JP2010035120A - ビデオカメラ撮像装置 - Google Patents

ビデオカメラ撮像装置 Download PDF

Info

Publication number
JP2010035120A
JP2010035120A JP2008214661A JP2008214661A JP2010035120A JP 2010035120 A JP2010035120 A JP 2010035120A JP 2008214661 A JP2008214661 A JP 2008214661A JP 2008214661 A JP2008214661 A JP 2008214661A JP 2010035120 A JP2010035120 A JP 2010035120A
Authority
JP
Japan
Prior art keywords
exposure
signal
image signal
output
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008214661A
Other languages
English (en)
Inventor
Isao Takahashi
高橋  功
Hisatoshi Fukuda
久俊 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ADVAS CO Ltd
Original Assignee
ADVAS CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ADVAS CO Ltd filed Critical ADVAS CO Ltd
Priority to JP2008214661A priority Critical patent/JP2010035120A/ja
Publication of JP2010035120A publication Critical patent/JP2010035120A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Color Television Image Signal Generators (AREA)

Abstract

【課題】 本発明では、よりワイドなダイナミックレンジを確保するニー曲線合成特性を実現し、高輝度場面でも色再現性や諧調再現性に優れたビデオカメラ装置の提供を目的とする。また、本発明では、高輝度画像信号においてニー合成処理によりダイナミックレンジを大きく確保してもビット処理能力内での諧調スケーリング設定値によりニー合成出力信号を制御するため諧調歪の無い、画像処理を行うことができるビデオカメラ装置の提供を目的とする。
【解決手段】長時間露光と短時間露光の少なくとも2つの複数の画像信号を利用して露光時間制御を行う電子カメラ装置において、前記短時間露光による画像信号を取り出す取得手段と、該取得手段により取り出した画像信号から色信号成分レベルを演算する演算手段とを備え、該演算結果より得られた長時間露光と短時間露光の時間比率によりホワイトバランスおよび露光を制御することを特徴とする電子カメラ装置。
【選択図】図1

Description

本発明は、簡便な構成により高ダイナミックレンジを確保し、色再現性に優れた画像が得られるビデオカメラ撮像装置およびその方法に関する。
ビデオカメラ撮像装置は監視カメラ、防犯カメラなどのセキュリティ用、放送用、会議用など多様化した分野で利用されてきており、夫々の利用目的に応じた撮像システム、撮像画像品質、利便性などが求められている。特に、屋外で利用したり高画質が要求されるビデオカメラにおいては、よりワイドなダイナミックレンジや色再現性の向上が要求されるようになってきている。
撮像カメラの高画質化には「解像度向上」、「色再現性の向上」、「ノイズの減少」など総合的な処理が求められるが、特に色再現性においてはビデオカメラが高画質を求める場合、人の知覚的な要素を含んでおり撮像場面のシチュエーションや撮影者の意図により可変・編集できるように色再現性のパラメータを変えることが出来るように工夫されている。これらの色再現性の可変・編集はビデオカメラのハード側で撮影時に行うものと、撮影後いわゆるポストプロなどソフトウェアで処理するものとがあるが、できるだけ撮影時にカメラ装置側で適正化された撮像が望ましい。
ビデオカメラ装置においては屋外などの明るさ・輝度が大きく変化する環境で撮影することが多く映画やコマーシャルなどの撮影ではフィルムのラティチュードに匹敵するワイドなダイナミックレンジを確保することが求められている。例えば逆光での撮影においては10万ルックスあたりから10ルックス以下までのダイナミックレンジを確保しておく必要がある。逆光場面などの再生画像上では白とびや黒つぶれといった現象が生じる。つまり、明るい場面では白部分、暗い場面では黒部分がつぶれて詳細が再生できない。輝度の高い場面での撮影では光学的にレンズの絞りを絞り込んで調整し撮影するが、動画撮影のビデオカメラでは被写体の動きに合わせて移動するため絞りは明るさに順応して適応させ、よりダイナミックレンジを確保したカメラ装置で撮影できることが望ましい。
また、室内などで撮影する場合は光源の種類などにより色温度などが大きく影響を受け色再現性を工夫することが求められている。特に屋外の色温度は6000〜7000K(ケルビン)であり、色温度の低い照明下での室内へ移動した場合、光源である白熱電球(色温度2500〜3200K)、蛍光灯(5000K程度)により大きく色温度が変化するため、再生画像は赤みがかったり、青みがかったりした画像となる。
これらワイドなダイナミックレンジを確保し、色再現性を向上させるためのビデオカメラ装置における処理方法として、種々の工夫が提案されている。ワイドなダイナミックレンジを確保する方法としては高輝度部分の諧調を圧縮して白つぶれ、白とびを少なくする処理(「ニー」処理)が多くに採用され、また色温度差による色再現性を調整する方法としてはホワイトバランス、ブラックバランスなどの方法が提案されている。
プロ・放送用カメラなどにおいてはこれら絞りやニー調整、ホワイト・ブラックバランス調整を手動で行ったり、撮影環境に応じて都度設定するが、煩雑であり利便性に欠けている。また、家庭用ビデオカメラや利便性を重視したビデオカメラでは出来るだけ撮影環境に順応したオート処理、または部分的オート処理あるいは撮影状況に応じた適応型オート処理などで色再現性を向上させることが望ましい。特に、単板撮像素子を用いるビデオカメラではベイヤー配列による色フィルターでRGB信号を取り出すためRGBのレベルはそれぞれに異なっている。これらのデモザイク(de−mosaic)処理によりフルカラーとして取り出すには色再現性に大きく影響するためどこでホワイトバランスをかけて色再現性を適正にするかが重要となる。
ニー処理の方法としては長時間露光と短時間露光のように異なる露光時間による撮像素子からの出力を合成して高輝度画像部分を圧縮してワイドなダイナミックレンジを確保することで、高輝度ビデオカメラとして利用する方法が種々提案されている(特許文献1など)。このニー処理で利用する長時間露光出力と短時間露光出力との合成比率を変化させてダイナミックレンジを数倍に変更することができる。通常このニー処理によるワイドダイナミックレンジを確保する場合、合成された露光時間出力を利用したホワイトバランス調整が行われている。しかし、この合成信号によるホワイトバランスでは常に高輝度部分と低輝度部分との中間的な色バランスであり、適正なホワイトバランスが確保できない。
これらのホワイトバランスを適正に確保するため長時間露光出力と短時間露光出力とをニー処理による合成する前に長時間露光および短時間露光の両方の露光出力によりホワイトバランス処理を行うデュアルホワイトバランスが提案されている(特許文献2など)。しかし、このデュアルホワイトバランス方式では処理回路が複雑となるほか、処理回路の規模が大きくなる。また利用方法としてもプロ仕様となり、フルタイムオートホワイトバランスやワンプッシュホワイトバランスのような監視カメラや家庭用ビデオカメラでは簡便性に欠ける不都合があった。
さらにニー合成処理による高輝度画面部分の圧縮をかけてダイナミックレンジを大きく確保しても合成信号が後段の画像信号処理回路でのビット処理基準レベルを超えたり、また最大ビット処理能力よりはるかに低いレベルで合成信号が飽和してしまい、ビット処理の最大諧調を十分生かして適切な色再現性や諧調を確保できない問題があった。
特開平7−95481号公報 特開2001−94999号公報
本発明では、よりワイドなダイナミックレンジを確保するニー曲線合成特性を実現し、高輝度場面でも色再現性や諧調再現性に優れたビデオカメラ装置の提供を目的とする。
本発明では、高輝度画像信号においてニー合成処理によりダイナミックレンジを大きく確保してもビット処理能力内での諧調スケーリング設定値によりニー合成出力信号を制御するため、諧調歪の無い画像処理を行うことができるビデオカメラ装置の提供を目的とする。
本発明では、従来高ダイナミックレンジ用には複雑となっていたニー処理およびホワイトバランス確保を簡便な処理により構成でき、ワイドなダイナミックレンジを確保できるビデオカメラシステム装置の提供を目的とする。
上記目的を達成するため、請求項1に記載の発明は、長時間露光と短時間露光の少なくとも2つの複数の画像信号を利用して露光時間制御を行う電子カメラ装置において、前記短時間露光による画像信号を取り出す取得手段と、該取得手段により取り出した画像信号から色信号成分レベルを演算する演算手段とを備え、該演算結果より得られた長時間露光と短時間露光の時間比率によりホワイトバランスおよび露光を制御することを特徴とする。
また、請求項2に記載の発明は、上記請求項1に記載の電子カメラシステム装置において、前記色信号の演算手段は前記短時間露光で得られたベイヤー配列画像信号の色信号で行うことを特徴とする。
また、請求項3に記載の発明は、前記短時間露光は前記長時間露光の可変比例値を1/Kと表記したとき、前記短時間露光及び前記長時間露光による画像信号の合成出力E=(長時間露光画像信号/K+短時間露光画像信号)とすることを特徴とする。
また、請求項4に記載の発明は、上記請求項3に記載の電子カメラシステム装置において、前記合成出力がデジタル処理による画像信号処理スケーリング設定値となるように前記画像合成出力を正規化補正することを特徴とする。
また、請求項5に記載の発明は、上記請求項2に記載の電子カメラシステム装置において、前記ベイヤー配列画像信号の色信号による演算は緑−赤の色差信号、及び緑−青の信号によりホワイトバランス制御を行うことを特徴とする。
また、請求項6に記載の発明は、上記請求項2に記載の電子カメラシステム装置において、ベイヤー配列画像信号の画素単位の平均信号レベルとピークレベルによって露光制御を行うことを特徴とする。
このような構成により、本発明を用いたビデオカメラ装置では、固体撮像素子より取り出した露光時間の異なる複数の画像入力(固体撮像装置の画像出力)のうち短時間露光による画像信号から色信号成分レベルを演算し、長時間露光と短時間露光との時間比率によりホワイトバランスと露光を制御することでホワイトバランス制御およびダイナミックレンジ制御に利用しているため、飽和(クリップ)していない短時間露光による画像入力信号が制御信号として用いることが出来るためダイナミックレンジをかなりワイドにしても、色再現性に優れたホワイトバランス制御およびが露光制御が確保できる効果がある。
また、本発明の構成によれば、高輝度撮影画面においても短時間露光と長時間露光との可変比率(露光時間比Kv)を変化させ、ニー処理によるダイナミックレンジを拡大しても、その出力処理信号はADコンバータなどの処理回路におけるビット処理能力内での諧調スケーリング設定値によりニー合成出力信号を制御するため諧調歪の無い、画像処理を行うことができるため、輝度が極めて上昇した太陽光撮影場面でもダインミックレンジを大きく確保しながら常に適正なホワイトバランスを確保できる効果がある。
また、本発明の構成によれば、長時間露光と短時間露光との信号合成によりニー処理を行う前に短時間露光による画像信号を制御信号としてホワイトバランスを設定するため、合成信号により得られた色成分信号によるホワイトバランス制御に比べより色歪や飽和の少ない信号が制御信号として利用可能となり、後段での信号処理が適正化されたものとなる。
さらに、本発明の構成によれば、特に単板式固体撮像素子によるビデオカメラにおいてフルタイムホワイトバランス確保を高ダイナミックレンジ下で確保することが可能であり、家庭用などのビデオカメラや監視用カメラでも簡易な構成で多大なダイナミックレンジおよび色再現性を得ることが可能となる。
以下、図面を参照して本発明を具体化した実施形態について説明する。図1は本発明に係るビデオカメラ装置を説明する全体ブロック構成図であり、ビデオカメラ入力部からYCbCr信号取出しまでを示している。
図1において、ビデオカメラの単板固体撮像装置により画像信号を取り出し、マトリックス回路により色信号分離を行う前のホワイトバランスおよびニー処理合成を示すビデオ信号処理ブロック100である。カメラヘッド部101にある固体撮像素子102は、CCD(Charge Coupled Device)やCMOS(Complimentary Metal Oxide Semiconductor)などのイメージセンサーで電荷蓄積時間を制御することにより異なる露光時間出力を取り出す。長時間(または標準時間)露光出力(Aeo)と短時間露光出力(Beo)とは交互に時間的に連続する露光出力信号として取り出す。
本発明のビデオカメラにおいて、固体撮像素子102は単板の撮像素子カメラを実施例に使用する。撮像レンズを介して上記固体撮像素子102上に結像される被写体を固体撮像素子にメモリーしピクセル信号として取り出す。単板固体撮像素子では各ピクセルを色分離するためにベイヤー配列やオンチップフィルターが利用される。これらのピクセル出力はRGBそれぞれに出力がばらついておりRGBを同じレベルとしてホワイトバランスを適正化する。
本発明では、長時間(または標準時間)露光画像信号(Aeo)および短時間露光画像信号(Beo)の異なる露光時間による画像信号が倍速フレームレートにより取り出されている。それぞれの異なる露光時間の画像信号出力はホワイトバランス制御部103に供給される。長時間露光画像信号出力(Aeo)は長時間画像信号のRGBピクセルゲイン補正部104に供給され、短時間露光画像信号出力(Beo)は短時間露光画像信号のRGBピクセルゲイン補正部105に供給される。それぞれホワイトバランス補正後の長時間露光画像出力(Ae)および短時間露光画像出力(Be)はニー曲線合成部106に供給され、ニー処理合成が行われる。本発明において異なる露光時間の出力比Ae/Be=Kvとする。
ここで異なる露光時間の出力比Kvは、AeおよびBeのそれぞれの露光量を測定しその比を求められる。Aeが予め決められた標準時間露光であればAeの飽和値を基準値として設定しておけばBeの露光量を測定するだけでKvを演算することもできる。図1では基準値として標準時間露光画像出力Aeの飽和値を基準値として設定し、基準値設定部114より設定入力している。
ニー処理合成部106においては長時間露光画像信号出力(Ae)を1/Kvだけ圧縮し、短時間露光画像信号出力(Be)と合成する。ここで、ダイナミックレンジを大きく取る場合はKvの値を大きくし長時間露光画像信号出力Aeを圧縮して合成するが、圧縮比が増加するにつれて光量増加に伴う合成曲線の飽和点出力が減少するため、予め設定したデフォルト値を基準として光量がデフォルト値を超える場合は合成出力を増加させ、デフォルト値を下回る場合は合成出力を低下させるようにKvの値を重み付けする。本発明では、デフォルト値としてKv=2として設定した例を説明する。Kvに重み付けした圧縮比をKdとすると、ニー処理合成は出力Eo=Ae/Kd+Beとして表示される。さらに、合成部106でニー処理合成された出力信号Eoは後段での画像処理回路においてビット処理の上限諧調に適合するように正規化部107において正規化処理されて最大出力レベルが常に所定の値となり、デジタル処理能力として効率的に利用できるようにスケーリング設定値になるように補正される。正規化処理された信号はガンマ補正部108においてガンマ補正が行われ後段のY/Cマトリクス部109よりY、Cb、Cr(またはY、Pb、Pr)信号として送出される。
本発明において、短時間露光画像信号出力が輝度信号の露光制御およびホワイトバランスのゲイン制御信号として利用される。ホワイトバランス制御部103の短時間露光RGBゲイン補正部105の出力部から取り出された信号は短時間露光信号による露光乗数決定部110およびホワイトバランス補正係数抽出部111へ制御信号として送られる。これらの露光乗数決定やホワイトバランス補正係数はコンピュータによる演算回路により処理される。処理回路としてはゲートアレイ、FPGA(Field Programable Gate Array)、DSPマイコン、組み込みCPUなどいずれでも構成可能である。
露光乗数決定部110より露光時間比Kvを取り出しタイミングジェネレータ(TG)112を制御し露光ゲート113を介してビデオカメラヘッド部101の露出時間を制御する。露光ゲート113の制御は露光乗数決定部110とTG112との間で共通バスを介して信号の授受を行い制御している。短時間露光画像信号Beが最大でもCCDの飽和しない範囲に収まるように露光ゲート113を制御する。露光時間比決定部110ではKvに後述するような重み付け処理を行いKdを算出しニー曲線合成部106へ送出する。
短時間露光による画像信号はベイヤー配列信号からRGBピクセル信号として取り出される。この露光量演算はビデオカメラの使用目的およびどんな撮影場面かにより大きく異なる。本実施例においては、フルタイムオートホワイトバランスを前提として画面を12分割したそれぞれの分割部分セルにおいて測光した露光量の平均値とピーク値を測定し、その割合を定めウエイト付けを行う。例えば、高輝度部分を重視したい場合はピーク値に多くのウエイト(80%ぐらい)を与え、APL(Average Picture Level))平均値に対しては20%ぐらいのウエイトで重み付けを行う。また、通常の人物撮影などでは画面中心部のピーク値とAPL値との中間値を採用し利用したり、画面のヒストグラム分布を利用して算出してもよい。
ホワイトバランス補正係数抽出部111では短時間露光画像信号Beに応じてRGBゲインの補正係数を演算しホワイトバランス制御部103の長時間露光画像信号RGBゲイン補正部104および短時間露光画像信号RGBゲインの補正部105の両方に補正信号を送出し、長時間露光画像信号Aeおよび短時間露光画像信号BeのGピクセルに対するR、Bピクセルゲインの補正を行う。単板固体撮像素子102によるベイヤー配列などの色フィルターを用いている場合ピクセル毎のレベル補正を行う必要がある。特に、白基準入力画像によるワンプッシュホワイトバランス設定でなく、常時ホワイトバランスをチェックしているフルタイムオートホワイトバランス機構においては入力画像信号により画面全体からホワイトバランス補正を適正に実行する必要がある。
ホワイトバランス制御部103は、基本的にGレベルを基準としてRおよびBのレベルを掛け算し、Gレベルの基準値(絶対値)に合わせる方法やG−BやG−Rの色差信号をゼロする補正係数を算出する方法があり、いずれの方法においてもそれぞれのピクセルでのRGBレベルを同一基準に合わせている。本発明の実施例では、まず黒レベルを0レベルに設定し(黒固定回路は図示せず)、Gの出力レベルを基準としてBおよびRのレベルを掛け算によりGのレベルに揃えている。短時間露光画像出力Beを利用してホワイトバランス制御を行うのは固体撮像素子102からの出力が飽和していないためである。
このホワイトバランス制御信号は短時間露光画像信号出力Beを用いてフルタイムオートホワイトバランス制御している。このホワイトバランス処理は、後段でのホワイトバランスをとる場合に比べ、RGBのピクセルレベルが高い時でも飽和していない状態でホワイトバランスを行いRGBレベルが揃えられるため、ニー合成処理前にするほうが望ましい。図1ではフルタイムオートホワイトバランスではG出力レベルの設定値を基準値入力部115により設定入力してホワイトパランス補正係数を抽出している。
ニー処理合成部106においては長時間露光画像信号(Ae)と短時間露光画像信号(Be)とを処理しEo=Ae/Kd+Beのニー特性曲線に基づく信号合成を行う。図2はニー処理合成を示すタイミングチャート説明図である。電荷読み出しゲートパルス201は倍速フレームレートで駆動される。NTSCでは60Hz、PALでは50Hzであるが、本発明の実施例ではNTSCで説明する。NTSCにおいて倍速フレームレート1/60秒で長時間(または標準時間)露光ゲートパルスはτ1L、τ2L、τ3L、・・・・・・で読み出し、短時間用露光ゲートパルスは長時間(または標準時間)露光ゲートパルスより短い読み出し時間τ0S、τ1S、τ2S、τ3S、・・・・・・・・の間隔で、交互に違う露光時間で読み出す。
長時間(または標準時間)露光画像信号出力(Ae)は202で示されている。露光信号は信号電荷の蓄積が終了してから読み出しが開始されるので実時間に対してはNTSCでは1/60秒の遅延がある。固体撮像素子からの出力は光量の増加によりある点からは飽和して光量がいくら増加しても出力は比例的に増加しない。読み出された画像信号出力(Ae)202は露光時間比Kvで割算されAe/Kvの出力203を求める。図2ではKvに対して重み付けされたKdとして表している。一方、短時間用露光ゲートパルス201はτ0S、τ1S、τ2S、τ3S、・・・・・・・・に設定され、露光画像信号出力(Be)204が読み出される。短時間露光画像出力は露光時間が短く設定し、固体撮像素子での出力は飽和しないように取り出される。長時間(標準時間)露光時間と短時間露光時間とのそれぞれの出力は交互に取り出されるがフレームバッファーメモリーに蓄積され時間軸を合わせEo=Ae/Kd+Beの合成信号205を作成する。合成された画像信号205はフレーム変換され連続したニー曲線合成信号206を作成する。
ここでダイナミックレンジが圧縮されない場合は露光時間比Kv=1であり、合成出力Eo=Ae+Beの単純合成となる。ダイナミックレンジを2倍,3倍、4倍、6倍、・・・・・・・と変化させると、Kv=2、3、4、6、・・・・・・となり、合成出力はAeがダイナミックレンジの倍数に応じて圧縮されるため入射光量の増加により結果的に大幅なダイナミックレンジを確保することができる。
図3は露光時間比Kv=2におけるニー曲繰合成を示す説明図である。図3において長時間(または標準時間)露光出力はAeで示され、短時間露光出力はBeで示されている。Kv=Ae/Be=2であり、Beの露光時間がAeの1/2であることを示している。露光時間のAeは光量が増加すると撮像素子出力がある点で飽和し、その後は光量が増加しても出力は増加しない。このAeの飽和点Sにおける光量を1とし、出力を1とすると出力Aeは光量が0〜1までは比例して増加し、光量1以上は出力のレベルで飽和する。またBeは露光時間がAeの1/2であるため光量2までは飽和しない。光量2以上は飽和し出力1となる。Aeを露光時間比で割りAe/Kvを求め、ニー合成出力Eo=Ae/Kv+BeによりEoが得られる。ニー合成出力Eoは光量が2の場合、信号出力レベルは圧縮され1.5まで増加しそれ以上は一定となる。
前述の通りニー合成処理以降で後段の画像信号処理部ではY/Cマトリックス、Yエンハンス、Y合成などをデジタル処理する。このためニー曲線合成部106の出力レベルは画像信号処理基準の最大値を超えないようにする必要がある。8ビットデータでは0から255階調、12ビットでは0から4095階調が利用できるビット諧調である。つまり図3のKv=2においてニー合成出力Eoが1.5を8ビット処理の場合は255階調、12ビット処理では4095階調を上限値以下の範囲内で画像信号処理スケーリング値として設定し、ニー合成出力信号を制限する。これにより光量変化にともなう諧調変化を飽和することなく取り出し、後段におけるデジタル処理をビット歪み無く処理することができる。
露光時間比Kvを増加しダイナミックレンジを大幅に拡大していくと、合成出力Eo=Ae/Kv+BeによりBeの値に近づき合成出力は抑えられる。ダイナミックレンジを拡大して効果的に処理するにはこの分を補正し、圧縮倍率が大きくなってもビット処理能力を効果的に利用できるように持ち上げる必要がある。
この処理のため本発明では、ダイナミックレンジのデフォルトとして図3に示す露光時間比Kv=2、ビット処理上限値諧調を1.5基準とする。このデフォルト値は設計上の問題であり常時輝度の高い窩ダイナミックレンジで使用する場合はより圧縮倍率を上げても良い。本発明ではデフォルト値Kv=2の場合を基準としてそれ以上の圧縮率の場合はニー合成飽和点が1.5のビット処理上限諧調となるよう出力レベルを上げる補正をかけている。またデフォルト以下の圧縮倍率の場合は出力レベルを下げる処理を行う。
上記補正処理手段として圧縮比Kd=2+(Kv−2)/2をKvとして用いることでデフォルト値を基準としてそれ以上に光量が増加すれば出力をより増加させ、光量が下がれば出力を低減させている。つまり、デフォルト値においてKv=Kd=2、ニー合成出力飽和値(リミットライン)は1.5であり、このニー合成リミットラインを8ビットデータ処理では0〜255階調、12ビット処理では0〜4095階調の100%出力に設定する。ダイナミックレンジをデフォルト以外に変化させる場合、圧縮比としてKdを用いることでニー合成出力Eo=Ae/Kd+Beとなりビット処理能力内の諧調変化領域により対応した出力とすることができる。この補正圧縮比Kdを用いた場合、Kv=1でKd=1.5、合成リミットライン値=1.667、Kv=4でKd=3、合成リミットライン値=1.333、Kv=8でKd=5、合成リミットライン値=1.2、Kv=20でKd=11、合成リミットライン値=1.091として算出される。この補正圧縮比Kdを用いることは、光量増加に比例して圧縮比を大幅に上げた高ダイナミックレンジの使用状態でより人の目視感覚に合った圧縮比となっている。
上記のようにニー合成出力を補正された圧縮比Kdを用いても、算定された合成リミットライン値はデフォルト値(Kv=Kd=2)以上では、デフォルト合成リミットライン値=1.5のビット処理最大値を下回り、デフォルト値以下では上回っている。そこで、出来るだけビット処理最大基準値に合成リミットライン値を近づけるために正規化係数を乗算し、合成リミットラインが1.5となるように補正する。上記正規化処理によりニー出力の合成リミットラインはすべて1.5となりビット処理信号上限値内でビット諧調処理をフルに活用できるようになる。正規化部107においてはこれらの演算処理が行われる。
上限出力のリミットラインが1.5に正規化されたニー合成出力はガンマ補正部108によりガンマ補正が行われる。ガンマ補正については正規化されたニー出力合成上限値1.5を上限値として受信機の電光変換特性γ=2.2をカメラ側で補正したカーブを作成する。ガンマ補正部108ではγ補正係数=(合成出力値)^(1/2.2)のγ補正処理を行う。この場合のγ補正係数は0.8233となり、γ補正上限値は1.1となる。
図4はデフォルト値をKv=Kd=2と設定した場合の露光時間比Kv,圧縮率Kd,ニー合成出力リミットライン、正規化係数、ガンマ補正係数、ガンマ補正上限値を算出した一覧表説明図である。これらのニー合成処理により画像信号合成出力は常に1.5が100%信号レベルとして確保され、出力が所定のビット諧調を上限としてその範囲内のデジタル処理スケーリング設定値を設定することでγ補正や後段の画像信号処理のビット歪、諧調歪が生じないように処理することが可能となる。
図5、は露光時間比Kv=8のニー特性図である。図5において、長時間(または標準時間)露光画像出力(Ae)と短時間露光画像出力(Be)との露光比Kv=8であり、高ダイナミックレンジを確保したい場合の設定である。この場合圧縮比Kd=5として算出される。Ae/Kdの曲線とBeとの合成により求められたニー特性合成値Eoの曲線が示されている。ニー合成出力のリミットラインLM=1+1/Kd=1.2となる。つまり光量が8に達した場合ニー合成出力は1.2で上限諧調となりそれ以上に光量が増加しても飽和した状態となる。
図6はKv=8のニー合成出力を正規化したニー合成出力Ecおよびγ補正出力を示す説明図である。図5でニー合成出力Eoに対して正規化係数1.25を乗算して補正されたニー合成出力Ecが得られる。この正規化された合成出力は光量8において1.5となり100%信号レベルとして上限諧調12ビットで4095階調(8ビットでは256階調)の範囲内でデジタル処理スケーリング設定を行う。この正規化されたニー合成出力に対してガンマ補正を施したガンマ補正出力がEγの曲線で示す。ガンマ補正後のリミットラインは光量8以上において1.1となる。ガンマ補正出力EγはRGB信号としてY/Cマトリックス回路にてYCrCb(またはYPbPr)の輝度色差信号をそれぞれに取り出し、後段の画像信号処理に送られる。
図5および図6においてKv=8におけるニー合成曲線およびγ補正曲線を例示したが、それ以外の露光比の場合でも正規化合成出力の上限リミットラインは1.5であり、100%信号レベルとしてこの範囲内でスケーリング設定する。また、この上限値を用いてガンマ補正を掛けることにより、ガンマ補正後のリミットライン出力は1.1と確定する。
図7は前述した露光時間比Kv,露光圧縮比Kdの決定プロセスを説明するフロー図である。プロセスの前提としてKv=Kd=2をデフォルト設定とする。この処理は図1における露光時間比決定部110で主に処理される。まず短時間露光画像信号(Be)を取込み(P701)、取りこんだBeの画像信号の輝度解析をピクセルレベルで実行する(P702)。前述の通りAPL値およびピーク値を測定し、平均値またはそれぞれにウエイト付けを行ってデフォルトにおける露光レベルとなるBeを決定する。標準露光時間Aeにおける基準値(または設定されたテーブルより基準値)を取込み(P703)、Kv=Ae基準値/BeによりKvを決定する(P704)。算出されたKvはTGへ送出され撮像素子の露光時間を制御する。設定されたデフォルト値(Kv=Kd=2)を入力し(P705)、これを基準として場合Kd=2+(Kv+2)/2によりKdを演算する(P706)。算出されたKdはニー曲線合成に利用される。
図8は短時間露光画像信号(Be)を利用したホワイトバランス制御処理、ニー曲線合成演算処理、正規化処理、フレーム変換処理、ガンマ処理のプロセスを説明するフロー図である。このプロセスは図1におけるホワイトバランス補正係数抽出部111、ホワイトバランス制御部102、ニー曲線合成部106、正規化部107、ガンマ補正部108により行われる。ホワイトバランス補正係数抽出部111に短時間露光画像信号(Be)を取込む(P801)。取り込まれた短時間露光画像信号BeのGに対するR、Bピクセルレベルを計算し、(G−R)および(G−B)の差分を制御信号として取り出し、G=R、G=BとなるようにRとBのレベル補正係数を算定する(P802)。またこのプロセスではGの値を基準としてピクセルRおよびBの補正係数を算定することもできる。得られたRとBの補正係数を用いて長時間露光画像信号(Ae)のピクセルゲインを制御する(P803)。また同様に短時間露光画像信号(Be)のピクセルゲインも制御する(P804)。これによりRGBピクセルのゲインレベルは同じとなりホワイトバランスが確保できる。
ホワイトバランス処理が行われた長時間露光画像信号および短時間画像信号を用いてニー合成演算処理が行われる。ニー合成処理は図7の露光時間比決定プロセスにより得られたKdを取得し、Eo=Ae/Kd+Beの演算処理を行う(P805)。ニー曲線合成処理の出力Eoは出力のリミットラインが常に1.5となるように正規化係数を乗じる処理を行う(P806)。正規化処理された信号は露光ゲートパルスが倍速フレームレートで取り出しているため、フレーム変換処理を行う(P807)。フレーム変換処理後の合成画像信号出力は所定のガンマ補正係数によりガンマ処理を行う(P808)。ガンマ処理を施した画像出力信号は後段のY/Cマトリクス回路に送出されYCbCr(またはYPbPr)信号として取り出される。
以上説明した通り、本発明によれば飽和の生じない短時間露光画像出力を用いて露光時間制御およびピクセルゲイン毎のホワイトバランス設定を行うためワイドなダイナミックレンジにおいても色再現性に優れた画像処理を行うことが出来る。また、ダイナミックレンジがいかに変化してもニー曲線合成の出力値をビット処理能力の諧調上限値としてスケーリング設定してその範囲内で画像信号のデジタル処理を行うためワイドダイナミックレンジを確保しつつビット諧調に歪の生じない処理が可能となる。このようなビデオカメラは、簡易な構成でダイナミックレンジを拡大しつつ色再現性、諧調変化を良好に維持できるためワイドなダイナミックレンジを必要とする監視カメラ、放送用ビデオカメラなどにおいて、撮影・監視目的、撮影・監視環境などに応じて種々形態で利用可能である。
本発明によるビデオカメラのブロック説明図である。 本発明によるニー信号合成タイミングチャート説明図である。 本発明による露光時間比Kv=2、圧縮比Kd=2のニー特性図である。 本発明による露光時間比Kv、圧縮率Kd、合成リミットライン、正規化係数を算出した一覧表説明図である。 本発明による露光時間比Kv=8、圧縮率Kd=5のニー特性図である。 本発明による露光時間比Kv=8、圧縮率Kd=5のニー合成出力を正規化したニー合成出力Ecおよびγ補正出力を示す説明図である。 本発明による露光時間比Kv、Kdの決定プロセスを説明するフロー説明図である。 本発明によるホワイトバランス制御処理からガンマ処理までのプロセスを説明するフロー説明図である。
符号の説明
101 ビデオカメラヘッド部
102 固体撮像素子
103 ホワイトバランス制御部
104 長時間画像信号ピクセルゲイン補正部
105 短時間画像信号ピクセルゲイン補正部
106 ニー曲線合成部
107 正規化部
108 ガンマ補正部
109 Y/Cマトリクス部および画像信号処理部
110 短時間露光画像信号による露光時間比決定部
111 短時間露光画像信号によるホワイトバランス補正係数抽出部
112 タイミングジェネレータ(TG)
113 露光ゲート部
114 基準値入力部
115 基準値入力部

Claims (6)

  1. 長時間露光と短時間露光の少なくとも2つの複数の画像信号を利用して露光時間制御を行う電子カメラ装置において、前記短時間露光による画像信号を取り出す取得手段と、該取得手段により取り出した画像信号から色信号成分レベルを演算する演算手段とを備え、該演算結果より得られた長時間露光と短時間露光の時間比率によりホワイトバランスおよび露光を制御することを特徴とする電子カメラ装置。
  2. 前記色信号の演算手段は前記短時間露光で得られたベイヤー配列画像信号の色信号で行うことを特徴とする請求項1に記載の装置。
  3. 前記短時間露光は前記長時間露光の可変比例値を1/Kと表記したとき、前記短時間露光及び前記長時間露光による画像信号の合成出力E=(長時間露光画像信号/K+短時間露光画像信号)とすることを特徴とする請求項1に記載の装置。
  4. 前記合成出力がデジタル処理による画像信号処理スケーリング設定値となるように前記画像合成出力を正規化補正することを特徴とする請求項3に記載の装置。
  5. 前記ベイヤー配列画像信号の色信号による演算は緑−赤の色差信号、及び緑−青の信号によりホワイトバランス制御を行うことを特徴とする請求項2に記載の装置。
  6. ベイヤー配列画像信号の画素単位の平均信号レベルとピークレベルによって露光制御を行うことを特徴とする請求項2に記載の装置。
JP2008214661A 2008-07-29 2008-07-29 ビデオカメラ撮像装置 Pending JP2010035120A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008214661A JP2010035120A (ja) 2008-07-29 2008-07-29 ビデオカメラ撮像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008214661A JP2010035120A (ja) 2008-07-29 2008-07-29 ビデオカメラ撮像装置

Publications (1)

Publication Number Publication Date
JP2010035120A true JP2010035120A (ja) 2010-02-12

Family

ID=41739039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008214661A Pending JP2010035120A (ja) 2008-07-29 2008-07-29 ビデオカメラ撮像装置

Country Status (1)

Country Link
JP (1) JP2010035120A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049600A (ja) * 2010-08-24 2012-03-08 Seiko Epson Corp 画像処理装置、画像処理方法及び撮像装置
WO2016076016A1 (ja) * 2014-11-13 2016-05-19 クラリオン株式会社 車載カメラシステム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049600A (ja) * 2010-08-24 2012-03-08 Seiko Epson Corp 画像処理装置、画像処理方法及び撮像装置
WO2016076016A1 (ja) * 2014-11-13 2016-05-19 クラリオン株式会社 車載カメラシステム
JP2016096417A (ja) * 2014-11-13 2016-05-26 クラリオン株式会社 車載カメラシステム
US10356376B2 (en) 2014-11-13 2019-07-16 Clarion Co., Ltd. Vehicle-mounted camera system

Similar Documents

Publication Publication Date Title
US8355059B2 (en) Image capturing apparatus and control method thereof
US8363131B2 (en) Apparatus and method for local contrast enhanced tone mapping
JP4600684B2 (ja) 撮影装置及び撮影方法
JP2008104009A (ja) 撮像装置および撮像方法
US10255704B2 (en) Video delivery terminal, non-transitory computer-readable medium, and video delivery method
JP2017022610A (ja) 画像処理装置、画像処理方法
JP2012109900A (ja) 撮影装置、撮影方法、およびプログラム
JP4717720B2 (ja) 画像処理装置および方法並びにプログラム
JP4999871B2 (ja) 撮像装置およびその制御方法
JP5898509B2 (ja) 撮像装置及びその制御方法、プログラム、並びに記憶媒体
JP2008206111A (ja) 撮影装置及び撮影方法
WO2016117137A1 (ja) 撮像装置、撮像方法、および画像表示装置
JP6047686B2 (ja) 撮影装置
WO2019187901A1 (ja) 撮像装置、撮像方法、およびプログラム
JP6543787B2 (ja) 画像処理装置および画像処理方法
CN110266965B (zh) 图像处理方法、装置、存储介质及电子设备
JP2010011153A (ja) 撮像装置、撮像方法及びプログラム
JP2002288650A (ja) 画像処理装置及びデジタルカメラ、画像処理方法、記録媒体
EP2515543B1 (en) Image capturing apparatus and image capturing method
JP2010035120A (ja) ビデオカメラ撮像装置
JP2012134745A (ja) 画像信号処理装置
JP5310331B2 (ja) 撮像装置および撮像方法
JP2012191645A (ja) 撮像装置およびその制御方法
JP6200687B2 (ja) 画像処理装置および画像処理方法
JP2005142953A (ja) デジタル画像撮像装置