JP2010037635A - Electroplating method, and apparatus therefor - Google Patents

Electroplating method, and apparatus therefor Download PDF

Info

Publication number
JP2010037635A
JP2010037635A JP2008205165A JP2008205165A JP2010037635A JP 2010037635 A JP2010037635 A JP 2010037635A JP 2008205165 A JP2008205165 A JP 2008205165A JP 2008205165 A JP2008205165 A JP 2008205165A JP 2010037635 A JP2010037635 A JP 2010037635A
Authority
JP
Japan
Prior art keywords
plating
electrode
processed
surrounding member
electroplating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008205165A
Other languages
Japanese (ja)
Inventor
Yoshio Tanida
芳夫 谷田
Yasuo Uosaki
靖夫 魚崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2008205165A priority Critical patent/JP2010037635A/en
Publication of JP2010037635A publication Critical patent/JP2010037635A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To uniformize the thickness of an electroplated film always stably and easily so as not to be affected by the variation of the working accuracy of an article to be treated, without making the facility complicated and increasing the cost. <P>SOLUTION: In an electroplating process of plating the surface of the article to be treated 14 by passing an electric current between an electrode 13 and the article to be treated 14 which have been immersed in a plating solution 12 in a plating tank 11, this electroplating method includes: surrounding the periphery of the article to be treated 14 with a non-electroconductive surrounding member 16 at a predetermined space, while opening the surface to be plated 14a of the article to be treated 14 which is directed toward the electrode 13 in the plating tank 11; projecting the top end of the electrode 13 side of the surrounding member 16 to the electrode 13 side more than the surface to be plated 14a of the article to be treated 14; and in this state, passing the electric current between the electrode 13 and the article to be treated 14. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電気メッキ方法及びその装置に関し、金属材料の表面処理の技術分野に属する。   The present invention relates to an electroplating method and apparatus and belongs to the technical field of surface treatment of metal materials.

従来、メッキ槽内において、メッキ金属のイオンを含むメッキ液に電極と被処理物とを浸漬し、これらの電極と被処理物と間に電気を通電することにより被処理物の表面にメッキ金属の皮膜を析出させる電気メッキが周知である。   Conventionally, in a plating tank, an electrode and an object to be processed are immersed in a plating solution containing plating metal ions, and electricity is passed between these electrodes and the object to be processed, thereby plating metal on the surface of the object to be processed. Electroplating for depositing these films is well known.

特に、近年では、例えばレシプロエンジンのピストンリングやロータリーエンジンのサイドハウジング等、自動車のエンジン周りの部品が軽量化のためアルミニウム等の軽合金部材で製造され、その軽合金部材の耐摩耗性や潤滑性あるいは耐食性を向上させるために、ニッケル系メッキやクロム系メッキが電気メッキで施されることが多くなっている。   In particular, in recent years, parts around automobile engines, such as piston rings for reciprocating engines and side housings for rotary engines, have been manufactured with light alloy members such as aluminum for weight reduction. In order to improve the property or corrosion resistance, nickel plating or chromium plating is often applied by electroplating.

ここで、一般に、電気メッキでは、被処理物のメッキ面の全域に電流が到達するように、図8に示すように、電極は被処理物のメッキ面より広い面積を有している。すると、被処理物のメッキ面より外側の電極の部分から発出された電流は、なるべく距離の短い箇所に到達しようとしてメッキ面の周縁部に集中し、この結果、メッキ金属がメッキ面に均一に電着せず、メッキ面の周縁部でメッキ皮膜が厚くなり、メッキ面の中央部でメッキ皮膜が薄くなるという、メッキ皮膜の厚みの不均一化の問題が生じる。   Here, in general, in electroplating, as shown in FIG. 8, the electrode has a larger area than the plated surface of the object to be processed so that the current reaches the entire plated surface of the object to be processed. Then, the current generated from the portion of the electrode outside the plating surface of the object to be processed concentrates on the peripheral portion of the plating surface in an attempt to reach a place as short as possible, and as a result, the plating metal is uniformly distributed on the plating surface. There is a problem of non-uniform plating film thickness, in which the plating film becomes thicker at the peripheral part of the plated surface without electrodeposition, and the plated film becomes thinner at the central part of the plated surface.

そこで、図9に示すように、被処理物を導電性のホルダに嵌め込んで収容し、被処理物のメッキ面とホルダの前面とを面一にした状態で電極と対峙させて電気メッキを行うことが提案される。こうすれば、被処理物のメッキ面だけでなく、その外側のホルダの前面にもメッキ金属が電着することとなり、その場合に、被処理物のメッキ面ないしホルダ前面より外側の電極の部分から発出された電流はホルダ前面の周縁部に集中するから、メッキ後に被処理物をホルダから取り出したときには、被処理物のメッキ面には厚みが均一なメッキ皮膜が生成していることになる。   Therefore, as shown in FIG. 9, the object to be processed is fitted into a conductive holder and accommodated, and electroplating is performed by facing the electrode in a state where the plating surface of the object to be processed and the front surface of the holder are flush with each other. Proposed to do. In this case, the plating metal is electrodeposited not only on the plating surface of the workpiece but also on the front surface of the outer holder. In this case, the plating surface of the workpiece or the portion of the electrode outside the holder front surface. Since the current generated from the center is concentrated on the peripheral portion of the front surface of the holder, when the workpiece is taken out from the holder after plating, a plating film having a uniform thickness is formed on the plated surface of the workpiece. .

また、特許文献1には、メッキ皮膜の厚みの不均一化の原因がメッキ液の循環の流速ムラや電極からの電流の密度ムラであるとして、メッキ液中に浸漬した被処理物のメッキ面を、回転駆動手段に連結したシャフト及び被処理物を支持する支持部材を介して回転させながら電気メッキを行うことにより、前記メッキ液の循環流速ムラや電流密度ムラを抑制する技術が記載されている。   Further, Patent Document 1 states that the unevenness of the plating film thickness is caused by unevenness in the flow rate of the circulation of the plating solution and unevenness in the density of the current from the electrode, and the plating surface of the workpiece immersed in the plating solution Describes a technique for suppressing unevenness in circulation flow rate and current density of the plating solution by performing electroplating while rotating through a shaft connected to a rotation driving means and a support member for supporting an object to be processed. Yes.

特開2004−300462(段落0007、0008、0022)JP2004-300462 (paragraphs 0007, 0008, 0022)

しかし、被処理物を導電性ホルダに収容して電気メッキをする方法では、被処理物の加工精度のバラツキにより、被処理物のメッキ面とホルダの前面とを常に面一とすることが困難であるという問題がある。その結果、被処理物のメッキ面がホルダ前面より電極側に突出したときは、図10(a)に示すように、電極から発出された電流が到達距離の短い被処理物のメッキ面の周縁部に集中して、該部分でメッキ皮膜が厚くなってしまう。逆に、被処理物のメッキ面がホルダ前面より電極側から後退したときには、図10(b)に示すように、電極から発出された電流が到達距離の短いホルダ前面の内側の周縁部に集中して、その分、被処理物のメッキ面の周縁部で電流が欠乏し過疎となりメッキ皮膜が薄くなってしまう。さらに、ホルダ前面に析出したメッキ皮膜を除去する手間が増え、生産性が低下するという不具合もある。   However, in the method in which the object to be processed is accommodated in the conductive holder and electroplating is performed, it is difficult to always make the plating surface of the object to be processed and the front surface of the holder flush with each other due to variations in processing accuracy of the object to be processed. There is a problem that. As a result, when the plated surface of the object to be processed protrudes from the front surface of the holder toward the electrode, as shown in FIG. 10A, the current generated from the electrode has a short peripheral distance on the plated surface of the object to be processed. Concentrating on the part, the plating film becomes thick at the part. On the contrary, when the plated surface of the workpiece is retracted from the electrode front side from the holder front surface, as shown in FIG. 10B, the current generated from the electrode is concentrated on the inner peripheral edge of the holder front surface with a short reach distance. As a result, the current is deficient at the peripheral portion of the plated surface of the object to be processed, and the plating film becomes thin. Furthermore, there is a problem that the labor for removing the plating film deposited on the front surface of the holder is increased and the productivity is lowered.

また、被処理物のメッキ面を回転させて電気メッキをする方法では、設備の複雑化ないしコストの増大の問題が生じる。   In addition, in the method of performing electroplating by rotating the plating surface of the object to be processed, there is a problem that the equipment becomes complicated or the cost increases.

そこで、本発明者等は、被処理物の加工精度のバラツキの影響を受けず、設備の複雑化ないしコストの増大を招かず、常に安定的かつ容易に、電気メッキのメッキ皮膜の厚みを均一化することを課題として、鋭意研究検討を重ねたところ、所定条件の下で、被処理物の周囲を非導電性の囲繞部材で囲んだ状態で電気メッキを行った場合に、十分満足な結果が得られるという知見を得て、本発明を完成したものである。   Therefore, the present inventors are not affected by variations in the processing accuracy of the workpiece, do not increase the complexity of the equipment or increase the cost, and always stably and easily uniform the thickness of the electroplating plating film. As a result of intensive research and study, the results were sufficiently satisfactory when electroplating was performed with the non-conductive surrounding member surrounding the workpiece under predetermined conditions. The present invention has been completed with the knowledge that can be obtained.

前記課題を解決するため、本発明では次のような手段を用いる。なお、以下の本発明の開示において、後述する発明の実施形態で相当する符号を参考までに付記する。   In order to solve the above problems, the present invention uses the following means. In the following disclosure of the present invention, reference numerals corresponding to embodiments of the invention described later are added for reference.

本願の請求項1に記載の発明は、メッキ槽11内のメッキ液12に浸漬した電極13と被処理物14との間に通電することにより被処理物14の表面をメッキする電気メッキ方法であって、前記メッキ槽11内において、電極13を指向する被処理物14のメッキ面14aを開放しつつ、該被処理物14の周囲を所定の間隙αを空けて非導電性の囲繞部材16で囲み、該囲繞部材16の電極13側の先端部を被処理物14のメッキ面14aより電極13側に突出させた状態で、電極13と被処理物14との間に通電することを特徴とする。   The invention according to claim 1 of the present application is an electroplating method for plating the surface of the object to be processed 14 by energizing between the electrode 13 immersed in the plating solution 12 in the plating tank 11 and the object 14 to be processed. In the plating tank 11, a non-conductive surrounding member 16 is opened around the object 14 with a predetermined gap α while opening the plating surface 14 a of the object 14 directed to the electrode 13. And energizing between the electrode 13 and the workpiece 14 in a state where the tip of the surrounding member 16 on the electrode 13 side protrudes from the plating surface 14a of the workpiece 14 to the electrode 13 side. And

ここで、囲繞部材16と被処理物14との間隙αとしては、5mm〜10mmが好ましく、囲繞部材16の電極13側の先端部の突出長さ(β−H)としては、被処理物14の軸方向長さHの20%〜150%が好ましい。   Here, the clearance α between the surrounding member 16 and the workpiece 14 is preferably 5 mm to 10 mm, and the protruding length (β-H) of the distal end portion on the electrode 13 side of the surrounding member 16 is the workpiece 14. The axial length H is preferably 20% to 150%.

本願の請求項2に記載の発明は、前記請求項1に記載の電気メッキ方法であって、電極13を、被処理物14のメッキ面14aの全域と対向させて配置することを特徴とする。   Invention of Claim 2 of this application is the electroplating method of Claim 1, Comprising: The electrode 13 is arrange | positioned facing the whole region of the plating surface 14a of the to-be-processed object 14, It is characterized by the above-mentioned. .

本願の請求項3に記載の発明は、前記請求項1又は2に記載の電気メッキ方法であって、前記メッキ槽11内において、前記囲繞部材16で囲まれた空間と、その外側の空間との間で、メッキ液12を流通させながら電気メッキを行うことを特徴とする。   Invention of Claim 3 of this application is the electroplating method of Claim 1 or 2, Comprising: In the said plating tank 11, the space enclosed by the said surrounding member 16, and the space outside it, The electroplating is performed while circulating the plating solution 12 between the two.

本願の請求項4に記載の発明は、前記請求項3に記載の電気メッキ方法であって、前記メッキ槽11内においてメッキ液12を循環させながら電気メッキを行うと共に、前記メッキ液12の流通の経路は、このメッキ液12の循環の経路の一部であることを特徴とする。   The invention according to claim 4 of the present application is the electroplating method according to claim 3, wherein electroplating is performed while circulating the plating solution 12 in the plating tank 11, and the circulation of the plating solution 12 is performed. This path is a part of the circulation path of the plating solution 12.

一方、本願の請求項5に記載の発明は、メッキ槽11内のメッキ液12に浸漬した電極13と被処理物14との間に通電することにより被処理物14の表面をメッキするための電気メッキ装置1であって、前記メッキ槽11内に、電極13を指向する被処理物14のメッキ面14aを開放しつつ、該被処理物14の周囲を所定の間隙αを空けて囲み、電極13側の先端部が被処理物14のメッキ面14aより電極13側に突出した非導電性の囲繞部材16が設けられていることを特徴とする。   On the other hand, the invention according to claim 5 of the present application is for plating the surface of the workpiece 14 by energizing the electrode 13 and the workpiece 14 immersed in the plating solution 12 in the plating tank 11. In the electroplating apparatus 1, the plating surface 11 a of the workpiece 14 facing the electrode 13 is opened in the plating tank 11, and the periphery of the workpiece 14 is surrounded with a predetermined gap α, A non-conductive surrounding member 16 whose tip end on the electrode 13 side protrudes toward the electrode 13 from the plating surface 14a of the workpiece 14 is provided.

ここでも、囲繞部材16と被処理物14との間隙αとしては、5mm〜10mmが好ましく、囲繞部材16の電極13側の先端部の突出長さ(β−H)としては、被処理物14の軸方向長さHの20%〜150%が好ましい。   Also here, the clearance α between the surrounding member 16 and the workpiece 14 is preferably 5 mm to 10 mm, and the protruding length (β-H) of the distal end portion on the electrode 13 side of the surrounding member 16 is the workpiece 14. The axial length H is preferably 20% to 150%.

本願の請求項6に記載の発明は、前記請求項5に記載の電気メッキ装置1であって、電極13は、被処理物14のメッキ面14aの全域と対向して配置されていることを特徴とする。   Invention of Claim 6 of this application is the electroplating apparatus 1 of Claim 5, Comprising: The electrode 13 is arrange | positioned facing the whole region of the plating surface 14a of the to-be-processed object 14. Features.

本願の請求項7に記載の発明は、前記請求項5又は6に記載の電気メッキ装置1であって、前記囲繞部材16の反電極側の端部は、被処理物14を支持する支持部材15で閉じられていると共に、前記囲繞部材16及び/又は前記支持部材15に開口17,15aが設けられていることを特徴とする。   The invention according to claim 7 of the present application is the electroplating apparatus 1 according to claim 5 or 6, wherein an end portion of the surrounding member 16 on the side opposite to the electrode is a support member that supports the workpiece 14. 15, and the openings 17 and 15 a are provided in the surrounding member 16 and / or the support member 15.

本願の請求項8に記載の発明は、前記請求項7に記載の電気メッキ装置1であって、メッキ槽11内においてメッキ液12を循環させるための循環装置21−23が設けられ、この循環装置21−23におけるメッキ液12の噴出口23が、前記囲繞部材16で囲まれた空間の外側の空間から、前記囲繞部材16及び/又は前記支持部材15に設けられた開口17,15aに向けられていることを特徴とする。   The invention according to claim 8 of the present application is the electroplating apparatus 1 according to claim 7, wherein a circulation device 21-23 for circulating the plating solution 12 in the plating tank 11 is provided, and this circulation is performed. From the space outside the space surrounded by the surrounding member 16, the ejection port 23 for the plating solution 12 in the apparatus 21-23 is directed toward the openings 17 and 15 a provided in the surrounding member 16 and / or the support member 15. It is characterized by being.

本願の請求項1、5に記載の発明によれば、電気メッキにおいて、電極を指向する被処理物のメッキ面を開放しつつ、該被処理物の周囲を囲む非導電性の囲繞部材をメッキ槽内に設け、この状態で電気メッキを行うことになる。ここで、囲繞部材は非導電性であるから、この囲繞部材にメッキ皮膜が析出することがない。したがって、囲繞部材に析出したメッキ皮膜を除去する手間が増え、生産性が低下するというような不具合は生じない。   According to the invention described in claims 1 and 5 of the present application, in electroplating, a non-conductive surrounding member surrounding the object to be processed is plated while opening the plating surface of the object to be processed directed to the electrode. It is provided in the tank and electroplating is performed in this state. Here, since the surrounding member is non-conductive, no plating film is deposited on the surrounding member. Therefore, the trouble that the plating film deposited on the surrounding member is removed increases and the productivity is not lowered.

また、囲繞部材の電極側の先端部は被処理物のメッキ面より電極側に突出しているので、被処理物のメッキ面が囲繞部材の電極側の先端部より電極側に突出することがない。したがって、被処理物のメッキ面の周縁部に電流が集中して、該部分でメッキ皮膜が厚くなる問題が防止される。しかも、このとき、囲繞部材の電極側の先端部にメッキ皮膜が析出してこれを除去しなければならないという不具合も解消されることは前述の通りである。また、被処理物のメッキ面と囲繞部材の電極側の先端部とを面一にする必要もない。   Further, since the tip of the surrounding member on the electrode side protrudes from the plated surface of the workpiece to the electrode side, the plated surface of the workpiece does not protrude from the tip of the surrounding member on the electrode side to the electrode side. . Therefore, the current concentrates on the peripheral portion of the plated surface of the object to be processed, and the problem that the plating film becomes thick at the portion is prevented. Moreover, at this time, as described above, the problem that the plating film is deposited on the tip of the surrounding member on the electrode side and has to be removed is also eliminated. Further, it is not necessary to make the plated surface of the workpiece to be flush with the tip of the surrounding member on the electrode side.

併せて、囲繞部材と被処理物との間には所定の間隙を空けているので、前記囲繞部材と前記被処理物とを当接ないし近接させて、被処理物の周囲を囲繞部材で囲んだ場合に生じる問題、すなわち、囲繞部材が非導電性であることの影響を受けて、被処理物のメッキ面の周縁部で電流が欠乏し過疎となりメッキ皮膜が薄くなる問題が防止される。   In addition, since a predetermined gap is provided between the surrounding member and the object to be processed, the surrounding member and the object to be processed are brought into contact with or in close proximity to surround the object to be processed with the surrounding member. The problem that occurs in this case, that is, the problem that the surrounding member is non-conductive, the current is deficient at the peripheral portion of the plated surface of the object to be processed, becomes depopulated, and the plated film becomes thin.

このように、本発明は、基本的に、被処理物の周囲を非導電性の囲繞部材で囲み、あとはこの状態で通常通りに電気メッキを行えばよいものであり、被処理物の加工精度のバラツキの影響を受けることなく、設備の複雑化ないしコストの増大を招くことなく、常に安定的かつ容易に、電気メッキのメッキ皮膜の厚みの均一化を実現するものである。   Thus, in the present invention, basically, the periphery of the object to be processed is surrounded by a non-conductive surrounding member, and then electroplating can be performed as usual in this state. Thus, the thickness of the electroplating film can be made uniform stably and easily without being affected by variations in accuracy and without increasing the complexity of the equipment or increasing the cost.

本願の請求項2、6に記載の発明によれば、被処理物のメッキ面の全域が電極でカバーされ、かつ被処理物のメッキ面と電極とが平行になるから、電極から発出された電流が被処理物のメッキ面の全域に密度ムラなく均一に到達し、これにより、メッキ皮膜の厚みがより一層均一化することとなる。   According to the second and sixth aspects of the present invention, the entire plated surface of the object to be processed is covered with the electrode, and the plated surface of the object to be processed and the electrode are parallel to each other. The electric current uniformly reaches the entire plated surface of the object to be processed without density unevenness, whereby the thickness of the plating film is further uniformized.

本願の請求項3、7に記載の発明によれば、メッキ槽内において、囲繞部材で囲まれた空間と、その外側の空間との間で、メッキ液が流通した状態で電気メッキが行われることになるから、被処理物の周囲を囲繞部材で囲むことに起因して生じる問題、すなわち、メッキが進むにつれて被処理物のメッキ面の周囲のメッキ液の組成が変化して析出したメッキ皮膜の性質が変動する問題が解消される。その結果、被処理物のメッキ面の周囲には常に均等な組成のメッキ液が安定的に供給されて、常に均質なメッキ皮膜が安定的に得られることとなる。   According to the invention described in claims 3 and 7 of the present application, in the plating tank, electroplating is performed in a state where the plating solution is circulated between the space surrounded by the surrounding member and the outer space. Therefore, a problem caused by surrounding the object to be processed with the surrounding member, that is, a plating film deposited by changing the composition of the plating solution around the plating surface of the object to be processed as plating progresses. The problem of changing the nature of the is solved. As a result, a plating solution having a uniform composition is always stably supplied around the plated surface of the object to be processed, so that a uniform plating film can always be stably obtained.

本願の請求項4、8に記載の発明によれば、メッキ槽内においてメッキ液が循環した状態で電気メッキが行われることになるから、メッキ槽全体としてメッキ液の均等化が図られ、その結果、被処理物のメッキ面の周囲に常に均等な組成のメッキ液を安定供給することが確保されることとなる。以下、発明の最良の実施の形態及び実施例を通して本発明をさらに詳しく説述する。   According to the invention described in claims 4 and 8 of the present application, since the electroplating is performed in a state where the plating solution is circulated in the plating tank, the plating solution is equalized as the entire plating tank. As a result, it is ensured that a plating solution having a uniform composition is always stably supplied around the plated surface of the workpiece. Hereinafter, the present invention will be described in more detail through the best mode and examples of the present invention.

図1は、本発明の最良の実施の形態に係る電気メッキ装置1の概略全体図である。基本的構造は、従来の電気メッキ装置と同様であり、メッキ槽11内にメッキ金属のイオンを含むメッキ液12が貯留されている。メッキ液12に鉛(Pb)電極13と被処理物14とが浸漬されている。被処理物14は、導電性の支持部材15に支持されている。メッキ時には、Pb電極13が陽極(+)とされ、被処理物14が陰極(−)とされて、これらの電極13と被処理物14と間に電気が通電される。その場合に、電極13と被処理物14のメッキ面14aとは対向して配置されており、かつ電極13から発出された電流がメッキ面14aの全域に到達するように、電極13はメッキ面14aより広い面積を有している。   FIG. 1 is a schematic overall view of an electroplating apparatus 1 according to the preferred embodiment of the present invention. The basic structure is the same as that of a conventional electroplating apparatus, and a plating solution 12 containing plating metal ions is stored in a plating tank 11. A lead (Pb) electrode 13 and a workpiece 14 are immersed in the plating solution 12. The workpiece 14 is supported by a conductive support member 15. At the time of plating, the Pb electrode 13 is set as an anode (+) and the workpiece 14 is set as a cathode (−), and electricity is passed between these electrodes 13 and the workpiece 14. In this case, the electrode 13 and the plated surface 14a of the workpiece 14 are arranged to face each other, and the electrode 13 is plated so that the current generated from the electrode 13 reaches the entire area of the plated surface 14a. It has an area wider than 14a.

また、メッキ槽11内には、メッキ液12を矢印で示すように循環させるための循環装置、すなわち、ポンプ21と誘導管22と噴出口23とが設けられている。   Further, in the plating tank 11, a circulation device for circulating the plating solution 12 as indicated by an arrow, that is, a pump 21, a guide tube 22, and a jet port 23 are provided.

そして、本実施形態では、本発明の特徴である囲繞部材16がメッキ槽11内に設けられている。   In this embodiment, the surrounding member 16 which is a feature of the present invention is provided in the plating tank 11.

この囲繞部材16は、図2にも示すように、被処理物14が円柱状であることに対応して円筒状であり、例えば合成樹脂(塩化ビニル樹脂や耐熱性塩素化塩化ビニル樹脂など)やゴム等の非導電性の材料で製造されている。   As shown in FIG. 2, the surrounding member 16 has a cylindrical shape corresponding to the workpiece 14 having a columnar shape. For example, the surrounding member 16 is a synthetic resin (such as a vinyl chloride resin or a heat-resistant chlorinated vinyl chloride resin). It is made of non-conductive material such as rubber.

囲繞部材16は、被処理物14の周囲を所定の間隙(囲繞部材16の内周面と被処理物14の外周面との距離)αを空けて囲んでいる。ここで、間隙αとしては、5mm〜10mmが好ましい。ただし、囲繞部材16は、電極13を指向する被処理物14のメッキ面14aを開放している。   The surrounding member 16 surrounds the workpiece 14 with a predetermined gap (distance between the inner circumferential surface of the surrounding member 16 and the outer circumferential surface of the workpiece 14) α. Here, the gap α is preferably 5 mm to 10 mm. However, the surrounding member 16 opens the plating surface 14 a of the workpiece 14 that faces the electrode 13.

囲繞部材16の電極13側の先端部は、被処理物14のメッキ面14aより電極13側に突出している。一方、囲繞部材16の反電極13側の端部は、被処理物14を支持する支持部材15に連結し、該支持部材15で閉じられている。ここで、囲繞部材16の電極13側の先端部の突出長さ(β−H)としては、被処理物14の軸方向長さHの20%〜150%が好ましい。ここで、βは、囲繞部材16の軸方向長さである。   The tip of the surrounding member 16 on the electrode 13 side protrudes from the plating surface 14 a of the workpiece 14 toward the electrode 13. On the other hand, the end of the surrounding member 16 on the counter electrode 13 side is connected to a support member 15 that supports the workpiece 14 and is closed by the support member 15. Here, the protruding length (β-H) of the distal end portion on the electrode 13 side of the surrounding member 16 is preferably 20% to 150% of the axial length H of the workpiece 14. Here, β is the axial length of the surrounding member 16.

図1に示すように、電極13及び被処理物14のメッキ面14aは縦に配置されており、これに対応して囲繞部材16は軸方向が横に配置されている。そして、囲繞部材16で囲まれた空間と、その外側の空間との間でメッキ液12を流通させるための複数の開口17…17が囲繞部材16に設けられている。そして、循環装置の噴出口23は、囲繞部材16ないし被処理物14の直下方に位置しており、かつ前記噴出口23は、囲繞部材16で囲まれた空間の外側の空間から、囲繞部材16に設けられた前記開口17…17に向けられている。その結果、囲繞部材16に設けられた開口17…17を介してのメッキ液12の流通の経路は、循環装置(ポンプ21、誘導管22、噴出口23)を介してのメッキ液12の循環の経路の一部となる。   As shown in FIG. 1, the electrode 13 and the plating surface 14a of the workpiece 14 are arranged vertically, and the surrounding member 16 is arranged horizontally in the axial direction corresponding to this. The surrounding member 16 is provided with a plurality of openings 17... 17 for allowing the plating solution 12 to flow between the space surrounded by the surrounding member 16 and the outer space. The spout 23 of the circulation device is located immediately below the surrounding member 16 or the workpiece 14, and the spout 23 extends from the space outside the space surrounded by the surrounding member 16 to the surrounding member. 16 is directed to the openings 17. As a result, the flow path of the plating solution 12 through the openings 17... 17 provided in the surrounding member 16 is the circulation of the plating solution 12 through the circulation device (pump 21, guide pipe 22, jet port 23). Part of the path.

なお、前記開口17…17は、メッキ金属の電着と同時に被処理物14のメッキ面14aで発生する気体の抜け穴としても機能する。   The openings 17... 17 also function as holes for gas generated on the plated surface 14a of the workpiece 14 simultaneously with electrodeposition of the plated metal.

以上のような構成を有する本実施形態に係る電気メッキ装置1で電気メッキを実行すれば、図3に示すように、電極13から発出された電流は、被処理物14のメッキ面14aの全域に密度ムラなく均一に到達し、メッキ皮膜Pの厚みが均一化する。   If electroplating is performed by the electroplating apparatus 1 according to the present embodiment having the above-described configuration, the current generated from the electrode 13 is applied to the entire plating surface 14a of the workpiece 14 as shown in FIG. Thus, the thickness of the plating film P becomes uniform.

このとき、被処理物14のメッキ面14aから支持部材15までの深さ、換言すれば、被処理物14の軸方向長さH(図2(b)参照)は、5mm〜20mmが好ましい。被処理物14の軸方向長さHが20mmを超えるときは、被処理物14のメッキ面14aから5mm〜20mmの位置に、囲繞部材16と同様の非導電性の材料で、間隙αの部分に底を形成すればよい。   At this time, the depth from the plating surface 14a of the workpiece 14 to the support member 15, in other words, the axial length H (see FIG. 2B) of the workpiece 14 is preferably 5 mm to 20 mm. When the axial length H of the workpiece 14 exceeds 20 mm, the gap α is made of a non-conductive material similar to the surrounding member 16 at a position 5 mm to 20 mm from the plating surface 14 a of the workpiece 14. What is necessary is just to form a bottom.

ここで、電気メッキの条件としては、例えば、ニッケル(Ni)メッキの場合、浴組成(メッキ液12の組成)が、NiSO:250g/L及び(NH・SO:80g/L、浴温が60℃、電流密度が60A/dm、コバルト(Co)メッキの場合、浴組成(メッキ液12の組成)が、CoSO・7HO:200g/L及び(NH・SO:150g/L、浴温が40℃、電流密度が40A/dm等である。 Here, as the electroplating conditions, for example, in the case of nickel (Ni) plating, the bath composition (composition of the plating solution 12) is NiSO 4 : 250 g / L and (NH 4 ) 2 · SO 4 : 80 g / L. When the bath temperature is 60 ° C., the current density is 60 A / dm 2 , and cobalt (Co) plating is used, the bath composition (the composition of the plating solution 12) is CoSO 4 .7H 2 O: 200 g / L and (NH 4 ) 2. SO 4 : 150 g / L, bath temperature is 40 ° C., current density is 40 A / dm 2, etc.

これに対し、囲繞部材16と被処理物14との間隙αが過度に狭い場合は、図4(a)に示すように、囲繞部材16が非導電性であることの影響を受けて、被処理物14のメッキ面14aの周縁部で電流が欠乏し過疎となりメッキ皮膜Pが薄くなる問題が生じる。   On the other hand, when the gap α between the surrounding member 16 and the workpiece 14 is excessively narrow, as shown in FIG. There is a problem in that the current is deficient at the peripheral portion of the plated surface 14a of the processed material 14 and becomes depopulated, and the plating film P becomes thin.

逆に、囲繞部材16と被処理物14との間隙αが過度に広い場合は、図4(b)に示すように、被処理物14のメッキ面14aの周縁部に電流が集中して、該部分でメッキ皮膜Pが厚くなる問題が生じる。   On the other hand, when the gap α between the surrounding member 16 and the workpiece 14 is excessively wide, as shown in FIG. 4B, the current concentrates on the peripheral portion of the plated surface 14a of the workpiece 14, There arises a problem that the plating film P becomes thick at the portion.

このように、本実施形態によれば、電気メッキにおいて、電極13を指向する被処理物14のメッキ面14aを開放しつつ、該被処理物14の周囲を囲む非導電性の囲繞部材16をメッキ槽11内に設け、この状態で電気メッキを行うことになる。ここで、囲繞部材16は非導電性であるから、この囲繞部材16にメッキ皮膜が析出することがない。したがって、囲繞部材16に析出したメッキ皮膜を除去する手間が増え、生産性が低下するというような不具合は生じない。   As described above, according to the present embodiment, in electroplating, the non-conductive surrounding member 16 surrounding the periphery of the object to be processed 14 is opened while the plating surface 14a of the object to be processed 14 facing the electrode 13 is opened. It is provided in the plating tank 11 and electroplating is performed in this state. Here, since the surrounding member 16 is non-conductive, no plating film is deposited on the surrounding member 16. Therefore, the trouble that the plating film deposited on the surrounding member 16 is removed increases and the productivity is not lowered.

また、囲繞部材16の電極13側の先端部は被処理物14のメッキ面14aより電極13側に突出しているので、被処理物14のメッキ面14aが囲繞部材16の電極13側の先端部より電極13側に突出することがない。したがって、被処理物14のメッキ面14aの周縁部に電流が集中して、該部分でメッキ皮膜が厚くなる問題が防止される。しかも、このとき、囲繞部材16の電極13側の先端部にメッキ皮膜が析出してこれを除去しなければならないという不具合も解消されることは前述の通りである。また、被処理物14のメッキ面14aと囲繞部材16の電極13側の先端部とを面一にする必要もない。   In addition, since the tip of the surrounding member 16 on the electrode 13 side protrudes from the plated surface 14a of the workpiece 14 to the electrode 13 side, the plated surface 14a of the workpiece 14 has a tip of the surrounding member 16 on the electrode 13 side. It does not protrude further toward the electrode 13 side. Therefore, the current concentrates on the peripheral portion of the plating surface 14a of the workpiece 14 and the problem that the plating film becomes thick at this portion is prevented. Moreover, at this time, as described above, the problem that the plating film is deposited on the tip of the surrounding member 16 on the electrode 13 side and must be removed is also eliminated. Moreover, it is not necessary to make the plating surface 14a of the workpiece 14 and the tip of the surrounding member 16 on the electrode 13 side flush with each other.

併せて、囲繞部材16と被処理物14との間には所定の間隙αを空けているので、前記囲繞部材16と前記被処理物14とを当接ないし近接させて、被処理物14の周囲を囲繞部材16で囲んだ場合に生じる問題、すなわち、囲繞部材16が非導電性であることの影響を受けて、被処理物14のメッキ面14aの周縁部で電流が欠乏し過疎となりメッキ皮膜が薄くなる問題が防止される。   In addition, since a predetermined gap α is provided between the surrounding member 16 and the object to be processed 14, the surrounding member 16 and the object to be processed 14 are brought into contact with or close to each other, so Due to the problem that occurs when the surrounding member 16 is surrounded by the surrounding member 16, that is, the surrounding member 16 is non-conductive, the current is deficient in the peripheral portion of the plating surface 14a of the object 14 to be sparsely plated. The problem of thin film is prevented.

このように、本実施形態によれば、基本的に、被処理物14の周囲を非導電性の囲繞部材16で囲み、あとはこの状態で通常通りに電気メッキを行えばよいものであり、被処理物14の加工精度のバラツキの影響を受けることなく、設備の複雑化ないしコストの増大を招くことなく、常に安定的かつ容易に、電気メッキのメッキ皮膜Pの厚みの均一化を実現することができる。   Thus, according to the present embodiment, basically, the periphery of the workpiece 14 is surrounded by the non-conductive surrounding member 16, and then the electroplating may be performed as usual in this state. The thickness of the electroplating coating P can be made uniform stably and easily without being affected by variations in the processing accuracy of the workpiece 14 and without complicating equipment or increasing costs. be able to.

また、被処理物14のメッキ面14aの全域が電極13でカバーされ、かつ被処理物14のメッキ面14aと電極13とが平行になるから、電極13から発出された電流が被処理物14のメッキ面14aの全域に密度ムラなく均一に到達し、これにより、メッキ皮膜Pの厚みがより一層均一化することとなる。   Further, since the entire plating surface 14a of the workpiece 14 is covered with the electrode 13, and the plating surface 14a of the workpiece 14 and the electrode 13 are parallel, the current generated from the electrode 13 is subjected to the current 14 to be processed. The entire surface of the plating surface 14a is uniformly distributed without density unevenness, whereby the thickness of the plating film P is made more uniform.

また、メッキ槽11内において、囲繞部材16で囲まれた空間と、その外側の空間との間で、囲繞部材16に設けられた開口17…17を介して、メッキ液12が流通した状態で電気メッキが行われることになるから、被処理物14の周囲を囲繞部材16で囲むことに起因して生じる問題、すなわち、メッキが進むにつれて被処理物14のメッキ面14aの周囲のメッキ液12の組成が変化して析出したメッキ皮膜Pの性質が変動する問題が解消される。その結果、被処理物14のメッキ面14aの周囲には常に均等な組成のメッキ液12が安定的に供給されて、常に均質なメッキ皮膜Pが安定的に得られることとなる。   In the plating tank 11, the plating solution 12 circulates between the space surrounded by the surrounding member 16 and the outer space through the openings 17... 17 provided in the surrounding member 16. Since electroplating is performed, a problem caused by surrounding the workpiece 14 with the surrounding member 16, that is, the plating solution 12 around the plating surface 14a of the workpiece 14 as plating progresses. The problem that the properties of the deposited plating film P fluctuate due to the change in the composition is solved. As a result, the plating solution 12 having a uniform composition is always stably supplied to the periphery of the plating surface 14a of the workpiece 14, and a uniform plating film P is always stably obtained.

また、メッキ槽内11においてメッキ液12が循環装置(ポンプ21、誘導管22、噴出口23)を介して循環した状態で電気メッキが行われることになるから、メッキ槽11全体としてメッキ液12の均等化が図られ、その結果、被処理物14のメッキ面14aの周囲に常に均等な組成のメッキ液12を安定供給することが確保されることとなる。   In addition, since electroplating is performed in the plating tank 11 while the plating solution 12 is circulated through the circulation device (pump 21, guide pipe 22, jet port 23), the plating solution 12 as the entire plating tank 11 is used. As a result, it is ensured that the plating solution 12 having a uniform composition is always stably supplied around the plating surface 14a of the workpiece 14.

次に、図5は、電極13、被処理物14及び囲繞部材16の配置を変えた、本発明の第2の実施形態に係る、前記図1と類似の概略全体図である。   Next, FIG. 5 is a schematic overall view similar to FIG. 1 according to the second embodiment of the present invention, in which the arrangement of the electrode 13, the workpiece 14 and the surrounding member 16 is changed.

この場合、電極13及び被処理物14のメッキ面14aは横に配置されており、これに対応して囲繞部材16は軸方向が縦に配置されている。また、囲繞部材16の反電極13側の端部は閉じられておらず、電極13側の先端部と同様、開放されている。したがって、囲繞部材16に開口を設けなくても、このままの状態で、囲繞部材16で囲まれた空間と、その外側の空間との間でメッキ液12を流通させることができる。   In this case, the electrode 13 and the plated surface 14a of the workpiece 14 are disposed horizontally, and the surrounding member 16 is disposed so that the axial direction thereof is vertically corresponding to this. Further, the end of the surrounding member 16 on the side opposite to the electrode 13 is not closed, and is open like the tip on the electrode 13 side. Accordingly, the plating solution 12 can be circulated between the space surrounded by the surrounding member 16 and the outer space without providing an opening in the surrounding member 16.

次に、図6は、本発明の第3の実施形態に係る被処理物としてのロータリーエンジンのサイドハウジングWの概略全体図である。ロータリーエンジンのサイドハウジングWは、燃費改善のため、鋳鉄からアルミ合金に代替され軽量化が進んでいる。図中、鎖線で示すロータのサイドシールとの摺動面W1を低摩耗で焼き付きし難い表面とする必要があり、該摺動面W1の表面改質が有効である。そして、摺動面W1の表面改質としては、硬質なメッキ処理が効果的であり、特に燃費改善の要求が高いロータリーエンジンにおいては、摺動面W1に、NiPCo−Siや、高速CrMo合金メッキ等が好適である。 Next, FIG. 6 is a schematic overall view of a side housing W of a rotary engine as an object to be processed according to the third embodiment of the present invention. The side housing W of the rotary engine has been reduced in weight by replacing cast iron with an aluminum alloy in order to improve fuel efficiency. In the drawing, the sliding surface W1 with the side seal of the rotor indicated by the chain line needs to be a surface that is low in wear and difficult to seize, and surface modification of the sliding surface W1 is effective. As the surface modification of the sliding surface W1, a hard plating process is effective. Particularly in a rotary engine with a high demand for improvement in fuel consumption, the sliding surface W1 has NiPCo—Si 3 N 4 or high speed. CrMo alloy plating or the like is suitable.

なお、図6において、摺動面W1はメッキ面であり、符号W2は、エキセントリックシャフトが挿通する開口である。   In FIG. 6, the sliding surface W1 is a plated surface, and the symbol W2 is an opening through which the eccentric shaft is inserted.

そして、図7(a)は、前記サイドハウジングWに適する囲繞部材33及び支持部材31の平面図、図7(b)は、前記図7(a)の符号IIIによる矢視図である。サイドハウジングWの輪郭形状は相対的に複雑であり、大型の樹脂ブロックから囲繞部材33を削り出すことは基本的に困難であるから、囲繞部材33は、複数の薄い樹脂プレート(塩化ビニル製など)33a…33aの積み上げ構造としている。   FIG. 7A is a plan view of the surrounding member 33 and the support member 31 suitable for the side housing W, and FIG. 7B is a view taken in the direction of arrow III in FIG. 7A. Since the contour shape of the side housing W is relatively complicated and it is basically difficult to cut out the surrounding member 33 from a large resin block, the surrounding member 33 is composed of a plurality of thin resin plates (such as vinyl chloride). ) 33a ... 33a stacked structure.

ここで、図中、符号31は、導電性の支持部材である。符号32は、支持部材31に立設された導電性のピンであり、このピン32はサイドハウジングWのエキセントリックシャフト用開口W2を挿通する。符号33は、サイドハウジングWに適する囲繞部材33、符号34は、サイドハウジングWを収容するための開口である。ここで、このサイドハウジング収容開口34とサイドハウジングWの外周面との間に所定の間隙αが空くことになる。符号35は、メッキ槽11内において、囲繞部材33で囲まれた空間と、その外側の空間との間で、メッキ液12を流通させるための開口である。そして、符号36は、囲繞部材33の電極側の面、すなわち前面である。   Here, reference numeral 31 in the figure denotes a conductive support member. Reference numeral 32 is a conductive pin provided upright on the support member 31, and the pin 32 is inserted through the eccentric shaft opening W <b> 2 of the side housing W. Reference numeral 33 denotes a surrounding member 33 suitable for the side housing W, and reference numeral 34 denotes an opening for accommodating the side housing W. Here, a predetermined gap α is provided between the side housing receiving opening 34 and the outer peripheral surface of the side housing W. Reference numeral 35 denotes an opening for allowing the plating solution 12 to flow between the space surrounded by the surrounding member 33 and the outer space in the plating tank 11. Reference numeral 36 denotes a surface on the electrode side of the surrounding member 33, that is, a front surface.

なお、前記実施形態において、図2(a)、図2(b)に鎖線で示すように、囲繞部材16で囲まれた空間と、その外側の空間との間で、メッキ液12を流通させるための開口15a…15aを、囲繞部材16の開口17…17と共に、あるいは囲繞部材16の開口17…17に代えて、支持部材15に設けても構わない。   In the above-described embodiment, the plating solution 12 is circulated between the space surrounded by the surrounding member 16 and the outer space, as indicated by a chain line in FIGS. 2 (a) and 2 (b). The openings 15a to 15a may be provided in the support member 15 together with the openings 17 to 17 of the surrounding member 16 or instead of the openings 17 to 17 of the surrounding member 16.

被処理物として、直径が60mm、厚みが8mmのアルミ合金製円板を用い、塩化ビニル製の囲繞部材との間隙αを3mm(実施例1)、5mm(実施例2)、10mm(実施例3)、15mm(実施例4)に変化させた場合の、メッキ面における周縁部から5mm(周縁部)、15mm(過渡部)、25mm(中央部)の位置のメッキ皮膜の厚みを計測した。   An aluminum alloy disk having a diameter of 60 mm and a thickness of 8 mm is used as an object to be processed, and the clearance α with the surrounding member made of vinyl chloride is 3 mm (Example 1), 5 mm (Example 2), 10 mm (Example) 3) When the thickness was changed to 15 mm (Example 4), the thickness of the plating film at the positions of 5 mm (peripheral part), 15 mm (transient part), and 25 mm (center part) from the peripheral part on the plating surface was measured.

電気メッキの条件は、浴組成を、CrO:260g/L、HSO:3.5g/L、NaMoO・2HO:60g/L及び触媒としてのメタンジスルホン酸:30ml/L、浴温を55℃、電流密度を40A/dm、通電時間を5時間とした。 The electroplating conditions were as follows: bath composition: CrO 3 : 260 g / L, H 2 SO 4 : 3.5 g / L, Na 2 MoO 4 · 2H 2 O: 60 g / L and methanedisulfonic acid as catalyst: 30 ml / L L, the bath temperature was 55 ° C., the current density was 40 A / dm 2 , and the energization time was 5 hours.

結果は、実施例1では、周縁部のメッキ皮膜が過渡部及び中央部に比べてやや薄くなり、実施例4では、逆に、周縁部のメッキ皮膜が過渡部及び中央部に比べてやや厚くなっていた。そして、実施例2及び3では、周縁部、過渡部及び中央部においてメッキ皮膜の厚みがほぼ均一化していた。このことから、囲繞部材と被処理物との間隙αとしては、5mm〜10mmが特に好ましいことがわかる。   As a result, in Example 1, the plating film at the peripheral part is slightly thinner than the transition part and the central part, and conversely, in Example 4, the plating film at the peripheral part is slightly thicker than the transition part and the central part. It was. And in Example 2 and 3, the thickness of the plating film was substantially uniform in the peripheral part, the transition part, and the center part. From this, it can be seen that the gap α between the surrounding member and the object to be processed is particularly preferably 5 mm to 10 mm.

以上、具体例を挙げて詳しく説明したように、本発明は、被処理物の加工精度のバラツキの影響を受けず、設備の複雑化ないしコストの増大を招かず、常に安定的かつ容易に、電気メッキのメッキ皮膜の厚みを均一化することが可能な技術であるから、金属材料の表面処理の技術分野において広範な産業上の利用可能性を有する。   As described above in detail with reference to specific examples, the present invention is not affected by variations in the processing accuracy of the workpiece, does not increase the complexity of the equipment or increase the cost, and is always stable and easy. Since it is a technique capable of making the thickness of the electroplating coating film uniform, it has wide industrial applicability in the technical field of surface treatment of metal materials.

本発明の最良の実施の形態に係る電気メッキ装置の概略全体図である。1 is a schematic overall view of an electroplating apparatus according to a best embodiment of the present invention. 前記電気メッキ装置の要部を拡大して示す図であって、(a)は、前記図1の符号Iによる矢視図、(b)は、前記図1の符号IIによる断面図である。It is a figure which expands and shows the principal part of the said electroplating apparatus, Comprising: (a) is an arrow view by the code | symbol I of the said FIG. 1, (b) is sectional drawing by the code | symbol II of the said FIG. 前記電気メッキ装置の原理を説明するための、前記図2(b)と類似の断面図である。It is sectional drawing similar to the said FIG.2 (b) for demonstrating the principle of the said electroplating apparatus. (a)は、囲繞部材と被処理物との間隙が過度に狭い場合の問題を説明するため、(b)は、囲繞部材と被処理物との間隙が過度に広い場合の問題を説明するための、前記図3と類似の断面図である。(A) explains the problem when the gap between the surrounding member and the object to be processed is excessively narrow, and (b) explains the problem when the gap between the surrounding member and the object to be processed is excessively wide. FIG. 4 is a cross-sectional view similar to FIG. 電極、被処理物及び囲繞部材の配置を変えた、本発明の第2の実施形態に係る、前記図1と類似の概略全体図である。FIG. 6 is a schematic overall view similar to FIG. 1 according to the second embodiment of the present invention, in which the arrangement of electrodes, objects to be processed, and surrounding members is changed. 本発明の第3の実施形態に係る被処理物としてのロータリーエンジンのサイドハウジングの概略全体図である。It is a schematic whole figure of the side housing of the rotary engine as a to-be-processed object which concerns on the 3rd Embodiment of this invention. (a)は、前記サイドハウジングに適する囲繞部材及び支持部材の平面図、(b)は、前記図7(a)の符号IIIによる矢視図である。(A) is a top view of the surrounding member and support member suitable for the said side housing, (b) is an arrow line view by the code | symbol III of the said FIG. 7 (a). 従来技術の問題点の説明図である。It is explanatory drawing of the problem of a prior art. 別の従来技術の説明図である。It is explanatory drawing of another prior art. (a)、(b)共、前記図9の従来技術の問題点の説明図である。(A), (b) is explanatory drawing of the problem of the prior art of the said FIG.

符号の説明Explanation of symbols

1 電気メッキ装置
11 メッキ槽
12 メッキ液
13 電極
14 被処理物
14a メッキ面
15 支持部材
15a 開口
16 囲繞部材
17 開口
21 循環装置(ポンプ)
22 循環装置(誘導管)
23 循環装置(噴出口)
31 支持部材
32 導電性ピン
33 囲繞部材
34 サイドハウジング収容開口
35 開口
36 囲繞部材前面
α 間隙
β 囲繞部材の軸方向長さ
H 被処理物の軸方向長さ
P メッキ皮膜
W 被処理物(サイドハウジング)
W1 メッキ面
W2 エキセントリックシャフト用開口
DESCRIPTION OF SYMBOLS 1 Electroplating apparatus 11 Plating tank 12 Plating liquid 13 Electrode 14 To-be-processed object 14a Plating surface 15 Support member 15a Opening 16 Enclosure member 17 Opening 21 Circulation apparatus (pump)
22 Circulator (guide pipe)
23 Circulator (jet outlet)
31 Support member 32 Conductive pin 33 Enclosure member 34 Side housing accommodation opening 35 Opening 36 Enclosure member front surface α Gap β Enclosure member axial length H Workpiece axial length P Plated film W Workpiece (side housing )
W1 Plated surface W2 Eccentric shaft opening

Claims (8)

メッキ槽内のメッキ液に浸漬した電極と被処理物との間に通電することにより被処理物の表面をメッキする電気メッキ方法であって、
前記メッキ槽内において、電極を指向する被処理物のメッキ面を開放しつつ、該被処理物の周囲を所定の間隙を空けて非導電性の囲繞部材で囲み、該囲繞部材の電極側の先端部を被処理物のメッキ面より電極側に突出させた状態で、電極と被処理物との間に通電することを特徴とする電気メッキ方法。
An electroplating method for plating the surface of an object to be processed by energizing between the electrode immersed in a plating solution in the plating tank and the object to be processed,
In the plating tank, while opening the plating surface of the object to be processed that faces the electrode, the periphery of the object to be processed is surrounded by a non-conductive surrounding member with a predetermined gap, and the electrode side of the surrounding member is An electroplating method, wherein a current is passed between the electrode and the object to be processed in a state where the tip end portion protrudes from the plating surface of the object to be processed toward the electrode side.
前記請求項1に記載の電気メッキ方法であって、
電極を、被処理物のメッキ面の全域と対向させて配置することを特徴とする電気メッキ方法。
The electroplating method according to claim 1,
An electroplating method, wherein an electrode is disposed so as to face the entire plated surface of an object to be processed.
前記請求項1又は2に記載の電気メッキ方法であって、
前記メッキ槽内において、前記囲繞部材で囲まれた空間と、その外側の空間との間で、メッキ液を流通させながら電気メッキを行うことを特徴とする電気メッキ方法。
The electroplating method according to claim 1 or 2,
An electroplating method comprising performing electroplating while circulating a plating solution between a space surrounded by the surrounding member and a space outside the space in the plating tank.
前記請求項3に記載の電気メッキ方法であって、
前記メッキ槽内においてメッキ液を循環させながら電気メッキを行うと共に、
前記メッキ液の流通の経路は、このメッキ液の循環の経路の一部であることを特徴とする電気メッキ方法。
The electroplating method according to claim 3, wherein
While performing electroplating while circulating the plating solution in the plating tank,
The electroplating method is characterized in that the distribution route of the plating solution is a part of the circulation route of the plating solution.
メッキ槽内のメッキ液に浸漬した電極と被処理物との間に通電することにより被処理物の表面をメッキするための電気メッキ装置であって、
前記メッキ槽内に、電極を指向する被処理物のメッキ面を開放しつつ、該被処理物の周囲を所定の間隙を空けて囲み、電極側の先端部が被処理物のメッキ面より電極側に突出した非導電性の囲繞部材が設けられていることを特徴とする電気メッキ装置。
An electroplating apparatus for plating the surface of an object to be processed by energizing between the electrode immersed in the plating solution in the plating tank and the object to be processed,
In the plating tank, the plating surface of the object to be processed facing the electrode is opened, and the periphery of the object to be processed is surrounded by a predetermined gap, and the tip side on the electrode side is the electrode from the plating surface of the object to be processed. An electroplating apparatus comprising a non-conductive surrounding member protruding to the side.
前記請求項5に記載の電気メッキ装置であって、
電極は、被処理物のメッキ面の全域と対向して配置されていることを特徴とする電気メッキ装置。
The electroplating apparatus according to claim 5,
An electroplating apparatus, wherein the electrode is disposed so as to face the entire plating surface of the object to be processed.
前記請求項5又は6に記載の電気メッキ装置であって、
前記囲繞部材の反電極側の端部は、被処理物を支持する支持部材で閉じられていると共に、
前記囲繞部材及び/又は前記支持部材に開口が設けられていることを特徴とする電気メッキ装置。
The electroplating apparatus according to claim 5 or 6,
The end on the counter electrode side of the surrounding member is closed with a support member that supports the object to be processed,
An electroplating apparatus, wherein an opening is provided in the surrounding member and / or the support member.
前記請求項7に記載の電気メッキ装置であって、
メッキ槽内においてメッキ液を循環させるための循環装置が設けられ、
この循環装置におけるメッキ液の噴出口が、前記囲繞部材で囲まれた空間の外側の空間から、前記囲繞部材及び/又は前記支持部材に設けられた開口に向けられていることを特徴とする電気メッキ装置。
The electroplating apparatus according to claim 7,
A circulation device is provided for circulating the plating solution in the plating tank,
The electrical outlet is characterized in that the plating solution spray outlet in the circulation device is directed from the space outside the space surrounded by the surrounding member to the opening provided in the surrounding member and / or the support member. Plating equipment.
JP2008205165A 2008-08-08 2008-08-08 Electroplating method, and apparatus therefor Pending JP2010037635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008205165A JP2010037635A (en) 2008-08-08 2008-08-08 Electroplating method, and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008205165A JP2010037635A (en) 2008-08-08 2008-08-08 Electroplating method, and apparatus therefor

Publications (1)

Publication Number Publication Date
JP2010037635A true JP2010037635A (en) 2010-02-18

Family

ID=42010481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008205165A Pending JP2010037635A (en) 2008-08-08 2008-08-08 Electroplating method, and apparatus therefor

Country Status (1)

Country Link
JP (1) JP2010037635A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109518241A (en) * 2018-12-27 2019-03-26 中国电子科技集团公司第二研究所 The automatic loading/unloading and storing method of piston ring electroplating assembly line

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109518241A (en) * 2018-12-27 2019-03-26 中国电子科技集团公司第二研究所 The automatic loading/unloading and storing method of piston ring electroplating assembly line

Similar Documents

Publication Publication Date Title
US5316642A (en) Oscillation device for plating system
US5332487A (en) Method and plating apparatus
KR100706069B1 (en) Apparatus for partially plating work surfaces
JP4748037B2 (en) Plating hanger, workpiece partial plating apparatus and method, and piston
JP7138586B2 (en) Cathode drum for electrolytic deposition
KR20010022951A (en) THE APPARATUS FOR MANUFACTURING Ni-Fe ALLOY THIN FOIL
JP2010037635A (en) Electroplating method, and apparatus therefor
EP2907900A1 (en) Electroplating process and apparatus, particularly for plating or forming parts made of electrically conducting materials by electrodeposition
CN107858711A (en) Metallic matrix electro-plating method
CN105324521A (en) Anode and high-speed plating device provided with same
JP3915762B2 (en) Partial plating equipment
JPH03285097A (en) Anode for electroplating and electroplating method
Hung et al. Using a nickel electroplating deposition for strengthening microelectrochemical machining electrode insulation
CN104947172B (en) Plating tool and the method using the plating tool
JP2006183085A (en) Plating apparatus and plating method
KR101751183B1 (en) Micro electrochemical machining device
US7306710B2 (en) Apparatus and method for electroplating a metallic film on a rocket engine combustion chamber component
JP2010053389A (en) Plating treatment apparatus
CN208218985U (en) Rotary cylinder-block electroplanting device
CN104746115A (en) Micro-electrolytic cell local electroplating device
JP2001200394A (en) Plating treatment device
JP5631567B2 (en) Apparatus and method for depositing a coating on a workpiece by electroplating
Hung et al. Characteristics research of different electrode tip shapes by electrodeposition for micro slot ECM
KR20120033955A (en) Barrel device for barrel plating
EP2984212B1 (en) Electroplating rack