JP2010031568A - Aseismatic reinforcing construction method for existing foundation and aseismatic reinforcing structure of existing foundation - Google Patents
Aseismatic reinforcing construction method for existing foundation and aseismatic reinforcing structure of existing foundation Download PDFInfo
- Publication number
- JP2010031568A JP2010031568A JP2008195708A JP2008195708A JP2010031568A JP 2010031568 A JP2010031568 A JP 2010031568A JP 2008195708 A JP2008195708 A JP 2008195708A JP 2008195708 A JP2008195708 A JP 2008195708A JP 2010031568 A JP2010031568 A JP 2010031568A
- Authority
- JP
- Japan
- Prior art keywords
- existing foundation
- steel material
- tensile steel
- pile
- foundation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Piles And Underground Anchors (AREA)
- Foundations (AREA)
Abstract
Description
本発明は、構造物を支持するためのコンクリート杭を有する既設基礎の耐震強度を増強するための既設基礎の耐震補強工法及び既設基礎の耐震補強構造に関する。 The present invention relates to a seismic reinforcement method for an existing foundation and a seismic reinforcement structure for an existing foundation for enhancing the seismic strength of an existing foundation having a concrete pile for supporting a structure.
大地震において発生する建築物等の構造物の傾斜や倒壊の被害は、杭基礎の耐震強度の不足に起因するものが多い。大地震時に杭基礎に発生する被害の内、杭頭部の被害は構造物の慣性力によって発生し、杭中間部の被害は、地盤の水平せん断変形によって発生する。したがって、杭基礎に求められる耐震性能は、構造物の水平慣性力及び地盤の水平せん断力に対する水平耐力と、構造物の傾斜によるモーメントや引き抜き力に対する耐力である。 The damage caused by the inclination and collapse of structures such as buildings caused by large earthquakes is often due to the lack of seismic strength of pile foundations. Of the damage that occurs on the pile foundation during a large earthquake, the damage to the pile head is caused by the inertia of the structure, and the damage to the middle part of the pile is caused by horizontal shear deformation of the ground. Therefore, the seismic performance required for the pile foundation is the horizontal strength against the horizontal inertia force of the structure and the horizontal shearing force of the ground, and the strength against the moment and pull-out force due to the inclination of the structure.
構造物を新築する場合の杭基礎の耐震補強方法としては、施工上の制約が少ないため、深層混合処理工法等による地盤改良や、杭基礎自体の水平耐力を大きくしたり、あるいは、杭頭部と構造物の基礎フーチングとの接続強度を大きくしたりするものがある。 As a seismic reinforcement method for pile foundations when constructing a new structure, there are few construction restrictions, so the ground improvement by deep mixed processing method, etc., the horizontal strength of the pile foundation itself can be increased, or the pile head Some increase the connection strength between the base footing and the structure.
既存の構造物を支持する既設の杭基礎の耐震強度を増強するための耐震補強工法として、特開2007−177531号公報には、既設の杭基礎の近傍に新たに補強杭を構築し、新たに構築した補強杭を既設の杭基礎と一体に連結する耐震補強工法が開示されている。また、特開平8−296240号公報には、既存基礎の脇から地盤改良用の竪孔を削孔し、この竪孔にパイプを挿入して硬化材を注入し、既存基礎の周囲地盤を地盤改良して既設基礎の耐震強度を増強する耐震補強工法が開示されている。
しかしながら、従来の既設杭基礎の耐震補強は、施工スペースの制約も多く、施工が困難な場合があり、その場合施工コストも高価になるという問題があった。 However, conventional seismic reinforcement of existing pile foundations has a problem that construction space is often limited and construction is difficult, and in that case, construction cost is also expensive.
本発明は、上記従来技術のもつ課題を解決する、狭い作業スペースでの施工性が良く、施工期間が短縮でき、施工コストが安価で、耐震性能を向上することができる既設コンクリート杭基礎の耐震補強工法及び既設コンクリート杭基礎の耐震補強構造を提供することを目的とする。 The present invention solves the above-mentioned problems of the prior art, has good workability in a narrow work space, can shorten the construction period, has a low construction cost, and can improve earthquake resistance. The purpose is to provide a reinforcement method and seismic reinforcement structure for existing concrete pile foundations.
本発明の既設基礎の耐震補強工法は、前記課題を解決するために、構造物を支持するためのコンクリート杭を有する既設基礎の上端部から、前記既設基礎の設置地盤中に延びる孔を削孔する工程と、前記削孔された孔に未硬化の硬化材を充填し、引張鋼材を挿入する工程と、前記未硬化の硬化材が硬化し、前記引張鋼材の下端部が前記硬化した硬化材により固定された後、前記引張鋼材に引張力を付加する工程と、前記引張力を付加された前記引張鋼材の上端部を、前記既設基礎の上端部に固定部材を介して固定する工程と、を有することを特徴とする。 In order to solve the above-mentioned problem, the seismic reinforcement method for an existing foundation according to the present invention drills a hole extending from the upper end of an existing foundation having a concrete pile for supporting a structure into the installation ground of the existing foundation. A step of filling an uncured hardened material into the drilled hole and inserting a tensile steel material, and a hardening material in which the uncured hardened material is cured and the lower end portion of the tensile steel material is the hardened material. A step of applying a tensile force to the tensile steel material, and a step of fixing the upper end portion of the tensile steel material to which the tensile force is applied to the upper end portion of the existing foundation via a fixing member. It is characterized by having.
また、本発明の既設基礎の耐震補強工法は、前記コンクリート杭として、RC杭、PHC杭、PC杭、場所打RC杭のいずれかを用いることを特徴とする。 Moreover, the seismic reinforcement method for an existing foundation according to the present invention is characterized in that any one of RC pile, PHC pile, PC pile, and cast-in-place RC pile is used as the concrete pile.
また、本発明の既設基礎の耐震補強工法は、前記引張鋼材が前記コンクリート杭の内部を通して延びるように設置されることを特徴とする。 The seismic reinforcement method for an existing foundation according to the present invention is characterized in that the tensile steel material is installed so as to extend through the inside of the concrete pile.
また、本発明の既設基礎の耐震補強工法は、前記既設基礎は、複数のコンクリート杭の杭頭部を一体に連結して形成された基礎フーチングを有し、前記基礎フーチングを通して前記複数のコンクリート杭間に延びるように設置されることを特徴とする。 In the seismic reinforcement method for an existing foundation according to the present invention, the existing foundation has a foundation footing formed by integrally connecting pile heads of a plurality of concrete piles, and the plurality of concrete piles are passed through the foundation footing. It is installed so that it may extend in between.
また、本発明の既設基礎の耐震補強工法は、前記コンクリート杭の打設方向と平行に延びる引張鋼材と、前記コンクリート杭の打設方向に対して傾斜して延びる引張鋼材とを組み合わせて設置することを特徴とする。 Moreover, the seismic reinforcement method for an existing foundation according to the present invention is installed by combining a tensile steel material extending parallel to the concrete pile placing direction and a tensile steel material extending obliquely with respect to the concrete pile placing direction. It is characterized by that.
また、本発明の既設基礎の耐震補強構造は、構造物を支持するためのコンクリート杭を有する既設基礎の上端部から、前記既設基礎の設置地盤中に延びる引張鋼材を備え、前記引張鋼材の下端部が硬化材により固定され、前記引張鋼材の上端部が引張力を付加された状態で前記既設基礎上端部に固定部材を介して固定されることを特徴とする。 The seismic reinforcement structure for an existing foundation according to the present invention includes a tensile steel material that extends from an upper end portion of an existing foundation having a concrete pile for supporting a structure into an installation ground of the existing foundation, and a lower end of the tensile steel material. The portion is fixed by a hardened material, and the upper end portion of the tensile steel material is fixed to the upper end portion of the existing foundation via a fixing member in a state where a tensile force is applied.
本発明の構造物を支持するためのコンクリート杭を有する既設基礎の上端部から、前記既設基礎の設置地盤中に延びる孔を削孔する工程と、前記削孔された孔に未硬化の硬化材を充填し、引張鋼材を挿入する工程と、前記未硬化の硬化材が硬化し、前記引張鋼材の下端部が前記硬化した硬化材により固定された後、前記引張鋼材に引張力を付加する工程と、前記引張力を付加された前記引張鋼材の上端部を、前記既設基礎の上端部に固定部材を介して固定する工程と、を有する構成により、大きな作業スペースを必要としない小型の削孔機で削孔でき、施工が容易であり、施工期間も短期で済むので低コストで耐震補強ができる。さらに、圧縮力を付与されたコンクリート杭は、地震時に付加される応力により圧縮軸力が増加し、圧縮軸力の増加により曲げ耐力が増加し、耐震性能を向上することができる。 A step of drilling a hole extending into an installation ground of the existing foundation from an upper end portion of an existing foundation having a concrete pile for supporting the structure of the present invention, and an uncured hardener in the drilled hole And inserting a tensile steel material, and a step of applying a tensile force to the tensile steel material after the uncured hardened material is cured and a lower end portion of the tensile steel material is fixed by the hardened hardened material. And a step of fixing the upper end portion of the tensile steel material to which the tensile force is applied to the upper end portion of the existing foundation via a fixing member, and thus a small hole that does not require a large work space Drilling can be done with a machine, construction is easy, and the construction period is short, so earthquake-proof reinforcement can be achieved at low cost. Furthermore, the concrete pile to which the compressive force is applied increases the compressive axial force due to the stress applied at the time of the earthquake, and the flexural strength increases due to the increase of the compressive axial force, so that the seismic performance can be improved.
また、コンクリート杭として、RC杭、PHC杭、PC杭、場所打RC杭のいずれかを用いる構成により、これらの杭は圧縮力を付与することで地震時に付加される応力により断面圧縮軸力が増加し、断面圧縮軸力の増加が曲げ耐力の増加に結びつく耐力曲線を有し、本発明の耐震補強工法に適した杭である。 In addition, as a concrete pile, RC piles, PHC piles, PC piles, cast-in-place RC piles are used, and these piles have a compressive axial force due to the stress applied during an earthquake by applying a compressive force. The pile is suitable for the seismic reinforcement method of the present invention, having a yield curve in which the increase in cross-sectional compression axial force leads to an increase in flexural yield.
また、引張鋼材がコンクリート杭の内部を通して延びるように設置される構成により、それぞれのコンクリート杭に直接圧縮力を付与することができるので、各コンクリート杭毎に正確な耐震性能を付与することができる。 In addition, since the tensile steel material is installed so as to extend through the inside of the concrete pile, a compressive force can be directly applied to each concrete pile, so that an accurate seismic performance can be given to each concrete pile. .
また、既設基礎は、複数のコンクリート杭の杭頭部を一体に連結して形成された基礎フーチングを有し、前記基礎フーチングを通して前記複数のコンクリート杭間に延びるように設置される構成により、少ない引張鋼材で複数のコンクリート杭に基礎フーチングを介して効率よく圧縮力を付与することができ、複数のコンクリート杭の耐震性能を向上することができる。 In addition, the existing foundation has a foundation footing formed by integrally connecting pile heads of a plurality of concrete piles, and there are few by a configuration installed to extend between the plurality of concrete piles through the foundation footing. It is possible to efficiently apply a compressive force to the plurality of concrete piles through the foundation footing with the tensile steel material, and the seismic performance of the plurality of concrete piles can be improved.
また、コンクリート杭の打設方向と平行に延びる引張鋼材と、コンクリート杭の打設方向に対して傾斜して延びる引張鋼材とを組み合わせて設置する構成により、地震時の方向が異なる応力に対して耐震性能を向上することができる。 In addition, by installing a combination of tensile steel material that extends parallel to the concrete pile placement direction and tensile steel material that extends at an angle with respect to the concrete pile placement direction, it can be applied to stresses with different directions during an earthquake. Seismic performance can be improved.
また、構造物を支持するためのコンクリート杭を有する既設基礎の上端部から、前記既設基礎の設置地盤中に延びる引張鋼材を備え、前記引張鋼材の下端部が硬化材により固定され、前記引張鋼材の上端部が引張力を付加された状態で前記既設基礎上端部に固定部材を介して固定される構成により、圧縮力を付与された既設基礎は、地震時に付加される応力により圧縮軸力が増加し、圧縮軸力の増加により曲げ耐力が増加し、耐震性能を向上することができる。 Moreover, it has the tensile steel material extended in the installation ground of the said existing foundation from the upper end part of the existing foundation which has a concrete pile for supporting a structure, The lower end part of the said tensile steel material is fixed by the hardening material, The said tensile steel material With the structure in which the upper end of the base is fixed to the upper end of the existing foundation via a fixing member in a state where a tensile force is applied, the existing foundation to which the compressive force is applied has a compressive axial force due to the stress applied during an earthquake. The bending strength increases by increasing the compression axial force, and the seismic performance can be improved.
本発明の実施の形態を図により説明する。図1は、本発明の既設基礎の耐震補強工法の第1実施形態を示す図である。 Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a first embodiment of the seismic reinforcement method for an existing foundation according to the present invention.
コンクリート杭を有する既設基礎1は、既存の建築物等の上部構造物を支持している。既設基礎1は、表層地盤2から支持地盤3まで延びるように設置された複数のコンクリート杭4、4’と、複数のコンクリート杭4、4’の杭頭部を一体に連結する基礎フーチング5とからなる。基礎フーチング5上に建築物等の上部構造が構築される。
The existing
本発明の耐震補強工法は、コンクリート杭4、4’として、RC杭(遠心力成形鉄筋コンクリート杭)、PHC杭(遠心力成形高強度プレストレストコンクリート杭)、PC杭(遠心力成形プレストレスト杭)、場所打RC杭(場所打鉄筋コンクリート杭)のいずれかを用いる。 The seismic reinforcement method of the present invention includes RC piles (centrifugal force formed reinforced concrete piles), PHC piles (centrifugal force formed high strength prestressed concrete piles), PC piles (centrifugal force prestressed piles), place Use one of the cast RC piles (placed reinforced concrete piles).
これらの杭は、断面圧縮軸力の増加が曲げ耐力の向上につながる耐力曲線(M−N interaction curve)を有するので本発明の耐震補強工法に適している。これに対して、鋼管杭は、断面圧縮軸力が0の時に曲げ耐力が最大となる耐力曲線を有するので、本発明の耐震補強工法に鋼管杭は適用しない。 These piles are suitable for the seismic reinforcement method of the present invention because they have a proof curve (MN interaction curve) in which an increase in cross-sectional compression axial force leads to an improvement in bending strength. On the other hand, since a steel pipe pile has a yield strength curve in which the bending strength becomes maximum when the cross-sectional compression axial force is zero, the steel pipe pile is not applied to the seismic reinforcement method of the present invention.
既設基礎1の耐震性能を向上するため、先ず、基礎フーチング5からコンクリート杭の杭頭部、コンクリート杭4、4’の内部を通して、支持地盤3の所定深さまで延びる小口径孔6を小型穿孔機を用いて穿孔する。第1実施形態では、小口径孔6は、コンクリート杭4、4’の打設方向と平行に穿孔される。
In order to improve the seismic performance of the existing
小型穿孔機による小口径孔6の穿孔は、基礎フーチング5、杭頭部内はコンクリート中の穿孔になる。基礎フーチング5には補強鉄筋が配筋されているので、穿孔の際、補強鉄筋を切断しないように穿孔位置を設定する。コンクリート杭4、4’の内部は、場所打ちRC杭以外は、杭内部は中空又は中空部に土砂等が充填されているだけであり、杭下端部には根固めコンクリートが充填される程度であるので、穿孔作業は比較的容易である。通常、支持地盤は岩盤又は硬質地盤であるので、穿孔された小口径孔6の孔壁の崩落の発生が比較的少ない。
The drilling of the small-
支持地盤3中の穿孔の長さは、後述する引張鋼材8が硬化材7により固定された後、ジャッキにより引張力を付加する際に、その引張力に耐える十分な定着力を有するように設定される。引張鋼材8の外周に凸凹を形成すると、硬化材7との定着性が向上する。
The length of the perforations in the
小型穿孔機による支持地盤3中への所定深さの小口径孔6の穿孔作業が終了すると、支持地盤3に形成された小口径孔6への未硬化の硬化材の充填工程となる。小型穿孔機のドリルパイプを通してグラウト材等の未硬化の硬化材7を供給可能な小型穿孔機の場合、小型穿孔機の掘削流体供給口にグラウト材注入管を接続し、ドリルパイプを引き上げながら、支持地盤3中の小口径孔6にグラウト等の未硬化の硬化材7を充填する。
When the drilling operation of the small-
グラウト注入ができない小型穿孔機の場合は、ドリルパイプを引き上げ後、グラウト供給管から未硬化の硬化材7を支持地盤3中の小口径孔6に充填する。未硬化の硬化材7が充填された支持地盤3中の小口径孔6に、未硬化の硬化材7が硬化する前に、基礎フーチング5に穿孔された小口径孔、杭頭部に穿孔された小口径孔及び既設コンクリート杭4、4’の内部を通して引張鋼材8を挿入する。引張鋼材8としては、PC鋼線、PC撚り線、PC鋼棒等を用いる。引張鋼材8を支持地盤3中の小口径孔6に挿入した後、未硬化の硬化材6を支持地盤3中の6に充填しても良いし、引張鋼材8の小口径孔6、6’、6’’への挿入工程と、未硬化の硬化材7の充填工程を同時に実施しても良い。
In the case of a small drilling machine that cannot inject grout, the uncured hardened
支持地盤3中の小口径孔6中の未硬化の硬化材7が硬化し、引張鋼材8の下端部が支持地盤3中の小口径孔6にしっかりと定着された後、引張鋼材8の上端部に、引張鋼材8を挿入する孔を形成した台座9を基礎フーチング5上に設置する。
After the uncured hardened
台座9にジャッキを設置し、台座9を反力受けとしてジャッキにより引張鋼材8に引張力を付加する。引張鋼材8に引張力を付加することにより、コンクリート杭4、4’に反力として圧縮力が付加される。引張鋼材8に付加される引張力は、コンクリート杭4、4’に所望の耐震性能を発揮可能な圧縮力が付加されるように設定する。
A jack is installed on the
引張鋼材8に引張力を付加した状態で、引張鋼材8の上端部と台座9とをナット等の固定手段10で固定する。固定手段10として、溶接等の他の固定手段を用いても良い。
In a state where a tensile force is applied to the
第1実施形態の既設基礎1の耐震補強工法は、コンクリート杭4、4’の内部を通して引張鋼材8が設置されて、その引張鋼材8に引張力が付加されるので、各コンクリート杭4、4’に直接圧縮力が付加されるので、設定された耐震性能を発揮できる圧縮力を正確に付加することができる。
In the seismic reinforcement method for the existing
図1では、コンクリート杭4、4’が支持地盤3上に支持される杭を例として、小口径孔6を杭下端の支持地盤3中まで延びるように穿孔したものを示したが、コンクリート杭4、4’を支持地盤3上で支持するものでなく周辺地盤との摩擦力で支持する摩擦杭の場合、孔6の穿孔は、支持地盤3まで延ばさなくても良い。
In FIG. 1, a
図2は、本発明の既設基礎1の耐震補強工法の第2実施形態を示す図である。
FIG. 2 is a diagram showing a second embodiment of the seismic reinforcement method for the existing
既設基礎1の耐震性能を向上するため、先ず、基礎フーチング5からコンクリート杭4、4’、4’’の杭間を通して、支持地盤3の所定深さまで延びる小口径孔6を小型穿孔機を用いて穿孔する。第2実施形態では、小口径孔6は、コンクリート杭4、4’ 、4’’の打設方向と平行に穿孔される。基礎フーチング5には補強鉄筋が配筋されているので、穿孔の際、補強鉄筋を切断しないように穿孔位置を設定する。
In order to improve the seismic performance of the existing
小型穿孔機による小口径孔6の穿孔は、基礎フーチング5、表層地盤2、支持地盤3中に形成される。支持地盤3中の穿孔の長さは、引張鋼材8が硬化材7により固定された後、ジャッキにより引張力を付加する際に、その引張力に耐える十分な定着力を有するように設定される。引張鋼材8の外周に凸凹を形成すると、硬化材7との定着性が向上する。
The small-
小型穿孔機による支持地盤3中への所定深さの小口径孔6の穿孔作業が終了すると、支持地盤3に形成された小口径孔6への未硬化の硬化材の充填工程となる。小型穿孔機のドリルパイプを通してグラウト材等の未硬化の硬化材7を供給可能な小型穿孔機の場合、小型穿孔機の掘削流体供給口にグラウト材注入管を接続し、ドリルパイプを引き上げながら、支持地盤3中の小口径孔6にグラウト等の未硬化の硬化材7を充填する。
When the drilling operation of the small-
グラウト注入ができない小型穿孔機の場合は、ドリルパイプを引き上げ後、グラウト供給管から未硬化の硬化材7を支持地盤3中の小口径孔6に充填する。未硬化の硬化材7が充填された支持地盤3中の小口径孔6に、未硬化の硬化材7が硬化する前に、引張鋼材8を挿入する。引張鋼材8としては、PC鋼線、PC撚り線、PC鋼棒等を用いる。引張鋼材8を支持地盤3中の小口径孔6に挿入した後、未硬化の硬化材6を支持地盤3中の小口径孔6に充填しても良いし、引張鋼材8の小口径孔6、6’、6’’への挿入工程と、未硬化の硬化材7の充填工程を同時に実施しても良い。
In the case of a small drilling machine that cannot inject grout, the uncured
支持地盤3中の孔6中の未硬化の硬化材7が硬化し、引張鋼材8の下端部が支持地盤3中の小口径孔6にしっかりと定着された後、引張鋼材8の上端部に、引張鋼材8を挿入する孔を形成した台座9を基礎フーチング5上に設置する。
After the uncured
台座9にジャッキを設置し、台座9を反力受けとしてジャッキにより引張鋼材8に引張力を付加する。引張鋼材8に引張力を付加することにより、既設コンクリート杭4、4’、4’’に反力として圧縮力が付加される。引張鋼材8に付加される引張力は、既設コンクリート杭4、4’、4’’に所望の耐震性能を発揮可能な圧縮力が付加されるように設定する。
A jack is installed on the
引張鋼材8に引張力を付加した状態で、引張鋼材8の上端部と台座9とをナット等の固定手段10で固定する。固定手段10として、溶接等の他の固定手段を用いても良い。
In a state where a tensile force is applied to the
第2実施形態の既設基礎1の耐震補強工法は、引張鋼材8がコンクリート杭4、4’、4’’の杭間に配置されるので、杭内部に引張鋼材8を配置する第1実施形態に比べて、引張鋼材8の設計配置の自由度が大きく、引張鋼材8に付加された引張力は基礎フーチング5を介した反力である圧縮力として既成コンクリート杭4、4’、4’’に付加される。
In the seismic reinforcement method for the existing
図2では、コンクリート杭が支持地盤3上に支持される杭を例として、小口径孔6を杭下端よりも下方の支持地盤3中まで延びるように穿孔したものを示したが、支持地盤3の上方に引張鋼材8を定着するのに十分な強度を備えた地盤が存在する場合、小口径孔6の穿孔は、コンクリート杭の下端部より下まで延ばさなくても良く、コンクリート杭の下端部と同じ位置か上方位置としても良い。また、杭基礎形式は、摩擦杭基礎であっても良い。
In FIG. 2, as an example of a pile in which the concrete pile is supported on the
図3は、本発明の既設基礎1の耐震補強工法の第3実施形態を示す図である。
FIG. 3 is a diagram showing a third embodiment of the seismic reinforcement method for the existing
既設基礎1の耐震性能を向上するため、先ず、基礎フーチング5からコンクリート杭4、4’、4’’の杭間を通して、支持地盤3の所定深さまで延びる小口径孔6を小型穿孔機を用いて穿孔する。第3実施形態では、コンクリート杭4、4’、4’’の打設方向と平行に穿孔される小口径孔6と、コンクリート杭4、4’、4’’の打設方向に対して傾斜して穿孔される小口径孔6’、6’’を穿孔する。基礎フーチング5には補強鉄筋が配筋されているので、穿孔の際、補強鉄筋を切断しないように穿孔位置を設定する。
In order to improve the seismic performance of the existing
小型穿孔機による小口径孔6、6’、6’’の穿孔は、基礎フーチング5、表層地盤2、支持地盤3中に形成される。支持地盤3中の穿孔の長さは、引張鋼材8が硬化材7により固定された後、ジャッキにより引張力を付加する際に、その引張力に耐える十分な定着力を有するように設定される。引張鋼材8の外周に凸凹を形成すると、硬化材7との定着性が向上する。
Drilling of small-
小型穿孔機による支持地盤3中への所定深さの小口径孔6、6’、6’’の穿孔作業が終了すると、支持地盤3に形成された小口径孔6、6’、6’’への未硬化の硬化材の充填工程となる。小型穿孔機のドリルパイプを通してグラウト材等の未硬化の硬化材7を供給可能な小型穿孔機の場合、小型穿孔機の掘削流体供給口にグラウト材注入管を接続し、ドリルパイプを引き上げながら、支持地盤3中の小口径孔6、6’、6’’にグラウト等の未硬化の硬化材7を充填する。
When the drilling operation of the small-
グラウト注入ができない小型穿孔機の場合は、ドリルパイプを引き上げ後、グラウト供給管から未硬化の硬化材7を支持地盤3中の小口径孔6、6’、6’’に充填する。未硬化の硬化材7が充填された支持地盤3中の小口径孔6、6’、6’’に、未硬化の硬化材7が硬化する前に、引張鋼材8を挿入する。引張鋼材8としては、PC鋼線、PC撚り線、PC鋼棒等を用いる。引張鋼材8を支持地盤3中の小口径孔6に挿入した後、未硬化の硬化材6を支持地盤3中の小口径孔6に充填しても良いし、引張鋼材8の小口径孔6、6’、6’’への挿入工程と、未硬化の硬化材7の充填工程を同時に実施しても良い。
In the case of a small drilling machine incapable of grout injection, after pulling up the drill pipe, the uncured
支持地盤3の小口径孔6、6’、6’’中の未硬化の硬化材7が硬化し、引張鋼材8の下端部が支持地盤3中の小口径孔6、6’、6’’にしっかりと定着された後、引張鋼材8の上端部に、引張鋼材8を挿入する孔を形成した台座9を基礎フーチング5上に設置する。既成コンクリート杭4、4’、4’’の打設方向に対して傾斜した小口径孔6’、6’’に配置された引張鋼材8に対応する台座9は、その表面が引張鋼材8の引張方向と直角になるような楔形状とする。
The uncured
台座9にジャッキを設置し、台座9を反力受けとしてジャッキにより引張鋼材8に引張力を付加する。引張鋼材8に引張力を付加することにより、既設コンクリート杭4、4’、4’’に反力として圧縮力が付加される。引張鋼材8に付加される引張力は、既設コンクリート杭4、4’、4’’に所望の耐震性能を発揮可能な圧縮力が付加されるように設定する。
A jack is installed on the
引張鋼材8に引張力を付加した状態で、引張鋼材8の上端部と台座9とをナット等の固定手段10で固定する。固定手段10として、溶接等の他の固定手段を用いても良い。
In a state where a tensile force is applied to the
第3実施形態の既設基礎1の耐震補強工法は、コンクリート杭4、4’、4’’の打設方向に対して平行に延びる引張鋼材8と、コンクリート杭4、4’、4’’の打設方向に対して傾斜して延びる引張鋼材8とを組み合わせて配置することで、地震時の多方向の応力に対して対応できる。図3では、杭間に引張鋼材8を配置するものを示したが、既設コンクリート杭4、4’、4’’が大径で、複数の引張鋼材の配置が可能であれば、第3実施形態のものを図1に示される第1実施形態に適用可能である。
The seismic reinforcement method for the existing
また、第1〜第3実施形態の既設コンクリート杭基礎の耐震補強工法を組み合わせて適用しても良い。 Moreover, you may apply combining the earthquake-proof reinforcement construction method of the existing concrete pile foundation of 1st-3rd embodiment.
図3では、コンクリート杭が支持地盤3上に支持される杭を例として、小口径孔6を杭下端よりも下方の支持地盤3中まで延びるように穿孔したものを示したが、支持地盤3の上方に引張鋼材8を定着するのに十分な強度を備えた地盤が存在する場合、小口径孔6の穿孔は、コンクリート杭の下端部より下まで延ばさなくても良く、コンクリート杭の下端部と同じ位置か上方位置としても良い。また、杭基礎形式は、摩擦杭基礎であっても良い。
In FIG. 3, as an example of a pile in which a concrete pile is supported on the
図4は、本発明の既設基礎1の耐震補強工法の作用を説明するための図である。
FIG. 4 is a diagram for explaining the operation of the seismic reinforcement method for the existing
RC杭(遠心力成形鉄筋コンクリート杭)、PHC杭(遠心力成形高強度プレストレストコンクリート杭)、PC杭(遠心力成形プレストレスト杭)、場所打RC杭は、図4に示されるような耐力曲線(M−N interaction curve)を有する。これらの杭は、地震時に発生する断面曲げモーメントM、断面圧縮軸力Nが三角形の耐力曲線内であれば、地震時の負荷に耐えることができる。既設コンクリート杭の耐力曲線に対して、地震時に発生する断面曲げモーメントMo,断面圧縮軸力Noとすると、MoとNoは、三角形の耐力曲線外に位置し、耐震補強をしないと既設コンクリート杭は、地震時の負荷に耐えることができない。 RC piles (centrifugal force-formed reinforced concrete piles), PHC piles (centrifugal force-formed high-strength prestressed concrete piles), PC piles (centrifugal force-formed prestressed piles), and cast-in-place RC piles have proof stress curves (M -N interaction curve). These piles can withstand the load at the time of earthquake if the cross-sectional bending moment M and the cross-sectional compressive axial force N generated during the earthquake are within the triangular yield curve. If the cross-sectional bending moment Mo generated during an earthquake and the cross-section compression axial force No are set against the strength curve of the existing concrete pile, Mo and No are located outside the triangular strength curve. Inability to withstand the load of an earthquake.
従来の増杭や地盤改良による耐震補強は、図4に示されるように、地震時に発生する断面曲げモーメントM0を三角形の耐力曲線内のM1にするものである。一方、本発明の既設コンクリート杭基礎の耐震補強は、既設コンクリート杭に予め圧縮力を付加することにより、断面圧縮軸力N0を曲げ耐力が耐力曲線内で最大値M2(Mmax)となるN2に増加するものである。地震時に断面圧縮軸力をN2とすることで、地震時の断面曲げモーメントMoを耐力曲線内として地震時の応力による既設コンクリート杭の破壊を防止するものである。 As shown in FIG. 4, the conventional seismic reinforcement by increasing piles or improving the ground is to change the sectional bending moment M0 generated at the time of the earthquake to M1 within the triangular yield curve. On the other hand, in the seismic reinforcement of the existing concrete pile foundation of the present invention, by applying a compressive force to the existing concrete pile in advance, the sectional compressive axial force N0 is changed to N2 where the bending strength becomes the maximum value M2 (Mmax) in the yield strength curve. It will increase. By setting the sectional compressive axial force to N2 at the time of the earthquake, the bending moment Mo at the time of the earthquake is within the proof curve, and the destruction of the existing concrete pile due to the stress at the time of the earthquake is prevented.
1:既設基礎、2:表層地盤、3:支持地盤、4、4’、4’’:コンクリート杭、5:基礎フーチング、6、6’、6’’:小口径孔、7:硬化材、8:引張鋼材、9:台座、10:固定手段 1: Existing foundation, 2: Surface ground, 3: Support ground, 4, 4 ′, 4 ″: Concrete pile, 5: Foundation footing, 6, 6 ′, 6 ″: Small-diameter hole, 7: Hardened material, 8: Tensile steel, 9: Pedestal, 10: Fixing means
Claims (6)
前記削孔された孔に未硬化の硬化材を充填し、引張鋼材を挿入する工程と、
前記未硬化の硬化材が硬化し、前記引張鋼材の下端部が前記硬化した硬化材により固定された後、前記引張鋼材に引張力を付加する工程と、
前記引張力を付加された前記引張鋼材の上端部を、前記既設基礎の上端部に固定部材を介して固定する工程と、
を有することを特徴とする既設基礎の耐震補強工法。 A step of drilling a hole extending into an installation ground of the existing foundation from an upper end portion of the existing foundation having a concrete pile for supporting a structure;
Filling the unbored hardened material into the drilled hole and inserting a tensile steel material;
A step of applying a tensile force to the tensile steel material after the uncured hardened material is cured and a lower end portion of the tensile steel material is fixed by the cured hardened material;
Fixing the upper end of the tensile steel to which the tensile force is applied to the upper end of the existing foundation via a fixing member;
Seismic reinforcement method for existing foundation, characterized by having
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008195708A JP5207047B2 (en) | 2008-07-30 | 2008-07-30 | Seismic reinforcement method for existing foundation and seismic reinforcement structure for existing foundation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008195708A JP5207047B2 (en) | 2008-07-30 | 2008-07-30 | Seismic reinforcement method for existing foundation and seismic reinforcement structure for existing foundation |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010031568A true JP2010031568A (en) | 2010-02-12 |
JP5207047B2 JP5207047B2 (en) | 2013-06-12 |
Family
ID=41736358
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008195708A Expired - Fee Related JP5207047B2 (en) | 2008-07-30 | 2008-07-30 | Seismic reinforcement method for existing foundation and seismic reinforcement structure for existing foundation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5207047B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011179220A (en) * | 2010-03-01 | 2011-09-15 | West Nippon Expressway Co Ltd | Method of stabilizing slope and landslide control steel pipe pile |
JP2017095864A (en) * | 2015-11-18 | 2017-06-01 | 新日鐵住金株式会社 | Foundation stable structure |
CN111456064A (en) * | 2020-04-03 | 2020-07-28 | 中交一公局集团有限公司 | Bridge steel pipe support foundation on bedding rock surface and processing method thereof |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110863522A (en) * | 2019-12-04 | 2020-03-06 | 盐城市朱庄城市开发建设有限公司 | Subsidence area building prevents sinking reinforced structure |
KR102488031B1 (en) * | 2022-08-16 | 2023-01-12 | 주식회사 에스와이텍 | Piled raft foundation application method using drawing apparatus and supporting apparatus, and assembly used to the same |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62268423A (en) * | 1986-05-16 | 1987-11-21 | Kajima Corp | Construction work of underground pile used in common for earth anchor |
JPH09316892A (en) * | 1996-05-30 | 1997-12-09 | Aruku Plan:Kk | Pile foundation reinforcing structure |
JPH1082056A (en) * | 1996-09-09 | 1998-03-31 | Maeda Corp | Method of earthquake-resisting pile foundation construction |
JPH1082057A (en) * | 1996-09-09 | 1998-03-31 | Maeda Corp | Method of earthquake-resisting pile foundation construction |
JPH10140583A (en) * | 1996-11-15 | 1998-05-26 | Fujita Corp | Aseismatic reinforcing method of existing structure foundation by micropile |
JPH10292393A (en) * | 1997-04-14 | 1998-11-04 | Taisei Corp | Method for reinforcing foundation of existing structure |
JP2001288758A (en) * | 2000-04-04 | 2001-10-19 | Nishimatsu Constr Co Ltd | Footing earthquake resistant construction and footing earthquake resistance reinforcing method |
-
2008
- 2008-07-30 JP JP2008195708A patent/JP5207047B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62268423A (en) * | 1986-05-16 | 1987-11-21 | Kajima Corp | Construction work of underground pile used in common for earth anchor |
JPH09316892A (en) * | 1996-05-30 | 1997-12-09 | Aruku Plan:Kk | Pile foundation reinforcing structure |
JPH1082056A (en) * | 1996-09-09 | 1998-03-31 | Maeda Corp | Method of earthquake-resisting pile foundation construction |
JPH1082057A (en) * | 1996-09-09 | 1998-03-31 | Maeda Corp | Method of earthquake-resisting pile foundation construction |
JPH10140583A (en) * | 1996-11-15 | 1998-05-26 | Fujita Corp | Aseismatic reinforcing method of existing structure foundation by micropile |
JPH10292393A (en) * | 1997-04-14 | 1998-11-04 | Taisei Corp | Method for reinforcing foundation of existing structure |
JP2001288758A (en) * | 2000-04-04 | 2001-10-19 | Nishimatsu Constr Co Ltd | Footing earthquake resistant construction and footing earthquake resistance reinforcing method |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011179220A (en) * | 2010-03-01 | 2011-09-15 | West Nippon Expressway Co Ltd | Method of stabilizing slope and landslide control steel pipe pile |
JP2017095864A (en) * | 2015-11-18 | 2017-06-01 | 新日鐵住金株式会社 | Foundation stable structure |
CN111456064A (en) * | 2020-04-03 | 2020-07-28 | 中交一公局集团有限公司 | Bridge steel pipe support foundation on bedding rock surface and processing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP5207047B2 (en) | 2013-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101105377B1 (en) | Seismic strenthening structure and working pocess using micro-pile | |
KR100869815B1 (en) | Apparatus to upgrade end bearing capacity of pile and pile construction method | |
JP5274145B2 (en) | Cast-in-place pile and its construction method | |
JP5207047B2 (en) | Seismic reinforcement method for existing foundation and seismic reinforcement structure for existing foundation | |
JP2016216975A (en) | Installation method of earth anchor | |
JP4852450B2 (en) | Reinforcing method of existing building and reinforcing structure of existing building | |
JP2011179220A (en) | Method of stabilizing slope and landslide control steel pipe pile | |
JP2011236705A (en) | Foundation structure of structure and method of constructing the same | |
KR101500087B1 (en) | Foundation slab reinforcement method for integral behavior with existing building and structure of the same | |
JP5145738B2 (en) | Seismic construction method for structures, seismic structure for structures | |
JP3899094B2 (en) | Foundation reinforcement method for existing structures by press-fitting steel pipe piles | |
JP4181192B2 (en) | Ground anchor and ground anchor method | |
JP6172501B2 (en) | Seismic reinforcement structure and seismic reinforcement method | |
KR101138499B1 (en) | Method for Head Setting of Micro-Pile and Apparatus for the Same | |
JP5894421B2 (en) | Composite pile and composite pile construction method | |
KR102407964B1 (en) | Construction method of cast-in-place concrete piles with improved bearing capacity by constructing shear keys in rock mass | |
JP4833949B2 (en) | Concrete integrated structure pillar | |
JP2019218795A (en) | Joint structure of foundation pile and foundation slab | |
KR20180131042A (en) | Pile and method for constucting same | |
JP5036775B2 (en) | Construction method of cast-in-place concrete pile or cylindrical ground improvement body | |
JP3887248B2 (en) | Support structure for concrete foundation | |
JP6000414B2 (en) | Pile foundation reconstruction method and pile foundation structure | |
KR101161844B1 (en) | Method for constructing micro pile | |
JP7486996B2 (en) | Reinforcement method and structure for masonry structures | |
JP6673695B2 (en) | Construction method of mountain retaining wall and mountain retaining wall |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110303 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120606 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120613 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120727 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130206 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160301 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |