JP2010030801A - Reformer for fuel cell - Google Patents

Reformer for fuel cell Download PDF

Info

Publication number
JP2010030801A
JP2010030801A JP2008192357A JP2008192357A JP2010030801A JP 2010030801 A JP2010030801 A JP 2010030801A JP 2008192357 A JP2008192357 A JP 2008192357A JP 2008192357 A JP2008192357 A JP 2008192357A JP 2010030801 A JP2010030801 A JP 2010030801A
Authority
JP
Japan
Prior art keywords
fuel
raw fuel
flow path
channel
reformed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008192357A
Other languages
Japanese (ja)
Other versions
JP5244488B2 (en
Inventor
Hiromi Sasaki
広美 佐々木
Koichi Kawamoto
浩一 川本
Rinzo Miyoshi
倫三 三好
Mototaka Kono
元貴 公野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Fuel Cell Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Fuel Cell Power Systems Corp filed Critical Toshiba Fuel Cell Power Systems Corp
Priority to JP2008192357A priority Critical patent/JP5244488B2/en
Publication of JP2010030801A publication Critical patent/JP2010030801A/en
Application granted granted Critical
Publication of JP5244488B2 publication Critical patent/JP5244488B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reformer for a fuel cell which performs stable operation by always maintaining the inlet temperature of a reforming catalyst to be proper for a reforming reaction in a fuel cell generating apparatus using a heavy liquid fuel such as kerosene. <P>SOLUTION: The reformer for a fuel cell can be stably operated, because the temperature of a raw fuel gas at the inlet of a reforming catalyst is maintained at a temperature proper for reforming reaction or above by making the length of flow direction of a flow passage for cooling a reformed gas shorter than the length of a catalyst loading flow passage and installing a raw fuel gas preheating flow passage at the inlet part of the catalyst loading flow passage, and the inlet temperature to the reforming catalyst is always maintained at a temperature proper for reforming reaction or above even when the operation starts and the flow amount of the fuel gas is varied by installing an electric heater for preheating the raw fuel gas. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、原燃料として例えば灯油のような炭素数が5から15の燃料を改質できる燃料電池用改質器に関する。 The present invention relates to a fuel cell reformer capable of reforming a fuel having 5 to 15 carbon atoms such as kerosene as raw fuel.

燃料電池用改質器は触媒を用いて炭化水素系燃料から水蒸気改質、部分改質またはオートサーマル等の化学反応により水素リッチガスを生成する装置で、燃料電池発電装置の水素供給に用いられている。 A fuel cell reformer is a device that generates hydrogen-rich gas from a hydrocarbon-based fuel by a chemical reaction such as steam reforming, partial reforming, or autothermal using a catalyst, and is used for supplying hydrogen to a fuel cell power plant. Yes.

近年、固体高分子型燃料電池発電装置においては家庭用や小規模の業務用として数100Wから10kW程度の発電出力のものが開発され、燃料電池用改質器においても高効率、小型軽量化を目的として熱交換器やCO変成器(一酸化炭素変成器)、CO選択酸化器(一酸化炭素選択酸化器)などと共に一体化や複合化を行ったものが提案されている(例えば特許文献1、特許文献2参照)。 In recent years, solid polymer fuel cell power generators with a power output of several hundred watts to 10 kW have been developed for home and small-scale business use, and fuel cell reformers are also highly efficient, small and light. For the purpose, a heat exchanger, a CO converter (carbon monoxide converter), a CO selective oxidizer (carbon monoxide selective oxidizer) and the like that have been integrated or combined have been proposed (for example, Patent Document 1). , See Patent Document 2).

これらの燃料電池用改質器は改質が容易なメタンを主成分とする都市ガスやプロパンを主成分とするLPガスなどの気体燃料を用いており、気体燃料は容積当りのエネルギー密度が低く、貯蔵に大きな体積を有するためパイプラインの未発達な地域においては、エネルギー密度が高く、貯蔵や取扱いが容易な灯油などの液体燃料が使用できる燃料電池用改質器の開発が望まれている。
再公表 WO2002/025762 特開2002−187705公報
These reformers for fuel cells use gas fuels such as city gas mainly composed of methane and LP gas mainly composed of propane, which are easy to reform, and gas fuel has low energy density per volume. Because of its large volume for storage, development of a fuel cell reformer that can use liquid fuel such as kerosene, which has high energy density and is easy to store and handle, is desired in areas where pipelines are undeveloped. .
Re-publication WO2002 / 025762 JP 2002-187705 A

炭素数が5から15の液体燃料から水素ガスへの改質は、炭素数が1から4の都市ガスやLPガスの気体燃料に比較して、その反応条件が厳しく、特に炭素数が10から15の灯油を燃料とする場合、改質触媒の入口温度が450℃以下の条件では触媒上に炭素析出や水素ガスへの転換率低下、さらには未反応の液化成分が改質触媒出口より流出し下流のCO変成触媒や燃料電池本体を劣化させる問題が生じていた。   The reforming of liquid fuel from 5 to 15 carbon atoms to hydrogen gas has harsher reaction conditions compared to city gas and LP gas fuels having 1 to 4 carbon atoms, especially from 10 to 10 carbon atoms. When 15 kerosene is used as fuel, under conditions where the reforming catalyst inlet temperature is 450 ° C. or lower, carbon deposition on the catalyst or reduction in conversion rate to hydrogen gas occurs, and unreacted liquefied components flow out from the reforming catalyst outlet. However, there has been a problem of deteriorating the downstream CO conversion catalyst and the fuel cell body.

本発明は、貯蔵や取扱いが容易な灯油などの液体燃料を使用でき、触媒上に析出する炭素を少なくでき、水素燃料への転換率を高くでき、さらには未反応の液化成分が改質触媒出口より流出するのを防ぐことができ、安定運転を行うことが可能な燃料電池用改質器を提供することを目的とする。 The present invention can use liquid fuel such as kerosene that is easy to store and handle, can reduce the amount of carbon deposited on the catalyst, can increase the conversion rate to hydrogen fuel, and the unreacted liquefied component can be used as a reforming catalyst. An object of the present invention is to provide a fuel cell reformer capable of preventing outflow from an outlet and capable of performing stable operation.

前記目的を達成するため、請求項1に対応する発明は、中心部に燃料を燃焼させる燃焼器を備えた筐体内部に、前記燃焼器の燃料を燃焼させるための燃焼空間を形成し、前記燃焼空間の外周側に同心状に環状の触媒充填流路を形成し、前記触媒充填流路の外周側に同心状に環状の改質燃料冷却用流路を形成し、前記改質燃料冷却用流路の外周側に同心状に原燃料を予熱するための原燃料予熱器を形成した燃料電池用改質器において、前記改質燃料冷却用流路における前記原燃料の流れ方向の長さを、前記触媒充填流路における前記原燃料の流れ方向の長さより短くしたことを特徴とする燃料電池用改質器である。 In order to achieve the above object, the invention corresponding to claim 1 forms a combustion space for combusting the fuel of the combustor in a housing provided with a combustor for combusting fuel at the center, An annular catalyst filling flow path is formed concentrically on the outer peripheral side of the combustion space, and an annular reformed fuel cooling flow path is formed concentrically on the outer peripheral side of the catalyst filling flow path. In the fuel cell reformer in which a raw fuel preheater for preheating the raw fuel concentrically is formed on the outer peripheral side of the flow path, the length in the flow direction of the raw fuel in the reformed fuel cooling flow path is set. The fuel cell reformer is characterized in that it is shorter than the length of the raw fuel in the flow direction of the catalyst.

前記目的を達成するため、請求項5に対応する発明は、中心部に燃料を燃焼させる燃焼器を備えた筐体内部に、前記燃焼器の燃料を燃焼させるための燃焼空間を形成し、前記燃焼空間の外周側に非の触媒充填流路を形成し、前記触媒充填流路の外周側に非の改質燃料冷却用流路を形成し、前記改質燃料冷却用流路の外周側に非の原燃料を予熱するための原燃料予熱器を形成した燃料電池用改質器において、前記改質燃料冷却用流路における前記原燃料の流れ方向の長さを、前記触媒充填流路における前記原燃料の流れ方向の長さより短くしたことを特徴とする燃料電池用改質器である。 In order to achieve the above object, an invention corresponding to claim 5 forms a combustion space for combusting the fuel of the combustor in a housing provided with a combustor for combusting fuel at the center, A non-catalyst filling passage is formed on the outer peripheral side of the combustion space, a non-reforming fuel cooling passage is formed on the outer peripheral side of the catalyst filling passage, and on the outer peripheral side of the reforming fuel cooling passage. In a fuel cell reformer in which a raw fuel preheater for preheating non-raw fuel is formed, a length of the raw fuel in a flow direction of the raw fuel in the reformed fuel cooling flow path is set in the catalyst filling flow path. The fuel cell reformer is shorter than a length in a flow direction of the raw fuel.

本発明によれば、貯蔵や取扱いが容易な灯油などの液体燃料を使用でき、触媒上に析出する炭素を少なくでき、水素燃料への転換率を高くでき、さらには未反応の液化成分が改質触媒出口より流出するのを防ぐことができ、安定運転を行うことが可能燃料電池用改質器を提供できる。   According to the present invention, liquid fuel such as kerosene that can be easily stored and handled can be used, carbon deposited on the catalyst can be reduced, the conversion rate to hydrogen fuel can be increased, and unreacted liquefied components can be improved. It is possible to provide a fuel cell reformer that can prevent outflow from the catalyst outlet and can perform stable operation.

以下、本発明に係わる燃料電池用改質器の実施形態について、図面を参照して説明する。   Hereinafter, an embodiment of a reformer for a fuel cell according to the present invention will be described with reference to the drawings.

(第1の実施形態)
図1の燃料電池用改質器は、概略、上部壁面中心部に燃料を燃焼させる燃焼器1を備えた筐体2の内部の中央部に、燃焼器1のバーナ燃料をバーナ空気により燃焼させるための燃焼空間23を形成し、燃焼空間23の外周側に同心状に環状の触媒充填流路3を形成し、触媒充填流路3の外周側に同心状に環状の改質燃料冷却用流路4を形成し、改質燃料冷却用流路4の外周側に同心状に原燃料を予熱するための環状の原燃料予熱器5を形成したものにおいて、改質燃料冷却用流路4における原燃料の流れ方向の長さを、触媒充填流路3における原燃料の流れ方向の長さより短くしたものである。この結果、原燃料として炭素数が5から15の灯油のような燃料例えば原燃料ガスを改質できる。
(First embodiment)
The fuel cell reformer of FIG. 1 roughly burns the burner fuel of the combustor 1 with burner air in the center of the inside of the housing 2 provided with the combustor 1 that burns fuel at the center of the upper wall surface. A combustion space 23 is formed, and an annular catalyst filling flow path 3 is formed concentrically on the outer peripheral side of the combustion space 23, and a concentric annular reforming fuel cooling flow is formed on the outer peripheral side of the catalyst filling flow path 3 A path 4 is formed, and an annular raw fuel preheater 5 for preheating the raw fuel concentrically on the outer peripheral side of the reformed fuel cooling flow path 4 is formed. The length in the flow direction of the raw fuel is made shorter than the length in the flow direction of the raw fuel in the catalyst filling channel 3. As a result, fuel such as kerosene having 5 to 15 carbon atoms, such as raw fuel gas, can be reformed as raw fuel.

筐体2は、有底円筒部と、有底円筒部の開口部を閉塞する閉塞部からなり、かつ有底円筒部及び閉塞部の内壁面に保温材24が設けられている。筐体2の内部の燃焼空間23は、
円筒部材31と、円筒部材31の両端部に接合する蓋部材25及び底部材26とにより構成され、蓋部材25及び筐体2の上壁部(閉塞部)には燃焼器1が貫通するように設けられ、また底部材26及び筐体2の下壁部(底部)を貫通するように蒸気発生器9が設けられている。
The housing 2 includes a bottomed cylindrical portion and a closed portion that closes the opening of the bottomed cylindrical portion, and a heat insulating material 24 is provided on the inner wall surface of the bottomed cylindrical portion and the closed portion. The combustion space 23 inside the housing 2 is
The cylindrical member 31 is constituted by a lid member 25 and a bottom member 26 joined to both ends of the cylindrical member 31, and the combustor 1 passes through the lid member 25 and the upper wall portion (closed portion) of the housing 2. The steam generator 9 is provided so as to pass through the bottom member 26 and the lower wall portion (bottom portion) of the housing 2.

蒸気発生器9は、燃焼器1で生じる燃焼ガスを筐体外部に排出する燃焼ガス出口101を有し、底部材26及び筐体2を貫通するように設けられた円筒状の燃焼ガス排出管91
と、燃焼ガス排出管91の外周側に螺旋状に配設され、外部から導入する水を水蒸気とすして外部に排出する水蒸気管93と、水蒸気管93の外周側及び燃焼ガス排出管91の上部側空間を包囲するように設けられたセンタプラグ92からなっている。この場合、燃焼器1により燃焼された燃焼ガスは、燃焼空間23内の上部側(燃焼器1側)に存在する輻射伝熱部21を経て、燃焼空間23内の下部側のセンタプラグ92の外周側と円筒部材31が対向する位置に存在する対流伝熱部22を経て、センタプラグ92の内部で水蒸気管の外周に存在する空間を経て燃焼ガス排出管91から外部排出されるようになっている。
The steam generator 9 has a combustion gas outlet 101 for discharging the combustion gas generated in the combustor 1 to the outside of the casing, and is a cylindrical combustion gas discharge pipe provided so as to penetrate the bottom member 26 and the casing 2. 91
A steam pipe 93 that is spirally disposed on the outer peripheral side of the combustion gas discharge pipe 91, discharges water introduced from outside as steam and discharges it to the outside, and the outer peripheral side of the steam pipe 93 and the combustion gas discharge pipe 91. The center plug 92 is provided so as to surround the upper space. In this case, the combustion gas combusted by the combustor 1 passes through the radiant heat transfer section 21 existing on the upper side (combustor 1 side) in the combustion space 23 and passes through the lower center plug 92 in the combustion space 23. After passing through the convection heat transfer section 22 existing at a position where the outer peripheral side and the cylindrical member 31 face each other, the gas is discharged outside from the combustion gas discharge pipe 91 through the space existing on the outer circumference of the water vapor pipe inside the center plug 92. ing.

触媒充填流路3は、円筒部材31の外周面に対して間隔を存して配設され、円筒部材31の軸方向長さとは短い触媒充填路を構成する円筒状の流路構成部材32と、流路構成部材32と円筒部材31の間にできる空間内に、改質触媒33が充填可能であって改質触媒33内部に原燃料ガスが流通するように流路構成部材32の上下端部であって円筒部材31の外周面に固定された仕切り部材34、35とからなっている。   The catalyst filling flow path 3 is disposed with a space from the outer peripheral surface of the cylindrical member 31, and a cylindrical flow path constituting member 32 constituting a catalyst filling path that is short in the axial direction length of the cylindrical member 31; The upper and lower ends of the flow path component 32 so that the space between the flow path component 32 and the cylindrical member 31 can be filled with the reforming catalyst 33 and the raw fuel gas flows inside the reforming catalyst 33. And partition members 34 and 35 fixed to the outer peripheral surface of the cylindrical member 31.

以上のような構成において、触媒充填流路3の外周側の流路構成部材32の外周面と筐体2の上半部内壁面とが対向する空間において、改質燃料冷却流路4及び原燃料予熱器5並びに原燃料予熱器5が形成されるように、筐体2の上部壁の内側に垂直方向に垂下する円筒状の隔壁41が設けられている。この場合、隔壁41の内周面と触媒充填流路3の流路構成部材32の外周面の対向する空間を改質燃料冷却流路4と呼び、改質燃料冷却流路4における原燃料の流れ方向の長さとは、隔壁41の内周面の軸方向長さと、これと対向する触媒充填流路3の流路構成部材32の外周面の軸方向長さが一致した部分を指している。   In the above configuration, in the space where the outer peripheral surface of the flow path component 32 on the outer peripheral side of the catalyst filling flow path 3 and the inner wall surface of the upper half of the housing 2 face each other, the reformed fuel cooling flow path 4 and the raw fuel In order to form the preheater 5 and the raw fuel preheater 5, a cylindrical partition wall 41 that hangs vertically is provided inside the upper wall of the housing 2. In this case, the space between the inner peripheral surface of the partition wall 41 and the outer peripheral surface of the flow path component 32 of the catalyst filling flow path 3 is called the reformed fuel cooling flow path 4, and the raw fuel in the reformed fuel cooling flow path 4 The length in the flow direction refers to a portion in which the axial length of the inner peripheral surface of the partition wall 41 and the axial length of the outer peripheral surface of the flow path constituting member 32 of the catalyst filling flow path 3 opposed thereto are matched. .

原燃料予熱器5は、隔壁41の外周側と筐体2の間の空間に螺旋状に配設された原燃料予熱管51と、原燃料予熱管51の一端に接続した原燃料ガスを供給するために筐体2の壁面を貫通した原燃料入口管6と、原燃料予熱管51の他端と触媒充填流路の一端を接続した連絡管7と、連絡管7の内部を加熱するために連絡管7の外周面又は連絡管7の内部に設けた電気ヒータ10からなっている。   The raw fuel preheater 5 supplies a raw fuel preheating pipe 51 spirally disposed in a space between the outer peripheral side of the partition wall 41 and the housing 2 and a raw fuel gas connected to one end of the raw fuel preheating pipe 51. In order to heat the inside of the connecting pipe 7, the raw fuel inlet pipe 6 penetrating the wall surface of the housing 2, the connecting pipe 7 connecting the other end of the raw fuel preheating pipe 51 and one end of the catalyst filling flow path are connected. It consists of the electric heater 10 provided in the outer peripheral surface of the connecting pipe 7, or the inside of the connecting pipe 7.

有底円筒部と、有底円筒部の開口部を閉塞する閉塞部からなる筐体2であって、筐体2の内壁面には保温材24が設けられ、この内部空間にはている。触媒充填流路3の内側両端部は蓋部材25及び底部材26により閉塞され、燃焼空間23を形成している。触媒充填流路3の円筒状の内側隔壁31と円筒状の外側隔壁32の間に改質触媒33が充填されている。改質触媒33は仕切り34、35により保持され、改質触媒33の中を原燃料ガスが流通できるようになっている。   It is the housing | casing 2 which consists of a bottomed cylindrical part and the obstruction | occlusion part which obstruct | occludes the opening part of a bottomed cylindrical part, Comprising: The heat insulating material 24 is provided in the inner wall face of the housing | casing 2, and it has in this internal space. Both end portions on the inner side of the catalyst filling flow path 3 are closed by a lid member 25 and a bottom member 26 to form a combustion space 23. A reforming catalyst 33 is filled between the cylindrical inner partition wall 31 and the cylindrical outer partition wall 32 of the catalyst filling channel 3. The reforming catalyst 33 is held by partitions 34 and 35 so that the raw fuel gas can flow through the reforming catalyst 33.

触媒充填流路3の外側隔壁32の外周側に、同心円状の改質燃料冷却用流路4が形成されており、改質燃料冷却用流路4の軸方向の長さは、改質触媒33の軸方向の長さ、すなわち原燃料ガスの流れる流路長さより例えば60パーセントと短くなっている。 A concentric reforming fuel cooling channel 4 is formed on the outer peripheral side of the outer partition wall 32 of the catalyst filling channel 3, and the length of the reforming fuel cooling channel 4 in the axial direction is the reforming catalyst. The length in the axial direction of 33, that is, the length of the flow path through which the raw fuel gas flows is, for example, 60% shorter.

改質燃料冷却用流路4の外周側に設置された原燃料予熱器4は、改質ガス冷却用流路4からの改質ガスが流れる予熱器冷却流路52と、この予熱器冷却流路52の内部に螺旋状に連続するように配設された原燃料予熱管51より構成されている。原燃料予熱器5の改質ガス冷却流路52を流れる燃料改質された改質燃料すなわち水素ガスは、改質ガス冷却流路52に連結された改質ガス出口管8から取り出せるようになっている
原燃料予熱器5の原燃料予熱管51の一端部には、改質器の外部から原燃料ガスを供給する原燃料入口管6と連結され、原燃料予熱管51の他端部に、連絡管7の一端部が連結され、連絡管7の他端部が触媒充填流路3の下端部に導かれるようになっている。連絡管7の内部または外周面に円環状の加熱手段例えば電気ヒータ10が設置されている。
The raw fuel preheater 4 installed on the outer peripheral side of the reformed fuel cooling channel 4 includes a preheater cooling channel 52 through which the reformed gas from the reformed gas cooling channel 4 flows, and the preheater cooling flow. The raw fuel preheating pipe 51 is arranged inside the passage 52 so as to be spirally continuous. Fuel reformed reformed fuel, that is, hydrogen gas, flowing through the reformed gas cooling passage 52 of the raw fuel preheater 5 can be taken out from the reformed gas outlet pipe 8 connected to the reformed gas cooling passage 52. One end of the raw fuel preheating pipe 51 of the raw fuel preheater 5 connected to the raw fuel inlet pipe 6 for supplying raw fuel gas from the outside of the reformer is connected to the other end of the raw fuel preheating pipe 51. The one end of the connecting pipe 7 is connected, and the other end of the connecting pipe 7 is led to the lower end of the catalyst filling flow path 3. An annular heating means such as an electric heater 10 is installed inside or on the outer peripheral surface of the connecting pipe 7.

燃焼空間23内には、隔壁91、円筒状のセンタープラグ92、水蒸気管93からなる蒸気発生器9が配設されている。具体的には、底部材26に隔壁91の一端部が当設接合されており、燃焼空間23内の燃焼ガスが隔壁91を介して燃焼ガスが改質器外部に取り出せるようになっている。隔壁91の外周側に、これとの間に所定の空間を形成するようにセンタープラグ92が配設され、このセンタープラグ92内には螺旋状に水蒸気管93が配設され、水蒸気管93の一方の端部から水が導入され、水蒸気管93内で生成される水蒸気が外部に排出されるようになっている。 In the combustion space 23, a steam generator 9 including a partition wall 91, a cylindrical center plug 92, and a steam pipe 93 is disposed. Specifically, one end of a partition wall 91 is joined to the bottom member 26 so that the combustion gas in the combustion space 23 can be taken out of the reformer through the partition wall 91. A center plug 92 is disposed on the outer peripheral side of the partition wall 91 so as to form a predetermined space therebetween, and a steam pipe 93 is spirally disposed in the center plug 92. Water is introduced from one end, and water vapor generated in the water vapor pipe 93 is discharged to the outside.

次に、以上の様な構成の燃料電池用改質器の作用について説明する。100℃から150℃の気化した液体燃料と水蒸気の混合した原燃料ガスは、原燃料入口管6と、原燃料予熱管51と、連絡管7を順次経て触媒充填流路3の入口側に供給され、これは触媒充填流路3の改質触媒33内の相互の隙間を通り、原燃料ガスは触媒充填流路3の出口側から改質燃料冷却用流路4と、予熱器冷却流路52と、改質ガス出口管8を順次経て筐体2の外部に排出される。 Next, the operation of the fuel cell reformer having the above configuration will be described. The raw fuel gas mixed with vaporized liquid fuel and water vapor at 100 ° C. to 150 ° C. is supplied to the inlet side of the catalyst filling flow path 3 through the raw fuel inlet pipe 6, the raw fuel preheating pipe 51 and the connecting pipe 7 in order. This passes through the gap in the reforming catalyst 33 of the catalyst filling flow path 3, and the raw fuel gas flows from the outlet side of the catalyst filling flow path 3 to the reformed fuel cooling flow path 4 and the preheater cooling flow path. 52 and the reformed gas outlet pipe 8 are sequentially discharged to the outside of the housing 2.

このように原燃料ガスは、原燃料予熱器5の原燃料予熱管51に供給され、予熱器冷却流路52からの熱エネルギーを受けて450℃以上に加熱され、原燃料ガスは連絡管7を通り、触媒充填流路3に流入する。そして、触媒充填流路3に流入した原燃料ガスは、燃焼空間の対流伝熱部22から熱エネルギーを受けて、例えば500℃程度に温度が高められるとともに、改質触媒33の作用により水蒸気改質反応を起こして、原燃料ガスの一部が水素と一酸化炭素と二酸化炭素に改質され水素濃度の高い混合ガスになる。   In this way, the raw fuel gas is supplied to the raw fuel preheating pipe 51 of the raw fuel preheater 5, receives heat energy from the preheater cooling flow path 52, and is heated to 450 ° C. or higher. And flows into the catalyst-filled flow path 3. The raw fuel gas that has flowed into the catalyst filling flow path 3 receives heat energy from the convection heat transfer section 22 in the combustion space, and the temperature is raised to, for example, about 500 ° C., and steam reforming is performed by the action of the reforming catalyst 33. As a result, a part of the raw fuel gas is reformed into hydrogen, carbon monoxide, and carbon dioxide to become a mixed gas with a high hydrogen concentration.

さらに燃焼ガスの輻射伝熱部21と改質燃料冷却用流路4から熱エネルギーを受けて同様の水蒸気改質反応を起こし、所定の水素濃度を持つ改質ガスへと改質される。このときの混合ガスは例えば700℃程度まで温度が高められる。   Further, when receiving heat energy from the radiant heat transfer portion 21 of the combustion gas and the reformed fuel cooling flow path 4, a similar steam reforming reaction is caused to reform into a reformed gas having a predetermined hydrogen concentration. The temperature of the mixed gas at this time is raised to about 700 ° C., for example.

そして、触媒充填流路3を出た改質ガスは、改質燃料冷却用流路4に流入し、触媒充填流路3に熱エネルギーを与えて、例えば500℃まで温度が低下する。改質燃料冷却用流路4を出た改質ガスは、燃料予熱器5の予熱器冷却流路52に流入し、原燃料予熱管51に熱エネルギーを与えて例えば280℃まで温度が低下し改質ガス出口管8より排出され図示しないCO変成器やCO選択酸化器へ供給される。   Then, the reformed gas exiting the catalyst filling flow path 3 flows into the reformed fuel cooling flow path 4 and gives thermal energy to the catalyst filling flow path 3 so that the temperature is lowered to 500 ° C., for example. The reformed gas exiting the reformed fuel cooling flow path 4 flows into the preheater cooling flow path 52 of the fuel preheater 5 and gives thermal energy to the raw fuel preheat pipe 51 to decrease the temperature to 280 ° C., for example. It is discharged from the reformed gas outlet pipe 8 and supplied to a CO converter and a CO selective oxidizer (not shown).

一方、バーナ燃料とバーナ空気は燃焼器(バーナ)1で燃焼し、1200℃から1300℃程度の燃焼ガスになり、輻射伝熱部21に流れ触媒充填流路3に熱エネルギーを与えて温度が低下し、例えば800℃程度になって、対流伝熱部22に流入する。さらに燃焼ガスは対流伝熱部22を流れるうちに触媒充填流路3に熱エネルギーを与えて例えば450℃まで温度が低下する。その後燃焼ガスはセンタープラグ92内に流入し、螺旋管で構成された水蒸気管93へ熱エネルギーを与え、100℃程度まで冷却されて、燃焼ガス出口101より図示しない熱回収熱交換器へ供給される。蒸気発生器9に流入する水分は、センタープラグ92内の燃焼ガスからの熱エネルギーを受けてその全部もしくは一部が蒸発し水蒸気となり、原燃料ガスの水蒸気として使用される。   On the other hand, the burner fuel and burner air are burned in the combustor (burner) 1 to become a combustion gas of about 1200 ° C. to 1300 ° C., flow into the radiant heat transfer section 21 and give thermal energy to the catalyst filling flow path 3 to increase the temperature. For example, the temperature drops to about 800 ° C. and flows into the convection heat transfer section 22. Further, while the combustion gas flows through the convection heat transfer section 22, the temperature is reduced to, for example, 450 ° C. by giving thermal energy to the catalyst filling channel 3. Thereafter, the combustion gas flows into the center plug 92, gives heat energy to the steam pipe 93 constituted by a spiral pipe, is cooled to about 100 ° C., and is supplied from the combustion gas outlet 101 to a heat recovery heat exchanger (not shown). The Moisture flowing into the steam generator 9 receives heat energy from the combustion gas in the center plug 92, and all or part of it evaporates into water vapor, which is used as water vapor for the raw fuel gas.

触媒充填流路3に流入する原燃料ガスの加熱は原燃料予熱器5で行われ、原燃料ガス入口管6からの低温の原燃料ガスは改質冷却用流路4からの高温の改質ガスより熱エネルギーを得て加熱される。改質触媒33への入口温度を450℃以上にする場合は、原燃料予熱器5の原燃料ガスの出口温度を450℃以上に加熱する必要があり、加熱用の熱源である改質燃料冷却用流路4の改質ガスの出口温度も少なくとも450℃以上にする必要がある。   The raw fuel gas flowing into the catalyst filling channel 3 is heated by the raw fuel preheater 5, and the low temperature raw fuel gas from the raw fuel gas inlet pipe 6 is heated at a high temperature from the reforming and cooling channel 4. Heat is obtained by obtaining heat energy from gas. When the inlet temperature to the reforming catalyst 33 is set to 450 ° C. or higher, the outlet temperature of the raw fuel gas of the raw fuel preheater 5 needs to be heated to 450 ° C. or higher, and the reformed fuel cooling that is a heat source for heating is used. The outlet temperature of the reformed gas in the working channel 4 also needs to be at least 450 ° C. or higher.

改質燃料冷却用流路4の改質ガスの出口温度は改質ガス冷却用流路4と触媒充填流路3の接触面積により変化し、改質燃料冷却用流路4と触媒充填流路3の流れ方向の長さが同じ場合は接触面積が大きいため、改質燃料冷却用流路4を流れる改質ガスから触媒充填流路3を流れる混合ガスへの熱交換も過大になり、改質ガス冷却用流路4の改質ガスの出口温度が450℃以下になる。   The reformed gas outlet temperature of the reformed fuel cooling channel 4 varies depending on the contact area between the reformed gas cooling channel 4 and the catalyst charging channel 3, and the reformed fuel cooling channel 4 and the catalyst charging channel are changed. 3 have the same contact area, the heat exchange from the reformed gas flowing in the reformed fuel cooling flow path 4 to the mixed gas flowing in the catalyst-filled flow path 3 becomes excessive. The outlet temperature of the reformed gas in the quality gas cooling channel 4 becomes 450 ° C. or lower.

本実施形態では改質燃料冷却用流路4の流れ方向の長さを触媒充填流路3の長さより短くし、改質ガスから混合ガスへの熱交換量を適切に設定することにより、改質燃料冷却用流路4の改質ガスの出口温度を500℃程度、原燃料予熱器5の原燃料ガスの出口温度および改質触媒33への入口温度を450℃以上にしている。   In the present embodiment, the length of the reformed fuel cooling flow path 4 in the flow direction is made shorter than the length of the catalyst filling flow path 3, and the heat exchange amount from the reformed gas to the mixed gas is appropriately set. The reformed gas outlet temperature of the quality fuel cooling flow path 4 is set to about 500 ° C., the raw fuel gas outlet temperature of the raw fuel preheater 5 and the inlet temperature to the reforming catalyst 33 are set to 450 ° C. or higher.

また、起動時や原燃料ガスの流量変化時に原燃料予熱器5の原燃料ガスの出口温度が450℃以下になった場合は、連絡管7に配設されている電気ヒータ10により原燃料ガスを450℃以上に加熱している。   Further, when the raw fuel gas outlet temperature of the raw fuel preheater 5 becomes 450 ° C. or lower at the time of starting or changing the flow rate of the raw fuel gas, the raw fuel gas is provided by the electric heater 10 disposed in the communication pipe 7. Is heated to 450 ° C. or higher.

以上の様な構成を有する実施形態によれば、貯蔵や取扱いが容易な灯油などの液体燃料を使用でき、触媒上に析出する炭素を少なくでき、水素燃料への転換率を高くでき、さらには未反応の液化成分が改質触媒出口より流出するのを防ぐことができ、安定運転を行うことが可能な燃料電池用改質器を提供できる。   According to the embodiment having the above configuration, liquid fuel such as kerosene that can be easily stored and handled can be used, carbon deposited on the catalyst can be reduced, conversion rate to hydrogen fuel can be increased, and An unreacted liquefied component can be prevented from flowing out from the reforming catalyst outlet, and a fuel cell reformer capable of performing stable operation can be provided.

因みに、改質燃料冷却用流路4の流れ方向の長さを触媒充填流路3の長さより短くすることにより、改質ガスから混合ガスへの熱交換量を適切に設定することができるので、原燃料ガスの原燃料予熱器5から改質触媒33への入口温度を450℃以上にすることができ、さらに連絡管7に電気ヒータ10を設置し原燃料ガスの予熱機能を付加したので、起動時や原燃料ガスの流量変化時においても改質触媒33への入口温度を常に450℃以上にできるので、常に改質反応に適切な改質触媒33への入口温度を維持し、安定運転を行うことが可能となる。   Incidentally, the heat exchange amount from the reformed gas to the mixed gas can be appropriately set by making the length in the flow direction of the reformed fuel cooling channel 4 shorter than the length of the catalyst-filled channel 3. In addition, the inlet temperature of the raw fuel gas from the raw fuel preheater 5 to the reforming catalyst 33 can be set to 450 ° C. or more, and an electric heater 10 is installed in the connecting pipe 7 to add a raw fuel gas preheating function. In addition, since the inlet temperature to the reforming catalyst 33 can always be 450 ° C. or higher even when starting up or when the flow rate of the raw fuel gas is changed, the inlet temperature to the reforming catalyst 33 suitable for the reforming reaction is always maintained and stable. It becomes possible to drive.

(第2の実施形態)
図2を参照して第2の実施形態を具体的に説明する。図2中、図1と同一の部材については同一符号を付し、説明は省略する。
(Second Embodiment)
The second embodiment will be specifically described with reference to FIG. In FIG. 2, the same members as those in FIG.

第2の実施形態は触媒充填流路3の入口部に原燃料(原燃料ガス)予熱流路102が設置されている。原燃料予熱流路102の内部にはセラミックまたは金属でできた粒子または繊維状の伝熱促進材103が充填されている。また、触媒充填流路3と原燃料予熱流路102の間には固定または遊動できる多孔仕切り板104が設置されている。また、原燃料予熱流路102の外側の隔壁には電気ヒータ105が設置されている。これ以外の点は、図1と同一である。   In the second embodiment, a raw fuel (raw fuel gas) preheating flow path 102 is installed at the inlet of the catalyst filling flow path 3. The raw fuel preheating channel 102 is filled with a particle or fibrous heat transfer promoting material 103 made of ceramic or metal. Further, a porous partition plate 104 that can be fixed or floated is installed between the catalyst filling channel 3 and the raw fuel preheating channel 102. In addition, an electric heater 105 is installed in a partition wall outside the raw fuel preheating channel 102. The other points are the same as in FIG.

以上の様な構成を有する本実施形態の作用は以下の通りである。原燃料予熱器5から出た原燃料ガスは連絡管7を通り、原燃料予熱流路102に流入する。原燃料予熱流路102に流入する原燃料ガスの温度が450℃未満であっても、伝熱促進材103を充填した原燃料予熱流路102を流れるうちに燃焼ガスの対流伝熱部22から熱エネルギーを受けて、450℃以上に加熱されて触媒充填流路3に流入する。また、多孔仕切り板104により触媒充填流路3の改質触媒33と原燃料予熱流路102の伝熱促進材103は混合しない。   The operation of the present embodiment having the above-described configuration is as follows. The raw fuel gas emitted from the raw fuel preheater 5 passes through the connecting pipe 7 and flows into the raw fuel preheat flow path 102. Even if the temperature of the raw fuel gas flowing into the raw fuel preheating flow path 102 is less than 450 ° C., it flows from the convection heat transfer section 22 of the combustion gas while flowing through the raw fuel preheating flow path 102 filled with the heat transfer promoting material 103. In response to the thermal energy, it is heated to 450 ° C. or higher and flows into the catalyst-filled flow path 3. Further, the reforming catalyst 33 in the catalyst filling flow path 3 and the heat transfer promoting material 103 in the raw fuel preheating flow path 102 are not mixed by the porous partition plate 104.

さらに、起動時や原燃料ガスの流量変化時に原燃料予熱流路102の原燃料ガスの出口温度が450℃以下になった場合は、原燃料予熱流路102の外側の隔壁に配設されている電気ヒータ105により原燃料ガスを450℃以上に加熱する。   Further, when the outlet temperature of the raw fuel gas in the raw fuel preheating channel 102 becomes 450 ° C. or lower at the time of starting or changing the flow rate of the raw fuel gas, the raw fuel gas is disposed in the partition wall outside the raw fuel preheating channel 102. The raw fuel gas is heated to 450 ° C. or higher by the electric heater 105.

以上の様な構成を有する本実施形態の効果は以下の通りである。   The effects of the present embodiment having the above-described configuration are as follows.

原燃料予熱流路102を触媒充填流路3の入口部に設置し、原燃料ガスの予熱機能を付加したので、原燃料予熱器5の原燃料ガスの出口温度が450℃未満でも改質触媒33の入口温度を450℃以上にすることが可能となる。 Since the raw fuel preheating flow path 102 is installed at the inlet of the catalyst filling flow path 3 and the raw fuel gas preheating function is added, the reforming catalyst is provided even if the raw fuel gas outlet temperature of the raw fuel preheater 5 is less than 450 ° C. The inlet temperature of 33 can be set to 450 ° C. or higher.

原燃料予熱流路102の内部の伝熱促進材103により燃焼ガスから原燃料ガスへの熱伝達を良好にしているので、効率よく原燃料ガスの加熱をすることができる。   Since heat transfer from the combustion gas to the raw fuel gas is made good by the heat transfer promoting member 103 inside the raw fuel preheating channel 102, the raw fuel gas can be efficiently heated.

多孔仕切り板104により、原燃料と改質燃料が、改質触媒33と原燃料予熱流路102において、混入することを防止しているので、改質触媒33が原燃料ガス予熱流路102の内部で450℃以下の水蒸気改質反応を起こすことを防止できる。   The porous partition plate 104 prevents the raw fuel and the reformed fuel from being mixed in the reforming catalyst 33 and the raw fuel preheating channel 102. It is possible to prevent a steam reforming reaction at 450 ° C. or lower from occurring inside.

さらに、原燃料予熱流路102の外側の隔壁に電気ヒータ105を設置し原燃料ガスの予熱機能を付加したので、起動時や原燃料ガスの流量変化時においても改質触媒33への入口温度を常に450℃以上に維持できる。   Furthermore, since the electric heater 105 is installed in the partition wall outside the raw fuel preheating flow path 102 and the preheating function of the raw fuel gas is added, the inlet temperature to the reforming catalyst 33 at the time of starting or when the flow rate of the raw fuel gas is changed. Can always be maintained at 450 ° C. or higher.

(変形例)
前述の実施形態では、筐体内部の燃焼空間に、触媒充填流路、改質燃料冷却流路、原燃料予熱器は各々円環状であって、これらを同心円状に配置したものについて説明したが、これに限らず筐体内部の燃焼空間に、触媒充填流路、改質燃料冷却流路、原燃料予熱器は各々非環状例えば板状とし、これらを順次一方方向に並べて設けるようにしたものでもよい。
(Modification)
In the above-described embodiment, the catalyst filling flow path, the reformed fuel cooling flow path, and the raw fuel preheater are each in an annular shape in the combustion space inside the casing, and these are described as being concentrically arranged. In addition, the catalyst filling flow path, the reformed fuel cooling flow path, and the raw fuel preheater are each non-annular, for example, plate-shaped, and are arranged in order in one direction in the combustion space inside the casing. But you can.

本発明に係る燃料電池用改質器の第1の実施形態を示す縦断面図。1 is a longitudinal sectional view showing a first embodiment of a reformer for a fuel cell according to the present invention. 本発明に係る燃料電池用改質器の第2の実施形態を示す縦断面図。The longitudinal cross-sectional view which shows 2nd Embodiment of the reformer for fuel cells which concerns on this invention.

符号の説明Explanation of symbols

1…燃焼器、2…筐体、3…触媒充填流路、4…改質燃料冷却用流路、5…原燃料予熱器、6…原燃料入口管、7…連絡管、8…改質ガス出口管、9…蒸気発生器、10…電気ヒータ、21…輻射伝熱部、22…対流伝熱部、23…燃焼空間、24…保温材、25…蓋部材、26…底部材、31…円筒部材、32…流路構成部材、33…改質触媒、34、35…仕切り部材、41…隔壁、51…原燃料予熱管、52…予熱器冷却流路、91…燃焼ガス排出管、92…センタプラグ、93…水蒸気管、101…燃焼ガス出口、102…原燃料予熱流路、103…伝熱促進材、104…多孔仕切り板、105…電気ヒータ。     DESCRIPTION OF SYMBOLS 1 ... Combustor, 2 ... Housing, 3 ... Catalyst filling flow path, 4 ... Reformed fuel cooling flow path, 5 ... Raw fuel preheater, 6 ... Raw fuel inlet pipe, 7 ... Communication pipe, 8 ... Reforming Gas outlet pipe, 9 ... Steam generator, 10 ... Electric heater, 21 ... Radiation heat transfer section, 22 ... Convection heat transfer section, 23 ... Combustion space, 24 ... Insulating material, 25 ... Cover member, 26 ... Bottom member, 31 DESCRIPTION OF SYMBOLS ... Cylindrical member, 32 ... Flow path component, 33 ... Reforming catalyst, 34, 35 ... Partition member, 41 ... Partition, 51 ... Raw fuel preheating pipe, 52 ... Preheater cooling flow path, 91 ... Combustion gas discharge pipe, 92 ... Center plug, 93 ... Steam pipe, 101 ... Combustion gas outlet, 102 ... Raw fuel preheating flow path, 103 ... Heat transfer accelerator, 104 ... Porous partition plate, 105 ... Electric heater.

Claims (8)

中心部に燃料を燃焼させる燃焼器を備えた筐体内部に、前記燃焼器の燃料を燃焼させるための燃焼空間を形成し、前記燃焼空間の外周側に同心状に環状の触媒充填流路を形成し、前記触媒充填流路の外周側に同心状に環状の改質燃料冷却用流路を形成し、前記改質燃料冷却用流路の外周側に同心状に原燃料を予熱するための環状の原燃料予熱器を形成した燃料電池用改質器において、
前記改質燃料冷却用流路における前記原燃料の流れ方向の長さを、前記触媒充填流路における前記原燃料の流れ方向の長さより短くしたことを特徴とする燃料電池用改質器。
A combustion space for combusting the fuel of the combustor is formed inside a housing having a combustor that combusts fuel in the center, and a concentric annular catalyst filling channel is formed on the outer peripheral side of the combustion space. Forming a concentric annular reformed fuel cooling channel on the outer peripheral side of the catalyst filling channel, and preheating the raw fuel concentrically on the outer peripheral side of the reformed fuel cooling channel. In a fuel cell reformer that forms an annular raw fuel preheater,
A reformer for a fuel cell, wherein a length in the flow direction of the raw fuel in the reformed fuel cooling flow path is shorter than a length in the flow direction of the raw fuel in the catalyst filling flow path.
前記触媒充填流路の原燃料の入口部に、伝熱促進材を充填した環状の改質燃料予熱流路をさらに形成したことを特徴とする請求項1記載の燃料電池用改質器。 The reformer for a fuel cell according to claim 1, further comprising an annular reformed fuel preheating channel filled with a heat transfer promoting material at an inlet portion of the raw fuel in the catalyst charging channel. 前記触媒充填流路と前記改質燃料予熱流路の間に固定または遊動できる環状の多孔仕切り部材を設けたことを特徴とする請求項2記載の燃料電池用改質器。   3. The reformer for a fuel cell according to claim 2, further comprising an annular porous partition member that can be fixed or floating between the catalyst filling channel and the reformed fuel preheating channel. 前記原燃料予熱器から前記触媒充填流路へ原燃料が流通する管路または改質燃料予熱流路に、加熱手段を設けたことを特徴とする請求項1〜3のいずれか一つに記載の燃料電池用改質器。   The heating means is provided in the pipe line or the reformed fuel preheating flow path through which the raw fuel flows from the raw fuel preheater to the catalyst filling flow path. Fuel cell reformer. 中心部に燃料を燃焼させる燃焼器を備えた筐体内部に、前記燃焼器の燃料を燃焼させるための燃焼空間を形成し、前記燃焼空間の外周側に非環状の触媒充填流路を形成し、前記触媒充填流路の外周側に非環状の改質燃料冷却用流路を形成し、前記改質燃料冷却用流路の外周側に非環状の原燃料を予熱するための原燃料予熱器を形成した燃料電池用改質器において、
前記改質燃料冷却用流路における前記原燃料の流れ方向の長さを、前記触媒充填流路における前記原燃料の流れ方向の長さより短くしたことを特徴とする燃料電池用改質器。
A combustion space for combusting the fuel of the combustor is formed inside a housing having a combustor that burns fuel in the center, and a non-circular catalyst filling channel is formed on the outer peripheral side of the combustion space. A raw fuel preheater for forming a non-annular reformed fuel cooling channel on the outer peripheral side of the catalyst filling channel and preheating the non-annular raw fuel on the outer peripheral side of the reformed fuel cooling channel In the fuel cell reformer formed with
A reformer for a fuel cell, wherein a length in the flow direction of the raw fuel in the reformed fuel cooling flow path is shorter than a length in the flow direction of the raw fuel in the catalyst filling flow path.
前記触媒充填流路の原燃料の入口部に、伝熱促進材を充填した非環状の改質燃料予熱流路をさらに形成したことを特徴とする請求項5記載の燃料電池用改質器。 6. The reformer for a fuel cell according to claim 5, further comprising a non-annular reformed fuel preheating channel filled with a heat transfer promoting material at an inlet portion of the raw fuel in the catalyst charging channel. 前記触媒充填流路と前記改質燃料予熱流路の間に固定または遊動できる非環状の多孔仕切り部材を設けたことを特徴とする請求項6記載の燃料電池用改質器。   The reformer for a fuel cell according to claim 6, further comprising a non-circular porous partition member that can be fixed or floating between the catalyst filling channel and the reformed fuel preheating channel. 前記原燃料予熱器から前記触媒充填流路へ原燃料が流通する管路または改質燃料予熱流路に加熱手段を設けたことを特徴とする請求項5〜7のいずれか一つに記載の燃料電池用改質器。   The heating means is provided in the pipe line through which the raw fuel flows from the raw fuel preheater to the catalyst filling flow path or the reformed fuel preheating flow path, according to any one of claims 5 to 7. Fuel cell reformer.
JP2008192357A 2008-07-25 2008-07-25 Fuel cell reformer Expired - Fee Related JP5244488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008192357A JP5244488B2 (en) 2008-07-25 2008-07-25 Fuel cell reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008192357A JP5244488B2 (en) 2008-07-25 2008-07-25 Fuel cell reformer

Publications (2)

Publication Number Publication Date
JP2010030801A true JP2010030801A (en) 2010-02-12
JP5244488B2 JP5244488B2 (en) 2013-07-24

Family

ID=41735779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008192357A Expired - Fee Related JP5244488B2 (en) 2008-07-25 2008-07-25 Fuel cell reformer

Country Status (1)

Country Link
JP (1) JP5244488B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012091063A1 (en) * 2010-12-28 2012-07-05 Jx日鉱日石エネルギー株式会社 Fuel cell system
JP2014146578A (en) * 2013-01-30 2014-08-14 Honda Motor Co Ltd Fuel cell module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2504344B (en) 2012-07-27 2014-08-27 Siemens Plc Variable rake shear

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122001A (en) * 1989-10-03 1991-05-24 Fuji Electric Co Ltd Endothermic reaction unit
JPH04161244A (en) * 1990-08-17 1992-06-04 Toshiba Corp Fuel reformer
WO2001047800A1 (en) * 1999-12-28 2001-07-05 Daikin Industries,Ltd. Device for modification through partial oxidation
WO2002025762A1 (en) * 2000-09-20 2002-03-28 Kabushiki Kaisha Toshiba Fuel reforming device for solid high polymer fuel cell
JP2004175621A (en) * 2002-11-27 2004-06-24 Fuji Electric Holdings Co Ltd Method and apparatus for reforming liquid fuel
JP2005067990A (en) * 2003-08-28 2005-03-17 Mitsubishi Heavy Ind Ltd Evaporator for reforming raw material
JP2005272168A (en) * 2004-03-23 2005-10-06 Corona Corp Fuel reformer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122001A (en) * 1989-10-03 1991-05-24 Fuji Electric Co Ltd Endothermic reaction unit
JPH04161244A (en) * 1990-08-17 1992-06-04 Toshiba Corp Fuel reformer
WO2001047800A1 (en) * 1999-12-28 2001-07-05 Daikin Industries,Ltd. Device for modification through partial oxidation
WO2002025762A1 (en) * 2000-09-20 2002-03-28 Kabushiki Kaisha Toshiba Fuel reforming device for solid high polymer fuel cell
JP2004175621A (en) * 2002-11-27 2004-06-24 Fuji Electric Holdings Co Ltd Method and apparatus for reforming liquid fuel
JP2005067990A (en) * 2003-08-28 2005-03-17 Mitsubishi Heavy Ind Ltd Evaporator for reforming raw material
JP2005272168A (en) * 2004-03-23 2005-10-06 Corona Corp Fuel reformer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012091063A1 (en) * 2010-12-28 2012-07-05 Jx日鉱日石エネルギー株式会社 Fuel cell system
JPWO2012091063A1 (en) * 2010-12-28 2014-06-05 Jx日鉱日石エネルギー株式会社 Fuel cell system
JP5738319B2 (en) * 2010-12-28 2015-06-24 Jx日鉱日石エネルギー株式会社 Fuel cell system
JP2014146578A (en) * 2013-01-30 2014-08-14 Honda Motor Co Ltd Fuel cell module

Also Published As

Publication number Publication date
JP5244488B2 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
US6481207B2 (en) Single-pipe cylinder type reformer and method of operating the same
JP4461439B2 (en) Fuel cell system reformer
CN102822086B (en) Hydrogen production apparatus and fuel cell system
TW200531339A (en) Reformer
KR100848047B1 (en) Highly Efficient, Compact Reformer Unit for Generating Hydrogen from Gaseous Hydrocarbons in the Low Power Range
JP4854037B2 (en) Fuel reformer, driving method thereof, and fuel cell system
JP2017105695A (en) Hydrogen generator and fuel cell system
EA010329B1 (en) Reformer for a fuel cell
JP4492882B2 (en) Hydrogen generating apparatus with double burner and driving method
JP2009096705A (en) Reforming apparatus for fuel cell
JP3921477B2 (en) Single tube cylindrical reformer and its operating method
JP5244488B2 (en) Fuel cell reformer
WO2005077820A1 (en) Fuel reformer
JP2003321206A (en) Single tubular cylinder type reforming apparatus
KR100837679B1 (en) Fuel processor of fuel cell system
JP2011136868A (en) Reforming unit and fuel cell system
JP5428531B2 (en) Hydrogen production equipment
JP2010108832A (en) Fuel cell electric power generation system
JP2006282424A (en) Hydrogen generator
JP2004075435A (en) Fuel reforming device
JP2018104232A (en) Hydrogen production apparatus
JP2005231968A (en) Steam reforming system
JP2005216615A (en) Fuel processing device and fuel cell power generation system
JP5658897B2 (en) Reforming apparatus and fuel cell system
JP2009067645A (en) Hydrogen manufacturing device and fuel cell system using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees