JP2010038340A - Impact energy absorbing member and fabrication method thereof - Google Patents

Impact energy absorbing member and fabrication method thereof Download PDF

Info

Publication number
JP2010038340A
JP2010038340A JP2008205204A JP2008205204A JP2010038340A JP 2010038340 A JP2010038340 A JP 2010038340A JP 2008205204 A JP2008205204 A JP 2008205204A JP 2008205204 A JP2008205204 A JP 2008205204A JP 2010038340 A JP2010038340 A JP 2010038340A
Authority
JP
Japan
Prior art keywords
deformation
main body
impact energy
deformation control
energy absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008205204A
Other languages
Japanese (ja)
Other versions
JP5067309B2 (en
Inventor
Katsuya Nishiguchi
勝也 西口
Toshitsugu Kamioka
敏嗣 上岡
Kenichi Yamamoto
研一 山本
Kenji Murase
健二 村▲瀬▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2008205204A priority Critical patent/JP5067309B2/en
Priority to US12/537,040 priority patent/US7918493B2/en
Publication of JP2010038340A publication Critical patent/JP2010038340A/en
Application granted granted Critical
Publication of JP5067309B2 publication Critical patent/JP5067309B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)
  • Vibration Dampers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an impact energy absorbing member 1 superior in handling and capable of stably deforming a tublar body 2 in a tube axis Z direction without buckling and deforming it. <P>SOLUTION: The body 2 is formed integrally with deformable parts 3 and deformation control parts 4 being alternately laminated in the tube axis Z direction. The face of each deformation control part 4 in contact with the deformable part 3 is an inclined face 4a inclined to one side or the other side in the tube axis Z direction toward the radial outside of the body 2. Two selective inclined faces 4a adjacent to each other in the tube axis Z direction are inclined to mutually opposite sides toward the radial outside of the body 2 so that the deformable parts 3 are plastically deformed to the radial outside or inside of the body 2 concurrently with its compression and plastic deformation in the tube axis Z direction. On a boundary between each inclined face 3 and the deformable part 4, a shearing deformation accelerating layer 9 is formed to accelerate the shearing deformation of the inclined face 4a at the boundary-side end of the deformable part 3 when a certain or greater compressing load is input thereto. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、筒状の本体部に対して筒軸方向に入力される圧縮荷重を吸収する、車両のクラッシュカン等に好適な衝撃エネルギ吸収部材及びその製造方法に関する技術分野に属する。   The present invention belongs to a technical field related to an impact energy absorbing member suitable for a crash can of a vehicle and the like and a method for manufacturing the same, which absorbs a compressive load input in a cylindrical axis direction with respect to a cylindrical main body.

従来より、例えば車両のフロントサイドフレームの先端又はリヤサイドフレームの後端に、衝撃エネルギ吸収部材としてクラッシュカンを設けて、このクラッシュカンにより、車両の正面衝突時や後面衝突時の衝撃エネルギ(衝撃圧縮荷重)を吸収するようにすることはよく知られている。   Conventionally, for example, a crash can has been provided as an impact energy absorbing member at the front end of the front side frame or the rear end of the rear side frame of the vehicle. It is well known to absorb (load).

上記クラッシュカン等の衝撃エネルギ吸収部材においては、衝撃エネルギの吸収性能を向上させるべく種々の提案がなされている。例えば特許文献1では、衝撃エネルギ吸収部材の筒状の本体部を、少なくとも1つの短筒形状の第1部分と、この第1部分に対して同心軸状に重ねて配置された少なくとも1つの短筒形状の第2部分とで構成し、上記第1部分と第2部分との接続部分を上記同心軸に対して傾斜する部分を含む構成として、本体部に対して筒軸方向に圧縮荷重が入力されたときに、第1部分を縮径させつつ第2部分を拡径させて、第1部材を第2部材の内側中空部に押し込むようにしている。この構成により、不安定な座屈現象の発生を抑制して変形モードを安定させ、これにより衝撃エネルギの吸収性能を高めるようにしている。
国際公開第2006/025559号パンフレット
In the impact energy absorbing member such as the crash can, various proposals have been made to improve the impact energy absorbing performance. For example, in Patent Document 1, a cylindrical main body portion of an impact energy absorbing member is arranged with at least one short cylindrical first part and at least one short cylinder arranged concentrically with respect to the first part. As a configuration including a cylindrical second portion and a portion where the connection portion between the first portion and the second portion is inclined with respect to the concentric axis, a compressive load is applied to the main body portion in the cylindrical axis direction. When it is input, the first portion is pushed into the inner hollow portion of the second member by reducing the diameter of the first portion and expanding the second portion. With this configuration, the occurrence of an unstable buckling phenomenon is suppressed to stabilize the deformation mode, thereby improving the impact energy absorption performance.
International Publication No. 2006/025559 Pamphlet

しかし、上記特許文献1のものでは、本体部に対して筒軸方向に圧縮荷重が入力されたときにおいて、第1部分と第2部分とを接続部分で分離させて第1部材を第2部材の内側中空部に押し込む際に、第1部材が第2部材の内側中空部にスムーズに押し込まれずに、第1部材又は第2部材が座屈変形する可能性があり、衝撃エネルギ吸収部材を安定して変形させることが困難になる。この座屈変形を確実に防止するためには、第1及び第2部分の長さをかなり短くしておく必要があるが、この場合、車両に生じるような圧縮荷重に対応可能にしようとすると、第1及び第2部分の数がかなり多くなる。また、第1部材を第2部材の内側中空部にスムーズに押し込むためには、第1部分と第2部分とは単に接触しているか、又は固定されていたとしても、その固定力を小さくしておく必要があるが、上記のように第1及び第2部分の数がかなり多くなると、衝撃エネルギ吸収部材の運搬時や車両等への組付け時に第1部分又は第2部分が脱落する可能性があり、取扱い性が悪いという問題がある。   However, in the thing of the said patent document 1, when a compressive load is input with respect to the main-body part in the cylinder axial direction, the 1st part and the 2nd part are separated by the connection part, and the 1st member is made into the 2nd member. When the first member is pushed into the inner hollow portion of the first member, the first member or the second member may be buckled and deformed without being smoothly pushed into the inner hollow portion of the second member, thereby stabilizing the impact energy absorbing member. It becomes difficult to deform. In order to surely prevent this buckling deformation, the lengths of the first and second portions need to be considerably shortened. In this case, if it is attempted to cope with the compressive load generated in the vehicle, , The number of first and second parts is considerably increased. Further, in order to smoothly push the first member into the inner hollow part of the second member, even if the first part and the second part are simply in contact or fixed, the fixing force is reduced. However, if the number of the first and second parts becomes considerably large as described above, the first part or the second part may fall off when the impact energy absorbing member is transported or assembled to a vehicle or the like. There is a problem that it is difficult to handle.

本発明は、斯かる点に鑑みてなされたものであり、その目的とするところは、筒状の本体部を座屈変形させることなく本体部筒軸方向に安定して変形させることが可能でかつ取扱い性に優れた衝撃エネルギ吸収部材を提供しようとすることにある。   The present invention has been made in view of such a point, and an object of the present invention is to stably deform the cylindrical main body portion in the main body cylinder axis direction without causing buckling deformation. Another object of the present invention is to provide an impact energy absorbing member excellent in handleability.

上記の目的を達成するために、請求項1の発明では、筒状の本体部を有し、該本体部に対して筒軸方向に入力される圧縮荷重を吸収する衝撃エネルギ吸収部材を対象として、上記本体部は、金属からなりかつ所定以上の上記圧縮荷重を受けて本体部筒軸方向に圧縮塑性変形する少なくとも1つの変形部と、該変形部の塑性変形の方向を制御する複数の変形制御部とが、本体部筒軸方向に交互に積層された状態で一体成形されてなり、上記各変形制御部の上記変形部と接する面が、本体部径方向の外側に向かって本体部筒軸方向の一方側又は他方側に傾斜する傾斜面とされ、上記本体部筒軸方向に隣り合う任意の2つの傾斜面は、上記本体部に上記所定以上の圧縮荷重が入力されたときに、上記変形部を、本体部筒軸方向への圧縮塑性変形と同時に本体部径方向の外側又は内側へ塑性変形させるように、本体部径方向の外側に向かって互いに反対側に傾斜し、上記各傾斜面と上記変形部との境界には、上記本体部に上記所定以上の圧縮荷重が入力されたときに、該変形部の境界側端部の、上記傾斜面に対するせん断変形を促進するせん断変形促進層が形成されている構成とした。   In order to achieve the above object, the invention of claim 1 is directed to an impact energy absorbing member that has a cylindrical main body portion and absorbs a compressive load that is input to the main body portion in the cylinder axis direction. The main body portion is made of metal and receives at least a predetermined compressive load, and is subjected to compression plastic deformation in the main body portion cylindrical axis direction, and a plurality of deformations for controlling the direction of plastic deformation of the deformation portion. The control unit is integrally molded in a state where the control unit is alternately stacked in the main body cylinder axis direction, and the surface of the deformation control unit that comes into contact with the deformation unit is the main unit cylinder toward the outer side in the main unit radial direction. Any two inclined surfaces that are inclined to one side or the other side of the axial direction and are adjacent to the main body portion cylindrical axis direction when a compressive load greater than or equal to the predetermined value is input to the main body portion. The deformed portion is the same as the compressive plastic deformation in the main body portion cylindrical axis direction So as to be plastically deformed outward or inward in the main body portion radial direction, and inclined in opposite directions toward the outer side in the main body portion radial direction, and at the boundary between each of the inclined surfaces and the deformation portion, A shear deformation promoting layer that promotes shear deformation on the inclined surface at the boundary side end portion of the deformable portion when the compressive load of the predetermined value or more is input is formed.

上記の構成により、本体部に対して筒軸方向に所定以上の圧縮荷重が入力されたときに、変形部は、変形制御部の傾斜面によって、本体部筒軸方向への圧縮塑性変形と同時に本体部径方向の外側又は内側へ塑性変形し、このような変形部の塑性変形により圧縮荷重(衝撃エネルギ)を吸収することができる。また、変形部は、本体部筒軸方向の長さが短くなるとともに本体部径方向の外側又は内側へ広がるように変形するので、本体部全体として座屈変形が生じずに筒軸方向に安定して変形する。しかも、傾斜面と変形部との境界にはせん断変形促進層が形成されているので、このせん断変形促進層により、変形部が本体部径方向の外側又は内側へより一層塑性変形し易くなる。すなわち、本体部に所定以上の圧縮荷重が入力されたときに、傾斜面と変形部との境界ないしその近傍には、傾斜面の傾斜によって、変形部の境界側端部を傾斜面に沿って本体部径方向の外側又は内側へずらすようなせん断力が作用する。そして、せん断変形促進層を、変形部の境界側端部が傾斜面に対してせん断変形し易くなるような材料で構成しておけば、上記せん断力によって変形部の境界側端部が傾斜面に対してせん断変形して、変形部が、本体部径方向の外側又は内側へ塑性変形し易くなる。   With the above configuration, when a predetermined or more compressive load is input to the main body in the cylinder axis direction, the deforming portion is simultaneously with the compressive plastic deformation in the main body portion cylinder axial direction by the inclined surface of the deformation control unit. Plastic deformation is performed outward or inward in the main body radial direction, and a compressive load (impact energy) can be absorbed by the plastic deformation of the deformed portion. In addition, since the deformed portion is deformed so that the length of the main body portion in the cylinder axis direction is shortened and spreads outward or inward in the main body portion radial direction, the entire main body portion is stable in the tube axis direction without causing buckling deformation. And deform. In addition, since a shear deformation promoting layer is formed at the boundary between the inclined surface and the deformed portion, the shear deformed promoting layer makes it easier for the deformed portion to be plastically deformed outward or inward in the main body radial direction. That is, when a compressive load of a predetermined value or more is input to the main body, the boundary side end of the deformed portion along the inclined surface is inclined at the boundary between the inclined surface and the deformed portion or in the vicinity thereof. A shearing force that shifts outward or inward in the main body radial direction acts. And, if the shear deformation promoting layer is made of a material that makes the boundary side end of the deformed part easy to shear deform with respect to the inclined surface, the boundary side end of the deformed part is inclined by the shearing force. As a result, the deformed portion is easily plastically deformed outward or inward in the main body radial direction.

したがって、本体部に対して、筒軸方向の圧縮荷重と同時に、本体部を径方向に倒すような力が入力されたとしても、本体部は座屈変形し難くて筒軸方向に確実に変形し、これにより、圧縮荷重の吸収性能を高めることができる。また、変形部や変形制御部の数が多くなっても、変形部と変形制御部とを一体成形により互いに強固にかつ容易に固定することができ、衝撃エネルギ吸収部材の運搬時や車両等への組付け時における取扱い性を向上させることができる。   Therefore, even if a force is applied to the main body portion in the cylinder axis direction and a force that tilts the main body portion in the radial direction, the main body portion is unlikely to buckle and deform reliably in the cylinder axis direction. Thus, the compression load absorption performance can be enhanced. Even if the number of deformation parts and deformation control parts increases, the deformation parts and the deformation control parts can be firmly and easily fixed to each other by integral molding. It is possible to improve the handleability when assembling.

尚、変形制御部は、例えば、本体部筒軸方向の圧縮荷重に対して変形部よりも圧縮塑性変形し難くかつ破壊し難い材料、つまり上記圧縮荷重に対する強度及び剛性が変形部よりも高い材料で構成すればよい。   The deformation control unit is, for example, a material that is more difficult to be plastically plastically deformed than a deformed part and is less likely to break than a deformed part with respect to a compressive load in the body axis direction, that is, a material that has higher strength and rigidity than the deformed part. What is necessary is just to comprise.

請求項2の発明では、請求項1の発明において、上記各傾斜面は、上記本体部に上記所定以上の圧縮荷重が入力されたときに、上記変形部を、本体部筒軸方向への圧縮塑性変形と同時に本体部径方向の内側へ塑性変形させるように傾斜しているものとする。   According to a second aspect of the present invention, in the first aspect of the invention, each of the inclined surfaces compresses the deformed portion in the main body portion cylindrical axis direction when a compression load greater than or equal to the predetermined value is input to the main body portion. It shall be inclined so as to be plastically deformed inward in the radial direction of the main body at the same time as plastic deformation.

このことにより、変形部が本体部径方向の内側へ塑性変形する場合の変形抵抗は、外側へ塑性変形する場合の変形抵抗に比べて大きいので、圧縮荷重の吸収量をより一層大きくすることができる。   As a result, the deformation resistance when the deformed portion plastically deforms inward in the main body radial direction is larger than the deformation resistance when plastically deforms outward, so that the amount of compressive load absorbed can be further increased. it can.

請求項3の発明では、請求項1又は2の発明において、上記せん断変形促進層は、上記金属との合金であって該金属よりも低融点の合金からなるものとする。   According to a third aspect of the present invention, in the first or second aspect of the present invention, the shear deformation promoting layer is made of an alloy with the metal and having a melting point lower than that of the metal.

すなわち、変形部の金属との合金であって該金属よりも低融点の合金(例えば、金属がアルミニウム合金である場合に、Zn−Al系合金)は、通常、低強度であるため、本体部に所定以上の圧縮荷重が入力されたときに生じるせん断力により、変形部の境界側端部が傾斜面に対してせん断変形し易くなる。また、衝撃エネルギ吸収部材を製造するに際し、予め、変形制御部を形成するための変形制御部形成部材を作製しておいて、この変形制御部形成部材を金型のキャビティ内にセットした状態で、変形部の金属の溶湯を該キャビティ内に供給することで、変形部と変形制御部とを一体成形する場合、上記変形制御部形成部材における傾斜面に対応する端部を、上記金属よりも低融点のめっき材料で構成しておけば、傾斜面と変形部との境界に、変形部の金属との合金であって該金属よりも低融点の合金からなるせん断変形促進層を容易に形成することができる。   That is, an alloy with a metal in the deformed portion and having a melting point lower than that of the metal (for example, when the metal is an aluminum alloy, a Zn-Al-based alloy) is usually low in strength. Due to the shearing force generated when a predetermined or more compressive load is input to the boundary, the boundary side end of the deformed portion is easily sheared with respect to the inclined surface. Further, when manufacturing the impact energy absorbing member, a deformation control unit forming member for forming the deformation control unit is prepared in advance, and the deformation control unit forming member is set in the cavity of the mold. When the deformed portion and the deformation control portion are integrally formed by supplying the molten metal of the deformable portion into the cavity, the end portion corresponding to the inclined surface in the deformation control portion forming member is made more than the metal. If composed of a low melting point plating material, a shear deformation promoting layer made of an alloy of the deformed part and an alloy having a lower melting point than the metal is easily formed at the boundary between the inclined surface and the deformed part. can do.

請求項4の発明では、請求項1又は2の発明において、上記変形部は、アルミニウム合金鋳物からなり、上記変形制御部及びせん断変形促進層は、強化繊維が含有されたアルミニウム合金鋳物からなり、上記せん断変形促進層の強化繊維体積率が、上記変形制御部の強化繊維体積率よりも大きいものとする。   In the invention of claim 4, in the invention of claim 1 or 2, the deformation part is made of an aluminum alloy casting, and the deformation control part and the shear deformation promoting layer are made of an aluminum alloy casting containing reinforcing fibers, It is assumed that the reinforcing fiber volume ratio of the shear deformation promoting layer is larger than the reinforcing fiber volume ratio of the deformation control unit.

このことで、変形制御部は、強化繊維により変形部よりも圧縮塑性変形し難くかつ破壊し難くなって、変形部の塑性変形の方向を確実に制御できるようになる。また、衝撃エネルギ吸収部材の軽量化を図ることができる。さらに、上記の変形制御部形成部材として、強化繊維成形体からなる予備成形体を成形しておいて、この予備成形体とアルミニウム合金の溶湯とを複合化することで、変形部及び変形制御部を容易に一体成形することができる。ここで、上記予備成形体における上記傾斜面に対応する端部の強化繊維体積率を、該変形制御部形成部材における該端部以外の部分の強化繊維体積率よりも大きくしておけば、強化繊維体積率が大きい部分がせん断変形促進層となり、強化繊維体積率が小さい部分が変形制御部となる。このようにせん断変形促進層の強化繊維体積率が大きいと、傾斜面と変形部との境界(せん断変形促進層)においては金属(アルミニウム合金)の含有量が少なく、また、通常、強化繊維は傾斜面に略沿って延びるように配設されるので、せん断変形促進層を介在することで、せん断力に対する変形部と変形制御部との接合強度が低くなり、この結果、変形部の境界側端部が傾斜面に対してせん断変形し易くなる。   Thus, the deformation control unit is more difficult to compress and plastically deform than the deformed portion by the reinforcing fiber, and is less likely to break, and can reliably control the direction of plastic deformation of the deformed portion. Further, the impact energy absorbing member can be reduced in weight. Furthermore, as the deformation control part forming member, a preformed body made of a reinforcing fiber molded body is formed, and the preformed body and the molten aluminum alloy are combined to form the deformed part and the deformation control part. Can be easily formed integrally. Here, if the reinforcing fiber volume fraction of the end corresponding to the inclined surface in the preform is larger than the reinforcing fiber volume fraction of the portion other than the end in the deformation control member forming member, the reinforcement A portion with a large fiber volume ratio becomes a shear deformation promoting layer, and a portion with a small reinforcing fiber volume ratio becomes a deformation control unit. Thus, when the volume fraction of reinforcing fibers in the shear deformation promoting layer is large, the metal (aluminum alloy) content is small at the boundary between the inclined surface and the deformed portion (shear deformation promoting layer). Since it is arranged so as to extend substantially along the inclined surface, the joint strength between the deformation part and the deformation control part against the shearing force is lowered by interposing the shear deformation promoting layer, and as a result, the boundary side of the deformation part The end portion is easily sheared with respect to the inclined surface.

請求項5の発明では、請求項1又は2の発明において、上記変形部は、アルミニウム合金鋳物からなり、上記変形制御部は、鋼部材からなり、上記せん断変形促進層は、Al−Fe金属間化合物からなるものとする。   In the invention of claim 5, in the invention of claim 1 or 2, the deformation part is made of an aluminum alloy casting, the deformation control part is made of a steel member, and the shear deformation promoting layer is made of Al-Fe metal. It shall consist of compounds.

すなわち、Al−Fe金属間化合物は、低強度で脆いために、本体部に所定以上の圧縮荷重が入力されたときに生じるせん断力により、変形部の境界側端部が傾斜面に対してせん断変形し易くなる。また、上記の変形制御部形成部材(鋼からなる)を金型のキャビティ内にセットした状態で、変形部の金属(アルミニウム合金)の溶湯を該キャビティ内に供給することで、変形部と変形制御部とを一体成形し、その後に熱処理を適切に行えば、傾斜面と変形部との境界に、Al−Fe金属間化合物からなるせん断変形促進層を容易に形成することができる。   In other words, since the Al—Fe intermetallic compound is low in strength and brittle, the boundary side end of the deformed portion is sheared with respect to the inclined surface by a shearing force that is generated when a predetermined or more compressive load is input to the main body. It becomes easy to deform. In addition, with the deformation control part forming member (made of steel) set in the cavity of the mold, the molten metal (aluminum alloy) of the deformation part is supplied into the cavity, so that the deformation part and the deformation are deformed. If the control part is integrally formed and then heat treatment is appropriately performed, a shear deformation promoting layer made of an Al—Fe intermetallic compound can be easily formed at the boundary between the inclined surface and the deformation part.

請求項6の発明では、請求項4又は5の発明において、上記アルミニウム合金鋳物は、Al−Mn−Fe−Mg系合金鋳物であるものとする。   In the invention of claim 6, in the invention of claim 4 or 5, the aluminum alloy casting is an Al-Mn-Fe-Mg alloy casting.

すなわち、Al−Mn−Fe−Mg系合金は、各成分の含有量を適切に設定することによって、アルミニウム合金の強度を維持しつつ鋳造性及び伸びの両方を同時に向上させて、鋳造のままでも高い伸びを有する高延性のものとすることができる。よって、衝撃エネルギ吸収部材の軽量化を図りつつ、圧縮荷重の吸収性能を高めることができる。   That is, the Al-Mn-Fe-Mg-based alloy can improve both castability and elongation at the same time while maintaining the strength of the aluminum alloy by appropriately setting the content of each component. It can be of high ductility with high elongation. Therefore, it is possible to improve the absorption performance of the compressive load while reducing the weight of the impact energy absorbing member.

請求項7の発明では、請求項1〜6のいずれか1つの発明において、衝撃エネルギ吸収部材は、車両のフロントサイドフレーム又はクラッシュカンに用いられるものとする。   According to a seventh aspect of the present invention, in any one of the first to sixth aspects, the impact energy absorbing member is used for a front side frame or a crash can of a vehicle.

このことにより、車両の正面衝突時や後面衝突時の衝撃エネルギを確実に吸収して、車両の安全性を高めることが可能になる。また、変形部を、例えばアルミニウム合金鋳物で構成することで、車両の軽量化を図りつつ、安全性の向上化を図ることができる。   This makes it possible to reliably absorb impact energy at the time of a frontal collision or a rearward collision of the vehicle and improve the safety of the vehicle. Moreover, the deformation | transformation part is comprised, for example by aluminum alloy casting, and improvement in safety can be aimed at, aiming at weight reduction of a vehicle.

請求項8の発明は、筒状の本体部を有し、該本体部に対して筒軸方向に入力される圧縮荷重を吸収する衝撃エネルギ吸収部材の製造方法の発明であり、この発明では、上記本体部は、金属からなりかつ所定以上の上記圧縮荷重を受けて本体部筒軸方向に圧縮塑性変形する変形部と、該変形部の塑性変形の方向を制御する複数の変形制御部とが、本体部筒軸方向に交互に積層されてなり、上記各変形制御部の上記変形部と接する面が、本体部径方向の外側に向かって本体部筒軸方向の一方側又は他方側に傾斜する傾斜面とされ、上記本体部筒軸方向に隣り合う任意の2つの傾斜面は、上記本体部に上記所定以上の圧縮荷重が入力されたときに、上記変形部を、本体部筒軸方向への圧縮塑性変形と同時に本体部径方向の外側又は内側へ塑性変形させるように、本体部径方向の外側に向かって互いに反対側に傾斜し、上記各傾斜面と上記変形部との境界には、上記本体部に上記所定以上の圧縮荷重が入力されたときに、該変形部の境界側端部の、上記傾斜面に対するせん断変形を促進するせん断変形促進層が形成されており、上記複数の変形制御部をそれぞれ形成するための複数の変形制御部形成部材を作製する工程と、上記作製した変形制御部形成部材を金型のキャビティ内にセットした状態で、上記金属の溶湯を該キャビティ内に供給することで、上記変形部と変形制御部とを一体成形する工程とを含み、上記変形制御部形成部材の作製工程において、該変形制御部形成部材における少なくとも上記傾斜面に対応する端部を、上記変形部と変形制御部との一体成形工程時に上記せん断変形促進層が形成される材料、又は、該一体成形工程後に該一体成形したものに対し熱処理を行うことで上記せん断変形促進層が形成される材料で構成するようにする。   The invention of claim 8 is an invention of a manufacturing method of an impact energy absorbing member which has a cylindrical main body portion and absorbs a compressive load input to the main body portion in the cylinder axial direction. The main body is made of metal and receives a compressive load equal to or greater than a predetermined value, and is subjected to a compressive plastic deformation in the cylinder axial direction of the main body, and a plurality of deformation control units that control the direction of plastic deformation of the deformable portion. The surfaces of the respective deformation control units that are in contact with the deformation portion are inclined in one direction or the other side in the main body portion cylinder axis direction toward the outer side in the main body portion radial direction. Any two inclined surfaces that are adjacent to each other in the body axis direction of the main body portion when the compressive load of the predetermined value or more is input to the main body portion, At the same time as the plastic deformation of When the compressive load greater than the predetermined value is input to the main body at the boundary between the inclined surfaces and the deformed portion, the main body is inclined toward opposite sides toward the outer side in the main body radial direction. A shear deformation promoting layer for promoting shear deformation with respect to the inclined surface at the boundary side end of the deforming portion is formed, and a plurality of deformation control portion forming members for forming the plurality of deformation control portions respectively. The deformed portion and the deformation control portion are integrally formed by supplying the molten metal into the cavity in a state where the produced deformation control portion forming member is set in the cavity of the mold. In the step of producing the deformation control part forming member, the end corresponding to at least the inclined surface of the deformation control part forming member is subjected to the shearing process in the integral forming step of the deformation part and the deformation control part. Material shape promoting layer is formed, or, to be composed of a material the shear deformation promoting layer is formed by performing heat treatment to that said integrally molded after the integral molding step.

この発明により、変形部及び変形制御部を容易に一体成形することができるとともに、その一体成形時に又はその後の熱処理時にせん断変形促進層を容易に形成することができる。よって、本体部筒軸方向に安定して変形させることが可能でかつ取扱い性に優れた衝撃エネルギ吸収部材を容易に製造することができる。   According to the present invention, the deformation portion and the deformation control portion can be easily integrally formed, and the shear deformation promoting layer can be easily formed at the time of the integral formation or at the time of the subsequent heat treatment. Therefore, it is possible to easily manufacture an impact energy absorbing member that can be stably deformed in the main body cylinder axis direction and has excellent handleability.

請求項9の発明では、請求項8の発明において、上記変形制御部形成部材の作製工程において、該変形制御部形成部材における上記傾斜面に対応する端部を、上記金属よりも低融点のめっき材料で構成するものとする。   In the invention of claim 9, in the invention of claim 8, in the step of producing the deformation control portion forming member, the end corresponding to the inclined surface in the deformation control portion forming member is plated with a melting point lower than that of the metal. It shall consist of materials.

このことにより、変形部と変形制御部との一体成形時に、傾斜面と変形部との境界に、変形部の金属との合金であって該金属よりも低融点の合金からなるせん断変形促進層を容易に形成することができ、請求項3記載の衝撃エネルギ吸収部材を容易に製造することができる。   As a result, at the time of integral molding of the deformable portion and the deformation control portion, a shear deformation promoting layer made of an alloy with the metal of the deformed portion and having a lower melting point than the metal at the boundary between the inclined surface and the deformable portion The impact energy absorbing member according to claim 3 can be easily manufactured.

請求項10の発明では、請求項8の発明において、上記金属は、アルミニウム合金であり、上記変形制御部形成部材は、強化繊維成形体からなり、上記変形部と変形制御部との一体成形工程は、上記溶湯と上記強化繊維成形体とを複合化する工程であり、上記変形制御部形成部材の作製工程において、該変形制御部形成部材における上記傾斜面に対応する端部の強化繊維体積率を、該変形制御部形成部材における該端部以外の部分の強化繊維体積率よりも大きくするようにする。   In the invention of claim 10, in the invention of claim 8, the metal is an aluminum alloy, the deformation control portion forming member is formed of a reinforcing fiber molded body, and the integral forming step of the deformation portion and the deformation control portion. Is a step of combining the molten metal and the reinforcing fiber molded body, and in the step of forming the deformation control portion forming member, the reinforcing fiber volume ratio of the end corresponding to the inclined surface in the deformation control portion forming member Is made larger than the reinforcing fiber volume ratio of the portion other than the end portion of the deformation control portion forming member.

このことで、変形部と変形制御部との一体成形時に、傾斜面と変形部との境界に、変形制御部よりも強化繊維体積率が大きいせん断変形促進層を容易に形成することができ、請求項4記載の衝撃エネルギ吸収部材を容易に製造することができる。   This makes it possible to easily form a shear deformation promoting layer having a reinforcing fiber volume ratio larger than that of the deformation control portion at the boundary between the inclined surface and the deformation portion when integrally forming the deformation portion and the deformation control portion, The impact energy absorbing member according to claim 4 can be easily manufactured.

請求項11の発明では、請求項8の発明において、上記金属は、アルミニウム合金であり、上記変形制御部形成部材は、鋼からなり、上記変形部と変形制御部との一体成形工程後に、該一体成形したものに対し熱処理を行うことで、Al−Fe金属間化合物からなるせん断変形促進層を形成するようにする。   In the invention of claim 11, in the invention of claim 8, the metal is an aluminum alloy, the deformation control portion forming member is made of steel, and after the integral forming step of the deformation portion and the deformation control portion, By heat-treating the integrally formed one, a shear deformation promoting layer made of an Al—Fe intermetallic compound is formed.

これにより、変形部と変形制御部との一体成形工程後に、熱処理を適切に行うことで、傾斜面と変形部との境界に、Al−Fe金属間化合物からなるせん断変形促進層を容易に形成することができ、請求項5記載の衝撃エネルギ吸収部材を容易に製造することができる。   As a result, a shear deformation promoting layer made of an Al-Fe intermetallic compound can be easily formed at the boundary between the inclined surface and the deformed portion by appropriately performing heat treatment after the integral forming process of the deformed portion and the deformation control unit. The impact energy absorbing member according to claim 5 can be easily manufactured.

以上説明したように、本発明の衝撃エネルギ吸収部材によると、本体部が、少なくとも1つの変形部と複数の変形制御部とが本体部筒軸方向に交互に積層された状態で一体成形されてなり、各変形制御部の変形部と接する面が、本体部径方向の外側に向かって本体部筒軸方向の一方側又は他方側に傾斜する傾斜面とされ、本体部筒軸方向に隣り合う任意の2つの傾斜面が、上記本体部に対して筒軸方向に所定以上の圧縮荷重が入力されたときに、上記変形部を、本体部筒軸方向への圧縮塑性変形と同時に本体部径方向の外側又は内側へ塑性変形させるように、本体部径方向の外側に向かって互いに反対側に傾斜し、各傾斜面と変形部との境界には、上記本体部に上記所定以上の圧縮荷重が入力されたときに、該変形部の境界側端部の、傾斜面に対するせん断変形を促進するせん断変形促進層が形成されている構成としたことにより、本体部が筒軸方向に安定して変形するようになり、圧縮荷重の吸収性能を高めることができるとともに、衝撃エネルギ吸収部材の運搬時や車両等への組付け時における取扱い性を向上させることができる。   As described above, according to the impact energy absorbing member of the present invention, the main body portion is integrally formed with at least one deformation portion and a plurality of deformation control portions stacked alternately in the main body cylinder axis direction. The surface of each deformation control unit that is in contact with the deformation portion is an inclined surface that is inclined toward one side or the other side in the main body portion cylindrical axis direction toward the outer side in the main body portion radial direction, and is adjacent to the main body portion cylinder axis direction. When two or more inclined surfaces receive a compressive load greater than or equal to a predetermined amount in the cylinder axis direction with respect to the main body part, the deformed part is simultaneously compressed and plastically deformed in the main body cylinder axis direction. So as to be plastically deformed outward or inward in the direction, and inclined in the opposite directions toward the outer side in the radial direction of the main body, and at the boundary between each inclined surface and the deformed portion, the main body is compressed above the predetermined amount. Is input, the inclined surface of the boundary side end of the deformed portion By adopting a configuration in which a shear deformation promoting layer that promotes shear deformation is formed, the main body portion can be stably deformed in the cylinder axis direction, and the compression load absorption performance can be enhanced, and impact can be achieved. The handling property when the energy absorbing member is transported or assembled to a vehicle or the like can be improved.

また、本発明の衝撃エネルギ吸収部材の製造方法によると、変形制御部を形成するための変形制御部形成部材を作製する工程と、該作製した変形制御部形成部材を金型のキャビティ内にセットした状態で、金属の溶湯を該キャビティ内に供給することで、変形部と変形制御部とを一体成形する工程とを含み、変形制御部形成部材の作製工程において、該変形制御部形成部材における少なくとも傾斜面に対応する端部を、変形部と変形制御部との一体成形工程時に上記せん断変形促進層が形成される材料、又は、該一体成形工程後に該一体成形してなる本体部に対し熱処理を行うことで上記せん断変形促進層が形成される材料で構成するようにしたことにより、本体部を座屈変形させることなく筒軸方向に安定して変形させることが可能でかつ取扱い性に優れた衝撃エネルギ吸収部材を容易に製造することができる。   In addition, according to the manufacturing method of the impact energy absorbing member of the present invention, the step of producing the deformation control part forming member for forming the deformation control part, and the produced deformation control part forming member are set in the cavity of the mold. In this state, by supplying a molten metal into the cavity, the step of integrally forming the deformation portion and the deformation control portion, in the step of forming the deformation control portion forming member, in the deformation control portion forming member At least the end corresponding to the inclined surface is formed on the material on which the shear deformation promoting layer is formed during the integral molding process of the deformable portion and the deformation control unit, or on the main body formed by the integral molding after the integral molding step. By forming the shear deformation promoting layer with a material that is formed by heat treatment, the main body can be stably deformed in the cylinder axis direction without buckling deformation and Excellent impact energy absorbing member in handling property can be easily produced.

以下、本発明の実施形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施形態1)
図1は、本発明の実施形態1に係る衝撃エネルギ吸収部材1を示し、この衝撃エネルギ吸収部材1は、筒状(本実施形態では円筒状)の本体部2を有していて、該本体部2に対して筒軸Z方向(図1の上下方向)に入力される圧縮荷重を吸収するものである。
(Embodiment 1)
FIG. 1 shows an impact energy absorbing member 1 according to Embodiment 1 of the present invention, and this impact energy absorbing member 1 has a cylindrical (cylindrical in this embodiment) body portion 2, and the body It absorbs a compressive load input to the portion 2 in the cylinder axis Z direction (vertical direction in FIG. 1).

上記衝撃エネルギ吸収部材1は、本実施形態では、図2に示すように、車両100の前部における車幅方向両側位置で前後方向にそれぞれ延びるように設けられる左右のフロントサイドフレーム91の前端とフロントバンパー93における車幅方向に延びるバンパーレインフォースメント93aの左右両端部との間にそれぞれ介設されるクラッシュカン92として用いられる。この場合、衝撃エネルギ吸収部材1は、筒軸Z方向が車両100の前後方向に一致するように配設されて、車両100の正面衝突時にバンパーレインフォースメント93aから入力される衝突エネルギ(衝撃圧縮荷重)を吸収する。   In the present embodiment, the impact energy absorbing member 1 includes front ends of left and right front side frames 91 provided to extend in the front-rear direction at both vehicle width direction positions in the front portion of the vehicle 100, as shown in FIG. The front bumper 93 is used as a crash can 92 interposed between left and right ends of a bumper reinforcement 93a extending in the vehicle width direction. In this case, the impact energy absorbing member 1 is disposed such that the direction of the cylinder axis Z coincides with the front-rear direction of the vehicle 100, and the collision energy (impact compression) input from the bumper reinforcement 93a at the time of a frontal collision of the vehicle 100. Absorbs load).

尚、衝撃エネルギ吸収部材1は、上記クラッシュカン92に限らず、上記左右のフロントサイドフレーム91の一部(特に前端部分)、車両100の後部における車幅方向両側位置で前後方向にそれぞれ延びるように設けられる左右のリヤサイドフレーム(図示せず)の一部(特に後端部分)、又は、この各リヤサイドフレームの後端とリヤバンパー94のバンパーレインフォースメント(図示せず)との間に介設されるクラッシュカン(図示せず)に用いてもよい。また、衝撃エネルギ吸収部材1は、車両100において衝撃エネルギを吸収する必要がある部分に広く用いることができるとともに、車両100以外のものに用いることも可能である。   The impact energy absorbing member 1 is not limited to the crash can 92 but extends in the front-rear direction at a part (particularly the front end portion) of the left and right front side frames 91 and at both sides in the vehicle width direction at the rear portion of the vehicle 100. A part of the left and right rear side frames (not shown) (particularly the rear end part) provided between the rear side frame and a bumper reinforcement (not shown) of the rear bumper 94. You may use for the crush can (not shown) provided. Further, the impact energy absorbing member 1 can be widely used in a portion where the impact energy needs to be absorbed in the vehicle 100 and can also be used for other than the vehicle 100.

上記本体部2における筒軸Z方向の両側端には、衝撃エネルギ吸収部材1を上記フロントサイドフレーム91の前端とバンパーレインフォースメント93aとにそれぞれ取付固定するための第1及び第2固定部7,8がそれぞれ設けられている。第1固定部7には、該第1固定部7をフロントサイドフレーム91の前端に締結固定するためのボルトが挿通される複数のボルト挿通孔7aが形成されており、第2固定部8には、該第2固定部8をバンパーレインフォースメント93aに締結固定するためのボルトが挿通される複数のボルト挿通孔8aが形成されている。これら第1及び第2固定部7,8の形状は、衝撃エネルギ吸収部材1の適用箇所によって異なる。   First and second fixing portions 7 for attaching and fixing the impact energy absorbing member 1 to the front end of the front side frame 91 and the bumper reinforcement 93a, respectively, at both ends of the main body portion 2 in the cylinder axis Z direction. , 8 are provided. The first fixing portion 7 has a plurality of bolt insertion holes 7a through which bolts for fastening and fixing the first fixing portion 7 to the front end of the front side frame 91 are formed. Are formed with a plurality of bolt insertion holes 8a through which bolts for fastening and fixing the second fixing portion 8 to the bumper reinforcement 93a are inserted. The shapes of the first and second fixing portions 7 and 8 differ depending on the application location of the impact energy absorbing member 1.

本実施形態のように衝撃エネルギ吸収部材1をクラッシュカン92に用いる場合、本体部2の外径Dは40〜100mmが好ましく、肉厚tは2〜8mmが好ましく、長さLは80〜150mmが好ましい。尚、本体部の外径Dは、図1では、本体部2の筒軸Z方向全体に亘って一定に記載しているが、厳密には一定ではなくて、第2固定部8側に向かって徐々に小さくなっている。これは、衝撃エネルギ吸収部材1を後述の鋳造金型30(図8参照)で鋳造した後に該鋳造金型30からの離型を容易にするためである。   When the impact energy absorbing member 1 is used for the crash can 92 as in this embodiment, the outer diameter D of the main body 2 is preferably 40 to 100 mm, the wall thickness t is preferably 2 to 8 mm, and the length L is 80 to 150 mm. Is preferred. In FIG. 1, the outer diameter D of the main body is constant throughout the cylinder axis Z direction of the main body 2, but is not strictly constant and is directed toward the second fixing portion 8. Gradually getting smaller. This is for facilitating mold release from the casting mold 30 after the impact energy absorbing member 1 is cast with a casting mold 30 (see FIG. 8) described later.

上記本体部2は、該本体部2に対する筒軸Z方向の所定以上の圧縮荷重を受けて筒軸Z方向に圧縮塑性変形する複数(本実施形態では4つ)の環状の変形部3と、該変形部3の塑性変形の方向を制御する複数(本実施形態では5つ)の環状の変形制御部4とが、筒軸Z方向に交互に積層された状態で一体成形されてなる。この変形制御部4は、筒軸Z方向の圧縮荷重に対して変形部3よりも圧縮塑性変形し難くかつ破壊し難い材料、つまり上記圧縮荷重に対する強度及び剛性が変形部3よりも高い材料で構成すればよいが、これに限られるものでもない。本実施形態で用いる具体的な材料については後述する。   The main body 2 receives a plurality of (four in the present embodiment) annular deformation portions 3 that compressively plastically deform in the cylinder axis Z direction under a predetermined or greater compressive load in the cylinder axis Z direction with respect to the main body 2; A plurality (five in this embodiment) of annular deformation control sections 4 for controlling the direction of plastic deformation of the deformation section 3 are integrally molded in a state where they are alternately stacked in the cylinder axis Z direction. The deformation control unit 4 is made of a material that is less likely to be plastically plastically deformed and less likely to break than the deformation unit 3 with respect to the compressive load in the cylinder axis Z direction, that is, a material that has higher strength and rigidity with respect to the compression load than the deformation unit 3. However, the present invention is not limited to this. Specific materials used in this embodiment will be described later.

上記変形制御部4は、上記本体部2に上記所定以上の圧縮荷重が入力されたときに、上記変形部3を、筒軸Z方向への圧縮塑性変形と同時に本体部2径方向の内側へ強制的に塑性変形(縮径変形)させるようになっている。   The deformation control unit 4 moves the deformation unit 3 inwardly in the radial direction of the main body 2 simultaneously with the compressive plastic deformation in the cylinder axis Z direction when a compression load greater than or equal to the predetermined value is input to the main body 2. It is designed to force plastic deformation (reduction in diameter).

具体的には、各変形制御部4の変形部3と接する面が、本体部2の径方向外側に向かって筒軸Z方向の一方側又は他方側に傾斜する傾斜面4aとされている。そして、筒軸Z方向に隣り合う任意の2つの傾斜面4aは、本体部2径方向の外側に向かって互いに反対側に傾斜している。本実施形態では、各傾斜面4aは、本体部2に対して筒軸Z方向に所定以上の圧縮荷重が入力されたときに、全変形部3を、筒軸Z方向への圧縮塑性変形と同時に本体部2径方向の内側へ塑性変形させるように傾斜している。すなわち、各変形制御部4の筒軸Z方向の長さが、本体部2径方向の外側に向かって大きくなっている一方、各変形部3の筒軸Z方向の長さが、本体部2径方向の外側に向かって小さくなっている。   Specifically, the surface in contact with the deformation portion 3 of each deformation control portion 4 is an inclined surface 4 a that is inclined toward one side or the other side in the cylinder axis Z direction toward the radially outer side of the main body portion 2. And two arbitrary inclined surfaces 4a adjacent in the cylinder axis Z direction are inclined to opposite sides toward the outer side in the main body portion 2 radial direction. In the present embodiment, each inclined surface 4a is configured such that when a predetermined compressive load or more in the cylinder axis Z direction is input to the main body 2, the entire deformed portion 3 is compressed and plastically deformed in the cylinder axis Z direction. At the same time, the main body portion 2 is inclined so as to be plastically deformed inward in the radial direction. That is, the length of each deformation control unit 4 in the cylinder axis Z direction increases toward the outer side in the radial direction of the main body 2, while the length of each deformation unit 3 in the cylinder axis Z direction increases. It becomes smaller toward the outside in the radial direction.

尚、各傾斜面4aは、本体部2に対して筒軸Z方向に所定以上の圧縮荷重が入力されたときに、全変形部3を、筒軸Z方向への圧縮塑性変形と同時に本体部2径方向の外側へ塑性変形(拡径変形)させるように傾斜していてもよい。すなわち、各変形制御部4の筒軸Z方向の長さを、本体部2径方向の外側に向かって小さくする一方、各変形部3の筒軸Z方向の長さを、本体部2径方向の外側に向かって大きくする。但し、変形部3が本体部2径方向の内側へ塑性変形する場合の変形抵抗は、外側へ塑性変形する場合の変形抵抗に比べて大きいので、圧縮荷重の吸収量を大きくする観点からは、変形部3を本体部2径方向の内側へ塑性変形させる方が好ましい。   Each inclined surface 4a is configured such that when a predetermined or more compressive load is input to the main body portion 2 in the cylinder axis Z direction, the main body portion simultaneously moves the entire deformation portion 3 to compressive plastic deformation in the cylinder axis Z direction. You may incline so that it may carry out plastic deformation (diameter expansion deformation) to the outer side of a two radial direction. That is, the length of each deformation control unit 4 in the cylinder axis Z direction is reduced toward the outer side in the main body part 2 radial direction, while the length of each deformation part 3 in the cylinder axis Z direction is reduced in the main body part 2 radial direction. Increase toward the outside. However, since the deformation resistance when the deformable portion 3 is plastically deformed inward in the main body portion 2 radial direction is larger than the deformation resistance when plastically deformed outward, from the viewpoint of increasing the absorption amount of the compressive load, It is preferable to plastically deform the deformable portion 3 inward in the radial direction of the main body portion 2.

上記各傾斜面4aの傾斜角度θ(筒軸Z方向に対して垂直な面に対する傾斜角度)は、30°〜60°が好ましく、特に好ましいのは40°〜50°である。本体部2径方向の外側に向かって筒軸Z方向の一方側に傾斜する傾斜面4aの傾斜角度と、他方側に傾斜する傾斜面4aの傾斜角度とは同じであることが好ましいが、互いに異なっていてもよい。   The inclination angle θ of each of the inclined surfaces 4a (inclination angle with respect to a surface perpendicular to the cylinder axis Z direction) is preferably 30 ° to 60 °, and particularly preferably 40 ° to 50 °. It is preferable that the inclination angle of the inclined surface 4a inclined to the one side in the cylinder axis Z direction and the inclination angle of the inclined surface 4a inclined to the other side are the same. May be different.

本実施形態では、本体部2における筒軸Z方向の両側端部が変形制御部4でそれぞれ構成されているが、変形部3でそれぞれ構成してもよく、該両側端部のうちいずれか一方の端部のみを変形制御部4で構成してもよい。また、変形部3は1つであってもよく、この場合には、本体部2における筒軸Z方向の両側端部が変形制御部4でそれぞれ構成されることになる。   In the present embodiment, both end portions in the cylinder axis Z direction of the main body portion 2 are each configured by the deformation control unit 4, but each may be configured by the deformation unit 3, and either one of the both side end portions. Only the end portion may be configured by the deformation control unit 4. Further, the number of the deforming portions 3 may be one, and in this case, both end portions in the cylinder axis Z direction of the main body portion 2 are respectively configured by the deformation control portion 4.

上記複数の変形部3の形状及び大きさは略同じであることが好ましい。これは、圧縮加重が全ての変形部3に均一に作用して特定の変形部3に集中しないようにするためである。   It is preferable that the shapes and sizes of the plurality of deformation portions 3 are substantially the same. This is to prevent the compression load from acting uniformly on all the deforming portions 3 and concentrating on the specific deforming portion 3.

上記各傾斜面4aと上記変形部3との境界には、上記本体部2に対して筒軸Z方向に所定以上の圧縮荷重が入力されたときに、該変形部3の境界側端部の、傾斜面4aに対するせん断変形を促進するせん断変形促進層9が形成されている。すなわち、本体部2に所定以上の圧縮荷重が入力されたときに、傾斜面4aと変形部3との境界ないしその近傍には、傾斜面4aの傾斜によって、変形部3の境界側端部を傾斜面4aに沿って本体部2径方向の内側へずらすようなせん断力が作用し、せん断変形促進層9を、変形部3の境界側端部が傾斜面4aに対してせん断変形し易いような材料で構成しておけば、上記せん断力によって変形部3の境界側端部が傾斜面4aに対してせん断変形して、変形部3が、本体部2径方向の内側へ塑性変形し易くなる。   When a predetermined compressive load or more is input to the boundary between each inclined surface 4a and the deforming portion 3 with respect to the main body portion 2 in the cylinder axis Z direction, A shear deformation promoting layer 9 that promotes shear deformation on the inclined surface 4a is formed. That is, when a compressive load of a predetermined value or more is input to the main body 2, the boundary side end of the deformed portion 3 is formed at or near the boundary between the inclined surface 4 a and the deformed portion 3 by the inclination of the inclined surface 4 a. A shearing force that shifts inward in the radial direction of the main body portion 2 acts along the inclined surface 4a, so that the boundary portion of the deformation portion 3 is easily shear-deformed with respect to the inclined surface 4a. If made of a material, the boundary side end of the deformable portion 3 is shear-deformed with respect to the inclined surface 4a by the shearing force, and the deformable portion 3 is easily plastically deformed inward in the main body portion 2 radial direction. Become.

本実施形態では、上記変形部3はアルミニウム合金鋳物からなり、上記変形制御部4及びせん断変形促進層9は、強化繊維が含有されたアルミニウム合金鋳物からなる。これら変形部3及び変形制御部4並びにせん断変形促進層9は、後述の如くアルミニウム合金の溶湯と強化繊維成形体からなる予備成形体15(図5参照)との複合化により一体成形されたものである。   In this embodiment, the said deformation | transformation part 3 consists of aluminum alloy castings, and the said deformation | transformation control part 4 and the shear deformation promotion layer 9 consist of aluminum alloy castings containing the reinforced fiber. The deformation part 3 and the deformation control part 4 and the shear deformation promoting layer 9 are integrally formed by combining a molten aluminum alloy and a preformed body 15 (see FIG. 5) made of a reinforcing fiber molded body as will be described later. It is.

上記アルミニウム合金として好ましいのは、Al−Mn−Fe−Mg系合金である。このAl−Mn−Fe−Mg系合金は、各成分の含有量を適切に設定することによって、アルミニウム合金の強度を維持しつつ鋳造性及び伸びの両方を同時に向上させて、鋳造のままでも高い伸びを有する高延性のものとすることができる。具体的には、0.5〜2.5%のMn成分と、0.1〜1.5%のFe成分と、0.01〜1.2%のMg成分と、残部が不可避不純物を含むAl成分とからなるアルミニウム合金とする(含有量の数値は質量百分率である)。   The aluminum alloy is preferably an Al—Mn—Fe—Mg alloy. This Al-Mn-Fe-Mg-based alloy is high in casting as it can improve the castability and elongation at the same time while maintaining the strength of the aluminum alloy by appropriately setting the content of each component. It can be of high ductility with elongation. Specifically, 0.5 to 2.5% Mn component, 0.1 to 1.5% Fe component, 0.01 to 1.2% Mg component, and the balance contains inevitable impurities The aluminum alloy is composed of an Al component (the numerical value of the content is a mass percentage).

また、上記各成分含有量を有するAl−Mn−Fe−Mg系合金に、質量百分率で0.1〜0.2%のTi成分、質量百分率で0.01〜0.1%のB成分、及び、質量百分率で0.01〜0.2%のBe成分のうちの少なくとも1つを添加することがより好ましい。すなわち、Ti成分、B成分及びBe成分は、鋳物の結晶粒を微細化することによりその特性を向上させて鋳造割れ性を改善することができるが、含有量が多すぎると、粗大化合物が生成されて伸びが低下する。そこで、Ti成分、B成分及びBe成分の各含有量を上記範囲に設定して、伸びの低下を防ぎつつ、鋳造割れ性をさらに良好にする。   In addition, to the Al-Mn-Fe-Mg based alloy having the above respective component contents, 0.1 to 0.2% Ti component by mass percentage, 0.01 to 0.1% B component by mass percentage, And it is more preferable to add at least one of Be components of 0.01 to 0.2% by mass percentage. That is, the Ti component, the B component and the Be component can improve the casting cracking property by refining the crystal grains of the casting, but if the content is too large, a coarse compound is generated. As a result, the elongation decreases. Then, each content of Ti component, B component, and Be component is set to the said range, and cast cracking property is made further favorable, preventing the fall of elongation.

尚、上記Al−Mn−Fe−Mg系合金に代えて、例えば、Al−Si系合金を用いてもよく(この合金の場合には、高真空ダイカスト法で鋳造する)、Mg系合金やその他の金属を用いてもよい。   In place of the Al—Mn—Fe—Mg alloy, for example, an Al—Si alloy may be used (in the case of this alloy, casting is performed by a high vacuum die casting method). The metal may be used.

上記強化繊維としては、アルミナ繊維、シリカ繊維、シリコンカーバイト繊維等が好ましい。アルミナ繊維及びシリカ繊維の場合には、例えば、平均繊維径3μm〜5μm、繊維長さ5mm〜10mmのものを用い、シリコンカーバイト繊維の場合には、例えば、平均繊維径10μm〜15μm、繊維長さ5mm〜10mmのものを用いればよい。   As the reinforcing fiber, alumina fiber, silica fiber, silicon carbide fiber and the like are preferable. In the case of alumina fibers and silica fibers, for example, those having an average fiber diameter of 3 μm to 5 μm and a fiber length of 5 mm to 10 mm are used. In the case of silicon carbide fibers, for example, the average fiber diameter of 10 μm to 15 μm, the fiber length is used. The thing of 5 mm-10 mm should just be used.

上記変形制御部4の強化繊維体積率は5〜10%であることが好ましい。一方、上記せん断変形促進層9の強化繊維体積率は、変形制御部4の強化繊維体積率よりも大きい。また、せん断変形促進層9の強化繊維は、後述の製造方法から傾斜面4aに略沿って延びるように配設されており、強化繊維体積率が大きいことと相俟って、せん断変形促進層9を介在することで、上記せん断力に対する変形部3と変形制御部4との接合強度が低くなり、この結果、変形部3の境界側端部が傾斜面4aに対して本体部2径方向の内側へせん断変形し易くなる。このせん断変形を促進するために上記せん断変形促進層9の強化繊維体積率として好ましい範囲は20〜25%である。これは、20%未満では、上記せん断変形を十分に促進させることができない一方、25%を超えると、予備成形体15内の空孔が小さくなって溶湯の充填性が悪化するからである。   The volume ratio of reinforcing fibers of the deformation control unit 4 is preferably 5 to 10%. On the other hand, the reinforcing fiber volume ratio of the shear deformation promoting layer 9 is larger than the reinforcing fiber volume ratio of the deformation control unit 4. Further, the reinforcing fibers of the shear deformation promoting layer 9 are disposed so as to extend substantially along the inclined surface 4a from the manufacturing method described later, and in combination with the large reinforcing fiber volume ratio, the shear deformation promoting layer. 9, the bonding strength between the deformation part 3 and the deformation control part 4 against the shearing force is reduced, and as a result, the boundary side end of the deformation part 3 is in the radial direction of the main body part 2 with respect to the inclined surface 4a. It becomes easy to shear and deform inside. In order to promote the shear deformation, a preferable range of the reinforcing fiber volume ratio of the shear deformation promoting layer 9 is 20 to 25%. This is because, if it is less than 20%, the shear deformation cannot be sufficiently promoted, whereas if it exceeds 25%, the pores in the preform 15 are reduced and the filling property of the molten metal is deteriorated.

上記変形制御部4は、変形部3の構成材料であるアルミニウム合金と強化繊維との複合化により強化されて、筒軸Z方向の圧縮荷重に対して変形部3よりも圧縮塑性変形し難くかつ破壊し難くなっており、これにより、本体部2に対して筒軸Z方向に所定以上の圧縮荷重(但し、変形制御部4が圧縮塑性変形しない大きさの圧縮荷重)が入力されたときには、図3に示すように、変形制御部4が圧縮塑性変形しない状態で(但し、弾性変形はする)、変形部3が筒軸Z方向に圧縮塑性変形することになる。また、変形制御部4の傾斜面4aによって、変形部3が、筒軸Z方向への圧縮塑性変形と同時に本体部2径方向の内側へ塑性変形することになる。しかも、傾斜面4aと変形部3との境界にはせん断変形促進層9が形成されているので、このせん断変形促進層9により、変形部3が本体部2径方向の内側へより一層塑性変形し易くなる。この変形部3の塑性変形によって上記圧縮加重を吸収する。このとき、変形部3は、その筒軸Z方向の長さが短くなりながら本体部2径方向の内側へ広がることにより、本体部2全体として座屈変形が生じずに筒軸Z方向に安定して変形する。尚、変形部3は、筒軸Z方向の圧縮塑性変形に伴って、本体部2径方向の外側へも少し塑性変形することになるが、その外側への塑性変形量は、強制的に変形させられる内側への塑性変形量に比べてかなり小さい。   The deformation control unit 4 is reinforced by the combination of an aluminum alloy that is a constituent material of the deformation unit 3 and a reinforcing fiber, and is less likely to undergo plastic plastic deformation than the deformation unit 3 with respect to a compressive load in the cylinder axis Z direction. As a result, when a compressive load greater than or equal to a predetermined value in the cylinder axis Z direction is input to the main body 2 (however, a compressive load that does not cause the plastic deformation of the deformation control unit 4) is input. As shown in FIG. 3, in a state where the deformation control unit 4 is not compressed and plastically deformed (but elastically deformed), the deformed unit 3 is compressed and plastically deformed in the cylinder axis Z direction. Further, due to the inclined surface 4 a of the deformation control unit 4, the deformation unit 3 is plastically deformed inward in the main body 2 radial direction simultaneously with the compressive plastic deformation in the cylinder axis Z direction. In addition, since the shear deformation promoting layer 9 is formed at the boundary between the inclined surface 4a and the deforming portion 3, the shear deforming promoting layer 9 causes the deforming portion 3 to be further plastically deformed inward of the main body portion 2 in the radial direction. It becomes easy to do. The compression load is absorbed by the plastic deformation of the deformable portion 3. At this time, the deforming portion 3 spreads inward in the radial direction of the main body portion 2 while its length in the cylindrical axis Z direction is shortened, so that the main body portion 2 as a whole is stable in the cylindrical axis Z direction without causing buckling deformation. And deform. The deformable portion 3 is slightly plastically deformed outward in the radial direction of the main body 2 along with the compressive plastic deformation in the cylinder axis Z direction, but the amount of plastic deformation to the outside is forcibly deformed. It is considerably smaller than the amount of plastic deformation inward.

また、本体部2に対して筒軸Z方向に、変形制御部4が圧縮塑性変形するような大きさの圧縮加重が入力されたときには、図4に示すように、変形制御部4も筒軸Z方向に圧縮塑性変形する。さらに、傾斜面4aが変形部3から受ける反力によって、変形制御部4が本体部2径方向の外側へ塑性変形することになる。この変形制御部4の塑性変形時においても、変形制御部4は、傾斜面4aの傾斜角度θが0になるまでは、変形部3を、筒軸Z方向への圧縮塑性変形と同時に本体部2径方向の内側へ塑性変形させる役目を果たす。そして、変形制御部4の塑性変形により傾斜面4aの傾斜角度θが0になったとしても、その時点では既に、変形部3の塑性変形量がかなり大きくなっており、この結果、その時点以降も圧縮荷重が作用し続けたとしても、本体部2全体として座屈変形が生じずに筒軸Z方向に変形する。   In addition, when a compression load having such a magnitude that the deformation control unit 4 is compressively plastically deformed in the cylinder axis Z direction with respect to the main body 2, the deformation control unit 4 is also connected to the cylinder axis as shown in FIG. 4. Compressive plastic deformation in the Z direction. Furthermore, the deformation control unit 4 is plastically deformed outward in the radial direction of the main body 2 by the reaction force received by the inclined surface 4a from the deformation unit 3. Even during the plastic deformation of the deformation control unit 4, the deformation control unit 4 moves the main body unit simultaneously with the compressive plastic deformation in the cylinder axis Z direction until the inclination angle θ of the inclined surface 4a becomes zero. It plays the role of plastic deformation inward in the two radial directions. Even if the inclination angle θ of the inclined surface 4a becomes 0 due to plastic deformation of the deformation control unit 4, the plastic deformation amount of the deformation unit 3 is already considerably large at that time, and as a result, after that time, Even if the compressive load continues to act, the main body 2 as a whole is deformed in the direction of the cylinder axis Z without causing buckling deformation.

尚、本体部2への上記所定以上の圧縮加重の入力時に、せん断変形促進層9と変形部3(又は傾斜面4a)との間の界面で破断(せん断破壊)する可能性はあるが、たとえ破断したとしても、変形部3は、傾斜面4aによって本体部2径方向の内側へ塑性変形することに変わりはなく、寧ろ、破断により、本体部2径方向の内側へ塑性変形し易くなる。   In addition, there is a possibility of fracture (shear fracture) at the interface between the shear deformation promoting layer 9 and the deformed portion 3 (or the inclined surface 4a) at the time of inputting the compression load greater than the predetermined value to the main body portion 2, Even if it breaks, the deformed portion 3 is still plastically deformed inward in the main body portion 2 radial direction by the inclined surface 4a. Rather, it becomes easy to plastically deform inward in the main body portion 2 radial direction by the fracture. .

上記衝撃エネルギ吸収部材1を製造するには、先ず、図5に示すように、上記アルミニウム合金の溶湯との複合化により上記複数の変形制御部4をそれぞれ形成することが可能な複数の予備成形体15(複数の変形制御部4をそれぞれ形成するための複数の変形制御部形成部材に相当)を成形する。この各予備成形体15における傾斜面4aに対応する端部15aは、後述の一体成形時にせん断変形促進層9が形成される材料で構成されている。すなわち、上記端部15aを含む予備成形体15全体が強化繊維成形体からなり、上記端部15aの強化繊維体積率が、予備成形体15における該端部15a以外の部分15bの強化繊維体積率よりも大きくなっている。予備成形体15の強化繊維が存在しない部分は空孔となっている。尚、図5に示す予備成形体15は、本体部2における筒軸Z方向の両側端部に位置する2つの変形制御部4以外の3つの変形制御部4を形成するためのものであり、本体部2における筒軸Z方向の両側端部に位置する2つの変形制御部4では、強化繊維体積率が大きくされる端部15aは1つしか存在しない。   In order to manufacture the impact energy absorbing member 1, first, as shown in FIG. 5, a plurality of preforms capable of forming the plurality of deformation control portions 4 by combining with the molten aluminum alloy, respectively. A body 15 (corresponding to a plurality of deformation control unit forming members for forming the plurality of deformation control units 4) is formed. The end 15a corresponding to the inclined surface 4a in each preform 15 is made of a material on which the shear deformation promoting layer 9 is formed during integral molding described later. That is, the entire preform 15 including the end 15a is made of a reinforcing fiber molded body, and the reinforcing fiber volume ratio of the end 15a is the reinforcing fiber volume ratio of the portion 15b of the preform 15 other than the end 15a. Is bigger than. A portion of the preform 15 where no reinforcing fiber is present is a hole. In addition, the preform 15 shown in FIG. 5 is for forming three deformation control units 4 other than the two deformation control units 4 located at both ends of the main body unit 2 in the cylinder axis Z direction. In the two deformation control units 4 positioned at both end portions in the cylinder axis Z direction in the main body unit 2, there is only one end portion 15a in which the reinforcing fiber volume ratio is increased.

各予備成形体15は、以下のようにして作製する。すなわち、最初に、不図示の容器内に、上記強化繊維と、水と、添加剤とを入れて撹拌混合してスラリー24(図6参照)を調製する。上記添加剤は、予備成形体15の強度を確保するための強化剤(例えば粒状アルミナゾル)、該強化剤の強化繊維への付着を促進させるための付着促進剤(例えば硫酸アンモン)、及び、強化繊維の分散性を向上させるための分散剤(例えばポリアミド)である。   Each preform 15 is produced as follows. That is, first, the reinforcing fiber, water, and additives are put in a container (not shown), and the mixture is stirred and mixed to prepare a slurry 24 (see FIG. 6). The additive includes a reinforcing agent (for example, granular alumina sol) for securing the strength of the preform 15, an adhesion promoter (for example, ammonium sulfate) for promoting adhesion of the reinforcing agent to the reinforcing fibers, and a reinforcing material. It is a dispersing agent (for example, polyamide) for improving the dispersibility of the fiber.

続いて、図6に示すように、濾過装置20により、スラリー24中の水等の液体成分を除去する。この濾過装置20は、内部に多孔性フィルタ22が配設された容器21と、この容器21の底部と接続された吸引装置(図示せず)とを備えている。この多孔性フィルタ22の中央部には、上方に突出する突部22a(フィルタとしての機能はない)が形成され、この突部22aの周囲部分(フィルタとして機能する)は、変形制御部4の傾斜面4aに対応するべく水平に対して傾斜している。そして、容器21内において多孔性フィルタ22における突部22aの周囲部分の上側に上記スラリー24を投入し、その後、上記吸引装置により、多孔性フィルタ22を介して、スラリー24中の水等の液体成分を除去(吸引脱水)する。   Subsequently, as shown in FIG. 6, liquid components such as water in the slurry 24 are removed by the filtration device 20. The filtration device 20 includes a container 21 in which a porous filter 22 is disposed, and a suction device (not shown) connected to the bottom of the container 21. A protrusion 22 a (not functioning as a filter) protruding upward is formed at the center of the porous filter 22, and a peripheral portion (functioning as a filter) of the protrusion 22 a is formed by the deformation control unit 4. It inclines with respect to the horizontal to correspond to the inclined surface 4a. Then, the slurry 24 is introduced into the container 21 above the peripheral portion of the protrusion 22a of the porous filter 22, and then the liquid such as water in the slurry 24 is passed through the porous filter 22 by the suction device. Remove components (suction dehydration).

次いで、図7に示すように、スラリー24中の液体成分を除去することにより得られた第1の脱液体部材25を圧縮する。すなわち、上記容器21内において多孔性フィルタ22における突部22aの周囲部分の上側に第1の脱液体部材25を配置したまま、第1の脱液体部材25をその上方からパンチ27により加圧して予備成形体15の上記部分15bの形状となるように圧縮成形する。上記パンチ27の下面の中央部には、上記突部22aが嵌合する嵌合孔27aが形成され、この嵌合孔27aの周囲部分は、変形制御部4の傾斜面4aに対応するべく水平に対して傾斜している。尚、本体部2における筒軸Z方向の両側端部に配置する変形制御部4を形成するための予備成形体15を成形する際には、パンチ27の下面を傾斜させないで水平に延びる形状にする。   Next, as shown in FIG. 7, the first liquid removal member 25 obtained by removing the liquid component in the slurry 24 is compressed. That is, the first liquid removal member 25 is pressurized from above by the punch 27 while the first liquid removal member 25 is disposed in the container 21 above the peripheral portion of the protrusion 22a of the porous filter 22. Compression molding is performed so that the shape of the portion 15b of the preform 15 is obtained. A fitting hole 27 a into which the protrusion 22 a is fitted is formed at the center of the lower surface of the punch 27, and the peripheral portion of the fitting hole 27 a is horizontal to correspond to the inclined surface 4 a of the deformation control unit 4. It is inclined with respect to. In addition, when forming the preform 15 for forming the deformation control unit 4 disposed at both side ends in the cylinder axis Z direction in the main body 2, the shape is extended horizontally without inclining the lower surface of the punch 27. To do.

また、同様にして、予備成形体15の上記各端部15aの形状となるような傘状の第2の脱液体部材を圧縮成形する。この第2の脱液体部材の圧縮成形後の厚みは小さいので、強化繊維は、第2の脱液体部材の厚み方向の端面に略沿って延びるように配設される。   Similarly, an umbrella-shaped second liquid removal member that has the shape of each end 15a of the preform 15 is compression-molded. Since the thickness of the second liquid removal member after compression molding is small, the reinforcing fibers are disposed so as to extend substantially along the end surface in the thickness direction of the second liquid removal member.

次いで、上記圧縮成形した第1の脱液体部材25と第2の脱液体部材とをそれぞれ乾燥させた後に、第1の脱液体部材25の両側又は一方側の面に第2の脱液体部材を重ねて焼結する。この焼結は、例えば、640〜840℃で1.5時間行う。こうして強化繊維成形体からなる予備成形体15が完成する。   Next, after the compression-molded first liquid removal member 25 and the second liquid removal member are dried, the second liquid removal member is placed on both sides or one side of the first liquid removal member 25. Stack and sinter. This sintering is performed at 640-840 degreeC for 1.5 hours, for example. In this way, the preform 15 made of the reinforcing fiber molded body is completed.

次に、図8に示すような鋳造金型30を用いて衝撃エネルギ吸収部材1を製造(鋳造)する。この鋳造金型30は、固定金型プレート31に取付固定された固定金型32と、固定金型プレート31に対して図8の左右方向に移動可能に支持された可動金型プレート33に取付固定された可動金型34とを備えている。固定金型32には、可動金型34側に開口する凹陥部32aが形成されている一方、可動金型34には、その凹陥部32a内に入り込む突出部34aが形成され、これら凹陥部32a及び突出部34a間にキャビティ35が形成される。上記突出部34aの外周面には、複数の予備成形体15をそれぞれ支持するための複数の溝(図示せず)が形成されている。また、固定金型32には、第2固定部8の複数のボルト挿通孔8aをそれぞれ形成するための複数のピン32bが設けられており、可動金型34には、第1固定部7の複数のボルト挿通孔7aをそれぞれ形成するための複数のピン34bが設けられている。   Next, the impact energy absorbing member 1 is manufactured (cast) using a casting mold 30 as shown in FIG. The casting mold 30 is attached to a fixed mold 32 attached and fixed to a fixed mold plate 31 and a movable mold plate 33 supported so as to be movable in the left-right direction in FIG. A fixed movable mold 34 is provided. The fixed mold 32 is formed with a recessed portion 32a that opens to the movable mold 34 side, while the movable mold 34 is formed with a projecting portion 34a that enters the recessed portion 32a, and these recessed portions 32a. And a cavity 35 is formed between the protrusions 34a. A plurality of grooves (not shown) for supporting the plurality of preforms 15 are formed on the outer peripheral surface of the protrusion 34a. Further, the fixed mold 32 is provided with a plurality of pins 32 b for forming a plurality of bolt insertion holes 8 a of the second fixed portion 8. The movable mold 34 has the first fixed portion 7. A plurality of pins 34b for forming a plurality of bolt insertion holes 7a are provided.

また、上記鋳造金型30には、上記キャビティ35内にアルミニウム合金の溶湯を供給するための射出スリーブ37が設けられている。この射出スリーブ37には上記溶湯の給湯口37aが形成されている。また、射出スリーブ37内には、射出スリーブ37に対して摺動可能に嵌装された射出プランジャ38が設けられており、この射出プランジャ38を図8の左側へ移動させることで、給湯口37aから射出スリーブ37内に供給された溶湯をキャビティ35内へ射出する。   The casting mold 30 is provided with an injection sleeve 37 for supplying a molten aluminum alloy into the cavity 35. The injection sleeve 37 is formed with a hot water supply port 37a for the molten metal. In addition, an injection plunger 38 slidably fitted to the injection sleeve 37 is provided in the injection sleeve 37. By moving the injection plunger 38 to the left side in FIG. 8, a hot water supply port 37a is provided. The molten metal supplied into the injection sleeve 37 is injected into the cavity 35.

上記鋳造金型30を用いて衝撃エネルギ吸収部材1を製造するには、先ず、型開き状態で、可動金型34の突出部34aに形成された複数の溝に、上記成形した複数の予備成形体15をそれぞれ支持させ、その後、可動金型34を固定金型32側へ移動させて型を閉じる。これにより、複数の予備成形体15が鋳造金型30のキャビティ15内にセットされた状態となる。   In order to manufacture the impact energy absorbing member 1 using the casting mold 30, first, in the mold open state, the plurality of preformed moldings are formed in the plurality of grooves formed in the protrusions 34 a of the movable mold 34. Each of the bodies 15 is supported, and then the movable mold 34 is moved to the fixed mold 32 side to close the mold. As a result, the plurality of preforms 15 are set in the cavity 15 of the casting mold 30.

続いて、射出スリーブ37内に給湯口37aからアルミニウム合金の溶湯(溶湯温度700℃程度)を供給し、この溶湯を射出プランジャ38によりキャビティ35内に射出して供給する。これにより、キャビティ35内における予備成形体15が存在しない部分では、変形部3並びに第1及び第2固定部7,8が成形されるとともに、各予備成形体15内の空孔に溶湯が充填されて予備成形体15と溶湯とが複合化され、このことで変形制御部4が変形部3並びに第1及び第2固定部7,8と一体成形される。この一体成形時に、予備成形体15の端部15aがせん断変形促進層9となり、それ以外の部分15bが変形制御部4となる。このことで、せん断変形促進層9も変形部3及び変形制御部4と一体成形されることになる。そして、キャビティ15内の溶湯が凝固すれば、衝撃エネルギ吸収部材1の鋳造が完了する。   Subsequently, a molten aluminum alloy (a molten metal temperature of about 700 ° C.) is supplied into the injection sleeve 37 from the hot water supply port 37 a, and this molten metal is injected into the cavity 35 by the injection plunger 38 and supplied. As a result, the deformed portion 3 and the first and second fixing portions 7 and 8 are formed in the portion in the cavity 35 where the preform 15 does not exist, and the holes in each preform 15 are filled with molten metal. Thus, the preform 15 and the molten metal are combined, whereby the deformation control unit 4 is integrally formed with the deformation unit 3 and the first and second fixing units 7 and 8. At the time of this integral molding, the end portion 15 a of the preform 15 becomes the shear deformation promoting layer 9, and the other portion 15 b becomes the deformation control unit 4. Thus, the shear deformation promoting layer 9 is also integrally formed with the deformation portion 3 and the deformation control portion 4. When the molten metal in the cavity 15 is solidified, the casting of the impact energy absorbing member 1 is completed.

したがって、本実施形態では、衝撃エネルギ吸収部材1の本体部2が、変形部3と変形制御部4とが筒軸Z方向に交互に積層された状態で一体成形されてなり、各変形制御部4の変形部3と接する面が、本体部2径方向の外側に向かって筒軸Z方向の一方側又は他方側に傾斜する傾斜面4aとされ、筒軸Z方向に隣り合う任意の2つの傾斜面4aが、本体部2に対して筒軸Z方向に所定以上の圧縮荷重が入力されたときに、変形部3を、筒軸Z方向への圧縮塑性変形と同時に本体部2径方向の内側へ塑性変形させるように、本体部2径方向の外側に向かって互いに反対側に傾斜し、各傾斜面4aと変形部3との境界には、本体部2に対して筒軸Z方向に所定以上の圧縮荷重が入力されたときに、該変形部3の境界側端部の、傾斜面4aに対するせん断変形を促進するせん断変形促進層9が形成されている構成としたことにより、変形部3は、その筒軸Z方向の長さが短くなりながら本体部2の径方向内側へ広がることになり、これにより、本体部2全体として座屈変形が生じずに筒軸Z方向に安定して変形する。しかも、傾斜面4aと変形部3との境界にはせん断変形促進層9が形成されているので、このせん断変形促進層9により、変形部3が本体部2径方向の内側へより一層塑性変形し易くなる。この結果、本体部2に対して、筒軸Z方向の圧縮荷重と同時に、本体部2を径方向に倒すような力が入力されたとしても、本体部2は座屈変形し難くて筒軸Z方向に確実に変形し、これにより、圧縮荷重の吸収性能を高めることができる。また、変形部3が本体部2径方向の内側へ塑性変形する場合の変形抵抗が、外側へ塑性変形する場合の変形抵抗に比べて大きいので、圧縮荷重の吸収量をより一層大きくすることができる。さらに、変形部3や変形制御部4の数が多くなっても、変形部3と変形制御部4とを一体成形により互いに強固にかつ容易に固定することができ、衝撃エネルギ吸収部材1の運搬時や車両への組付け時における取扱い性を向上させることができる。   Therefore, in the present embodiment, the main body 2 of the impact energy absorbing member 1 is integrally formed in a state where the deformable portions 3 and the deformation control portions 4 are alternately stacked in the cylinder axis Z direction. The surface in contact with the deformable portion 3 of 4 is an inclined surface 4a that is inclined toward one side or the other side in the cylinder axis Z direction toward the outside in the radial direction of the main body portion 2 and any two adjacent to the cylinder axis Z direction. When the inclined surface 4a receives a compressive load greater than or equal to a predetermined value in the cylinder axis Z direction with respect to the main body 2, the deformed portion 3 is moved in the radial direction of the main body 2 simultaneously with the compressive plastic deformation in the cylinder axis Z direction. Inclined in opposite directions toward the outer side in the radial direction of the main body 2 so as to be plastically deformed inward, and at the boundary between each inclined surface 4a and the deformable portion 3 in the cylinder axis Z direction with respect to the main body 2 When a compressive load of a predetermined value or more is input, the boundary side end of the deformable portion 3 is against the inclined surface 4a. By adopting a configuration in which the shear deformation promoting layer 9 that promotes shear deformation is formed, the deformed portion 3 spreads inwardly in the radial direction of the main body portion 2 while its length in the cylinder axis Z direction is shortened. Thus, the main body 2 as a whole is stably deformed in the cylinder axis Z direction without causing buckling deformation. In addition, since the shear deformation promoting layer 9 is formed at the boundary between the inclined surface 4a and the deforming portion 3, the shear deforming promoting layer 9 causes the deforming portion 3 to be further plastically deformed inward of the main body portion 2 in the radial direction. It becomes easy to do. As a result, even if a force is applied to the main body 2 simultaneously with the compressive load in the cylinder axis Z direction and the main body 2 is tilted in the radial direction, the main body 2 is hardly buckled and deformed. It is possible to reliably deform in the Z direction, thereby improving the compression load absorption performance. Further, since the deformation resistance when the deformable portion 3 plastically deforms inward in the radial direction of the main body portion 2 is larger than the deformation resistance when plastically deforms outward, it is possible to further increase the amount of compression load absorbed. it can. Furthermore, even if the number of the deformation parts 3 and the deformation control parts 4 increases, the deformation parts 3 and the deformation control parts 4 can be firmly and easily fixed to each other by integral molding, and the impact energy absorbing member 1 can be transported. It is possible to improve handling at the time of installation to a vehicle or a vehicle.

(実施形態2)
本実施形態は、変形制御部4及びせん断変形促進層9の材料を上記実施形態1とは異ならせたものである。
(Embodiment 2)
In the present embodiment, the materials of the deformation control unit 4 and the shear deformation promoting layer 9 are different from those of the first embodiment.

すなわち、本実施形態では、変形制御部4は、筒軸Z方向の圧縮荷重に対してアルミニウム合金鋳物よりも圧縮塑性変形し難くかつ破壊し難い金属部材(本実施形態では、鋼部材)からなる。また、せん断変形促進層9は、変形部3の金属(アルミニウム合金)との合金であって該金属よりも低融点の合金(本実施形態では、Zn−Al系合金)からなる。このZn−Al系合金からなるせん断変形促進層9は、低強度であるため、本体部2に所定以上の圧縮荷重が入力されたときに生じるせん断力により、変形部3の境界側端部が傾斜面4aに対して本体部2径方向の内側へせん断変形し易くなる。この結果、変形部3が本体部2径方向の内側へより一層塑性変形し易くなる。   In other words, in the present embodiment, the deformation control unit 4 is made of a metal member (in this embodiment, a steel member) that is more difficult to be plastically deformed and broken than an aluminum alloy casting against a compressive load in the cylinder axis Z direction. . Further, the shear deformation promoting layer 9 is an alloy with a metal (aluminum alloy) of the deformed portion 3 and is made of an alloy having a melting point lower than that of the metal (in this embodiment, a Zn-Al alloy). Since the shear deformation promoting layer 9 made of this Zn—Al-based alloy has low strength, the boundary side end of the deformed portion 3 is caused by the shear force generated when a predetermined or higher compressive load is input to the main body portion 2. It becomes easy to carry out a shear deformation | transformation inside the main-body part 2 radial direction with respect to the inclined surface 4a. As a result, the deformable portion 3 is more easily plastically deformed inward of the main body portion 2 in the radial direction.

本実施形態の衝撃エネルギ吸収部材1を製造するには、先ず、複数の変形制御部4をそれぞれ形成するための複数の変形制御部形成部材を作製する。具体的には、鋼部材を加工して変形制御部4の形状と同じになるように仕上げる。そして、この鋼部材(変形制御部形成部材)における上記傾斜面4aに対応する端部を変形部3の金属よりも低融点のめっき材料で構成するべく、上記鋼部材において少なくとも筒軸Z方向に対応する方向の両側の面に対し亜鉛めっきを施す。尚、亜鉛めっきに代えて、亜鉛合金めっき(例えばZn−Al、Zn−Al−Mg、Sn−Zn)を施してもよい。   In order to manufacture the impact energy absorbing member 1 of the present embodiment, first, a plurality of deformation control unit forming members for forming the plurality of deformation control units 4 are prepared. Specifically, the steel member is processed and finished to have the same shape as the deformation control unit 4. And in order to comprise the edge part corresponding to the said inclined surface 4a in this steel member (deformation control part formation member) with the plating material of melting | fusing point lower than the metal of the deformation part 3, in the said steel member at least to a cylinder axis Z direction Apply galvanization to both sides in the corresponding direction. Note that instead of zinc plating, zinc alloy plating (for example, Zn—Al, Zn—Al—Mg, Sn—Zn) may be performed.

続いて、上記亜鉛めっきを施した鋼部材に対して、筒軸Z方向に対応する方向に貫通する複数の貫通孔を形成する。こうして変形制御部形成部材が完成する。尚、先に貫通孔を形成し、その後に亜鉛めっきを施すようにしてもよい。   Subsequently, a plurality of through-holes penetrating in the direction corresponding to the cylinder axis Z direction are formed in the galvanized steel member. Thus, the deformation control unit forming member is completed. In addition, you may make it form a through-hole previously and galvanize after that.

上記貫通孔は、キャビティ15内において上記溶湯が筒軸Z方向に流れるようにしかつ変形部3と変形制御部4とを確実に一体化するために設けるものであるが、その数が多くなりすぎると、せん断変形促進層9によるせん断変形促進機能が低下するので、これらのことを考慮して貫通孔の数を設定する。   The through holes are provided to allow the molten metal to flow in the direction of the cylinder axis Z in the cavity 15 and to reliably integrate the deformable portion 3 and the deformation control portion 4, but the number thereof is too large. Then, since the shear deformation promoting function by the shear deformation promoting layer 9 is lowered, the number of through holes is set in consideration of these matters.

尚、上記貫通孔は必ずしも形成する必要はない。貫通孔を形成しない場合には、キャビティ15内において上記溶湯が筒軸Z方向に流れるように、固定金型32に、溶湯が流れる流通溝を形成するようにすればよい。この流通溝に対応して成形された突出部は、鋳造後に除去すればよい。   Note that the through hole is not necessarily formed. When the through hole is not formed, a flow groove through which the molten metal flows may be formed in the fixed mold 32 so that the molten metal flows in the direction of the cylinder axis Z in the cavity 15. What is necessary is just to remove the protrusion part shape | molded corresponding to this distribution | circulation groove | channel after casting.

上記作製した変形制御部形成部材を、上記実施形態1の予備成形体15と同様に、鋳造金型30のキャビティ15内にセットした状態で、アルミニウム合金の溶湯を該キャビティ30内に供給することで、変形部3と変形制御部4(変形制御部形成部材)と第1及び第2固定部7,8とを一体成形する。このとき、変形制御部形成部材には貫通孔が形成されているので、キャビティ15内において上記溶湯は貫通孔を通して筒軸Z方向に流れるとともに、貫通孔により変形部3と変形制御部4とが確実に一体化されることになる。   In the state where the produced deformation control part forming member is set in the cavity 15 of the casting mold 30 as in the preform 15 of the first embodiment, the molten aluminum alloy is supplied into the cavity 30. Thus, the deformation part 3, the deformation control part 4 (deformation control part forming member), and the first and second fixing parts 7 and 8 are integrally formed. At this time, since the through hole is formed in the deformation control unit forming member, the molten metal flows in the direction of the cylinder axis Z through the through hole in the cavity 15, and the deformation unit 3 and the deformation control unit 4 are formed by the through hole. It is surely integrated.

また、上記一体成形時に、めっきした亜鉛が溶湯により溶融し、これにより、傾斜面4aと変形部3との境界に、アルミニウム合金よりも低融点のZn−Al系合金からなるせん断変形促進層9が形成されることになる。   In addition, during the integral molding, the plated zinc is melted by the molten metal, whereby the shear deformation promoting layer 9 made of a Zn—Al alloy having a lower melting point than the aluminum alloy is formed at the boundary between the inclined surface 4 a and the deformed portion 3. Will be formed.

したがって、本実施形態においても、上記実施形態1と同様の作用効果が得られ、本体部2に対して筒軸Z方向に所定以上の圧縮荷重が入力されたときに、本体部2が筒軸Z方向に確実に変形して、その圧縮荷重の吸収性能を高めることができる。   Therefore, also in the present embodiment, the same effects as those of the first embodiment can be obtained, and when a predetermined or more compressive load is input to the main body 2 in the direction of the cylinder axis Z, the main body 2 is connected to the cylinder shaft. It is possible to reliably deform in the Z direction and enhance the compressive load absorption performance.

(実施形態3)
本実施形態は、変形制御部4及びせん断変形促進層9の材料を上記実施形態1及び2とは異ならせたものである。
(Embodiment 3)
In the present embodiment, the materials of the deformation control unit 4 and the shear deformation promoting layer 9 are different from those of the first and second embodiments.

すなわち、本実施形態では、上記実施形態2の鋼部材を、めっきを施さないでそのまま変形制御部形成部材として使用するものである。但し、上記実施形態2と同様の貫通孔は設ける(上記実施形態2で説明したように、固定金型32に、溶湯が流れる流通溝を形成した場合には、貫通孔は形成しなくてよい)。   That is, in this embodiment, the steel member of the said Embodiment 2 is used as a deformation | transformation control part formation member as it is, without giving plating. However, a through hole similar to that of the second embodiment is provided (as described in the second embodiment, when a flow groove through which the molten metal flows is formed in the fixed mold 32, the through hole does not have to be formed. ).

上記変形制御部形成部材を、上記実施形態2と同様に、鋳造金型30のキャビティ15内にセットした状態で、アルミニウム合金の溶湯を該キャビティ30内に供給することで、変形部3と変形制御部4(変形制御部形成部材)と第1及び第2固定部7,8とを一体成形する。   In the same manner as in the second embodiment, the deformation control unit forming member is set in the cavity 15 of the casting mold 30, and the molten aluminum alloy is supplied into the cavity 30. The control unit 4 (deformation control unit forming member) and the first and second fixing units 7 and 8 are integrally formed.

上記溶湯の凝固後、上記一体成形したものに対し熱処理を行うことで、Al−Fe金属間化合物からなるせん断変形促進層9を形成する。すなわち、例えば400℃で1時間程度の熱処理を行うことで、変形部3(アルミニウム合金)と変形制御部4(鋼)との境界にAl−Fe金属間化合物が形成されることになる。このAl−Fe金属間化合物からなるせん断変形促進層9は、低強度で脆いために、本体部2に所定以上の圧縮荷重が入力されたときに生じるせん断力により、変形部3の境界側端部が傾斜面4aに対して本体部2径方向の内側へせん断変形し易くなる。   After solidification of the molten metal, the integrally formed material is subjected to heat treatment to form a shear deformation promoting layer 9 made of an Al—Fe intermetallic compound. That is, for example, by performing heat treatment at 400 ° C. for about 1 hour, an Al—Fe intermetallic compound is formed at the boundary between the deformable portion 3 (aluminum alloy) and the deformation control portion 4 (steel). Since the shear deformation promoting layer 9 made of the Al—Fe intermetallic compound has low strength and is brittle, the boundary side end of the deformed portion 3 is generated by a shearing force generated when a predetermined compressive load or more is input to the main body portion 2. The portion is easily sheared and deformed inward in the radial direction of the main body portion 2 with respect to the inclined surface 4a.

したがって、本実施形態においても、上記実施形態1及び2と同様の作用効果が得られ、本体部2に対して筒軸Z方向に所定以上の圧縮荷重が入力されたときに、本体部2が筒軸Z方向に確実に変形して、その圧縮荷重の吸収性能を高めることができる。   Therefore, also in the present embodiment, the same effects as those of the first and second embodiments can be obtained, and when a predetermined compressive load or more is input to the main body 2 in the cylinder axis Z direction, the main body 2 is It can be reliably deformed in the direction of the cylinder axis Z, and the absorption performance of the compression load can be enhanced.

本発明は、筒状の本体部に対して筒軸方向に入力される圧縮荷重を吸収する衝撃エネルギ吸収部材及びその製造方法に有用であり、特に車両のクラッシュカン(車両前部に配設されるものと後部に配設されるものとを含む)、左右のフロントサイドフレーム及び左右のリヤサイドフレームに適用する場合に有用である。   INDUSTRIAL APPLICABILITY The present invention is useful for an impact energy absorbing member that absorbs a compressive load that is input to a cylindrical main body in the cylinder axis direction, and a method for manufacturing the same. This is useful when applied to left and right front side frames and left and right rear side frames.

本発明の実施形態1に係る衝撃エネルギ吸収部材を示す断面図である。It is sectional drawing which shows the impact energy absorption member which concerns on Embodiment 1 of this invention. 衝撃エネルギ吸収部材が適用されるクラッシュカンを示す車両の前部を破断した側面図である。It is the side view which fractured | ruptured the front part of the vehicle which shows the crash can to which an impact energy absorption member is applied. 衝撃エネルギ吸収部材の本体部に対して筒軸方向に所定以上の圧縮荷重(変形制御部が圧縮塑性変形しない大きさの圧縮荷重)が入力されたときの該本体部の変形状態を示す断面図である。Sectional drawing which shows the deformation | transformation state of this main-body part when the compressive load more than predetermined (the compressive load of the magnitude | size which a deformation | transformation control part does not compress-plastically deform) is input with respect to the main-body part of an impact energy absorption member in a cylinder axis direction. It is. 衝撃エネルギ吸収部材の本体部に対して筒軸方向に、変形制御部が塑性変形するような大きさの圧縮加重が入力されたときの状態を示す断面図である。It is sectional drawing which shows a state when the compression load of a magnitude | size which a deformation | transformation control part plastically deforms is input with respect to the main-body part of an impact energy absorption member in a cylinder axial direction. 予備成形体を示す断面図である。It is sectional drawing which shows a preforming body. スラリー中の液体成分を除去している状態を示す濾過装置の容器の断面図である。It is sectional drawing of the container of the filtration apparatus which shows the state which has removed the liquid component in a slurry. スラリー中の液体成分を除去することにより得られた脱液体部材を圧縮している状態を示す図6相当図である。FIG. 7 is a view corresponding to FIG. 6, illustrating a state where a liquid removal member obtained by removing a liquid component in a slurry is compressed. 鋳造金型を示す断面図である。It is sectional drawing which shows a casting mold.

符号の説明Explanation of symbols

1 衝撃エネルギ吸収部材
2 本体部
3 変形部
4 変形制御部
4a 傾斜面
15 予備成形体(変形制御部形成部材)
30 鋳造金型
35 キャビティ
91 フロントサイドフレーム
92 クラッシュカン
DESCRIPTION OF SYMBOLS 1 Impact energy absorption member 2 Main part 3 Deformation part 4 Deformation control part 4a Inclined surface 15 Preliminary body (deformation control part formation member)
30 Casting mold 35 Cavity 91 Front side frame 92 Crash can

Claims (11)

筒状の本体部を有し、該本体部に対して筒軸方向に入力される圧縮荷重を吸収する衝撃エネルギ吸収部材であって、
上記本体部は、金属からなりかつ所定以上の上記圧縮荷重を受けて本体部筒軸方向に圧縮塑性変形する少なくとも1つの変形部と、該変形部の塑性変形の方向を制御する複数の変形制御部とが、本体部筒軸方向に交互に積層された状態で一体成形されてなり、
上記各変形制御部の上記変形部と接する面が、本体部径方向の外側に向かって本体部筒軸方向の一方側又は他方側に傾斜する傾斜面とされ、
上記本体部筒軸方向に隣り合う任意の2つの傾斜面は、上記本体部に上記所定以上の圧縮荷重が入力されたときに、上記変形部を、本体部筒軸方向への圧縮塑性変形と同時に本体部径方向の外側又は内側へ塑性変形させるように、本体部径方向の外側に向かって互いに反対側に傾斜し、
上記各傾斜面と上記変形部との境界には、上記本体部に上記所定以上の圧縮荷重が入力されたときに、該変形部の境界側端部の、上記傾斜面に対するせん断変形を促進するせん断変形促進層が形成されていることを特徴とする衝撃エネルギ吸収部材。
An impact energy absorbing member that has a cylindrical main body portion and absorbs a compressive load that is input to the main body portion in the cylinder axis direction,
The main body is made of metal and receives at least a predetermined compressive load and undergoes plastic plastic deformation in the main body cylinder axis direction, and a plurality of deformation controls for controlling the direction of plastic deformation of the deformable part. Parts are integrally molded in a state of being alternately laminated in the main body cylinder axis direction,
The surface in contact with the deformation portion of each deformation control portion is an inclined surface that is inclined toward one side or the other side in the main body cylindrical direction toward the outer side in the main body radial direction.
Arbitrary two inclined surfaces adjacent to the main body portion in the cylinder axis direction, when a compressive load greater than or equal to the predetermined value is input to the main body portion, the deformation portion is compressed and plastically deformed in the main body portion cylinder axis direction. At the same time, so as to be plastically deformed outward or inward in the main body radial direction, inclined toward opposite sides toward the outer side in the main body radial direction,
When a compressive load greater than or equal to the predetermined value is input to the main body at the boundary between each inclined surface and the deformed portion, the boundary side end of the deformed portion promotes shear deformation with respect to the inclined surface. An impact energy absorbing member, wherein a shear deformation promoting layer is formed.
請求項1記載の衝撃エネルギ吸収部材において、
上記各傾斜面は、上記本体部に上記所定以上の圧縮荷重が入力されたときに、上記変形部を、本体部筒軸方向への圧縮塑性変形と同時に本体部径方向の内側へ塑性変形させるように傾斜していることを特徴とする衝撃エネルギ吸収部材。
The impact energy absorbing member according to claim 1,
Each of the inclined surfaces plastically deforms the deformed portion inwardly in the radial direction of the main body portion simultaneously with the compressive plastic deformation in the main body portion cylindrical axis direction when a compression load greater than or equal to the predetermined value is input to the main body portion. An impact energy absorbing member characterized by being inclined as described above.
請求項1又は2記載の衝撃エネルギ吸収部材において、
上記せん断変形促進層は、上記金属との合金であって該金属よりも低融点の合金からなることを特徴とする衝撃エネルギ吸収部材。
The impact energy absorbing member according to claim 1 or 2,
The impact energy absorbing member, wherein the shear deformation promoting layer is made of an alloy with the metal and having a melting point lower than that of the metal.
請求項1又は2記載の衝撃エネルギ吸収部材において、
上記変形部は、アルミニウム合金鋳物からなり、
上記変形制御部及びせん断変形促進層は、強化繊維が含有されたアルミニウム合金鋳物からなり、
上記せん断変形促進層の強化繊維体積率が、上記変形制御部の強化繊維体積率よりも大きいことを特徴とする衝撃エネルギ吸収部材。
The impact energy absorbing member according to claim 1 or 2,
The deformation part is made of an aluminum alloy casting,
The deformation control unit and the shear deformation promoting layer are made of an aluminum alloy casting containing reinforcing fibers,
The impact energy absorbing member, wherein a reinforcing fiber volume ratio of the shear deformation promoting layer is larger than a reinforcing fiber volume ratio of the deformation control unit.
請求項1又は2記載の衝撃エネルギ吸収部材において、
上記変形部は、アルミニウム合金鋳物からなり、
上記変形制御部は、鋼部材からなり、
上記せん断変形促進層は、Al−Fe金属間化合物からなることを特徴とする衝撃エネルギ吸収部材。
The impact energy absorbing member according to claim 1 or 2,
The deformation part is made of an aluminum alloy casting,
The deformation control unit is made of a steel member,
The impact energy absorbing member, wherein the shear deformation promoting layer is made of an Al-Fe intermetallic compound.
請求項4又は5記載の衝撃エネルギ吸収部材において、
上記アルミニウム合金鋳物は、Al−Mn−Fe−Mg系合金鋳物であることを特徴とする衝撃エネルギ吸収部材。
The impact energy absorbing member according to claim 4 or 5,
The impact energy absorbing member, wherein the aluminum alloy casting is an Al-Mn-Fe-Mg alloy casting.
請求項1〜6のいずれか1つに記載の衝撃エネルギ吸収部材において、
車両のフロントサイドフレーム又はクラッシュカンに用いられることを特徴とする衝撃エネルギ吸収部材。
The impact energy absorbing member according to any one of claims 1 to 6,
An impact energy absorbing member used for a front side frame or a crash can of a vehicle.
筒状の本体部を有し、該本体部に対して筒軸方向に入力される圧縮荷重を吸収する衝撃エネルギ吸収部材の製造方法であって、
上記本体部は、金属からなりかつ所定以上の上記圧縮荷重を受けて本体部筒軸方向に圧縮塑性変形する変形部と、該変形部の塑性変形の方向を制御する複数の変形制御部とが、本体部筒軸方向に交互に積層されてなり、
上記各変形制御部の上記変形部と接する面が、本体部径方向の外側に向かって本体部筒軸方向の一方側又は他方側に傾斜する傾斜面とされ、
上記本体部筒軸方向に隣り合う任意の2つの傾斜面は、上記本体部に上記所定以上の圧縮荷重が入力されたときに、上記変形部を、本体部筒軸方向への圧縮塑性変形と同時に本体部径方向の外側又は内側へ塑性変形させるように、本体部径方向の外側に向かって互いに反対側に傾斜し、
上記各傾斜面と上記変形部との境界には、上記本体部に上記所定以上の圧縮荷重が入力されたときに、該変形部の境界側端部の、上記傾斜面に対するせん断変形を促進するせん断変形促進層が形成されており、
上記複数の変形制御部をそれぞれ形成するための複数の変形制御部形成部材を作製する工程と、
上記作製した変形制御部形成部材を金型のキャビティ内にセットした状態で、上記金属の溶湯を該キャビティ内に供給することで、上記変形部と変形制御部とを一体成形する工程とを含み、
上記変形制御部形成部材の作製工程において、該変形制御部形成部材における少なくとも上記傾斜面に対応する端部を、上記変形部と変形制御部との一体成形工程時に上記せん断変形促進層が形成される材料、又は、該一体成形工程後に該一体成形したものに対し熱処理を行うことで上記せん断変形促進層が形成される材料で構成することを特徴とする衝撃エネルギ吸収部材の製造方法。
A method for manufacturing an impact energy absorbing member that has a cylindrical main body part and absorbs a compressive load input in the cylinder axis direction with respect to the main body part,
The main body is made of metal and receives a compressive load equal to or greater than a predetermined value, and is subjected to a compressive plastic deformation in the cylinder axial direction of the main body, and a plurality of deformation control units that control the direction of plastic deformation of the deformable portion. , Alternately stacked in the body axis direction
The surface in contact with the deformation portion of each deformation control portion is an inclined surface that is inclined toward one side or the other side in the main body cylindrical direction toward the outer side in the main body radial direction.
Arbitrary two inclined surfaces adjacent to the main body portion in the cylinder axis direction, when a compressive load greater than or equal to the predetermined value is input to the main body portion, the deformation portion is compressed and plastically deformed in the main body portion cylinder axis direction. At the same time, so as to be plastically deformed outward or inward in the main body radial direction, inclined toward opposite sides toward the outer side in the main body radial direction,
When a compressive load greater than or equal to the predetermined value is input to the main body at the boundary between each inclined surface and the deformed portion, the boundary side end of the deformed portion promotes shear deformation with respect to the inclined surface. A shear deformation promoting layer is formed,
Producing a plurality of deformation control part forming members for forming the plurality of deformation control parts, respectively;
Including the step of integrally forming the deformation part and the deformation control part by supplying the molten metal into the cavity with the produced deformation control part forming member set in the cavity of the mold. ,
In the step of forming the deformation control unit forming member, the shear deformation promoting layer is formed at the end of the deformation control unit forming member corresponding to at least the inclined surface during the integral forming step of the deformation unit and the deformation control unit. Or a material for forming the shear deformation promoting layer by heat-treating the integrally molded material after the integral molding step.
請求項8記載の衝撃エネルギ吸収部材の製造方法において、
上記変形制御部形成部材の作製工程において、該変形制御部形成部材における上記傾斜面に対応する端部を、上記金属よりも低融点のめっき材料で構成することを特徴とする衝撃エネルギ吸収部材の製造方法。
In the manufacturing method of the impact energy absorption member according to claim 8,
In the manufacturing process of the deformation control part forming member, an end of the deformation control part forming member corresponding to the inclined surface is made of a plating material having a melting point lower than that of the metal. Production method.
請求項8記載の衝撃エネルギ吸収部材の製造方法において、
上記金属は、アルミニウム合金であり、
上記変形制御部形成部材は、強化繊維成形体からなり、
上記変形部と変形制御部との一体成形工程は、上記溶湯と上記強化繊維成形体とを複合化する工程であり、
上記変形制御部形成部材の作製工程において、該変形制御部形成部材における上記傾斜面に対応する端部の強化繊維体積率を、該変形制御部形成部材における該端部以外の部分の強化繊維体積率よりも大きくすることを特徴とする衝撃エネルギ吸収部材の製造方法。
In the manufacturing method of the impact energy absorption member according to claim 8,
The metal is an aluminum alloy,
The deformation control unit forming member is composed of a reinforcing fiber molded body,
The integral molding step of the deformation portion and the deformation control portion is a step of combining the molten metal and the reinforcing fiber molded body,
In the deformation control part forming member manufacturing step, the reinforcing fiber volume fraction of the end corresponding to the inclined surface in the deformation control part forming member is defined as the reinforcing fiber volume of the part other than the end in the deformation control part forming member. The manufacturing method of the impact energy absorption member characterized by making it larger than a rate.
請求項8記載の衝撃エネルギ吸収部材の製造方法において、
上記金属は、アルミニウム合金であり、
上記変形制御部形成部材は、鋼からなり、
上記変形部と変形制御部との一体成形工程後に、該一体成形したものに対し熱処理を行うことで、Al−Fe金属間化合物からなるせん断変形促進層を形成することを特徴とする衝撃エネルギ吸収部材の製造方法。
In the manufacturing method of the impact energy absorption member according to claim 8,
The metal is an aluminum alloy,
The deformation control part forming member is made of steel,
Impact energy absorption characterized by forming a shear deformation promoting layer made of an Al-Fe intermetallic compound by heat-treating the integrally formed product after the integrally forming step of the deformed portion and the deformation control portion. Manufacturing method of member.
JP2008205204A 2008-08-08 2008-08-08 Impact energy absorbing member and manufacturing method thereof Expired - Fee Related JP5067309B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008205204A JP5067309B2 (en) 2008-08-08 2008-08-08 Impact energy absorbing member and manufacturing method thereof
US12/537,040 US7918493B2 (en) 2008-08-08 2009-08-06 Impact energy absorber and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008205204A JP5067309B2 (en) 2008-08-08 2008-08-08 Impact energy absorbing member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010038340A true JP2010038340A (en) 2010-02-18
JP5067309B2 JP5067309B2 (en) 2012-11-07

Family

ID=42011102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008205204A Expired - Fee Related JP5067309B2 (en) 2008-08-08 2008-08-08 Impact energy absorbing member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5067309B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039245A (en) * 2000-07-31 2002-02-06 Hitachi Metals Ltd Impact absorbing member made of aluminum alloy casting
WO2006025559A1 (en) * 2004-08-31 2006-03-09 Dai-Heng Chen Impact absorbing device
JP2006200703A (en) * 2005-01-24 2006-08-03 Honda Motor Co Ltd Shock absorbing member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039245A (en) * 2000-07-31 2002-02-06 Hitachi Metals Ltd Impact absorbing member made of aluminum alloy casting
WO2006025559A1 (en) * 2004-08-31 2006-03-09 Dai-Heng Chen Impact absorbing device
JP2006200703A (en) * 2005-01-24 2006-08-03 Honda Motor Co Ltd Shock absorbing member

Also Published As

Publication number Publication date
JP5067309B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
US7918493B2 (en) Impact energy absorber and fabrication method thereof
US6874562B2 (en) Process for producing metal/metal foam composite components
RU2421300C2 (en) Formed metal article and method of its production
Banhart Aluminium foams for lighter vehicles
KR100886111B1 (en) Powder metal scrolls
US20020114941A1 (en) Plastic-bound lightweight materials, method for the production thereof, and composite materials
US20160271688A1 (en) Low cost high ductility cast aluminum alloy
JP6824264B2 (en) Manufacturing method of light metal casting members and light metal casting members
CN104936807B (en) Middle casing, the method and car door for manufacturing middle casing
DE102011121292B4 (en) Brake disc made of an aluminum matrix composite alloy with silicon carbide particles and manufacturing process therefor
Bauer et al. Production and application of metal foams in casting technology
US20160024618A1 (en) Shaped metal body and method for producing a shaped metal body
JP2002039245A (en) Impact absorbing member made of aluminum alloy casting
CN105705271A (en) Methods and apparatus to produce high performance axisymmetric components
KR101258801B1 (en) Manufacturing method of aluminum bearing insert for lower crank case of engine
JP5067309B2 (en) Impact energy absorbing member and manufacturing method thereof
JP2005199353A (en) Body or body part for automobile
JPH11302765A (en) Blowing metal excellent in impact absorption
Banhart Industrialisation of aluminium foam technology
EP2327808A1 (en) Magnesium-based composite material having ti particles dispersed therein, and method for production thereof
US20230243023A1 (en) Component with tailored mechanical and corrosion properties
JP2010038341A (en) Impact energy absorbing member and fabrication method thereof
JP5071299B2 (en) Impact energy absorbing member and manufacturing method thereof
JP5163354B2 (en) Method for manufacturing impact energy absorbing member
US20030110882A1 (en) Vehicle steering wheel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110620

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120730

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees