as a material to be tested, and the degree of insulation deterioration is diagnosed from the amount of hydrolysis products of the material under test by an accelerated test.
The pH value of the material to be tested with respect to the accelerated test time is measured, and a criterion is prepared in advance based on the relationship between the retention rate and the time in the dielectric breakdown voltage test, and the pH value measured based on the criterion is used. It is characterized by determining the progress of insulation deterioration.

本発明の第8は、pH値の大きさが、6.7以下では劣化度小、pH6.7〜6.5は劣化度中、pH値6.5以上では劣化度大と判定することを特徴としたものである。   In the eighth aspect of the present invention, it is determined that the degree of deterioration is small when the pH value is 6.7 or less, the degree of deterioration is pH 6.7 to 6.5, and the degree of deterioration is high when the pH value is 6.5 or more. It is a feature.

本発明の第9は、ポリエステル樹脂を被試験材料とし、加速試験によって被試験材料の加水分解生成物量から絶縁劣化度を診断するものにおいて、
前記加速試験時間に対する被試験材料の表面析出物の大きさ、単位試料当たりの有機物酸生成濃度、吸光度比及びpH値のうちの任意数の組み合わせで絶縁劣化の進行度を判定することを特徴としたものである。
The ninth of the present invention uses polyester resin as a material to be tested, and diagnoses the degree of insulation deterioration from the amount of hydrolysis products of the material to be tested by an accelerated test.
The progress of insulation degradation is determined by a combination of any number of the size of the surface precipitate of the material to be tested with respect to the accelerated test time, the organic acid generation concentration per unit sample, the absorbance ratio, and the pH value. It is a thing.

以上のとおり、本発明によれば、被試験材料の表面析出物の大きさ、単位試料当たりの有機物酸生成濃度、吸光度比及びpH値の各測定においてそれぞれ加水分解の進行度と絶縁耐力との関係が明かにしたことにより、個々の測定によって絶縁劣化の進行度を判定することが可能となると共に、時間や費用及び精度を勘案しながら現状にもっとも適した任意の組み合わせで診断できるので、簡易的に効率よく寿命判断ができるものである。   As described above, according to the present invention, the progress of hydrolysis and the dielectric strength in each measurement of the size of the surface precipitate of the material to be tested, the organic acid production concentration per unit sample, the absorbance ratio, and the pH value, respectively. By clarifying the relationship, it is possible to determine the degree of progress of insulation deterioration by individual measurement, and it is possible to make a diagnosis in any combination that is most suitable for the current situation, taking time, cost, and accuracy into consideration, so it is easy The life can be judged efficiently.

本発明は、加水分解の進行度と絶縁耐力の関係を明確にするたるに以下のようなポリエステル樹脂に対する加速試験を行った。
加速条件として、プレッシャークッカー試験(PCT;121℃98%RH)とし、試験は絶縁破壊試験とした。また、試験片は、二重ガラス巻線(寸法2.4×13mm)にガラステープをハーフラップ一重で巻いたものにポリエステル樹脂を含浸した。破壊条件としては気中雰囲気におけるAC破壊とした。
加水分解に使用した測定装置として、表面観察にはマイクロスコープを、分析測定にはフーリェ変換赤外分光分析装置(FT−IR)とイオンクロマトグラフィー(IC)を、また、pHにはpH計をそれぞれ用いた。図1〜図6はその結果である。
In order to clarify the relationship between the degree of progress of hydrolysis and the dielectric strength, the present invention was subjected to the following accelerated test on the polyester resin.
The acceleration condition was a pressure cooker test (PCT; 121 ° C. 98% RH), and the test was a dielectric breakdown test. The test piece was impregnated with a polyester resin in a double glass winding (dimension 2.4 × 13 mm) in which a glass tape was wound in a single half wrap. The destruction condition was AC destruction in an air atmosphere.
As a measuring device used for hydrolysis, a microscope is used for surface observation, a Fourier transform infrared spectroscopic analyzer (FT-IR) and ion chromatography (IC) are used for analytical measurement, and a pH meter is used for pH. Each was used. 1 to 6 show the results.

図1は縦軸に絶縁破壊保持率(%)をとり、横軸にPCT時間をとったBDV
である。この図1を基に、劣化度を判別するために図7のような判断基準表を設定した。すなわち、BDV保持率が75%以上の場合には劣化度は小で、健全状態である。BDV保持率75〜50%では劣化度中で、更新計画の作成時期である。BDV保持率50%以下では劣化度大で寿命時期とする。判断基準表のBDV保持率は、IEC.pub.216の劣化度50%を準拠とし、75〜50%及び75%以上の区分範囲については出願人の経験則に基づいて作成した。
図2は表面観察時のPCT時間と析出物寸法との関係を示したものである。試験を開始してよりある時間になると、試験片の表面に白い析出物が確認されて加水分解が進行していることが判明され、時間の経過に伴って徐々に大きくなる。PCT時間の8時間で最大析出物の直径が0.02mmであり、図7で示す判断基準表によると、この8時間は保持率75%以上の劣化度小の範囲である。
つまり、析出された析出物の直径が0.02mmの大きさでは健全状態となる。
次に、例えば48時間経過後の析出物の大きさは0.1mmとなり、BDV保持率50%近辺であるので、析出物大径0.1mmでは更新計画作成時期に相当する。
更に時期が経過し、例えば96時期になると析出物径は0.15mmになる。96時期のBDV保持率は50%以下であり、析出物径0.15mmでは寿命状態に入ったと診断される。
Figure 1 shows BDV with dielectric breakdown retention (%) on the vertical axis and PCT time on the horizontal axis.
It is. Based on this FIG. 1, in order to discriminate the degree of deterioration, a judgment standard table as shown in FIG. 7 is set. That is, when the BDV retention rate is 75% or more, the degree of deterioration is small and the sound state is established. When the BDV retention rate is 75 to 50%, the deterioration degree is in progress, and the update plan is being created. When the BDV retention rate is 50% or less, the deterioration level is large and the life time is assumed. The BDV retention rate in the criteria table is IEC. pub. Based on the empirical rules of the applicant, the range of 75 to 50% and 75% or more was made based on 50% degradation degree of 216.
FIG. 2 shows the relationship between the PCT time during the surface observation and the precipitate size. When a certain time has passed since the start of the test, a white precipitate was confirmed on the surface of the test piece, and it was found that hydrolysis was progressing, and gradually increased with the passage of time. The diameter of the maximum precipitate is 0.02 mm in 8 hours of PCT time, and according to the judgment standard table shown in FIG. 7, this 8 hours is in the range of small deterioration degree with a retention rate of 75% or more.
That is, when the diameter of the deposited precipitate is 0.02 mm, a healthy state is obtained.
Next, for example, the size of the precipitate after 48 hours is 0.1 mm, and the BDV retention rate is in the vicinity of 50%. Therefore, when the precipitate has a large diameter of 0.1 mm, it corresponds to the update plan creation time.
Further, the time elapses. For example, when the time reaches 96, the precipitate diameter becomes 0.15 mm. The BDV retention rate in the 96th period is 50% or less, and it is diagnosed that the product has entered the life state when the precipitate diameter is 0.15 mm.

図3は、ICによって測定された単位試料当たりの有機酸類生成濃度とPCT時間との関係図である。ここでの有機酸は、マレイン酸、リンゴ酸、フマル酸、グリコール酸、蟻酸、炭酸、酒石酸、乳酸等であり、特にリンゴ酸が劣化度合いに強い相関関係にあるため、試験ではリンゴ酸の生成濃度とした。
有機酸の生成濃度は時間と共に高くなり、判断基準表における劣化度小範囲であるPCT8時間では0.15mg/L、劣化度中範囲である16時間又は48時間ではそれぞれ0.53mg/Lと1.0mg/Lとなっている。また、劣化度大の96時間及び154時間では20.0mg/Lと38.5mg/Lとなっている。したがって、有機酸類の生成濃度量によっても劣化度の進行状態の判別が可能となる。
FIG. 3 is a graph showing the relationship between the organic acid production concentration per unit sample and the PCT time measured by IC. The organic acids here are maleic acid, malic acid, fumaric acid, glycolic acid, formic acid, carbonic acid, tartaric acid, lactic acid, etc. Especially, malic acid has a strong correlation with the degree of deterioration, so in the test the production of malic acid Concentration.
The generation concentration of the organic acid increases with time, 0.15 mg / L for PCT 8 hours, which is a small range of deterioration in the criteria table, and 0.53 mg / L and 1 for 16 hours or 48 hours, which is a medium range of deterioration, respectively. 0.0 mg / L. Moreover, it is 20.0 mg / L and 38.5 mg / L in 96 hours and 154 hours of a large deterioration degree. Therefore, it is possible to determine the progress state of the degree of deterioration depending on the amount of organic acid produced.

図4はFT−IR測定に基づく吸光度比よる実施例である。図6がFT−IRによるスペクトルパターンで、この分析結果における有機酸の吸収スペクトル(1710cm−1)をポリエステル吸収スペクトル(1740−1)で除して吸光度比を求めたものである。この吸光度比が図4で示すようにPCT時間によって変化し、健全時間内である8時間では0.38、更新計画作成時間である48時間では0.60、寿命時間である96時間以上では1.65以上となり、この吸光度比を測定することによって劣化の度合いを判別することができる。   FIG. 4 is an example based on an absorbance ratio based on FT-IR measurement. FIG. 6 is a spectrum pattern by FT-IR, and the absorbance ratio is determined by dividing the absorption spectrum (1710 cm −1) of the organic acid in this analysis result by the polyester absorption spectrum (1740 −1). As shown in FIG. 4, this absorbance ratio varies depending on the PCT time. It is 0.38 at 8 hours within the healthy time, 0.60 at 48 hours as the update plan creation time, and 1 at 96 hours or more as the life time. The degree of deterioration can be determined by measuring this absorbance ratio.

図5は更にpH値の測定によって劣化度の進行状態を判別する実施例を示したものである。
pH測定時におけるサンプルの採取方法としては、実機表面を純水で洗い流す方法や、実際の絶縁材を2g程度採取して超音波洗浄を行う方法、及び表面の絶縁材を0.5g程度の微量を削り落とす方法等があるが、特に精度的には絶縁材を2g程度採取して超音波洗浄を行う方法が最適である。
このようにして測定されたpH値は図5で明らかなように、健全時間内であるPCT8時間では6.7であり、更新計画作成時間である48時間では6.5、寿命時間である96時間では6.1となり、pH値によっても劣化度の進行状態を判別することが可能となる。
FIG. 5 shows an embodiment in which the progress of the degree of deterioration is further determined by measuring the pH value.
Samples can be collected at the time of pH measurement by washing the actual machine surface with pure water, collecting about 2 g of the actual insulating material and performing ultrasonic cleaning, and measuring a small amount of surface insulating material of about 0.5 g. There is a method of shaving off, etc., but in particular, a method of collecting about 2 g of an insulating material and performing ultrasonic cleaning is optimal.
As is apparent from FIG. 5, the pH value measured in this way is 6.7 for the PCT 8 hours within the healthy time, 6.5 for the update plan creation time 48 hours, and 96 for the life time. The time is 6.1, and it is possible to determine the progress state of the degree of deterioration also by the pH value.

以上のように本発明によれば、加水分解の進行度と絶縁耐力との関係が明確となったことにより、加水分解の劣化度合いを把握して絶縁耐力との関係から残存耐力の推定が可能となる。このような寿命推定においても、条件に応じて効率よく測定することが要望される。
図8は、上記した4実施例における加水分解調査において、検討所要時間と精度を比較したもので、調査項目における判断項目、及びその所要時間を示したものである。
すなわち、外観検査においての白色析出物の有無検査は10分の所要時間であった。また、pH<7については60分、以下同様にしてFT−IRは180分、ICは300分であった。したがって、劣化度の進行状態調査時においては、図8で示す個々の項目測定で判断してもよいことは勿論であるが、時間と費用、及び精度を考慮して、簡易的に効率よく複数の調査項目を実行して加水分解劣化度を把握することができる。
As described above, according to the present invention, since the relationship between the degree of hydrolysis and the dielectric strength is clarified, the degree of hydrolysis degradation can be grasped and the residual strength can be estimated from the relationship with the dielectric strength. It becomes. Even in such life estimation, it is desired to perform measurement efficiently according to conditions.
FIG. 8 is a comparison of the time required for examination and accuracy in the hydrolysis investigation in the above-described four examples, and shows the judgment items in the investigation items and the time required.
That is, the inspection for the presence or absence of white precipitates in the appearance inspection took 10 minutes. For pH <7, 60 minutes, FT-IR was 180 minutes, and IC was 300 minutes. Therefore, when examining the progress of the deterioration degree, it is of course possible to make a judgment by measuring each item shown in FIG. 8, but considering the time, cost, and accuracy, a plurality of simple and efficient methods can be used. The degree of hydrolysis degradation can be grasped by executing the survey items.

本発明の判断基準作成のための絶縁破壊電圧試験図。FIG. 5 is a diagram illustrating a dielectric breakdown voltage test for creating a criterion of the present invention. 本発明の実施例を示す表面観察析出物寸法の結果図。The result figure of the surface observation deposit size which shows the Example of this invention. 本発明の実施例を示す有機酸類生成濃度の結果図。The result figure of the organic acid production | generation density | concentration which shows the Example of this invention. 本発明の実施例を示す1710/1740m−1吸光度比の結果図。The result figure of 1710 / 1740m-1 absorbance ratio which shows the Example of this invention. 本発明の実施例を示すpH値の結果図。FIG. 5 is a result diagram of pH values showing examples of the present invention. FT−IRによるスペクトルパターン図。The spectrum pattern figure by FT-IR. 本発明に使用した判定基準図。FIG. 3 is a determination reference diagram used in the present invention. 調査項目と所要時間の関係図。Relationship diagram between survey items and required time. 従来の絶縁診断項目と劣化現象の相関図。Correlation diagram of conventional insulation diagnosis items and deterioration phenomenon.

符号の説明Explanation of symbols

PCT…プレッシャークッカー試験
FT−IR…フーリェ変換赤外分光分析装置
IC…イオンクロマトグラフィー
BVD…絶縁破壊電圧試験
PCT ... Pressure cooker test
FT-IR ... Fourier transform infrared spectroscopy analyzer
IC ... Ion chromatography
BVD ... Breakdown voltage test

Claims (9)

ポリエステル樹脂を被試験材料とし、加速試験によって被試験材料の加水分解生成物量から絶縁劣化度を診断するものにおいて、
前記加速試験時間に対する被試験材料の表面に析出した白色の析出物の大きさを測定すると共に、予め絶縁破壊電圧試験による保持率と時間の関係に基づいて判定基準を作成し、この判定基準をもとに前記析出物の大きさより絶縁劣化の進行度を判定することを特徴とした電気機器の絶縁劣化診断方法。
Using polyester resin as the material to be tested, and diagnosing the degree of insulation deterioration from the amount of hydrolysis product of the material to be tested by an accelerated test,
While measuring the size of the white precipitate deposited on the surface of the material to be tested with respect to the accelerated test time, a criterion is prepared in advance based on the relationship between the retention rate and time by the dielectric breakdown voltage test. A method for diagnosing insulation deterioration of electrical equipment, characterized in that the degree of progress of insulation deterioration is determined based on the size of the precipitate.
析出物の最大径が0.02mm以下は劣化度小、析出物の最大径が0.02〜0.1mmは劣化度中、析出物の最大径が0.1mm以上では劣化度大と判定することを特徴とした請求項1記載の電気機器の絶縁劣化診断方法。 When the maximum diameter of the precipitate is 0.02 mm or less, the degree of deterioration is small. When the maximum diameter of the precipitate is 0.02 to 0.1 mm, the degree of deterioration is medium. When the maximum diameter of the precipitate is 0.1 mm or more, the degree of deterioration is large. The insulation deterioration diagnosis method for electrical equipment according to claim 1. ポリエステル樹脂を被試験材料とし、加速試験によって被試験材料の加水分解生成物量から絶縁劣化度を診断するものにおいて、
前記加速試験時間に対する単位試料当たりの有機酸類生成濃度(mg/L)をICによって測定すると共に、予め絶縁破壊電圧試験による保持率と時間の関係に基づいて判定基準を作成し、この判定基準をもとに測定された有機酸濃度(mg/L)によって絶縁劣化の進行度を判定することを特徴とした電気機器の絶縁劣化診断方法。
Using polyester resin as the material to be tested, and diagnosing the degree of insulation deterioration from the amount of hydrolysis product of the material to be tested by an accelerated test,
The organic acid generation concentration per unit sample (mg / L) with respect to the accelerated test time is measured by IC, and a determination criterion is created in advance based on the relationship between the retention rate and time in the dielectric breakdown voltage test. A method for diagnosing insulation deterioration of electrical equipment, wherein the degree of progress of insulation deterioration is determined based on an organic acid concentration (mg / L) measured originally.
測定された有機酸量(mg/L)が0.15以下は劣化度小、有機酸量0.15〜1.0は劣化度中、有機酸量1.0以上では劣化度大と判定することを特徴とした請求項3記載の電気機器の絶縁劣化診断方法。 If the measured organic acid amount (mg / L) is 0.15 or less, the degree of deterioration is small, the organic acid amount 0.15 to 1.0 is judged to be a deterioration degree, and if the organic acid amount is 1.0 or more, the degree of deterioration is judged to be high. The insulation deterioration diagnosis method for electrical equipment according to claim 3. ポリエステル樹脂を被試験材料とし、加速試験によって被試験材料の加水分解生成物量から絶縁劣化度を診断するものにおいて、
前記FT−IRにての測定結果に基づく被試験材料の吸光度比を求め、かつ加速試験時間に対する吸光度比を求めると共に、予め絶縁破壊電圧試験による保持率と時間の関係に基づいて判定基準を作成し、この判定基準をもとに測定された吸光度比の大きさによって絶縁劣化の進行度を判定することを特徴とした電気機器の絶縁劣化診断方法。
Using polyester resin as the material to be tested, and diagnosing the degree of insulation deterioration from the amount of hydrolysis product of the material to be tested by an accelerated test,
Obtain the absorbance ratio of the material to be tested based on the measurement results in the FT-IR, obtain the absorbance ratio with respect to the accelerated test time, and create a criterion based on the relationship between retention rate and time in the dielectric breakdown voltage test in advance. A method for diagnosing insulation deterioration of electrical equipment, wherein the degree of progress of insulation deterioration is determined based on the magnitude of the absorbance ratio measured on the basis of the determination criteria.
吸光度比は、有機酸の吸収スペクトル1710cm−1をポリエステルの吸収スペクトル1740cm−1にて除して求め、この値が0.37以下では劣化度小、吸光度比0.37〜0.6は劣化度中、吸光度比0.6以上では劣化度大と判定することを特徴とした請求項5記載の電気機器の絶縁劣化診断方法。 The absorbance ratio is obtained by dividing the organic acid absorption spectrum 1710 cm −1 by the polyester absorption spectrum 1740 cm −1. When this value is 0.37 or less, the degree of deterioration is small, and the absorbance ratio 0.37 to 0.6 is deteriorated. 6. The method for diagnosing electrical equipment insulation deterioration according to claim 5, wherein the degree of deterioration is determined to be large when the absorbance ratio is 0.6 or more. ポリエステル樹脂を被試験材料とし、加速試験によって被試験材料の加水分解生成物量から絶縁劣化度を診断するものにおいて、
前記加速試験時間に対する被試験材料のpH値を測定すると共に、予め絶縁破壊電圧試験による保持率と時間の関係に基づいて判定基準を作成し、この判定基準をもとに測定されたpH値によって絶縁劣化の進行度を判定することを特徴とした電気機器の絶縁劣化診断方法。
Using polyester resin as the material to be tested, and diagnosing the degree of insulation deterioration from the amount of hydrolysis product of the material to be tested by an accelerated test,
The pH value of the material to be tested with respect to the accelerated test time is measured, and a criterion is prepared in advance based on the relationship between the retention rate and the time in the dielectric breakdown voltage test, and the pH value measured based on the criterion is used. A method for diagnosing insulation deterioration of electrical equipment, wherein the degree of progress of insulation deterioration is determined.
pH値の大きさが、6.7以下では劣化度小、pH6.7〜6.5は劣化度中、pH値6.5以上では劣化度大と判定することを特徴とした請求項7記載の電気機器の絶縁劣化診断方法。 8. The degree of deterioration is judged to be low when the pH value is 6.7 or less, while the degree of deterioration is pH 6.7 to 6.5, and when the pH value is 6.5 or more, the degree of deterioration is high. Of insulation deterioration diagnosis of electrical equipment. ポリエステル樹脂を被試験材料とし、加速試験によって被試験材料の加水分解生成物量から絶縁劣化度を診断するものにおいて、
前記加速試験時間に対する被試験材料の表面析出物の大きさ、単位試料当たりの有機物酸生成濃度、吸光度比及びpH値のうちの任意数の組み合わせで絶縁劣化の進行度を判定することを特徴とした請求項1乃至8記載の電気機器の絶縁劣化診断方法。
Using polyester resin as the material to be tested, and diagnosing the degree of insulation deterioration from the amount of hydrolysis product of the material to be tested by an accelerated test,
The progress of insulation degradation is determined by a combination of any number of the size of the surface precipitate of the material to be tested with respect to the accelerated test time, the organic acid generation concentration per unit sample, the absorbance ratio, and the pH value. The insulation deterioration diagnosis method for electrical equipment according to claim 1 to 8.
JP2004122399A 2004-04-19 2004-04-19 Insulation degradation diagnosis method for electrical equipment Expired - Lifetime JP4400293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004122399A JP4400293B2 (en) 2004-04-19 2004-04-19 Insulation degradation diagnosis method for electrical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004122399A JP4400293B2 (en) 2004-04-19 2004-04-19 Insulation degradation diagnosis method for electrical equipment

Publications (2)

Publication Number Publication Date
JP2005308424A true JP2005308424A (en) 2005-11-04
JP4400293B2 JP4400293B2 (en) 2010-01-20

Family

ID=35437381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004122399A Expired - Lifetime JP4400293B2 (en) 2004-04-19 2004-04-19 Insulation degradation diagnosis method for electrical equipment

Country Status (1)

Country Link
JP (1) JP4400293B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038838A (en) * 2008-08-07 2010-02-18 Hitachi Ltd System for diagnosing degradation in controller
CN111505459A (en) * 2020-05-09 2020-08-07 东方电气集团东方电机有限公司 Insulation aging evaluation method for generator stator winding
WO2021090826A1 (en) * 2019-11-06 2021-05-14 株式会社足柄製作所 Film deterioration diagnosing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038838A (en) * 2008-08-07 2010-02-18 Hitachi Ltd System for diagnosing degradation in controller
JP4599439B2 (en) * 2008-08-07 2010-12-15 株式会社日立製作所 Control device deterioration diagnosis system
WO2021090826A1 (en) * 2019-11-06 2021-05-14 株式会社足柄製作所 Film deterioration diagnosing method
CN111505459A (en) * 2020-05-09 2020-08-07 东方电气集团东方电机有限公司 Insulation aging evaluation method for generator stator winding

Also Published As

Publication number Publication date
JP4400293B2 (en) 2010-01-20

Similar Documents

Publication Publication Date Title
Tang et al. Diagnosis of compound faults of rolling bearings through adaptive maximum correlated kurtosis deconvolution
CN105699864B (en) The method of assessment oil paper insulation ageing state based on polarization depolarising charge difference
CN108872820B (en) Method and system for evaluating insulation aging state of oil impregnated paper in high-voltage current transformer
EP1427082A3 (en) Method and apparatus of detecting internal motor faults in an induction machine
JP2011171413A (en) Lifetime assessment apparatus for oil-filled electrical device, lifetime assessment method for oil-filled electrical device, degradation suppression apparatus for oil-filled electrical device, and degradation suppression method for oil-filled electrical device
KR20120115527A (en) Diagnostic method and apparatus for assessing the insulation condition of electrical equipment insulated with oil
CN111693827A (en) Cable water tree severity diagnosis method based on cosine square wave pressure resistance test
CN113064002A (en) Method for evaluating insulation aging state of 10kV XLPE cable
Majchrzak et al. Application of the acoustic emission method for diagnosis in on-load tap changer
Koch et al. Moisture diagnostics of power transformers by a fast and reliable dielectric response method
JP4400293B2 (en) Insulation degradation diagnosis method for electrical equipment
Pandarakone et al. Development of a methodology for bearing fault scrutiny and diagnosis using SVM
CN112082930A (en) Method for diagnosing aging state of solid insulation of transformer
JP2006300532A (en) Quality inspection method of coil and quality inspection device of coil
JP2005265492A (en) Method for diagnosing dielectric deterioration of electric device and electric device operating method after diagnosis
JP2007327877A (en) Analysis method of polyvinyl chloride composition
Witos et al. Analysis of properties of chosen acoustic emission descriptors describing acoustic signals measured by means of acoustic emission method within oil transformers
CN116026867A (en) Method for evaluating insulation aging degree of generator stator winding
Stone et al. Experience with DC polarization-depolarization measurements on stator winding insulation
Gutten et al. Frequency Domain Diagnostics of Transformer Insulation
Huo et al. A comparative study of WPD and EMD for shaft fault diagnosis
Yang et al. Partial discharge ultrasonic analysis for generator stator windings
JP4500658B2 (en) Deterioration diagnosis method for motors
JP3280547B2 (en) Insulation diagnosis method
JP2010112755A (en) Method and device for diagnosing insulation of rotating machine stator coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4400293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091019

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4