JP2005272168A - Fuel reformer - Google Patents

Fuel reformer Download PDF

Info

Publication number
JP2005272168A
JP2005272168A JP2004084593A JP2004084593A JP2005272168A JP 2005272168 A JP2005272168 A JP 2005272168A JP 2004084593 A JP2004084593 A JP 2004084593A JP 2004084593 A JP2004084593 A JP 2004084593A JP 2005272168 A JP2005272168 A JP 2005272168A
Authority
JP
Japan
Prior art keywords
fuel
cylinder
reforming
burner
reformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004084593A
Other languages
Japanese (ja)
Other versions
JP4458890B2 (en
Inventor
Yoshiji Tokita
義司 時田
Katsumi Moroga
勝巳 諸我
Tomohiro Iihara
智宏 飯原
Sayuri Ohira
小百合 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corona Corp
Original Assignee
Corona Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corona Corp filed Critical Corona Corp
Priority to JP2004084593A priority Critical patent/JP4458890B2/en
Publication of JP2005272168A publication Critical patent/JP2005272168A/en
Application granted granted Critical
Publication of JP4458890B2 publication Critical patent/JP4458890B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel reformer which realizes high-reforming-efficiency steam reforming by utilizing the thermal energy of a burner combustion gas to heat the secondary air. <P>SOLUTION: An air pipe 81 for feeding the secondary air from an external air feed source is connected to the upper part of a housing 10, and an exhaust hole 14 for discharging a combustion exhaust from the inside of a burner 60 is open in a manner that it penetrates a furnace tube 20, etc. The burner 60 is provided with a plurality of secondary air feed holes 64 open to the inside of the housing 10, and the secondary air fed from the air pipe 81 is fed through them into the lower part of the burner 60. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、炭化水素燃料を水蒸気改質する燃料改質装置に関する。   The present invention relates to a fuel reformer for steam reforming a hydrocarbon fuel.

近年、地球温暖化の原因になる二酸化炭素の排出が削減できることや、エネルギー変換効率も高いこと等から、定置式燃料電池や自動車用燃料電池の開発が進められている。燃料電池は、高純度の水素(H2)と空気中の酸素(O2)とを電気化学的に反応させて発電を行うもので、固体電解質型燃料電池(SOFC;Solid Oxide Electrolyte Fuel Cell)や固体高分子燃料電池(PEFC;Polymer Electrolyte Fuel Cell)等、種々の形式が研究開発されている。 In recent years, development of stationary fuel cells and fuel cells for automobiles has been promoted because carbon dioxide emissions causing global warming can be reduced and energy conversion efficiency is high. A fuel cell generates electricity by electrochemically reacting high-purity hydrogen (H 2 ) and oxygen (O 2 ) in the air, and is a solid oxide fuel cell (SOFC). Various types have been researched and developed, such as polymer electrolyte fuel cells (PEFCs) and polymer electrolyte fuel cells (PEFCs).

燃料電池に用いられる水素は、現状では水素供給インフラが整備されていないことから、都市ガスやLPガス、灯油等の炭化水素系燃料(原燃料)に種々の処理を施すことにより製造されている。炭化水素系燃料から水素を製造する場合、先ず脱硫プロセス(吸着脱硫や水素化脱硫)で炭化水素系燃料中の硫黄分を除去した後、改質プロセス(水蒸気改質や部分酸化改質等)で改質ガス(水素リッチガス)を取り出し、COシフトプロセス(高温シフト触媒や低温シフト触媒)で改質ガス中のCO(一酸化炭素)を水素に変換させ、CO選択酸化触媒と酸素とを用いた選択酸化プロセスで改質ガス中の微量COを除去している。   Hydrogen used in fuel cells is manufactured by applying various treatments to hydrocarbon-based fuels (raw fuels) such as city gas, LP gas, and kerosene because there is currently no hydrogen supply infrastructure in place. . When hydrogen is produced from hydrocarbon fuels, the sulfur content in the hydrocarbon fuel is first removed by a desulfurization process (adsorption desulfurization or hydrodesulfurization), and then a reforming process (steam reforming, partial oxidation reforming, etc.) Then, the reformed gas (hydrogen-rich gas) is taken out, and CO (carbon monoxide) in the reformed gas is converted to hydrogen by the CO shift process (high temperature shift catalyst or low temperature shift catalyst), and the CO selective oxidation catalyst and oxygen are used. A small amount of CO in the reformed gas is removed by the selective oxidation process.

炭化水素系燃料の改質プロセスとしては、炭化水素系燃料と水蒸気とを高温・触媒存在下で反応させる水蒸気改質が一般に採用されている。水蒸気改質に用いられる燃料改質装置としては、例えば、内管と外管との間に改質触媒が充填された二重管式の改質エレメントを用いるもの(特許文献1参照)が知られている。この燃料改質装置では、筒状の燃料改質装置ハウジング内に開放端(供給口および排出口)が上を向くかたちで改質エレメントを多数本配設するとともに、燃料改質装置ハウジングの下部に改質エレメントに望む加熱用のバーナを設けている。そして、改質エレメントの外管側から炭化水素系燃料と水蒸気とを混合してなる水蒸気混合燃料を供給し、バーナにより改質エレメントの閉鎖端(下端)を所定の温度(例えば、750℃〜800℃程度)に加熱することにより、改質触媒下で水蒸気混合燃料中の炭化水素系燃料と水蒸気とを接触反応させ、改質エレメントの内管側から改質ガスを得る。水蒸気混合燃料は、バーナの燃焼ガスを熱源とする外部の水予熱器により水を予熱した後、これもバーナの燃焼ガスを熱源とする外部の加熱器により炭化水素系燃料と予熱された水とを加熱・気化させて得ている。   As a reforming process of a hydrocarbon fuel, steam reforming in which a hydrocarbon fuel and steam are reacted in the presence of a high temperature and a catalyst is generally employed. As a fuel reformer used for steam reforming, for example, a device using a double-pipe reforming element in which a reforming catalyst is filled between an inner tube and an outer tube (see Patent Document 1) is known. It has been. In this fuel reformer, a large number of reforming elements are arranged in the cylindrical fuel reformer housing with the open ends (supply ports and discharge ports) facing upward, and the lower part of the fuel reformer housing Is provided with a heating burner desired for the reforming element. Then, a steam-mixed fuel obtained by mixing hydrocarbon-based fuel and steam is supplied from the outer tube side of the reforming element, and the closed end (lower end) of the reforming element is set at a predetermined temperature (for example, 750 ° C. to By heating to about 800 ° C., the hydrocarbon-based fuel in the steam-mixed fuel and steam are brought into contact reaction under the reforming catalyst, and the reformed gas is obtained from the inner tube side of the reforming element. The steam-mixed fuel is preheated with an external water preheater that uses the combustion gas of the burner as a heat source, and is then mixed with hydrocarbon fuel and water preheated by an external heater that uses the combustion gas of the burner as a heat source. It is obtained by heating and vaporizing.

また、他の燃料改質装置としては、内筒と外筒とに改質触媒が充填された二重環状断面形状の改質エレメントを用いるもの(特許文献2参照)が開示されている。この燃料改質装置では、改質エレメントの中空部に加熱用のバーナの燃焼筒を設置するとともに、燃焼筒の直上部から内筒の内周面を経由して外筒の外周面に燃焼ガスを導く燃焼ガス通路と、内筒と外筒との間での熱交換に供される蒸発器および熱回収器を備えている。そして、改質エレメントの外筒側から炭化水素系燃料および水を供給し、バーナの燃焼ガスを燃焼ガス通路に導入することにより、改質触媒下で炭化水素系燃料と水蒸気とを接触反応させ、改質エレメントの内筒側から改質ガスを得る。この際、外筒側から供給された水は、蒸発器を介して高温の改質ガスと熱交換を行うことで、水蒸気となって炭化水素系燃料とともに改質触媒に導入される。
特開2003−321204号公報(段落0004,0005、図2) 特開2003−40605号公報(段落0033〜0044、図2)
As another fuel reforming apparatus, an apparatus using a reforming element having a double annular cross section in which an inner cylinder and an outer cylinder are filled with a reforming catalyst is disclosed (see Patent Document 2). In this fuel reformer, a combustion cylinder of a heating burner is installed in the hollow portion of the reforming element, and the combustion gas is passed from the upper part of the combustion cylinder to the outer peripheral surface of the outer cylinder via the inner peripheral surface of the inner cylinder. And an evaporator and a heat recovery unit for heat exchange between the inner cylinder and the outer cylinder. Then, hydrocarbon fuel and water are supplied from the outer cylinder side of the reforming element, and the combustion gas of the burner is introduced into the combustion gas passage so that the hydrocarbon fuel and steam react with each other under the reforming catalyst. The reformed gas is obtained from the inner cylinder side of the reforming element. At this time, the water supplied from the outer cylinder side is heat-exchanged with the high-temperature reformed gas via the evaporator to be converted into water vapor and introduced into the reforming catalyst together with the hydrocarbon fuel.
Japanese Patent Laying-Open No. 2003-321204 (paragraphs 0004 and 0005, FIG. 2) Japanese Patent Laying-Open No. 2003-40605 (paragraphs 0033 to 0044, FIG. 2)

燃料改質装置では、燃料の改質反応を行う際に多量の熱を必要とすることから、改質エレメントをバーナにより常に加熱する構造が採られている。しかしながら、従来の燃料改質装置では、排気ガスや輻射熱のかたちで外部に放出される熱量(熱損失)が多いため、運転(改質)を滞りなく行うために多量の熱(すなわち、バーナへの燃料)を供給しなければならず、発電効率が低くなることが避けられなかった。   Since the fuel reforming apparatus requires a large amount of heat when performing the reforming reaction of the fuel, a structure in which the reforming element is always heated by the burner is employed. However, in a conventional fuel reformer, a large amount of heat (heat loss) is released to the outside in the form of exhaust gas or radiant heat, so a large amount of heat (that is, to the burner) is performed in order to perform operation (reforming) without delay. The fuel generation efficiency is inevitably reduced.

本発明は、このような背景に鑑みてなされたもので、熱損失を極めて少なくすることができるようにした燃料改質装置を提供することを課題とする。   The present invention has been made in view of such a background, and an object of the present invention is to provide a fuel reformer capable of extremely reducing heat loss.

前記課題を解決すべく、請求項1の燃料改質装置は、炭化水素系の原燃料から水素を取り出す水蒸気改質プロセスに供される燃料改質装置であって、第1側に改質部を有すると共に当該第1側と反対側である第2側に加熱用のバーナ部を有する改質装置本体と、前記改質部の外側に当該改質部を囲むかたちで設置され、その内部に前記バーナ部からの燃焼ガスが流通する炉筒とを備え、前記改質装置本体が前記炉筒の外側に当該炉筒を囲むかたちで設置され、前記炉筒と前記改質装置本体との間に前記バーナ部に供給する燃焼用空気の導入路が形成されたことを特徴とする。   In order to solve the above-mentioned problem, the fuel reforming apparatus according to claim 1 is a fuel reforming apparatus used in a steam reforming process for extracting hydrogen from a hydrocarbon-based raw fuel, wherein the reforming section is provided on the first side. And a reformer body having a heating burner part on the second side opposite to the first side, and the reforming part is installed outside the reforming part and surrounded by the reformer part. A furnace tube through which combustion gas from the burner part circulates, and the reformer main body is installed outside the furnace tube so as to surround the furnace tube, and between the furnace tube and the reformer main body Further, an introduction path for combustion air supplied to the burner portion is formed.

請求項1の燃料改質装置では、2次空気供給手段により改質装置本体の第1側に供給された2次空気は、改質装置本体と炉筒との間の導入路を通過する間に炉筒の熱を受けて加熱された後、2次空気導入孔から燃焼筒内に導入される。   In the fuel reformer of claim 1, the secondary air supplied to the first side of the reformer main body by the secondary air supply means passes through the introduction path between the reformer main body and the furnace tube. After being heated by receiving heat from the furnace tube, it is introduced into the combustion tube through the secondary air introduction hole.

また、請求項2の燃料改質装置は、請求項1に記載の燃料改質装置において、前記炉筒の外周あるいは内周に断熱材が設けられていることを特徴とする。
請求項2の燃料改質装置では、炉筒の熱が断熱材に遮られて外部に放出され難くなり、改質部の加熱がより効果的に行われるようになる。
The fuel reformer according to claim 2 is the fuel reformer according to claim 1, wherein a heat insulating material is provided on the outer periphery or the inner periphery of the furnace tube.
In the fuel reforming apparatus according to the second aspect, the heat of the furnace tube is blocked by the heat insulating material and is not easily released to the outside, and the reforming section is more effectively heated.

また、請求項3の燃料改質装置は、請求項1または請求項2に記載の燃料改質装置において、前記燃料改質装置が原燃料として液体の炭化水素燃料を用い、前記バーナ部が前記液体の炭化水素燃料の気化に供される気化手段を備え、前記気化手段が、前記導入路から導入された燃焼用空気の流路に設置されたことを特徴とする。
請求項3の燃料改質装置では、気化手段が燃焼用空気に加熱されて高温となることにより、気化手段内に供給された液体の炭化水素燃料の気化が促進される。
The fuel reformer according to claim 3 is the fuel reformer according to claim 1 or 2, wherein the fuel reformer uses a liquid hydrocarbon fuel as a raw fuel, and the burner portion is the fuel reformer. Vaporization means used for vaporization of liquid hydrocarbon fuel is provided, and the vaporization means is installed in a flow path of combustion air introduced from the introduction path.
In the fuel reforming apparatus according to the third aspect, vaporization of the liquid hydrocarbon fuel supplied into the vaporization means is promoted by heating the vaporization means to the combustion air and raising the temperature.

本発明に係る燃料改質装置によれば、燃料改質装置から放出される熱を燃焼用空気により回収するために熱損失が極めて少なくなり、入力熱量(バーナでの燃焼量)を削減することが可能となって全体的な発電効率が向上する。   According to the fuel reforming apparatus of the present invention, heat loss is extremely reduced because the heat released from the fuel reforming apparatus is recovered by the combustion air, and the amount of input heat (burning amount in the burner) is reduced. This improves the overall power generation efficiency.

以下、本発明の実施形態を、図面を参照して詳細に説明する。
図1は実施形態に係る燃料改質装置を示す縦断面図であり、図2は図1中のA部拡大図であり、図3は図1中B部拡大図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
1 is a longitudinal sectional view showing a fuel reforming apparatus according to an embodiment, FIG. 2 is an enlarged view of a portion A in FIG. 1, and FIG. 3 is an enlarged view of a portion B in FIG.

≪燃料改質装置の構成≫
図1に示すように、燃料改質装置1は、装置外殻をなす円筒形状のハウジング(改質装置本体)10を始め、ハウジング10の内部に配置された円筒形状の炉筒20、炉筒20の内部に配置された円環断面形状の改質筒30、改質筒30の内部に配置された有底円筒形状の蒸発筒40、改質筒30および蒸発筒40の上部(第1側)に配置された円筒形状の混合筒50、炉筒20の下部(第2側)に配置された円筒形状のバーナ部60、改質筒30と蒸発筒40と混合筒50とを連結する連結ブロック70を主要な構造部材としている。尚、これらの構造部材は、ステンレス鋼の筒材や、板材、ブロック材を加工したものであり、主として溶接接合によって組み立てられている。
≪Configuration of fuel reformer≫
As shown in FIG. 1, the fuel reformer 1 includes a cylindrical housing (reformer main body) 10 that forms an outer shell of the device, a cylindrical furnace tube 20 disposed inside the housing 10, and a furnace tube. The reforming cylinder 30 having an annular cross-sectional shape disposed inside 20, the bottomed cylindrical evaporation cylinder 40 disposed inside the reforming cylinder 30, the reforming cylinder 30, and the upper part of the evaporation cylinder 40 (first side) ) Disposed in the lower portion (second side) of the furnace tube 20, a connection for connecting the reforming tube 30, the evaporation tube 40, and the mixing tube 50. The block 70 is a main structural member. These structural members are obtained by processing a stainless steel cylindrical member, a plate member, and a block member, and are assembled mainly by welding.

ハウジング10は、その上端が混合筒支持板11を介して上部鏡板12に締結され、その下端が連結リング13を介してバーナ部60に接合されている。ハウジング10の上部には、外部のエア供給源から2次空気を導入するためのエア配管81が接続するとともに、バーナ部60の内部から燃焼排ガスを排出するための排気孔14が後記の炉筒20等も貫通するかたちで開口している。また、ハウジング10の下部には、バーナ部60での燃焼状態を観察するための覗き孔15が後記の炉筒20等も貫通するかたちで設けられるとともに、耐熱ガラスを用いた覗き窓16が覗き孔15を塞ぐかたちで取り付けられている。そして、ハウジング10と炉筒20との間の円環状の空間は、燃焼用空気である2次空気を導入するための導入路17となっている。   The upper end of the housing 10 is fastened to the upper end plate 12 via the mixing cylinder support plate 11, and the lower end thereof is joined to the burner portion 60 via the connecting ring 13. An air pipe 81 for introducing secondary air from an external air supply source is connected to the upper portion of the housing 10, and an exhaust hole 14 for discharging combustion exhaust gas from the inside of the burner portion 60 is a furnace cylinder described later. It opens in the form of 20 or so. Further, a viewing hole 15 for observing the combustion state in the burner portion 60 is provided in the lower part of the housing 10 so as to penetrate the furnace tube 20 and the like described later, and a viewing window 16 using heat-resistant glass is viewed. It is attached in the form of closing the hole 15. An annular space between the housing 10 and the furnace tube 20 serves as an introduction path 17 for introducing secondary air that is combustion air.

炉筒20は、その上端が接続リング21を介してハウジング10に接合され、その下端が接続リング22を介してバーナ部60の上端に接合されている。炉筒20の内面には、前記の排気孔14および覗き孔15を除き、グラスウール、セラミックウール、ロックウール等を素材とする断熱材23が接着剤やリベット、あるいはビス等により炉筒20に密着させて設けられている。   The upper end of the furnace tube 20 is joined to the housing 10 via the connection ring 21, and the lower end thereof is joined to the upper end of the burner portion 60 via the connection ring 22. A heat insulating material 23 made of glass wool, ceramic wool, rock wool or the like is adhered to the inner surface of the furnace tube 20 with an adhesive, a rivet, a screw or the like except for the exhaust hole 14 and the viewing hole 15. Is provided.

改質筒30は、外筒31と内筒32とを底板33を介して接合することにより製作されており、外筒31および内筒32の上端が連結ブロック70に接合されている。改質筒30内には、その下方3/4に改質触媒34が充填され、上方1/4に小径のセラミックスボール35が充填されている。改質筒30は、その底部がバーナ部60の直上部に位置している。   The reforming cylinder 30 is manufactured by joining the outer cylinder 31 and the inner cylinder 32 via the bottom plate 33, and the upper ends of the outer cylinder 31 and the inner cylinder 32 are joined to the connecting block 70. The reforming cylinder 30 is filled with a reforming catalyst 34 in the lower 3/4 thereof and filled with a small-diameter ceramic ball 35 in the upper 1/4. The bottom of the reforming cylinder 30 is located directly above the burner unit 60.

蒸発筒40は、上部が混合筒50内に突き出た状態で、連結ブロック70に接合されている。蒸発筒40にはセラミックスボール35が充填されている。蒸発筒40は、その底部が上下方向で改質筒30の略中央部に位置している。   The evaporation cylinder 40 is joined to the connection block 70 with the upper part protruding into the mixing cylinder 50. The evaporation cylinder 40 is filled with ceramic balls 35. The bottom of the evaporation cylinder 40 is positioned substantially at the center of the reforming cylinder 30 in the vertical direction.

混合筒50は、その上端が混合筒支持板11に接合され、下端が連結ブロック70に接合されている。混合筒50は、その内部にセラミックスボール35が充填されるとともに、その外周面が改質筒30や蒸発筒40を加熱した燃焼ガスに接する。   The mixing cylinder 50 has an upper end joined to the mixing cylinder support plate 11 and a lower end joined to the connecting block 70. The mixing cylinder 50 is filled with ceramic balls 35 and its outer peripheral surface is in contact with the combustion gas that has heated the reforming cylinder 30 and the evaporation cylinder 40.

バーナ部60は、前記のように、連結リング13を介してハウジング10に接合される一方、接続リング22を介して炉筒20に接合されている。バーナ部60は、図3に示すように、その内部で燃料である灯油を気化する気化手段である有底筒状の気化筒60aと、この気化筒60aの上端に設けられたバーナヘッド60bと、気化筒60aの底部外周に設けられた気化ヒータ60cとを有しており、燃料である灯油が気化ヒータ60cの熱により気化筒60a内で気化可能な温度まで加熱される。また、気化筒60aには、燃料である灯油を供給するバーナ燃料供給管60dと、1次空気を供給するエア供給管60eとが接続されている。そして、バーナ燃料供給管60dから供給された灯油は、気化筒60a内で加熱されて気化した後、供給するエア供給管60eから供給された1次空気と混合され、バーナヘッド60bから燃焼空間に噴出して燃焼する。また、バーナ部60には、ハウジング10内に開口する複数の2次空気導入孔64が穿設されており、前記のエア配管81から供給された2次空気がバーナ部60の下部からバーナヘッド60bの周囲に導入される。バーナヘッド60bには、灯油と1次空気との混合ガスに点火する点火電極60fが取り付けられている。   As described above, the burner portion 60 is joined to the housing 10 via the connection ring 13, and is joined to the furnace tube 20 via the connection ring 22. As shown in FIG. 3, the burner unit 60 has a bottomed cylindrical vaporizing cylinder 60a which is a vaporizing means for vaporizing kerosene as a fuel, and a burner head 60b provided at the upper end of the vaporizing cylinder 60a. The vaporizing heater 60c is provided on the outer periphery of the bottom of the vaporizing cylinder 60a, and kerosene, which is fuel, is heated to a temperature capable of vaporizing in the vaporizing cylinder 60a by the heat of the vaporizing heater 60c. Further, a burner fuel supply pipe 60d for supplying kerosene as fuel and an air supply pipe 60e for supplying primary air are connected to the vaporizing cylinder 60a. The kerosene supplied from the burner fuel supply pipe 60d is heated and vaporized in the vaporizing cylinder 60a, and then mixed with the primary air supplied from the supplied air supply pipe 60e, and from the burner head 60b to the combustion space. Ejects and burns. Also, the burner portion 60 is provided with a plurality of secondary air introduction holes 64 that open into the housing 10, and the secondary air supplied from the air pipe 81 flows from the lower portion of the burner portion 60 to the burner head. Introduced around 60b. An ignition electrode 60f for igniting a mixed gas of kerosene and primary air is attached to the burner head 60b.

図4(斜視図)や図5(縦断面図)に示すように、連結ブロック70は、下端にフランジ71を備えた短円筒形状を呈しており、上端の軸心に穿設されて蒸発筒40が内嵌する保持孔72と、保持孔72の下部に形成された円筒状空間である中空部73とを有している。図6(図5中のC−C断面図)に示すように、連結ブロック70には、中空部73から120°の角度間隔で放射状に穿設されて外周面に開口する3つの燃焼ガス流通孔74と、燃焼ガス流通孔74を避けるかたちで120°の角度間隔で設けられた上下方向に貫通するそら豆断面形状の3つの連通孔75とが形成されている。   As shown in FIG. 4 (perspective view) and FIG. 5 (longitudinal sectional view), the connecting block 70 has a short cylindrical shape with a flange 71 at the lower end, and is drilled in the axis at the upper end to be an evaporation cylinder. 40 has a holding hole 72 in which 40 is fitted, and a hollow part 73 which is a cylindrical space formed in the lower part of the holding hole 72. As shown in FIG. 6 (C-C cross-sectional view in FIG. 5), three combustion gas flows are formed in the connecting block 70 radially from the hollow portion 73 at an angular interval of 120 ° and open to the outer peripheral surface. A hole 74 and three communication holes 75 having a broad bean cross-sectional shape penetrating in the vertical direction provided at an angular interval of 120 ° so as to avoid the combustion gas circulation hole 74 are formed.

図2に示すように、上部鏡板12の中心には、原燃料としての灯油を供給する燃料配管82と、水蒸気源としての水(純水)を供給する水配管83とが接続するジョイント85がパイプコネクタ86を介して取り付けられている。パイプコネクタ86は、蒸発筒40の上部に開口する比較的大径の燃料供給管87と、燃料供給管87と同軸で蒸発筒40の下端部に開口する比較的小径の水導入管88とを備えており、燃料配管82からの灯油が燃料供給管87を経由して蒸発筒40の上部に供給され、水配管83からの水が水導入管88を経由して蒸発筒40の下端部に供給される。   As shown in FIG. 2, at the center of the upper end plate 12, there is a joint 85 connecting a fuel pipe 82 for supplying kerosene as raw fuel and a water pipe 83 for supplying water (pure water) as a water vapor source. It is attached via a pipe connector 86. The pipe connector 86 includes a relatively large-diameter fuel supply pipe 87 that opens to the top of the evaporation cylinder 40 and a relatively small-diameter water introduction pipe 88 that is coaxial with the fuel supply pipe 87 and opens to the lower end of the evaporation cylinder 40. The kerosene from the fuel pipe 82 is supplied to the upper part of the evaporation cylinder 40 via the fuel supply pipe 87, and the water from the water pipe 83 is supplied to the lower end portion of the evaporation cylinder 40 via the water introduction pipe 88. Supplied.

また、上部鏡板12には、燃料改質装置1で生成された改質ガスをシフト反応器に搬送する2本(図1,図2には1本のみ示す)の改質ガス配管89がそれぞれパイプコネクタ90を介して取り付けられている。パイプコネクタ90は、混合筒50および改質筒30内に配管されて改質筒30の下端部に開口する改質ガス導出管91を備えており、改質筒30内で生成された改質ガスがこの改質ガス導出管91を介して改質ガス配管89に流入する。図6に示すように、改質ガス導出管91は、連結ブロック70の2つの連通孔75を貫通している。   The upper end plate 12 has two reformed gas pipes 89 (only one is shown in FIGS. 1 and 2) for conveying the reformed gas generated in the fuel reformer 1 to the shift reactor. It is attached via a pipe connector 90. The pipe connector 90 includes a reformed gas outlet pipe 91 that is piped into the mixing cylinder 50 and the reforming cylinder 30 and opens to the lower end portion of the reforming cylinder 30, and the reforming generated in the reforming cylinder 30. The gas flows into the reformed gas pipe 89 through the reformed gas outlet pipe 91. As shown in FIG. 6, the reformed gas outlet pipe 91 passes through the two communication holes 75 of the connection block 70.

図3に示すように、下部鏡板63には、バーナ用燃料としての灯油を供給する燃料配管92がコネクタ93を介して取り付けられ、1次空気を供給するエア配管94がコネクタ95を介して取り付けられている。コネクタ93はバーナ部60のバーナ燃料供給管60dに接続されており、燃料配管92からの灯油がバーナ燃料供給管60dを経由して気化筒60aに供給される。また、コネクタ95は、バーナ部60のエア供給管60eに接続されており、エア配管94からの1次空気がエア供給管60eを経由して気化筒60aに供給される。   As shown in FIG. 3, a fuel pipe 92 for supplying kerosene as burner fuel is attached to the lower end plate 63 via a connector 93, and an air pipe 94 for supplying primary air is attached via a connector 95. It has been. The connector 93 is connected to the burner fuel supply pipe 60d of the burner section 60, and kerosene from the fuel pipe 92 is supplied to the vaporizing cylinder 60a via the burner fuel supply pipe 60d. The connector 95 is connected to the air supply pipe 60e of the burner unit 60, and primary air from the air pipe 94 is supplied to the vaporizing cylinder 60a via the air supply pipe 60e.

≪燃料改質装置の作動≫
以下、燃料改質装置1の作動(運転形態)を説明する。本実施形態の場合、燃料改質装置1は、各部に設置された温度センサの検出結果等に基づき、図示しない制御装置により運転制御される。
≪Operation of fuel reformer≫
Hereinafter, the operation (operation mode) of the fuel reformer 1 will be described. In the case of the present embodiment, the fuel reformer 1 is controlled by a control device (not shown) based on detection results of temperature sensors installed in the respective parts.

<バーナの燃焼>
燃料改質装置1の運転が開始されると先ず、バーナ部60の気化筒60aには、図示しない燃焼用灯油供給源からの灯油が燃料配管92およびバーナ燃料供給管60dを介して供給される一方、図示しない1次空気供給源からの1次空気がエア配管94およびエア供給管60eを介して供給される。気化筒60aに供給された灯油は、気化筒60a内で気化して1次空気と混合した後、バーナヘッド60bから燃料過剰な混合気として炉筒20下部の燃焼空間に噴出する。混合気は、点火電極60fにより点火され、炉筒20内で部分的な燃焼を開始する。
<Burner combustion>
When the operation of the fuel reformer 1 is started, first, kerosene from a combustion kerosene supply source (not shown) is supplied to the vaporizing cylinder 60a of the burner unit 60 through a fuel pipe 92 and a burner fuel supply pipe 60d. On the other hand, primary air from a primary air supply source (not shown) is supplied through an air pipe 94 and an air supply pipe 60e. The kerosene supplied to the vaporizing cylinder 60a is vaporized in the vaporizing cylinder 60a and mixed with the primary air, and then jetted from the burner head 60b to the combustion space below the furnace cylinder 20 as an excess fuel mixture. The air-fuel mixture is ignited by the ignition electrode 60f and starts partial combustion in the furnace tube 20.

炉筒20内での1次燃焼が開始されると、エア供給源からの2次空気がエア配管81を介してハウジング10内に供給され、この2次空気が導入路17および2次空気導入孔64を介してバーナ部60内に導入される。導入された2次空気は、運転開始時(冷機時)において気化ヒータ60cにより所定の温度(例えば、220℃)に加熱された後に燃料過剰火炎と接触する。これにより、炉筒20内では広範な2次燃焼(完全燃焼)が開始され、その燃焼ガスが改質筒30や蒸発筒40、混合筒50の周囲を流れてこれらの温度を急上昇させる。   When primary combustion in the furnace tube 20 is started, secondary air from an air supply source is supplied into the housing 10 via the air pipe 81, and this secondary air is introduced into the introduction path 17 and the secondary air. It is introduced into the burner part 60 through the hole 64. The introduced secondary air is heated to a predetermined temperature (for example, 220 ° C.) by the vaporizing heater 60 c at the start of operation (during cooling) and then comes into contact with the excess fuel flame. As a result, a wide range of secondary combustion (complete combustion) is started in the furnace cylinder 20, and the combustion gas flows around the reforming cylinder 30, the evaporation cylinder 40, and the mixing cylinder 50 to rapidly increase their temperatures.

改質筒30の外側に流れた燃焼ガスは、改質筒30の外筒31を加熱した後に炉筒20の上部に流れ、燃焼排ガスとして排気孔14から排出される。また、改質筒30の内側に流入した燃焼ガスは、改質筒30の内筒32と蒸発筒40とを加熱した後、連結ブロック70に形成された燃焼ガス流通孔74から炉筒20の上部に流入し、燃焼排ガスとして排気孔14から排出される。この際、炉筒20の内面に断熱材23が貼着されているため、炉筒20の熱が断熱材23に遮られて外部に放出され難くなり、改質筒30の加熱がより効果的に行われる。   The combustion gas flowing outside the reforming cylinder 30 flows to the upper part of the furnace cylinder 20 after heating the outer cylinder 31 of the reforming cylinder 30, and is discharged from the exhaust hole 14 as combustion exhaust gas. The combustion gas that has flowed into the reforming cylinder 30 heats the inner cylinder 32 and the evaporation cylinder 40 of the reforming cylinder 30, and then passes through the combustion gas circulation holes 74 formed in the connection block 70. It flows into the upper part and is discharged from the exhaust hole 14 as combustion exhaust gas. At this time, since the heat insulating material 23 is adhered to the inner surface of the furnace tube 20, the heat of the furnace tube 20 is blocked by the heat insulating material 23 and is not easily released to the outside, and the heating of the reforming tube 30 is more effective. To be done.

<水蒸気の生成>
炉筒20内での2次燃焼が安定すると、図7に示すように、水配管83からの水が水導入管88を経由して蒸発筒40の下端部に供給される。本実施形態の場合、炉筒20内で2次燃焼が進行している状態では、蒸発筒40の下端部の温度が約150℃程度となる。そのため、供給された水は、蒸発筒40内に充填されたセラミックスボール35の伝熱効果も相俟って瞬間的に蒸発して高温の水蒸気となり、混合筒50に向けて蒸発筒40内を上昇する。
<Generation of water vapor>
When the secondary combustion in the furnace tube 20 is stabilized, water from the water pipe 83 is supplied to the lower end portion of the evaporation cylinder 40 via the water introduction pipe 88 as shown in FIG. In the case of the present embodiment, the temperature at the lower end of the evaporation cylinder 40 is about 150 ° C. in the state where the secondary combustion is proceeding in the furnace cylinder 20. Therefore, the supplied water is instantaneously evaporated together with the heat transfer effect of the ceramic balls 35 filled in the evaporation cylinder 40 to become high-temperature water vapor, and the inside of the evaporation cylinder 40 is directed toward the mixing cylinder 50. Rise.

<水蒸気混合燃料の生成>
一方、水配管83から蒸発筒40への水の供給と同時に、図8に示すように、燃料配管82からの灯油が燃料供給管87を経由して蒸発筒40の上部に供給される。本実施形態の場合、炉筒20内で2次燃焼が進行している状態では、蒸発筒40の上部の温度が約200℃程度となる。そのため、供給された灯油は、蒸発筒40内に充填されたセラミックスボール35の伝熱効果の他、蒸発筒40の下端部から上昇してきた高温の水蒸気と接触してその蒸発温度が低下することも相俟って一気に蒸発する。蒸発した灯油は、混合筒50に向けて上昇しながらセラミックスボール35により攪拌され、混合筒50内で水蒸気と均一に混じり合った水蒸気混合燃料となって連結ブロック70の連通孔を経由して改質筒30に流入する。
<Generation of steam mixed fuel>
On the other hand, simultaneously with the supply of water from the water pipe 83 to the evaporation cylinder 40, kerosene from the fuel pipe 82 is supplied to the upper part of the evaporation cylinder 40 via the fuel supply pipe 87 as shown in FIG. 8. In the case of this embodiment, the temperature of the upper part of the evaporation cylinder 40 is about 200 ° C. in the state where the secondary combustion is proceeding in the furnace cylinder 20. Therefore, in addition to the heat transfer effect of the ceramic balls 35 filled in the evaporation cylinder 40, the supplied kerosene comes into contact with the high-temperature steam rising from the lower end of the evaporation cylinder 40, and the evaporation temperature thereof decreases. Together, it evaporates all at once. The evaporated kerosene is stirred by the ceramic balls 35 while rising toward the mixing cylinder 50, and becomes a steam mixed fuel that is uniformly mixed with water vapor in the mixing cylinder 50, and is modified through the communication hole of the connection block 70. It flows into the material cylinder 30.

<水素リッチガスの生成>
改質筒30に流入した水蒸気混合燃料は、上部に充填されたセラミックスボール35によって更に攪拌された後、セラミックスボール35の下方に充填された改質触媒34に接触する。本実施形態の場合、炉筒20内で2次燃焼が進行している状態では、改質筒30の温度が500℃以上となり、バーナ部60に対峙した下端部においては約750℃程度となる。そのため、改質筒30内を流れ下るに従って周囲の温度が高くなり、改質触媒34を比較的長い距離流通した水蒸気混合燃料の接触反応が急速に進行し、良質な(メタンの組成比が小さい)改質ガス(水素リッチガス)が生成される。
<Production of hydrogen-rich gas>
The steam mixed fuel that has flowed into the reforming cylinder 30 is further stirred by the ceramic balls 35 filled in the upper portion, and then contacts the reforming catalyst 34 filled below the ceramic balls 35. In the case of the present embodiment, in the state where the secondary combustion is proceeding in the furnace tube 20, the temperature of the reforming cylinder 30 is 500 ° C. or higher, and is about 750 ° C. at the lower end facing the burner portion 60. . Therefore, the ambient temperature increases as it flows down in the reforming cylinder 30, the contact reaction of the steam-mixed fuel that has flowed through the reforming catalyst 34 for a relatively long distance proceeds rapidly, and the quality is high (the composition ratio of methane is small). ) Reformed gas (hydrogen rich gas) is generated.

生成された改質ガスは、図9に示したように、改質筒30の下端部に開口した改質ガス導出管91に流入し、改質ガス配管89(図1参照)を経由してシフト反応器に搬送される。改質ガスは、改質ガス導出管91に流入した時点では、比較的高温(500℃程度)である。ところが、本実施形態では、改質ガス導出管91が混合筒50内に配管されていることにより、改質ガスは、改質ガス導出管91の管壁およびセラミックスボール35を介して混合筒50内の灯油や水蒸気と熱交換を行い、その温度が約200〜300℃に低下する。これにより、改質ガスが流入するシフト反応器の負荷が低下すると同時に、混合筒50内での灯油の蒸発が促進される。   As shown in FIG. 9, the generated reformed gas flows into the reformed gas outlet pipe 91 opened at the lower end of the reforming cylinder 30 and passes through the reformed gas pipe 89 (see FIG. 1). Delivered to shift reactor. The reformed gas has a relatively high temperature (about 500 ° C.) when it flows into the reformed gas outlet pipe 91. However, in the present embodiment, the reformed gas outlet pipe 91 is provided in the mixing cylinder 50, so that the reformed gas passes through the tube wall of the reformed gas outlet pipe 91 and the ceramic balls 35. Heat exchange with kerosene and water vapor is performed, and the temperature drops to about 200-300 ° C. As a result, the load of the shift reactor into which the reformed gas flows is reduced, and at the same time, the evaporation of kerosene in the mixing cylinder 50 is promoted.

<2次空気の加熱>
本実施形態の場合、2次空気は、図2,図3に示すように、エア配管81からハウジング10と炉筒20との間の導入路17の上部に供給された後、炉筒20の外周に沿って下方に流れ、バーナ部60に形成された2次空気導入孔64からバーナ部60の下部に流入する。
<Heating of secondary air>
In the case of this embodiment, as shown in FIGS. 2 and 3, the secondary air is supplied to the upper portion of the introduction path 17 between the housing 10 and the furnace tube 20 from the air pipe 81, and then the It flows downward along the outer periphery and flows into the lower part of the burner part 60 from the secondary air introduction hole 64 formed in the burner part 60.

この際、2次空気は、導入路17内で比較的長時間にわたって高温の炉筒20に触れることになるため、バーナ部60に流入する時点ではその温度が比較的高く(例えば、250℃程度)なる。そのため、バーナ部60全体が高温の2次空気により加熱され、気化筒60aの更なる加熱が不要となることから、前記の気化ヒータ60cへの通電が停止される。更に、改質装置1の外周から放熱される熱を2次空気に回収するため、一般的な装置に較べて熱効率が向上する。   At this time, since the secondary air comes into contact with the high-temperature furnace cylinder 20 for a relatively long time in the introduction path 17, the temperature of the secondary air is relatively high when it flows into the burner unit 60 (for example, about 250 ° C.). )Become. For this reason, the entire burner section 60 is heated by the high-temperature secondary air, and further heating of the vaporizing cylinder 60a becomes unnecessary, so that the energization to the vaporizing heater 60c is stopped. Furthermore, since the heat radiated from the outer periphery of the reformer 1 is recovered in the secondary air, the thermal efficiency is improved as compared with a general device.

このように、本実施形態では、バーナ部60で生成された燃焼ガスが有する熱エネルギーを極めて効率よく利用し、水蒸気や灯油(原燃料)の気化や2次空気の加熱を行うようにしたため、バーナ部60での燃料消費を低く抑えながら、高い改質効率での水蒸気改質を実現できた。   Thus, in this embodiment, since the thermal energy which the combustion gas produced | generated by the burner part 60 has was utilized very efficiently, it was made to vaporize water vapor | steam or kerosene (raw fuel), and heat secondary air, It was possible to achieve steam reforming with high reforming efficiency while keeping fuel consumption at the burner section 60 low.

尚、本発明はこの実施形態に限定されることなく、幅広く変形実施することができる。例えば、前記実施形態は、灯油を原燃料とする水蒸気燃料改質装置に本発明を適用したものであるが、ガソリンやアルコール等の他、気体炭化水素燃料であるLPガス等を原燃料とする水蒸気燃料改質装置にも当然に適用できる。また、前記実施形態では、バーナの燃料として灯油を用いるようにしたが、重油や軽油等を用いるようにしてもよい。また、前記実施形態では、燃焼ガスの熱エネルギーにより加熱する燃焼用空気として2次空気を挙げたが、1次空気を加熱するようにしてもよい。また、前記実施形態では、炉筒の内面に断熱材を設けるようにしたが、炉筒の外面に接着剤やリベット、ビス、あるいはバンド巻き等により炉筒に断熱材を密着させて設けてようにしてもよいし、炉筒の内面と外面との双方に断熱材を密着させて設けるようにしてもよい。また、前記実施形態では、バーナ部が設けられる第2側を下側とし、第1側を上側としたが、図1中で改質装置を上下逆に設置して、バーナ部が設けられる第2側を上側とし、第1側を下側としたり、図1中で改質装置を水平あるいは斜めに設置して、バーナ部が設けられる第2側を右側とし、第1側を左側としたりしてもよい。その他、燃料改質装置の具体的構造や各部の運転温度等についても、本発明の趣旨を逸脱しない範囲で適宜変更可能である。   The present invention is not limited to this embodiment, and can be widely modified. For example, in the above-described embodiment, the present invention is applied to a steam fuel reformer using kerosene as a raw fuel, but LP gas or the like, which is a gaseous hydrocarbon fuel, is used as a raw fuel in addition to gasoline or alcohol. Naturally, it can also be applied to a steam fuel reformer. Moreover, in the said embodiment, although kerosene was used as a fuel of a burner, you may make it use heavy oil, light oil, etc. Moreover, in the said embodiment, although secondary air was mentioned as combustion air heated with the thermal energy of combustion gas, you may make it heat primary air. In the above embodiment, the heat insulating material is provided on the inner surface of the furnace tube. However, the heat insulating material is provided on the outer surface of the furnace tube so that the heat insulating material is adhered to the furnace tube with an adhesive, rivets, screws, or band winding. Alternatively, a heat insulating material may be provided in close contact with both the inner surface and the outer surface of the furnace tube. Moreover, in the said embodiment, the 2nd side in which a burner part is provided was made into the lower side, and the 1st side was made into the upper side, but the reformer is installed upside down in FIG. 1, and the burner part is provided. The second side is the upper side, the first side is the lower side, the reformer is installed horizontally or obliquely in FIG. 1, the second side where the burner part is provided is the right side, and the first side is the left side May be. In addition, the specific structure of the fuel reformer, the operating temperature of each part, and the like can be changed as appropriate without departing from the spirit of the present invention.

実施形態に係る燃料改質装置を示す縦断面図である。It is a longitudinal section showing a fuel reformer concerning an embodiment. 図1中のA部拡大図である。It is the A section enlarged view in FIG. 図1中B部拡大図である。It is the B section enlarged view in FIG. 連結ブロックの斜視図である。It is a perspective view of a connection block. 連結ブロックの縦断面図である。It is a longitudinal cross-sectional view of a connection block. 図5中のC−C断面図である。It is CC sectional drawing in FIG. 蒸発筒の要部拡大図である。It is a principal part enlarged view of an evaporation pipe | tube. 蒸発筒の要部拡大図である。It is a principal part enlarged view of an evaporation pipe | tube. 改質筒の要部拡大図である。It is a principal part enlarged view of a reforming cylinder.

符号の説明Explanation of symbols

1 燃料改質装置
10 ハウジング(改質装置本体)
17 導入路
20 炉筒
23 断熱材
30 改質筒(改質部)
40 蒸発筒
50 混合筒
60 バーナ部
60a 気化筒(気化手段)
64 2次空気導入孔
81 エア配管
1 Fuel reformer 10 Housing (reformer body)
17 Introducing path 20 Furnace cylinder 23 Insulating material 30 Reforming cylinder (reforming part)
40 Evaporating cylinder 50 Mixing cylinder 60 Burner 60a Evaporating cylinder (vaporizing means)
64 Secondary air introduction hole 81 Air piping

Claims (3)

炭化水素系の原燃料から水素を取り出す水蒸気改質プロセスに供される燃料改質装置であって、
第1側に改質部を有すると共に当該第1側と反対側である第2側に加熱用のバーナ部を有する改質装置本体と、
前記改質部の外側に当該改質部を囲むかたちで設置され、その内部に前記バーナ部からの燃焼ガスが流通する炉筒と
を備え、
前記改質装置本体が前記炉筒の外側に当該炉筒を囲むかたちで設置され、
前記炉筒と前記改質装置本体との間に前記バーナ部に供給する燃焼用空気の導入路が形成されたことを特徴とする燃料改質装置。
A fuel reformer used in a steam reforming process for extracting hydrogen from a hydrocarbon-based raw fuel,
A reformer main body having a reforming section on the first side and a burner section for heating on the second side opposite to the first side;
It is installed on the outside of the reforming section so as to surround the reforming section, and includes a furnace tube in which combustion gas from the burner section circulates,
The reformer main body is installed outside the furnace tube so as to surround the furnace tube,
A fuel reformer, wherein an introduction path for combustion air supplied to the burner portion is formed between the furnace tube and the reformer main body.
前記炉筒の外周あるいは内周に断熱材が設けられていることを特徴とする、請求項1に記載の燃料改質装置。   The fuel reformer according to claim 1, wherein a heat insulating material is provided on an outer periphery or an inner periphery of the furnace tube. 前記燃料改質装置が原燃料として液体の炭化水素燃料を用い、
前記バーナ部が前記液体の炭化水素燃料の気化に供される気化手段を備え、
前記気化手段が、前記導入路から導入された燃焼用空気の流路に設置されたことを特徴とする、請求項1または請求項2に記載の燃料改質装置。
The fuel reformer uses a liquid hydrocarbon fuel as a raw fuel,
The burner unit comprises vaporization means for vaporization of the liquid hydrocarbon fuel,
The fuel reformer according to claim 1 or 2, wherein the vaporizing means is installed in a flow path of combustion air introduced from the introduction path.
JP2004084593A 2004-03-23 2004-03-23 Fuel reformer Expired - Fee Related JP4458890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004084593A JP4458890B2 (en) 2004-03-23 2004-03-23 Fuel reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004084593A JP4458890B2 (en) 2004-03-23 2004-03-23 Fuel reformer

Publications (2)

Publication Number Publication Date
JP2005272168A true JP2005272168A (en) 2005-10-06
JP4458890B2 JP4458890B2 (en) 2010-04-28

Family

ID=35172226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004084593A Expired - Fee Related JP4458890B2 (en) 2004-03-23 2004-03-23 Fuel reformer

Country Status (1)

Country Link
JP (1) JP4458890B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160602A (en) * 2004-12-07 2006-06-22 Sk Corp Small cylindrical reformer
JP2008019159A (en) * 2006-06-12 2008-01-31 Matsushita Electric Ind Co Ltd Hydrogen generating apparatus and fuel battery system equipped with the same
JP2008222530A (en) * 2007-03-15 2008-09-25 Toshiba Fuel Cell Power Systems Corp Hydrogen generator
JP2009274914A (en) * 2008-05-15 2009-11-26 Panasonic Corp Apparatus for generating hydrogen and fuel cell power generation system using it
JP2010030801A (en) * 2008-07-25 2010-02-12 Toshiba Fuel Cell Power Systems Corp Reformer for fuel cell
JP2011216283A (en) * 2010-03-31 2011-10-27 Toto Ltd Fuel cell module
JP2013157214A (en) * 2012-01-30 2013-08-15 Honda Motor Co Ltd Fuel cell module
JP2013229143A (en) * 2012-04-24 2013-11-07 Honda Motor Co Ltd Fuel cell module
JP2014005171A (en) * 2012-06-25 2014-01-16 Panasonic Corp Fuel treatment device and manufacturing method therefor
JP2014146578A (en) * 2013-01-30 2014-08-14 Honda Motor Co Ltd Fuel cell module
KR20210157099A (en) * 2020-06-19 2021-12-28 주식회사 파나시아 Steam Hydrocarbon Reformer
KR20220021634A (en) * 2020-08-14 2022-02-22 주식회사 파나시아 Steam Hydrocarbon Reformer with Burner

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102398437B1 (en) * 2020-06-19 2022-05-16 주식회사 파나시아 Steam Hydrocarbon Reformer
KR102398422B1 (en) * 2020-06-19 2022-05-16 주식회사 파나시아 Steam Hydrocarbon Reformer
KR102398448B1 (en) * 2020-06-19 2022-05-16 주식회사 파나시아 Steam Hydrocarbon Reformer
KR102398474B1 (en) * 2020-06-19 2022-05-17 주식회사 파나시아 Steam Hydrocarbon Reformer
KR102378008B1 (en) * 2020-08-14 2022-03-24 주식회사 파나시아 Steam Hydrocarbon Reformer with Burner

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160602A (en) * 2004-12-07 2006-06-22 Sk Corp Small cylindrical reformer
JP2008019159A (en) * 2006-06-12 2008-01-31 Matsushita Electric Ind Co Ltd Hydrogen generating apparatus and fuel battery system equipped with the same
JP2008222530A (en) * 2007-03-15 2008-09-25 Toshiba Fuel Cell Power Systems Corp Hydrogen generator
JP2009274914A (en) * 2008-05-15 2009-11-26 Panasonic Corp Apparatus for generating hydrogen and fuel cell power generation system using it
JP2010030801A (en) * 2008-07-25 2010-02-12 Toshiba Fuel Cell Power Systems Corp Reformer for fuel cell
JP2011216283A (en) * 2010-03-31 2011-10-27 Toto Ltd Fuel cell module
JP2013157214A (en) * 2012-01-30 2013-08-15 Honda Motor Co Ltd Fuel cell module
JP2013229143A (en) * 2012-04-24 2013-11-07 Honda Motor Co Ltd Fuel cell module
JP2014005171A (en) * 2012-06-25 2014-01-16 Panasonic Corp Fuel treatment device and manufacturing method therefor
JP2014146578A (en) * 2013-01-30 2014-08-14 Honda Motor Co Ltd Fuel cell module
KR20210157099A (en) * 2020-06-19 2021-12-28 주식회사 파나시아 Steam Hydrocarbon Reformer
KR102378004B1 (en) 2020-06-19 2022-03-24 주식회사 파나시아 Steam Hydrocarbon Reformer
KR20220021634A (en) * 2020-08-14 2022-02-22 주식회사 파나시아 Steam Hydrocarbon Reformer with Burner
KR102424891B1 (en) 2020-08-14 2022-07-26 주식회사 파나시아 Steam Hydrocarbon Reformer with Burner

Also Published As

Publication number Publication date
JP4458890B2 (en) 2010-04-28

Similar Documents

Publication Publication Date Title
JP4458890B2 (en) Fuel reformer
US6835354B2 (en) Integrated reactor
JP3403416B2 (en) Reformer
JP4135640B2 (en) Reforming apparatus and operation method thereof
CN102822086B (en) Hydrogen production apparatus and fuel cell system
JP2007523042A (en) Integrated fuel processor for distributed hydrogen production
CN101295794B (en) A fuel reforming apparatus, a method of driving said apparatus and a fuel cell system including said apparatus
JP2004503067A (en) Integrated module for solid oxide fuel cell system
US20040013586A1 (en) Plate type steam reformer
JP5154272B2 (en) Fuel cell reformer
JP5057938B2 (en) Hydrogen generator and fuel cell system provided with the same
JP4391282B2 (en) Fuel reformer
US20130065144A1 (en) Hydrogen production apparatus and fuel cell system
JP2009511421A (en) Steam reforming unit
JP4852295B2 (en) Reformer and fuel cell system
JPH04206362A (en) High-temperature type fuel cell system power generating device
KR20160045738A (en) Multitube reformer for a hydrocarbon- and alcohol-reforming system and hydrocarbon- and alcohol-reforming system comprising same, and associated method
KR20160045737A (en) Burner for a hydrocarbon and alcohol reforming system, hydrocarbon and alcohol reforming system comprising it and associated process
JP2004075435A (en) Fuel reforming device
JP4847772B2 (en) Hydrogen-containing gas generator
JP2000063103A (en) Fuel reforming apparatus
JP2009067645A (en) Hydrogen manufacturing device and fuel cell system using the same
US20030061764A1 (en) Method and apparatus for steam reforming of hydrocarbons
JP2007261828A (en) Vaporization burner device for fuel treating apparatus
JP2024047313A (en) Fuel Cell Module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees