JP2010031446A - Method for producing dyed woven and knit fabric - Google Patents

Method for producing dyed woven and knit fabric Download PDF

Info

Publication number
JP2010031446A
JP2010031446A JP2009163867A JP2009163867A JP2010031446A JP 2010031446 A JP2010031446 A JP 2010031446A JP 2009163867 A JP2009163867 A JP 2009163867A JP 2009163867 A JP2009163867 A JP 2009163867A JP 2010031446 A JP2010031446 A JP 2010031446A
Authority
JP
Japan
Prior art keywords
yarn
dyed
false twisted
twisted yarn
false
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009163867A
Other languages
Japanese (ja)
Inventor
Katsumi Baba
克巳 馬場
Shinichiro Kito
真一郎 亀頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2009163867A priority Critical patent/JP2010031446A/en
Publication of JP2010031446A publication Critical patent/JP2010031446A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing dyed woven and knit fabrics by dyeing processing fabrics made by weaving and knitting a false twisted yarn capable of bringing dyed quality of the woven and knit fabric by weakening periodic color concentration difference inherited to the dyed woven and knit fabric made of a superfine filament false twisted yarn and improving the color difference into an almost invisible level. <P>SOLUTION: The method for producing the dyed woven and knit fabric by dyeing processing the fabric made by weaving and knitting a false twisted yarn is provided. The false twist-processed yarn has a monofilament fineness of not more than 0.8 [dtex], comprises polyester multi-filaments selected from polyethylene terephthalates, polytrimethylene terephthalates, polybutylene terephthalates and polyethylene isophthalates, and is a drawn yarn untreated by fluid entangling. The method for producing the dyed woven and knit fabric is (a) to bring spaces between or among two or more discharge holes installed in a spinneret to be large, (b) to bring the arrangement of the discharge holes to have high air penetration or (c) to shorten the distance from the discharge surface of the spinneret to a position to which air-cooled air is blown so that the yarn has a CV value of digitized 5,000 data not more than 1.0[%] when the false twist-processed yarn is dyed in a dyeing tank in which a blue color official approval dye and a dispersing agent are dissolved in water and which is held at 95°C and the variance of the dyed concentration in the fiber axial direction of the yarn is measured by an FYL analyzer, or the yarn has a maximum value in 3-30 m power spectrum wavelength obtained by the Fourier analysis of digitized data measured by the FYL analyzer not more than 25[-]. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は仮撚加工糸を製編織した布帛を染色加工してなる染色織編物の製造方法に関し、更に詳しくは繊維軸方向の染色濃度バラツキが少なく織編物に使用した際に均斉な外観を与える極細フィラメントから構成された仮撚加工糸を製編織した布帛を染色加工してなる染色織編物の製造方法に関する。   The present invention relates to a method for producing a dyed woven or knitted fabric obtained by dyeing a fabric obtained by knitting or knitting false twisted yarn. More specifically, the present invention provides a uniform appearance when used in a woven or knitted fabric with less variation in dye density in the fiber axis direction. The present invention relates to a method for producing a dyed woven or knitted fabric obtained by dyeing a fabric obtained by knitting or knitting false twisted yarn composed of ultrafine filaments.

仮撚加工は熱可塑性合成繊維マルチフィラメントを嵩高化手段の最も合理的な手段として広く利用されている。スポーツ衣料分野等で利用される極細フィラメントから構成された仮撚加工糸も上市されている。近年、コスト追求の観点から摩擦仮撚施撚体を用いた高速延伸同時仮撚加工糸も展開されている。極細フィラメントはその溶融紡糸工程において一定の紡糸口金面積に多くの吐出孔を設ける必要があり、ポリマーを溶融吐出後空冷する際の風の貫通性が悪く、紡糸口金直下での細化現象が不均斉になりやすいため、繊維軸方向に周期的な繊度斑を生じ易い問題がある(いわゆるレゾナンス周期斑)。   False twisting is widely used as the most rational means of bulking thermoplastic synthetic fiber multifilaments. False twisted yarns made of ultrafine filaments used in the sports clothing field are also on the market. In recent years, high-speed drawing simultaneous false twisting yarn using a friction false twisted twisted body has also been developed from the viewpoint of cost pursuit. Extra-fine filaments need to be provided with many discharge holes in a fixed spinneret area in the melt spinning process, and the penetration of the air when the polymer is melt-discharged and then air-cooled is poor, and thinning phenomenon directly under the spinneret is not good. Since it tends to be uniform, there is a problem that periodic fineness spots tend to occur in the fiber axis direction (so-called resonance periodic spots).

その様な繊維軸方向に周期的な繊度斑を有する極細フィラメントから構成された高配向未延伸マルチフィラメントを延伸同時仮撚した仮撚加工糸を筒編染色評価すると、繊維軸方向に周期的な濃淡差(トラ縞、バンド縞等と呼ぶ)を生じる。特にその延伸同時仮撚が摩擦仮撚施撚体を用いた高速延伸同時仮撚の場合、加撚張力、解撚張力に高配向未延伸マルチフィラメントの有する繊度斑周期に設定延伸倍率が加味された周期性の変動が明瞭に起こり、その加工糸から得られる染色筒編地は加撚張力、解撚張力変動にほぼ一致した強い周期性の濃淡差を示すものとなる。   When the false twisted yarn obtained by co-stretching false twisted yarns of highly oriented unstretched multifilaments composed of ultrafine filaments having periodic fineness irregularities in the fiber axis direction is evaluated by cylindrical knitting dyeing, Differences in density (called tiger stripes, band stripes, etc.) are produced. In particular, in the case of high-speed simultaneous simultaneous false twist using a friction false-twisted twisted body, the simultaneous draw-stretching is performed by adding the set draw ratio to the fineness unevenness period of the highly oriented unstretched multifilament in twisting and untwisting tension. Variations in the periodicity clearly occur, and the dyed cylinder knitted fabric obtained from the processed yarn exhibits a strong periodicity difference that substantially matches the twisting and untwisting tension variations.

筒編地に強い周期性濃淡差が見られるような仮撚加工糸を使用して染色織編物製品を得ると見苦しい縞、筋の問題を持つものとなるため、高配向未延伸マルチフィラメントの周期的繊度斑を小さくしようと溶融紡糸工程の条件を設定しているが、織編物製品でひどい縞、筋に見えない程度の濃淡差は許容範囲として生産されている極細フィラメント仮撚加工糸が多くある。   Highly oriented unstretched multifilament cycles can result in unsightly streaks and streak problems when dyed woven knitted products are obtained using false-twisted yarns that show a strong periodic shading difference in the tubular knitted fabric. Although the conditions of the melt spinning process are set in order to reduce the unevenness of the fineness, there are many ultra-fine filament false twisted yarns that are produced within an acceptable range of woven and knitted products that are not allowed to have severe streaks and shade differences. is there.

本発明は前記の課題を解決しようとするものであって、極細フィラメントの仮撚加工糸の染色織編物が持つ周期的な濃淡差を弱め、殆ど見えないレベルにまで向上させて、織編物製品の染色品位を均斉にできる仮撚加工糸を製編織した布帛を染色加工してなる染色織編物の製造方法を提供しようとするものである。   The present invention is intended to solve the above-mentioned problems, and reduces the periodic shading difference of dyed woven or knitted fabric of false-twisted yarn of ultrafine filaments, and improves it to a level that is almost invisible. It is an object of the present invention to provide a method for producing a dyed woven or knitted fabric obtained by dyeing a fabric obtained by knitting or knitting false twisted yarn capable of uniform dyeing quality.

上記課題を解決するための手段、即ち、本発明の第1は、仮撚加工糸を製編織した布帛を染色加工してなる染色織編物の製造方法であって、仮撚加工糸は、単繊維繊度が0.8[dtex]以下で、かつポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンイソフタレートから選ばれるポリエステルマルチフィラメントよりなり、かつ流体交絡処理されていない延伸糸であり、前記仮撚加工糸をブルー色相検定染料と分散剤を水に溶解させ95℃に保った染色槽で染色させ、FYLアナライザーで糸の繊維軸方向における染色濃度のバラツキを測定した際に、デジタル化した5000個のデータのCV値が1.0[%]以下となるように、(a)紡糸口金に設ける複数ケの吐出孔各々の間隔を広くする、(b)風の貫通性が高くなる吐出孔配列とする、あるいは、(c)紡糸口金吐出面から空冷による風が送られる地点までの距離を短くする、ことを特徴とする染色織編物の製造方法である。
その第2は、仮撚加工糸を製編織した布帛を染色加工してなる染色織編物の製造方法であって、仮撚加工糸は、単繊維繊度が0.8[dtex]以下で、かつポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンイソフタレートから選ばれるポリエステルマルチフィラメントよりなり、かつ流体交絡処理されていない延伸糸であり、前記仮撚加工糸をブルー色相検定染料と分散剤を水に溶解させ95℃に保った染色槽で染色させ、FYLアナライザーで糸の繊維軸方向における染色濃度の変動の周期性を測定した際に、デジタル化したデータをフーリエ解析して得たパワースペクトルの波長3〜30mの範囲内における最大値が25[−]以下となるように、(a)紡糸口金に設ける複数ケの吐出孔各々の間隔を広くする、(b)風の貫通性が高くなる吐出孔配列とする、あるいは、(c)紡糸口金吐出面から空冷による風が送られる地点までの距離を短くする、ことを特徴とする染色織編物の製造方法である。
その第3は、前記仮撚加工糸をブルー色相検定染料と分散剤を水に溶解させ95℃に保った染色槽で染色させ、FYLアナライザーで糸の繊維軸方向における染色濃度の変動の周期性を測定した際に、デジタル化したデータをフーリエ解析して得たパワースペクトルの波長3〜30mの範囲内における最大値が25[−]以下である第1に記載の染色織編物の製造方法である。
その第4は、仮撚加工糸を構成するフィラメントの単繊維繊度が0.4[dtex]以下である第1〜3のいずれかに記載の染色織編物の製造方法である。
Means for solving the above-mentioned problem, that is, the first of the present invention is a method for producing a dyed woven or knitted fabric obtained by dyeing a fabric obtained by knitting or knitting false twisted yarn. It is a drawn yarn having a fiber fineness of 0.8 [dtex] or less and comprising a polyester multifilament selected from polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, and polyethylene isophthalate, and is not subjected to fluid entanglement treatment, When the false twisted yarn was dyed in a dyeing tank in which a blue hue test dye and a dispersant were dissolved in water and maintained at 95 ° C., and the dispersion of the dye density in the fiber axis direction of the yarn was measured with an FYL analyzer, it was digitized (A) Each of a plurality of discharge holes provided in the spinneret so that the CV value of 5000 pieces of data is 1.0 [%] or less. The interval is widened, (b) a discharge hole arrangement with high wind penetration, or (c) the distance from the spinneret discharge surface to the point where air is sent by air cooling is shortened. This is a method for producing a dyed woven or knitted fabric.
The second is a method for producing a dyed woven or knitted fabric obtained by dyeing a fabric obtained by knitting or knitting false twisted yarn, wherein the false twisted yarn has a single fiber fineness of 0.8 [dtex] or less, and It is a drawn yarn that is made of a polyester multifilament selected from polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, and polyethylene isophthalate, and has not been subjected to fluid entanglement treatment.The false twisted yarn is treated with a blue hue test dye and a dispersant. Power spectrum obtained by Fourier analysis of digitized data when dyed in a dyeing tank dissolved in water and kept at 95 ° C. and measured with a FYL analyzer the periodicity of fluctuations in dye density in the fiber axis direction (A) It is provided in the spinneret so that the maximum value within the range of 3 to 30 m is 25 [−] or less. Increase the interval between several discharge holes, (b) use a discharge hole arrangement that increases the wind penetration, or (c) shorten the distance from the spinneret discharge surface to the point where air is sent by air cooling. This is a method for producing a dyed woven or knitted fabric.
Thirdly, the false twisted yarn is dyed in a dyeing tank in which a blue hue test dye and a dispersant are dissolved in water and maintained at 95 ° C., and the periodicity of the fluctuation of the dye density in the fiber axis direction of the yarn is measured with an FYL analyzer. In the method for producing a dyed woven or knitted fabric according to the first aspect, the maximum value in the wavelength range of 3 to 30 m of the power spectrum obtained by Fourier analysis of the digitized data is 25 [−] or less. is there.
The fourth is a method for producing a dyed woven or knitted fabric according to any one of the first to third aspects, wherein the filament constituting the false twisted yarn has a single fiber fineness of 0.4 [dtex] or less.

本発明は従来の極細フィラメントから構成された仮撚加工糸による織編物製品でひどい縞、筋に見えない程度の濃淡差は許容範囲として生産されていたのに対し、繊維軸方向の染色濃度斑の程度及び/又は周期性を極めて厳しい評価基準に合格させた仮撚加工糸を用いることによって、織編物に極めて均斉な染色品位を与えることができる。スポーツ衣料用途や婦人衣料用途等の織編物として好適であり、ソフトで美しく均斉な染色品位が得られる。   The present invention is a woven or knitted product made of false twisted yarns composed of ultrafine filaments, and it was produced as an acceptable range of shade differences that were not visible to streaks and streaks. By using a false twisted yarn that has passed an extremely strict evaluation standard for the degree and / or periodicity, a very uniform dyeing quality can be imparted to the woven or knitted fabric. It is suitable as a woven or knitted fabric for sports apparel and women's apparel, and provides a soft, beautiful and uniform dyeing quality.

本発明で用いる仮撚加工糸をFYLアナライザーで測定しデジタル化したデータをフーリエ解析して得たパワースペクトルの波長3〜30m内最大値を求める際に描くグラフ(スペクトログラム)の好ましい例を示す。The preferable example of the graph (spectrogram) drawn when calculating | requiring the maximum value in the wavelength 3-30m of the power spectrum obtained by Fourier-analyzing the data which measured the digitized yarn used by this invention with the FYL analyzer and digitized it is shown. 本発明で用いる仮撚加工糸をFYLアナライザーで測定しデジタル化したデータをフーリエ解析して得たパワースペクトルの波長3〜30m内最大値を求める際に描くグラフ(スペクトログラム)の好ましくない例を示す。An unfavorable example of a graph (spectrogram) drawn when obtaining a maximum value within a wavelength of 3 to 30 m of a power spectrum obtained by Fourier-analyzing data obtained by measuring a false twisted yarn used in the present invention with an FYL analyzer. .

本発明で言う熱可塑性合成繊維マルチフィラメントとは熱可塑性を有するポリマーからなるマルチフィラメントであり、ポリエステルを指す。具体的にはポリエチレンテレフトレート、ポリトリメチレンテレフトレート、ポリブチレンテレフトレート、ポリエチレンイソフタレート等が該当する。これらに少量の重合体や酸化防止剤、制電剤、顔料、艶消し剤、蛍光増白剤、微細孔形成剤、その他の添加剤等が含有されていても良い。但し、極細フィラメントからなるマルチフィラメントを安定的に溶融紡糸する上で、ポリエステルは好ましく、もっとも好ましくはポリエチレンテレフタレートである。   The thermoplastic synthetic fiber multifilament referred to in the present invention is a multifilament made of a polymer having thermoplasticity, and refers to polyester. Specific examples include polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, and polyethylene isophthalate. These may contain a small amount of a polymer, an antioxidant, an antistatic agent, a pigment, a matting agent, a fluorescent brightening agent, a micropore forming agent, other additives, and the like. However, polyester is preferable, and polyethylene terephthalate is most preferable in stably melt-spinning multifilaments made of ultrafine filaments.

本発明で用いる仮撚加工糸は前記のような熱可塑性合成ポリマーを紡糸して得たマルチフィラメントに仮撚加工されてなる。仮撚加工糸を構成するフィラメントの単繊維繊度は0.8[dtex]以下であることが必要である。0.8[dtex]より単繊維繊度が大きいと、スポーツ衣料用途織物の耐水圧が満足しづらくなり、風合いも硬く好ましくない。更に好ましくは0.4[dtex]以下である。但し、あまりにも単繊維繊度が小さくなり過ぎると仮撚加工時の糸切れや仮撚加工糸の毛羽が増え、製編織性が悪くなるので0.1[dtex]以上であることが好ましい。   The false twisted yarn used in the present invention is false twisted into a multifilament obtained by spinning the thermoplastic synthetic polymer as described above. The single fiber fineness of the filament constituting the false twisted yarn needs to be 0.8 [dtex] or less. When the single fiber fineness is larger than 0.8 [dtex], it becomes difficult to satisfy the water pressure resistance of the fabric for sports clothing, and the texture is hard, which is not preferable. More preferably, it is 0.4 [dtex] or less. However, if the fineness of the single fiber is too small, yarn breakage during false twisting and fuzz of false twisted yarn increase, and the knitting property deteriorates. Therefore, it is preferably 0.1 [dtex] or more.

本発明で用いる仮撚加工糸はFYLアナライザーで測定し、デジタル化した5000個データのCV値が1.0[%]以下であるか、あるいはFYLアナライザーで測定したデータをフーリエ解析して得たパワースペクトルの波長3〜30m内最大値が25[−]以下であることが必要である。   The false twisted yarn used in the present invention was measured with an FYL analyzer, and the digitized CV value of 5000 pieces of data was 1.0% or less, or the data measured with the FYL analyzer was obtained by Fourier analysis. It is necessary that the maximum value within a wavelength of 3 to 30 m of the power spectrum is 25 [−] or less.

FYLアナライザーは糸の繊維軸方向の染色濃度を連続的に測定する装置で、そのアナログデータを市販のADコンバーターでデジタルデータに変換してパソコンに記録することができる。このデータ5000個のCV値が小さいことは糸の繊維軸方向の染色濃度バラツキが小さいことを意味する。(詳細測定法は後述する。)市販されている極細フィラメント仮撚加工糸のCV値は1.5[%]程度であることが多い。後述のパワースペクトルのレベルにもよるが、CV値が1.5[%]レベルの加工糸を筒編染色評価すれば、一見しても欠点と取られる様な強い濃淡差にはならないが、まじまじと見るとうっすら濃淡差を持っていることがわかる。このCV値が1.5[%]レベルの仮撚加工糸を織物の緯糸に使用し製織後染色すると、欠点に取られる程ではないが、うっすら縞、筋状の濃淡差を感じ、好ましくない。CV値が2.0[%]より大きい加工糸は染色筒編地を一見して濃淡差が強く不合格となる。もちろん織物に使用した場合は筋、縞の欠点となり、不合格品と判定される。CV値が1.0[%]以下の場合、染色筒編地をまじまじと見ても濃淡差を感じることはなく、織物に使用し染色して、まじまじと見ても、殆ど縞、筋状の濃淡差を感じない好ましい均斉なものとなる。   The FYL analyzer is a device that continuously measures the dye density in the direction of the fiber axis of the yarn. The analog data can be converted into digital data by a commercially available AD converter and recorded on a personal computer. The small CV value of 5000 data means that the variation in the dye density in the fiber axis direction of the yarn is small. (Detailed measurement method will be described later.) The CV value of commercially available ultrafine filament false twisted yarn is often about 1.5 [%]. Although it depends on the level of the power spectrum described later, if the processed yarn having a CV value of 1.5 [%] is evaluated by cylindrical knitting dyeing, it will not be a strong shade difference that seems to be regarded as a defect at first glance, If you look seriously, you can see that there is a slight contrast. When this false twisted yarn having a CV value of 1.5% is used as a weft of a woven fabric and dyeing is performed after weaving, it is not so bad that it is taken to the fault, but it is not preferable because it feels a slight stripe or streak difference. . A processed yarn having a CV value larger than 2.0 [%] has a strong shading difference at a glance, and fails. Of course, when it is used for textiles, it becomes a defect of streaks and stripes and is judged as a rejected product. When the CV value is 1.0 [%] or less, even if the dyed tube knitted fabric is viewed seriously, there is no difference in shading. It becomes a preferable uniform thing which does not feel the difference of light and shade.

一方、FYLアナライザーで測定したアナログデータをADコンバーターでデジタルデータに変換し、パソコンに集積すれば、市販のソフトを用いてフーリエ解析し、パワースペクトルが得られる。特定波長(糸長)のパワースペクトルが小さいことは繊維軸方向の染色濃度変動の周期性が弱いことを意味する。極細フィラメント特有の問題点として、吐出孔から溶融吐出し空冷する際の冷却不良による周期的な繊度斑が起こり易いことがあげられる。未延伸マルチフィラメントを延伸後、又は延伸と同時に仮撚加工すると問題となる周期性はその紡糸速度と延伸倍率に依存するが、3〜30mレベルになる。その波長3〜30m内のパワースペクトルの最大値が25[−]以下であれば、染色濃度変動が周期的に現われにくく、結果的に染色筒編地や染色織物に縞を感じにくくなり、好ましい。 パワースペクトルが25[−]より強いと前記のCV値レベルにもよるが、染色筒編地や緯糸に使用した染色織物に縞状の濃淡差がうっすら見える様になり、好ましくない。パワースペクトルが30[−]より強いとCV値レベルにもよるが、緯糸に使用した染色織物は縞欠点により不合格判断となる場合が多い。第1図は横軸に波長、縦軸にパワースペクトルを取ったグラフ(スペクトログラム)を示しているが、波長3〜30m内でパワースペクトルが25[−]以上を示す部分はなく、本発明において好ましい仮撚加工糸を測定した場合の例である。第2図は別の仮撚加工糸を測定したスペクトログラムを示すが、波長約12mの部分において、パワースペクトルが25[−]を越え、33[−]程度になっており、本発明中において好ましくないものである。   On the other hand, if analog data measured with an FYL analyzer is converted into digital data with an AD converter and integrated in a personal computer, a power spectrum is obtained by performing Fourier analysis using commercially available software. A small power spectrum at a specific wavelength (yarn length) means that the periodicity of the dye density variation in the fiber axis direction is weak. A problem peculiar to ultrafine filaments is that periodic fineness spots are likely to occur due to poor cooling when melted and discharged from the discharge holes and air-cooled. The periodicity which becomes a problem when false twisting is performed after stretching an unstretched multifilament or simultaneously with stretching depends on the spinning speed and the stretching ratio, but is on the 3-30 m level. If the maximum value of the power spectrum within the wavelength range of 3 to 30 m is 25 [−] or less, the dye density fluctuation is less likely to appear periodically, and as a result, it is difficult to feel stripes on the dyed cylinder knitted fabric or dyed fabric, which is preferable. . If the power spectrum is stronger than 25 [-], although depending on the CV value level, a striped shading difference appears slightly on the dyed fabric used for the dyed tube knitted fabric and the weft, which is not preferable. If the power spectrum is stronger than 30 [-], depending on the CV value level, dyed fabrics used for wefts often fail due to fringe defects. FIG. 1 shows a graph (spectrogram) in which the horizontal axis indicates the wavelength and the vertical axis indicates the power spectrum. However, there is no portion where the power spectrum indicates 25 [−] or more within the wavelength range of 3 to 30 m. It is an example at the time of measuring a preferable false twisted yarn. FIG. 2 shows a spectrogram obtained by measuring another false twisted yarn. The power spectrum exceeds 25 [−] and is about 33 [−] at a wavelength of about 12 m, which is preferable in the present invention. There is nothing.

前記のCV値が1.0[%]以下であることとパワースペクトルが25[−]以下であることの両者を満足する仮撚加工糸は染色織編物の均斉さにおいて申し分なく、極めて好ましい加工糸である。   The false twisted yarn satisfying both the CV value of 1.0 [%] or less and the power spectrum of 25 [−] or less is satisfactory in the uniformity of the dyed woven or knitted fabric, and is a very preferable processing. It is a thread.

本発明で用いる仮撚加工糸は未延伸マルチフィラメントを摩擦仮撚施撚体で延伸同時仮撚されていることが好ましい。高速生産性の点で未延伸マルチフィラメントの摩擦仮撚施撚体による延伸同時仮撚は優れており、コスト低減に有効である。   The false twisted yarn used in the present invention is preferably obtained by simultaneously drawing an undrawn multifilament with a false false twisted twisted body. From the viewpoint of high-speed productivity, the simultaneous drawing of undrawn multifilament with a false false twisted twisted body is excellent and effective in reducing costs.

本発明で用いる仮撚加工糸のトータル繊度は10[dtex]〜300[dtex]程度が好ましい。また、仮撚加工に供給するマルチフィラメントの構成フィラメント断面形状は通常の丸断面の他、多葉断面、多角断面、偏平断面、中空断面の他、特殊異形断面等、紡糸操業性、仮撚操業性を害しないものであれば、どのようなものも適用可能である。仮撚加工糸を構成するフィラメントの断面はねじり変形によるフィラメント間接触により断面変形を受けたものとなることが多い。仮撚加工糸の捲縮特性は1段ヒーター仮撚の場合と2段ヒーターによりスタビライズ処理した場合で異なるが、後述の方法による捲縮発現率が5〜60[%]であることが好ましい。   The total fineness of the false twisted yarn used in the present invention is preferably about 10 [dtex] to 300 [dtex]. In addition, the cross-sectional shape of the multifilament supplied to false twisting is not limited to the usual round cross-section, but also multi-leaf cross-section, polygonal cross-section, flat cross-section, hollow cross-section, special deformed cross-section, etc., spinning operability, false twist operation Anything is applicable as long as it does not harm sex. In many cases, the cross section of the filament constituting the false twisted yarn has undergone cross section deformation due to contact between the filaments due to torsion deformation. The crimp characteristics of the false twisted yarn are different depending on whether the first-stage heater false-twist or the second-stage heater is stabilized, but the crimp expression rate according to the method described later is preferably 5 to 60 [%].

本発明で用いる仮撚加工糸を製造する方法は特に限定されないが、一例を説明する。本発明で用いる仮撚加工糸は熱可塑性合成ポリマーを溶融紡糸設備で紡糸し、延伸後仮撚加工するか、又は延伸同時仮撚することにより得られる。仮撚加工糸を構成するフィラメントの単繊維繊度が0.8[dtex]以下であることが必要である。仮撚加工糸のFYLデータCV値を小さくし、パワースペクトルの波長3〜30m内最大値を小さくするためには、溶融紡糸工程において、溶融吐出されたフィラメントの細化現象を均斉にして未延伸マルチフィラメントの繊維軸方向の周期的な繊度斑を小さくすることが重要である。未延伸マルチフィラメントの後述の測定法によるURI値が2.5[%]以下であり、2〜20m程度の波長部分のパワースペクトルが弱いことが好ましい。そのためには紡糸口金に設けられた複数ケの吐出孔各々の間隔を広くすることや風の貫通性が高くなる吐出孔配列とすることが効果的である。また、紡糸口金吐出面から空冷による風が送られる地点までの距離を短くすることが有効で、風速は紡糸操業性を害しない程度に大きくすることが好ましい。 但し、紡糸口金吐出面が冷却され温度が低下すると操業性や未延伸マルチフィラメントの力学的特性を害するので、必要に応じて紡糸口金を保温するヒーターを使用すること、風の向きを一定に保つ様な整流板を設けることなどの工夫は有効である。未延伸マルチフィラメントにはなるべく均斉に適宜油剤を付与して巻き取られる。   Although the method of manufacturing the false twisted yarn used in the present invention is not particularly limited, an example will be described. The false twisted yarn used in the present invention can be obtained by spinning a thermoplastic synthetic polymer in a melt spinning facility and performing false twisting after stretching, or by simultaneous false twisting. It is necessary that the single fiber fineness of the filament constituting the false twisted yarn is 0.8 [dtex] or less. In order to reduce the FYL data CV value of false twisted yarn and reduce the maximum value within the 3 to 30 m wavelength of the power spectrum, in the melt spinning process, the thinning phenomenon of melted and discharged filaments is made uniform and unstretched It is important to reduce periodic fineness spots in the fiber axis direction of the multifilament. It is preferable that the unstretched multifilament has a URI value of 2.5 [%] or less according to the measurement method described later, and has a weak power spectrum at a wavelength portion of about 2 to 20 m. For this purpose, it is effective to widen the intervals between the plurality of discharge holes provided in the spinneret and to form a discharge hole array that enhances air penetration. It is also effective to shorten the distance from the spinneret discharge surface to the point where the air-cooled wind is sent, and the wind speed is preferably increased to such an extent that the spinning operability is not impaired. However, if the spinneret discharge surface is cooled and the temperature is lowered, the operability and mechanical properties of the unstretched multifilament will be impaired. Use a heater that keeps the spinneret warm as necessary, and keep the wind direction constant. A device such as providing such a current plate is effective. The unstretched multifilament is wound by applying an appropriate oil agent as uniformly as possible.

未延伸マルチフィラメントを延伸して延伸糸を得た後、仮撚する場合には紡糸速度は特に限定されず、1000〜4000[m/min]で紡糸巻き取りを行う。紡糸巻き取り後の未延伸マルチフィラメントはガラス転移温度近傍の温度で適宜延伸し、延伸マルチフィラメントとなる。延伸中に熱セットを施して熱収縮率を適宜調節することができる。紡糸と延伸を連続させて延伸糸を得た後、仮撚加工しても良い。未延伸マルチフィラメントを延伸同時仮撚する場合には延伸同時仮撚時の糸掛け性や未延伸マルチフィラメントの経時変化の観点からあまりに遅いことは好ましくなく、1800〜4000[m/min]の紡糸巻き取り速度が好ましい。仮撚施撚体はピンスピンドルタイプ、旋回流エアノズルタイプ、摩擦仮撚施撚体タイプ(3軸外接式摩擦仮撚タイプ、交差ベルト式ニップ仮撚タイプ)等が使用できるが、高速生産性の観点からは未延伸マルチフィラメントを、摩擦仮撚施撚体を用いて延伸同時仮撚することが好ましい。仮撚加工は1段ヒーターでも良いし、2段ヒーター仮撚してスタビライズ処理しても良い。1段目ヒーター(仮撚熱固定ヒーター)出口での糸温度はポリマーの種類や延伸糸を仮撚加工する場合と未延伸糸を延伸同時仮よりする場合等で若干異なるが、140〜220[℃]程度が好ましい。2段目ヒーター(残留トルク減殺、捲縮スタビライズヒーター)を用いてスタビライズ処理する場合は、2段目ヒーターの温度を160〜220[℃]程度に設定し、2段目ヒーターゾーンのフィード率を5〜20[%]程度の弛緩状態とすることが好ましい。仮撚加工時の仮撚数はポリマーの種類にもよるが、ピンスピンドルタイプの場合、仮撚数[T/m]×√加工糸dtexが26000〜34000程度が好ましい。仮撚解撚後、巻き取りまでの間で流体交絡処理することは巻形状不良の防止、仮撚加工糸解舒性の向上、後工程での取扱い性向上の観点から好ましい。巻き取り前に適宜オイリングしておくことにより、解舒性、後工程での取扱い性が向上する。   In the case of false twisting after drawing an undrawn multifilament to obtain a drawn yarn, the spinning speed is not particularly limited, and the winding is performed at 1000 to 4000 [m / min]. The unstretched multifilament after spinning and winding is appropriately stretched at a temperature near the glass transition temperature to become a stretched multifilament. It is possible to appropriately adjust the heat shrinkage rate by performing heat setting during stretching. After spinning and drawing are continued to obtain a drawn yarn, false twisting may be performed. When undrawn multifilaments are drawn simultaneously with false twisting, it is not preferable that the yarn is too slow from the viewpoint of the threading property at the time of drawn simultaneous false twisting and the change over time of the undrawn multifilament, and spinning at 1800 to 4000 [m / min]. Winding speed is preferred. For the false twisted body, pin spindle type, swirl flow air nozzle type, friction false twisted twisted body type (3-axis circumscribed friction false twist type, cross belt type nip false twist type) etc. can be used. From the viewpoint, it is preferable to stretch and false-twist unstretched multifilaments using a friction false twisted twisted body. The false twisting may be performed by a one-stage heater or may be stabilized by two-stage heater false twist. The yarn temperature at the outlet of the first stage heater (false twist heat fixing heater) is slightly different depending on the type of polymer and false twisting of the drawn yarn and simultaneous drawing of the undrawn yarn. C.] degree is preferable. When stabilizing using a second stage heater (residual torque reduction, crimped stabilizer heater), set the temperature of the second stage heater to about 160 to 220 [° C] and set the feed rate of the second stage heater zone. A relaxed state of about 5 to 20% is preferable. The number of false twists during false twisting depends on the type of polymer, but in the case of a pin spindle type, the number of false twists [T / m] × √worked yarn dtex is preferably about 2600-34000. Fluid entanglement treatment after false twisting and before winding is preferred from the viewpoints of preventing winding shape defects, improving false twisting of false twisted yarn, and improving ease of handling in subsequent steps. By properly oiling before winding, unwinding and handling in the subsequent process are improved.

前記の様にして得られた仮撚加工糸は製編織して布帛となし、染色加工される。仮撚加工糸に必要に応じて実撚、オイリング、サイジング等を施し、製編織する。該仮撚加工糸は他の糸条と合糸、合撚、混繊、交編、交織等の方法で混用させて用いても良い。織編物はその用途に応じて染色加工される。例えばスポーツ衣料用織物の場合、リラックス、プレセット、染色、ファイナルセットされるが、染色前あるいは染色後にカレンダー加工を施すこともある。必要に応じてラミネート加工、コーティング加工、パディング加工等で透湿防水性、撥水性、吸湿発熱性等、特殊な機能性を付与することもできる。婦人衣料ポリエステル織物用途の場合、染色前にアルカリ減量処理することにより、風合いがソフト化し、好ましい。染色後、帯電防止剤等適宜付与してファイナルセットし、染色加工織物を得る。   The false twisted yarn obtained as described above is knitted and woven into a fabric and dyed. The false twisted yarn is subjected to actual twisting, oiling, sizing, etc. as necessary, and then knitted or woven. The false twisted yarn may be used by being mixed with other yarns by a method such as blending, twisting, blending, knit, or weaving. The woven or knitted fabric is dyed according to its use. For example, in the case of sports clothing fabrics, relaxation, pre-setting, dyeing, and final setting are performed, but calendering may be performed before or after dyeing. If necessary, special functionalities such as moisture permeability and water repellency, water repellency, moisture absorption exothermicity can be imparted by laminating, coating, padding and the like. In the case of women's apparel polyester fabric use, it is preferable to soften the texture by performing an alkali weight reduction treatment before dyeing. After dyeing, an antistatic agent or the like is appropriately applied and final set is performed to obtain a dyed fabric.

以下具体的実施例を挙げて説明する。尚、本発明中で用いた各特性値の測定法は下記によった。   Hereinafter, specific examples will be described. In addition, the measuring method of each characteristic value used in this invention was based on the following.

(FYLアナライザー測定)
東レエンジニアリング社製FYL−500SR装置を使用する。基本的には取扱説明書に沿って、染色槽、洗浄槽の準備をする。染色槽は水約30リットルに指定染料(東レブルー)あるいはそれに準ずるブルー色相検定染料を1kgと分散剤(日華化学社製サンソルトWA)を200g入れて溶解させた状態にし、95℃に保つ。洗浄槽には水を満たし、85℃に保つ。洗浄槽には常に新しい水が注がれ、オーバーフローによって、少しずつ入れかわるようにしておく。試料加工糸をクリールに立て、解舒させて染色槽に導く。染色槽中のネルソンローラー上での糸−糸接触が起こらないようにネルソンローラーの角度を適宜調節して、ネルソンローラーに試料加工糸を45回捲回させる。染色槽から試料加工糸を洗浄ノズルに導き、洗浄槽に導く。洗浄槽中のネルソンローラー上での糸−糸接触が起こらないようにネルソンローラーの角度適宜調節して、ネルソンローラーに試料加工糸を7回捲回させる。洗浄槽から試料加工糸を水切りノズル、水切りスピンドルに順次導き、測定部に導く。洗浄ノズルの調圧弁を調節し、圧力を1.0[kg/cm]に設定する。水切りノズルについても調圧弁を調節し、1.2[kg/cm]に設定する。測定部については事前に標準サンプル(白色100[%]及び青色40[%])を30[m/min]で走行させ、FYL[%]データレベルを設定しておく。
(FYL analyzer measurement)
An FYL-500SR apparatus manufactured by Toray Engineering Co., Ltd. is used. Basically, prepare the dyeing tank and washing tank according to the instruction manual. In the dyeing tank, 1 kg of a designated dye (Toray Blue) or a blue hue test dye equivalent thereto and 200 g of a dispersant (Sun Salt WA, manufactured by Nikka Chemical Co., Ltd.) is added to about 30 liters of water, and the temperature is kept at 95 ° C. The washing tank is filled with water and kept at 85 ° C. The washing tank is always filled with fresh water and is gradually replaced by overflow. The sample processed yarn is put on a creel, unwound and guided to a dyeing tank. The angle of the Nelson roller is adjusted as appropriate so that the yarn-thread contact on the Nelson roller in the dyeing tank does not occur, and the sample processed yarn is wound 45 times by the Nelson roller. The sample processed yarn is guided from the dyeing tank to the cleaning nozzle and then to the cleaning tank. The angle of the Nelson roller is appropriately adjusted so that the yarn-thread contact on the Nelson roller in the washing tank does not occur, and the sample processed yarn is wound seven times on the Nelson roller. The sample processed yarn is sequentially guided from the washing tank to the draining nozzle and draining spindle, and then to the measuring unit. The pressure regulating valve of the washing nozzle is adjusted to set the pressure to 1.0 [kg / cm 2 ]. The pressure regulating valve is also adjusted for the draining nozzle and set to 1.2 [kg / cm 2 ]. For the measurement unit, a standard sample (white 100 [%] and blue 40 [%]) is run at 30 [m / min] in advance, and the FYL [%] data level is set.

水切りノズルから測定部に導いた試料加工糸は取扱説明書に沿って糸道を作る。ノット検知端から仮撚パートを通って、測色部に導き、ローラーを介してエジェクターで引き取る。エジェクターの調圧弁を調節して1.5[kg/cm]に調節する。 The sample processing yarn led from the draining nozzle to the measuring section makes a yarn path according to the instruction manual. From the knot detection end, pass through the false twisting part, lead to the colorimetric part, and take it out with the ejector through the roller. Adjust the pressure regulating valve of the ejector to 1.5 [kg / cm 2 ].

通常のFYL測定では付属の出力パートを用いてデータ出力させるが、本発明においてはFYL測色アナログ信号をADコンバーターとウインドウズ’98インストールパソコンを用いてデータ出力させる。ADコンバーターはキーエンス社製NR−2000を用い、付属ソフトをパソコンにインストールしておく。また、パソコンにはマイクロソフトエクセル’98ソフトをインストールしておく。ADコンバーターからの配線を専用PCカード等を用いてパソコンに接続する。パソコンを操作してADコンバーターの0点調節をする。FYLアナログデータ信号配線2本をADコンバーターに導き、アナログ電圧信号をデジタルデータ化してパソコンのハードディスクに集積できるようにする。   In normal FYL measurement, data is output using the attached output part. In the present invention, the FYL colorimetric analog signal is output using an AD converter and a Windows '98 installed personal computer. The AD converter uses NR-2000 manufactured by Keyence Corporation, and the attached software is installed in the personal computer. Also, Microsoft Excel '98 software is installed on the personal computer. Connect the wiring from the AD converter to a personal computer using a dedicated PC card. Adjust the zero point of the AD converter by operating the computer. Two FYL analog data signal lines are led to an AD converter, and the analog voltage signal is converted into digital data so that it can be integrated in a hard disk of a personal computer.

クリールからエジェクターまでの試料加工糸の糸道とADコンバーター、パソコンの設定ができれば30[m/min]の速度でFYLアナライザーを運転する。パソコンを操作して、デジタル電圧データサンプリング周波数を2.67[Hz](375[ミリ秒]毎のデータサンプリング)、測定回数をシングルモードとし、サンプリング数5000個に設定する。試料加工糸を走行させてしばらくの間は染色槽中に滞留して長時間放置染色された濃染性部分があるため、FYLアナライザーのFYL[%]データアナログメーターを見て、安定するまで待つ。(濃染性部のFYL[%]データは低い値を示す。)新たに染色槽に連続的に送られた糸が測色部を通過することによって、FYL[%]データが高い値に上昇し、安定したのを確認後、パソコンを操作して、デジタル電圧データサンプリングを実施する。サンプリングされたデジタル電圧データ[V]をパソコンのハードディスクに保存する(拡張子は.ndh)。   The FYL analyzer is operated at a speed of 30 [m / min] if the setting of the yarn path of the sample processed yarn from the creels to the ejector, the AD converter, and the personal computer can be set. By operating the personal computer, the digital voltage data sampling frequency is set to 2.67 [Hz] (data sampling every 375 [milliseconds]), the number of measurements is set to the single mode, and the sampling number is set to 5000. Since the sample processed yarn is run and stays in the dyeing tank for a while, and there is a deeply dyed part that has been dyed for a long time, look at the FYL [%] data analog meter of the FYL analyzer and wait until it becomes stable . (FYL [%] data in the dark-dyeing portion shows a low value.) When the yarn continuously sent to the dyeing tank passes through the color measurement portion, the FYL [%] data rises to a high value. After confirming that it is stable, operate the personal computer to perform digital voltage data sampling. The sampled digital voltage data [V] is stored in the hard disk of the personal computer (extension is .ndh).

(CV値の算出)
拡張子.ndhから.csvを介して最終的にマイクロソフトエクセル’97で演算できる様に.xlsに変換する。マイクロソフトエクセル’97を起動し、集積された5000個サンプリングデジタル電圧データ[V]の平均値と母標準偏差を算出し、次式によりCV値を得る。
CV値[%]={(母標準偏差)/(平均値)}×100
(Calculation of CV value)
extension. from ndh. To be able to finally calculate with Microsoft Excel '97 via csv. Convert to xls. Microsoft Excel '97 is started, the average value and population standard deviation of the collected 5000 sampling digital voltage data [V] are calculated, and the CV value is obtained by the following equation.
CV value [%] = {(population standard deviation) / (average value)} × 100

(パワースペクトル最大値の算出)
デジタルサンプリング電圧データ[V]は糸長0.1875[m]に1回毎である。従って5000個サンプリングに対応する糸長は937.5[m]に相当する。このデータのうち、サンプリング開始1回目から4096回目(糸長768[m])についてパワースペクトル解析を行う。マイクロソフトエクセル’97の分析ツールの中のフーリエ解析を実施する。フーリエ解析データは複素数となるが、マイクロソフトエクセル’97中の関数IMABSを用いて複素数の絶対値を得て、1回目から4096回目の4096個のパワースペクトルデータとする。それぞれの測定糸長から波長[m]をマイクロソフトエクセル’97で算出する。サンプリング開始1回目のデータは糸長0.1875[m]部に当たり、4096回目は糸長768[m]に当たるが、それぞれ次式によって波長が導かれる。
サンプリングn回目の波長[m]=144/サンプリングn回目の糸長[m] =144/(0.1875[m]×n)
従って、サンプリング開始1回目の波長は768[m]、2回目は384[m]、3回目は256[m]となり、順次計算すると4096回目の波長は0.1875[m]となる。横軸に波長データ[m]、縦軸にパワースペクトルデータ[−]を取り、横軸範囲を3〜30[m]、縦軸を0[−]以上の適当なスケールを選ぶと第1図の様なグラフが得られる。横軸(波長)3〜30[m]内におけるパワースペクトル最大値[−]を読み取る。例えば第1図の例ではパワースペクトル最大値は13.3[−]であり、本発明で用いる仮撚加工糸として好ましいものである。
(Calculation of power spectrum maximum value)
The digital sampling voltage data [V] is once every 0.1875 [m] of yarn length. Therefore, the yarn length corresponding to 5000 sampling corresponds to 937.5 [m]. Among these data, power spectrum analysis is performed for the first to 4096th sampling (yarn length 768 [m]). Perform Fourier analysis in the analysis tool of Microsoft Excel '97. The Fourier analysis data is a complex number, but the absolute value of the complex number is obtained using the function IMABS in Microsoft Excel '97, and the first to 4096th power spectrum data is obtained. The wavelength [m] is calculated by Microsoft Excel '97 from each measured yarn length. The first sampling data corresponds to a yarn length of 0.1875 [m], and the 4096th data corresponds to a yarn length of 768 [m].
Wavelength [m] of sampling nth time = 144 / yarn length [m] of sampling nth time = 144 / (0.1875 [m] × n)
Accordingly, the first wavelength at the start of sampling is 768 [m], the second is 384 [m], the third is 256 [m], and when calculated sequentially, the 4096th wavelength is 0.1875 [m]. Wavelength data [m] on the horizontal axis, power spectrum data [-] on the vertical axis, 3 to 30 [m] on the horizontal axis, and an appropriate scale of 0 [-] or more on the vertical axis A graph like this is obtained. The power spectrum maximum value [−] in the horizontal axis (wavelength) 3 to 30 [m] is read. For example, in the example of FIG. 1, the maximum value of the power spectrum is 13.3 [−], which is preferable as the false twisted yarn used in the present invention.

(交絡度)
適当な長さの試料加工糸を取り出し、下端に1/10[cN/dtex]の荷重をかけて垂直に吊り下げる。次いで適当な針を試料加工糸中につき出し、ゆっくり持ち上げ荷重が持ち上がるまでに針が移動する距離[mm]を20[回]測定し、平均値L[mm]を得る。交絡度は次式により算出する。
交絡度[ケ/m]=1000/(2×L)
(Entanglement)
A sample processed yarn of an appropriate length is taken out and suspended vertically by applying a load of 1/10 [cN / dtex] to the lower end. Next, an appropriate needle is taken out into the sample processed yarn, and the distance [mm] to which the needle moves until the load is lifted slowly is measured 20 [times] to obtain an average value L [mm]. The degree of entanglement is calculated by the following formula.
Degree of confounding [ke / m] = 1000 / (2 × L)

(捲縮発現率)
適当な枠周のラップリールで1/10[cN/dtex]の荷重下において、8回巻のカセをつくる。無荷重の状態で沸騰水中に5分間浸漬する。試料を沸騰水中から取り出し湿潤状態のまま2/10[cN/dtex]の荷重をかけて1分後のカセの長さm〔cm〕を測定する。次に荷重を取り除き、軽く水を切った後、60〔℃〕のオーブン中で30分間乾燥する。オーブンから糸を取り出し、1時間放冷後、2/1000[cN/dtex]の荷重をかけ、1分後のカセの長さn[cm]を測定する。測定は5回繰り返し、m[cm]、n[cm]各々の平均値M[cm]、N[cm]を求める。捲縮発現率[%]は次式により算出される。
捲縮発現率[%]={(M−N)/M}×100
(Crimp expression rate)
A wrap reel with an appropriate frame circumference is used to make an 8-turn cassette under a load of 1/10 [cN / dtex]. Immerse in boiling water for 5 minutes under no load. A sample is taken out from boiling water, and a load of 2/10 [cN / dtex] is applied in a wet state to measure the length m [cm] of the case after 1 minute. Next, the load is removed, the water is lightly drained, and then dried in an oven at 60 [° C.] for 30 minutes. The yarn is taken out from the oven, allowed to cool for 1 hour, a load of 2/1000 [cN / dtex] is applied, and the length n [cm] of the case after 1 minute is measured. The measurement is repeated 5 times, and average values M [cm] and N [cm] for m [cm] and n [cm] are obtained. Crimp expression rate [%] is calculated by the following equation.
Crimp expression rate [%] = {(MN) / M} × 100

(URI値)
ツェルベガーウースター社製ウースターイーブネステスター3を用い、イナートテストにて測定する。マルチフィラメントのデニールによりスロットを選定し、仮撚を付与しながら糸速50m/minで2分間測定し、チャートを描かせる。その際、マルチフィラメントの平均デニールがチャートの中央に描かれる様、調節しておく。得られたチャートの最大値をA[%]、最小値をB[%]とするとき、URI値は次式により算出される。
URI〔%〕=A−B
(URI value)
Measured by an inert test using a Worcester Evenestester 3 manufactured by Zerbegger Worcester. A slot is selected by multifilament denier, measured for 2 minutes at a yarn speed of 50 m / min while applying false twist, and a chart is drawn. At that time, adjust so that the average denier of the multifilament is drawn in the center of the chart. When the maximum value of the obtained chart is A [%] and the minimum value is B [%], the URI value is calculated by the following equation.
URI [%] = AB

(繊度斑の周期性)
ツェルベガーウースター社製ウースターイーブネステスター3を用い、ノルマルテストにて測定する。マルチフィラメントのデニールによりスロットを選定し、仮撚を付与しながら糸速50m/minで10分間測定し、付属のパワースペクトル解析装置でスペクトログラムを描かせる。周期的な繊度斑があれば、パワースペクトルの高い波長部分が現われる。
(Periodicity of fineness spots)
Using a Worcester Evenestester 3 manufactured by Zerbegger Worcester, the normal test is used. A slot is selected with multifilament denier, measured for 10 minutes at a yarn speed of 50 m / min while applying false twist, and a spectrogram is drawn with the attached power spectrum analyzer. If there are periodic fine spots, a wavelength portion with a high power spectrum appears.

(実施例1)
固有粘度0.62のポリエチレンテレフトレートセミダルチップを溶融紡糸設備を用い、口金外周面径66[mm]に72[ケ]の丸形状吐出孔を配列した紡糸口金から溶融吐出し、紡糸口金吐出面から20[mm]下方の地点から風速0.45[m/sec]で空冷し、油剤付与後、2400[m/min]で回転するゴデットローラーに捲回させ、連続的に延伸熱セットして56[dtex]/72[フィラメント]のポリエチレンテレフタレート延伸マルチフィラメントを得た。該延伸マルチフィラメントのURI値は1.5[%]でウースターイーブネステスターのスペクトログラムに見られる周期性は弱いものであった。該延伸マルチフィラメントを愛機製作所製TH−312型ピンスピンドルタイプ仮撚機で1段ヒーター仮撚した。仮撚加工速度は120[m/min]、仮撚数は4000[T/m]、ヒーター温度は190[℃]とし、加撚張力が6[g]になる様フィード率を調節した。得られた仮撚加工糸は捲縮発現率が41[%]で、FYLアナライザーで測定し、デジタル化した5000個データのCV値は0.74[%]、フーリエ解析して得たパワースペクトルの波長3〜30m内最大値が13.0[−]であった。該仮撚加工糸を筒編検定染色したところ、若干のイラツキはあっても、縞、筋様の濃淡差は全く見られない好ましいものであった。経糸に56[dtex]/72[fil]のポリエチレンテレフタレートセミダル延伸マルチフィラメントをサイジング整経し、緯糸として該仮撚加工糸を用いて、経糸密度149[本/インチ]、緯糸密度112[本/インチ]で平織りし、高密度タフタ織物を得た。常法により、リラックス、プレセット、染色し、カレンダー加工して、染色加工織物とした。該染色加工織物はソフトでスポーツ衣料用途として耐水圧を一通り満足しており、緯糸の繊維軸方向の染色濃度斑による筋、縞を感じない均斉な好ましいものであった。
Example 1
A polyethylene terephthalate semi-dal chip having an intrinsic viscosity of 0.62 is melted and discharged from a spinneret in which 72 [single] round discharge holes are arranged on the outer peripheral surface diameter of the nozzle of 66 [mm] using a melt spinning facility. Air cooled at a wind speed of 0.45 [m / sec] from a point 20 [mm] below the discharge surface, and after applying the oil agent, wound on a godet roller rotating at 2400 [m / min], and continuously stretching heat It was set to obtain a polyethylene terephthalate drawn multifilament of 56 [dtex] / 72 [filament]. The drawn multifilament had a URI value of 1.5 [%], and the periodicity seen in the spectrogram of the Wooster Eve Tester was weak. The drawn multifilament was false-twisted with a one-stage heater using a TH-312 type pin spindle type false twister manufactured by Aiki Seisakusho. The false twisting speed was 120 [m / min], the false twist number was 4000 [T / m], the heater temperature was 190 [° C.], and the feed rate was adjusted so that the twisting tension was 6 [g]. The obtained false twisted yarn had a crimp expression rate of 41 [%], measured with an FYL analyzer, and the digitized CV value of 5000 data was 0.74 [%], and a power spectrum obtained by Fourier analysis. The maximum value within the wavelength range of 3 to 30 m was 13.0 [−]. When the false twisted yarn was subjected to cylindrical knitting test dyeing, it was preferable that no slight difference in stripes and streaks was observed even though there was some irritation. Sizing and warping 56 [dtex] / 72 [fil] polyethylene terephthalate semidal drawn multifilaments for warp, using the false twisted yarn as weft, warp density 149 [in / inch], weft density 112 [in / Inch] was plain woven to obtain a high-density taffeta fabric. By a conventional method, relaxation, presetting, dyeing, and calendering were performed to obtain a dyed fabric. The dyed fabric was soft and satisfactorily satisfied with the water pressure resistance for sports apparel use, and it was a uniform and preferred one that did not feel streaks and stripes due to dye density spots in the fiber axis direction of the weft.

(比較例1)
口金吐出孔の数が48[ケ]の紡糸口金に変更した他はほぼ実施例1と同様に延伸マルチフィラメント(56[dtex]/48[fil])を得た。URI値は1.4[%]で周期性は弱かった。実施例1とほぼ同様に仮撚加工糸を得た。該仮撚加工糸の捲縮発現率は48[%]、FYLアナライザーで測定し、デジタル化した5000個データのCV値は0.70[%]、フーリエ解析して得たパワースペクトルの波長3〜30m内最大値は11.4[−]であった。実施例1と同様に染色筒編地と染色加工織物を得たところ、染色均一性には優れていたが、ソフト感、スポーツ衣料用織物としての耐水圧において、満足しないものであった。
(Comparative Example 1)
A drawn multifilament (56 [dtex] / 48 [fil]) was obtained in substantially the same manner as in Example 1 except that the spinneret was changed to a spinneret having a number of die discharge holes of 48 [ke]. The URI value was 1.4 [%] and the periodicity was weak. A false twisted yarn was obtained in substantially the same manner as in Example 1. The false expression rate of the false twisted yarn is 48 [%], the CV value of 5000 data measured with an FYL analyzer is 0.70 [%], the wavelength 3 of the power spectrum obtained by Fourier analysis The maximum value in ˜30 m was 11.4 [−]. When a dyed tube knitted fabric and a dyed fabric were obtained in the same manner as in Example 1, the dyeing uniformity was excellent, but the soft feeling and the water pressure resistance as a sports clothing fabric were not satisfactory.

(実施例2)
固有粘度0.62のポリエチレンテレフトレートセミダルチップを溶融紡糸設備を用い、口金外周面径66[mm]に72[ケ]の吐出孔を配列した紡糸口金から溶融吐出し、紡糸口金吐出面から20[mm]下方の地点から風速0.45[m/sec]で空冷し、油剤付与後、2400[m/min]で、隣り合う2ケの紡糸口金から得られた未延伸マルチフィラメント2本を引き揃え、80[dtex]/144[fil]として引き取った。引き取られた未延伸マルチフィラメントのURI値は2.0[%]で周期性は弱かった。愛機製作所製TH−312型ピンスピンドルタイプ仮撚機で1段ヒーター延伸同時仮撚し、仮撚加工糸を得た。仮撚数は4200[T/m]、延伸倍率は1.47倍、ヒーター温度は170℃とした。該仮撚加工糸の捲縮発現率は35[%]で、FYLアナライザーで測定し、デジタル化した5000個データのCV値は0.94[%]、フーリエ解析して得たパワースペクトルの波長3〜30m内最大値が17.0[−]であった。実施例1と同様に染色筒編地と染色加工織物を得た。該染色加工織物は実施例1の染色加工織物のソフト感、耐水圧を向上させた更に好ましいものであった。
(Example 2)
A polyethylene terephthalate semi-dal chip having an intrinsic viscosity of 0.62 is melted and discharged from a spinneret in which 72 [single] discharge holes are arranged on the outer peripheral surface diameter of the nozzle of 66 [mm] using a melt spinning facility, and the spinneret discharge surface Air-cooled at a wind speed of 0.45 [m / sec] from a point 20 [mm] below, and after applying the oil agent, unstretched multifilament 2 obtained from two adjacent spinnerets at 2400 [m / min] The books were aligned and taken as 80 [dtex] / 144 [fil]. The URI value of the unstretched multifilament taken up was 2.0 [%] and the periodicity was weak. A three-stage heater drawing and simultaneous false twisting were performed with a TH-312 pin spindle type false twisting machine manufactured by Aiki Seisakusho to obtain false twisted yarn. The number of false twists was 4200 [T / m], the draw ratio was 1.47 times, and the heater temperature was 170 ° C. The false twist rate of the false twisted yarn is 35 [%], the CV value of 5000 data measured with an FYL analyzer is 0.94 [%], and the wavelength of the power spectrum obtained by Fourier analysis. The maximum value within 3 to 30 m was 17.0 [−]. As in Example 1, a dyed tube knitted fabric and a dyed fabric were obtained. The dyed fabric was more preferable in that the soft feeling and water pressure resistance of the dyed fabric of Example 1 were improved.

(比較例2)
実施例2の溶融紡糸工程に対して、口金外周面径66[mm]に144[ケ]の吐出孔を配列した紡糸口金から溶融吐出し、1ケの紡糸口金から1本の未延伸マルチフィラメントを80[dtex]/144[fil]として引き取る他は実施例2の溶融紡糸工程と同様に未延伸マルチフィラメントを得た。該未延伸マルチフィラメントのURI値は3.6[%]で、8m程度波長(糸長)毎の周期性がスペクトログラムに見られるものであった。該未延伸マルチフィラメントを、帝人製機製HTS−1500型3軸外接式摩擦仮撚機を用い、1段ヒーター延伸同時仮撚した。仮撚加工速度を600[m/min]、延伸倍率を1.47倍とし、ヒーター出口での糸温度を170[℃]にすべくヒーター温度を調節した。施撚ディスク材質はポリウレタンで、9[mm]厚で58[mm]の直径を持つものを4枚用い、前後にガイドディスクを入れて1−4−1構成とした。糸速に対する施撚ディスク周速の比は1.8倍に設定した。解撚ゾーンにテンションメータを入れてADコンバーターでデータをデジタル化し、パソコンに集積して、パワースペクトルを得、スペクトログラムを描かせると、12m程度周期の解撚張力周期変動が確認された。得られた仮撚加工糸の捲縮発現率は31[%]、FYLアナライザーで測定し、デジタル化した5000個データのCV値は2.14[%]、フーリエ解析して得たパワースペクトルの波長3〜30m内最大値が31.5[−]であった。尚、該パワースペクトル最大値を現した波長(糸長)は約12[m]部分であった。得られた仮撚加工糸の染色筒編地は明らかなトラ縞ではないが、幅を持って濃淡差を感じるもので、染色加工織物は緯方向に縞っぽさを感じる不均斉で好ましくないものであった。
(Comparative Example 2)
In the melt spinning process of Example 2, the melt is discharged from a spinneret in which 144 [single] discharge holes are arranged on the outer peripheral surface diameter of 66 [mm], and one unstretched multifilament from one spinneret. Was taken as 80 [dtex] / 144 [fil], and an unstretched multifilament was obtained in the same manner as in the melt spinning step of Example 2. The URI value of the unstretched multifilament was 3.6 [%], and the periodicity for each wavelength (yarn length) of about 8 m was found in the spectrogram. The unstretched multifilament was simultaneously false twisted by one-stage heater stretching using an HTS-1500 triaxial circumscribed friction false twisting machine manufactured by Teijin Seiki. The heater temperature was adjusted so that the false twisting speed was 600 [m / min], the draw ratio was 1.47 times, and the yarn temperature at the heater outlet was 170 [° C.]. The twisted disk material is polyurethane, 4 sheets having a diameter of 9 [mm] and a diameter of 58 [mm] were used. The ratio of the twisted disk peripheral speed to the yarn speed was set to 1.8 times. When a tension meter was inserted into the untwisting zone, the data was digitized with an AD converter, collected on a personal computer, a power spectrum was obtained, and a spectrogram was drawn. As a result, fluctuations in the untwisting tension period of about 12 m were confirmed. The false twisted yarn obtained had a crimp expression rate of 31 [%], measured with an FYL analyzer, and the digitized CV value of 5000 data was 2.14 [%]. The power spectrum obtained by Fourier analysis was obtained. The maximum value within the wavelength range of 3 to 30 m was 31.5 [−]. The wavelength (yarn length) representing the maximum value of the power spectrum was about 12 [m]. Although the dyed cylinder knitted fabric of the false twisted yarn obtained is not obvious tiger stripes, it has a width and feels a difference in density, and the dyed fabric has an uneven and unfavorable feeling of stripes in the weft direction. It was a thing.

実施例1〜2、比較例1〜2の条件、糸物性、織物の評価結果を表1に示す。   Table 1 shows the conditions of Examples 1-2 and Comparative Examples 1-2, yarn physical properties, and evaluation results of the fabric.

織編物に極めて均斉な染色品位を与えることができ、スポーツ衣料用途や婦人衣料用途等の染色織編物の製造方法として好適である。   A very uniform dyeing quality can be imparted to the woven or knitted fabric, which is suitable as a method for producing a dyed woven or knitted fabric for sports clothing or women's clothing.

Claims (4)

仮撚加工糸を製編織した布帛を染色加工してなる染色織編物の製造方法であって、
仮撚加工糸は、単繊維繊度が0.8[dtex]以下で、かつポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンイソフタレートから選ばれるポリエステルマルチフィラメントよりなり、かつ流体交絡処理されていない延伸糸であり、
前記仮撚加工糸をブルー色相検定染料と分散剤を水に溶解させ95℃に保った染色槽で染色させ、FYLアナライザーで糸の繊維軸方向における染色濃度のバラツキを測定した際に、デジタル化した5000個のデータのCV値が1.0[%]以下となるように、(a)紡糸口金に設ける複数ケの吐出孔各々の間隔を広くする、(b)風の貫通性が高くなる吐出孔配列とする、あるいは、(c)紡糸口金吐出面から空冷による風が送られる地点までの距離を短くする、ことを特徴とする染色織編物の製造方法。
A method for producing a dyed woven or knitted fabric obtained by dyeing a fabric obtained by knitting or knitting false twisted yarn,
The false twisted yarn has a single fiber fineness of 0.8 [dtex] or less, is made of a polyester multifilament selected from polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, and polyethylene isophthalate, and is subjected to fluid entanglement treatment. No drawn yarn,
When the false twisted yarn is dyed in a dyeing tank in which a blue hue test dye and a dispersant are dissolved in water and maintained at 95 ° C., and the variation in dyeing density in the fiber axis direction of the yarn is measured with an FYL analyzer, digitization is performed. (A) Widen the intervals between the plurality of ejection holes provided in the spinneret so that the CV value of the 5000 pieces of data is 1.0 [%] or less, (b) High wind penetration A method for producing a dyed woven or knitted fabric, characterized in that a discharge hole arrangement is used, or (c) a distance from a spinneret discharge surface to a point where air is cooled is sent.
仮撚加工糸を製編織した布帛を染色加工してなる染色織編物の製造方法であって、
仮撚加工糸は、単繊維繊度が0.8[dtex]以下で、かつポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンイソフタレートから選ばれるポリエステルマルチフィラメントよりなり、かつ流体交絡処理されていない延伸糸であり、
前記仮撚加工糸をブルー色相検定染料と分散剤を水に溶解させ95℃に保った染色槽で染色させ、FYLアナライザーで糸の繊維軸方向における染色濃度の変動の周期性を測定した際に、デジタル化したデータをフーリエ解析して得たパワースペクトルの波長3〜30mの範囲内における最大値が25[−]以下となるように、(a)紡糸口金に設ける複数ケの吐出孔各々の間隔を広くする、(b)風の貫通性が高くなる吐出孔配列とする、あるいは、(c)紡糸口金吐出面から空冷による風が送られる地点までの距離を短くする、ことを特徴とする染色織編物の製造方法。
A method for producing a dyed woven or knitted fabric obtained by dyeing a fabric obtained by knitting or knitting false twisted yarn,
The false twisted yarn has a single fiber fineness of 0.8 [dtex] or less, is made of a polyester multifilament selected from polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, and polyethylene isophthalate, and is subjected to fluid entanglement treatment. No drawn yarn,
When the false twisted yarn was dyed in a dyeing tank in which a blue hue test dye and a dispersant were dissolved in water and maintained at 95 ° C., and the periodicity of the dye density variation in the fiber axis direction of the yarn was measured with an FYL analyzer (A) Each of a plurality of discharge holes provided in the spinneret so that the maximum value in the wavelength range of 3 to 30 m of the power spectrum obtained by Fourier analysis of the digitized data is 25 [−] or less. The interval is widened, (b) a discharge hole arrangement with high wind penetration, or (c) the distance from the spinneret discharge surface to the point where air is sent by air cooling is shortened. Manufacturing method of dyed woven or knitted fabric.
前記仮撚加工糸をブルー色相検定染料と分散剤を水に溶解させ95℃に保った染色槽で染色させ、FYLアナライザーで糸の繊維軸方向における染色濃度の変動の周期性を測定した際に、デジタル化したデータをフーリエ解析して得たパワースペクトルの波長3〜30mの範囲内における最大値が25[−]以下である請求項1に記載の染色織編物の製造方法。   When the false twisted yarn was dyed in a dyeing tank in which a blue hue test dye and a dispersant were dissolved in water and maintained at 95 ° C., and the periodicity of the dye density variation in the fiber axis direction of the yarn was measured with an FYL analyzer The method for producing a dyed woven or knitted fabric according to claim 1, wherein the maximum value in the wavelength range of 3 to 30 m of the power spectrum obtained by Fourier analysis of the digitized data is 25 [-] or less. 仮撚加工糸を構成するフィラメントの単繊維繊度が0.4[dtex]以下である請求項1〜3のいずれかに記載の染色織編物の製造方法。   The method for producing a dyed woven or knitted fabric according to any one of claims 1 to 3, wherein a single fiber fineness of a filament constituting the false twisted yarn is 0.4 [dtex] or less.
JP2009163867A 2009-07-10 2009-07-10 Method for producing dyed woven and knit fabric Withdrawn JP2010031446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009163867A JP2010031446A (en) 2009-07-10 2009-07-10 Method for producing dyed woven and knit fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009163867A JP2010031446A (en) 2009-07-10 2009-07-10 Method for producing dyed woven and knit fabric

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001335077A Division JP4399699B2 (en) 2001-10-31 2001-10-31 False twisted yarn

Publications (1)

Publication Number Publication Date
JP2010031446A true JP2010031446A (en) 2010-02-12

Family

ID=41736243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009163867A Withdrawn JP2010031446A (en) 2009-07-10 2009-07-10 Method for producing dyed woven and knit fabric

Country Status (1)

Country Link
JP (1) JP2010031446A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015173927A1 (en) * 2014-05-15 2015-11-19 Ykk株式会社 Fastener stringer and process for producing fastener stringer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375133A (en) * 1987-06-04 1988-04-05 東レ株式会社 Polyester profile crimped processed yarn dyed uniformly
JPH03249230A (en) * 1990-02-20 1991-11-07 Unitika Ltd Ultrafine loop yarn dyeable with cationic dye and its production
JP2000211816A (en) * 1999-01-19 2000-08-02 Nippon Ester Co Ltd Ultra-thin multi-filament package of polyester
JP4399699B2 (en) * 2001-10-31 2010-01-20 東洋紡績株式会社 False twisted yarn

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375133A (en) * 1987-06-04 1988-04-05 東レ株式会社 Polyester profile crimped processed yarn dyed uniformly
JPH03249230A (en) * 1990-02-20 1991-11-07 Unitika Ltd Ultrafine loop yarn dyeable with cationic dye and its production
JP2000211816A (en) * 1999-01-19 2000-08-02 Nippon Ester Co Ltd Ultra-thin multi-filament package of polyester
JP4399699B2 (en) * 2001-10-31 2010-01-20 東洋紡績株式会社 False twisted yarn

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015173927A1 (en) * 2014-05-15 2015-11-19 Ykk株式会社 Fastener stringer and process for producing fastener stringer

Similar Documents

Publication Publication Date Title
JP4523938B2 (en) Air jet manufacturing method of composite elastic yarn
JP2021532276A (en) Composite yarn with core fiber and sheath fiber
KR20170125246A (en) Polyester conjugated yarn with texturing and method for producing fabric thereby
JP4399699B2 (en) False twisted yarn
JP2012077406A (en) Polyester latent crimp textured yarn and method for producing the same
JP2010031446A (en) Method for producing dyed woven and knit fabric
JPS5927408B2 (en) Spunlike yarn from filament yarn and its manufacturing method
JP7007148B2 (en) False twisted yarn and woven and knitted fabrics
KR101938818B1 (en) polyester composite having a various shrinkage, and preparation method of fabric using the same
KR101942857B1 (en) High elasticity polyester composite yarn having delicate luster, and preparation method of fabric using the same
JP2000290846A (en) Differently shrinkable composite combined filament yarn, and its woven fabric and knitted fabric therefrom
KR101938842B1 (en) Composite yarn among long spandex, long polyester and short lyocell fibers, method for producing the same
JP4056356B2 (en) Fluid composite processed yarn, method for producing the same, and woven / knitted fabric including the processed yarn
KR102303275B1 (en) Method for preparing a potential crimped pet/pbt conjugated yarn with high elasticity that can express melange color
KR101555098B1 (en) Manufacturing mathod of polyester composite yarn having excellent shrinkage property and manufacturing using thereof
WO2022078422A1 (en) Polyester composite blended fiber yarn and preparation method therefor
KR102084015B1 (en) Manufacturing method of lyocell and polyester spindraw complex yarn capable of expressing melange color
JP4044802B2 (en) Multifilament yarn, method for producing the same, and woven or knitted fabric containing the yarn
JP7259200B2 (en) polyester false twisted yarn
JPH07229030A (en) Polyester thick-and-thin yarn and kasuri weave-tone woven or knit fabric produced by the same
JP2000290847A (en) Composite combined filament yarn, its woven fabric and knitted fabric
JP6673023B2 (en) Polyester thick yarn
JP2003082540A (en) False twist yarn
JP4207607B2 (en) Polyester sewing thread for embroidery
JP2023038411A (en) Moire combined filament yarn and knitted or woven fabric using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110509