JP2010030360A - Spherical body driving type omnidirectional moving device - Google Patents

Spherical body driving type omnidirectional moving device Download PDF

Info

Publication number
JP2010030360A
JP2010030360A JP2008192590A JP2008192590A JP2010030360A JP 2010030360 A JP2010030360 A JP 2010030360A JP 2008192590 A JP2008192590 A JP 2008192590A JP 2008192590 A JP2008192590 A JP 2008192590A JP 2010030360 A JP2010030360 A JP 2010030360A
Authority
JP
Japan
Prior art keywords
sphere
driving
rotor
spheres
movement device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008192590A
Other languages
Japanese (ja)
Other versions
JP5305285B2 (en
Inventor
Hiroyuki Miyamoto
弘之 宮本
Shuichi Ishida
秀一 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Original Assignee
Kyushu Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC filed Critical Kyushu Institute of Technology NUC
Priority to JP2008192590A priority Critical patent/JP5305285B2/en
Publication of JP2010030360A publication Critical patent/JP2010030360A/en
Application granted granted Critical
Publication of JP5305285B2 publication Critical patent/JP5305285B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spherical body driving type omnidirectional moving device allowing reduction of manufacturing cost with being hardly affected by unevenness, etc. of a floor surface and with high stability during traveling. <P>SOLUTION: This moving device has: three spherical bodies 11 to 13 for driving arranged at vertex positions of a triangle in plane view and having the same shape; and three driving means 14 to 16 for simultaneously rotating and driving the spherical body 11 and the spherical body 12, the spherical body 12 and the spherical body 13, and the spherical body 13 and the spherical body 11, which are arranged adjacently to each other, in the same direction. In this case, it is desirable that the triangle is an equilateral triangle. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、狭い場所でも自由に移動できる球体駆動式全方向移動装置に係り、更に詳細には、例えば、家庭用ロボット、電動車椅子(福祉関係)、工業用搬送台車等に使用可能な球体駆動式全方向移動装置に関する。 The present invention relates to a sphere-driven omnidirectional movement device that can move freely even in a narrow place, and more specifically, for example, a sphere drive that can be used for home robots, electric wheelchairs (welfare related), industrial transport carts, and the like. The present invention relates to an omnidirectional mobile device.

従来、全方向移動装置(以下、単に移動装置ともいう)としては、比較的高速移動が可能で制御が容易な、Roller Wheel(オムニホイール)方式が多く用いられてきた。
この方式は、横滑りするフリーローラが外周部に複数配置されたオムニホイール(以下、単にホイールともいう)を使用するものである。
このように構成することで、ホイールが横滑りすることにより、移動装置の全方向の移動を可能としている(例えば、非特許文献1参照)。
Conventionally, as an omnidirectional moving device (hereinafter, also simply referred to as a moving device), a Roller Wheel (omni wheel) method that can move relatively quickly and is easy to control has been used.
This method uses an omni wheel (hereinafter also simply referred to as a wheel) in which a plurality of free-sliding rollers are arranged on the outer periphery.
By comprising in this way, the movement of a moving apparatus is enabled by the side skid of a wheel (for example, refer nonpatent literature 1).

しかし、各ホイールに設けられたフリーローラは、ホイールの幅方向に2列に、しかも交互に(ジグザグ状に)取付けられているため、ホイールの回転位置によっては、ホイールと床面との接触位置が変わるため、移動装置が曲線軌道を描こうとする場合や、走行面が均一でないときに、挙動が不安定となっていた。また、ホイールの外周部にフリーローラを設けているため、ホイールの軸心(車軸)方向に滑りを生じてしまい、並進運動及び回転運動において、安定性に欠けるなど様々な課題があった。
このため、床面の凹凸等の影響により、1つのホイールと床面の摩擦が極端に小さい場合は、走行の安定性が著しく損なわれる可能性があった。
従って、上記した方式では、床面の表面状態が均一であることが要求されるため、例えば、じゅうたん上の走行には適さず、使用場所が大幅に制限されていた。
However, the free rollers provided on each wheel are mounted in two rows in the width direction of the wheel and alternately (in a zigzag manner), so depending on the rotational position of the wheel, the contact position between the wheel and the floor surface Therefore, the behavior becomes unstable when the moving device tries to draw a curved track or when the traveling surface is not uniform. Further, since the free roller is provided on the outer peripheral portion of the wheel, there are various problems such as slippage in the axial center (axle) direction of the wheel and lack of stability in translational motion and rotational motion.
For this reason, if the friction between one wheel and the floor surface is extremely small due to the influence of unevenness of the floor surface, the running stability may be significantly impaired.
Therefore, since the above-described method requires that the surface state of the floor surface is uniform, for example, it is not suitable for traveling on a carpet, and the place of use is greatly limited.

一方、球体駆動方式は、まだ研究例が少ないが、構造を簡単にでき、いずれの方向への移動の際にも速度ムラを生じないなどの特徴がある。また、球体で駆動するため、例えば、じゅうたん上でも、安定した走行が可能である。
このような球体駆動方式を使用した移動装置としては、例えば、2つの駆動用球体にそれぞれ2つの駆動用モータが設けられたもの、また3つの駆動用球体にそれぞれ1つの駆動用モータが設けられたもの(例えば、非特許文献2参照)、更には4つの駆動用球体にそれぞれ2つの駆動用モータが設けられたもの(例えば、非特許文献3参照)がある。
On the other hand, the sphere driving method has few research examples yet, but has a feature that the structure can be simplified and the speed unevenness does not occur when moving in any direction. Moreover, since it drives with a spherical body, for example, stable running is possible even on a carpet.
As a moving device using such a sphere driving system, for example, two driving spheres each provided with two driving motors, and three driving spheres each provided with one driving motor. (For example, see Non-Patent Document 2), and further, two driving motors are provided on each of four driving spheres (for example, see Non-Patent Document 3).

藤沢正一郎、大久保慶治、師玉康成、山浦弘夫、「四輪独立駆動型全方向移動ロボットの運動学と走行特性」、日本機械学会論文集、1996年12月、第62巻、第604号、p.149−155Shoichiro Fujisawa, Keiji Okubo, Yasunari Shidama, Hiroo Yamaura, "Kinematics and running characteristics of four-wheel independent drive omnidirectional mobile robot", Transactions of the Japan Society of Mechanical Engineers, December 1996, Vol. 62, No. 604, p. 149-155 松本直樹、竹田滋、飯田慎二、伊東正篤、「3つの球を使った全方位移動機構の運動と制御」、日本機械学会論文集、1994年8月、第60巻、第576号、p.266−273Naoki Matsumoto, Shigeru Takeda, Shinji Iida, Masatsugu Ito, “Movement and control of omnidirectional movement mechanism using three spheres”, Transactions of the Japan Society of Mechanical Engineers, August 1994, Vol. 60, No. 576, p. 266-273 山田健介、宮本共生、臼井清一、「4個の球を用いた全方向移動機構に関する研究」、日本機械学会論文集、2005年8月、第71巻、第708号、p.127−132Kensuke Yamada, Kyosei Miyamoto, Seiichi Usui, “Study on Omnidirectional Movement Mechanism Using Four Spheres”, Transactions of the Japan Society of Mechanical Engineers, August 2005, Vol. 71, No. 708, p. 127-132

しかしながら、前記従来の球体駆動方式を使用した移動装置には、未だ解決すべき以下のような問題があった。
2つの駆動用球体にそれぞれ2つの駆動用モータを設けた移動装置は、2つの駆動用モータの回転軸が直交するように、1つの駆動用球体に接触させて配置しているため、走行時の安定性は高いが、合計4つの駆動用モータが必要となる。
平面内での移動の自由度は、並進運動と回転運動の合計3自由度であるため、原理的には駆動用モータは3つでよい。このため、4つの駆動用モータを使用することそのものが無駄であり、製造コストの上昇につながるため経済的でない。
However, the moving device using the conventional sphere driving method still has the following problems to be solved.
Since the moving device provided with two driving motors on each of the two driving spheres is arranged in contact with one driving sphere so that the rotation axes of the two driving motors are orthogonal to each other, However, a total of four drive motors are required.
Since the degree of freedom of movement in the plane is a total of three degrees of freedom of translational motion and rotational motion, in principle, three drive motors are sufficient. For this reason, the use of the four drive motors itself is useless and leads to an increase in manufacturing cost, which is not economical.

また、3つの駆動用球体にそれぞれ1つの駆動用モータが設けられた移動装置は、各駆動用球体を、それぞれ1つの駆動用モータで駆動するため、上記した駆動用モータの無駄はない。この場合、駆動用球体を使用しているため、例えば、じゅうたん上でも安定した走行ができ、前記したオムニホイール方式と比較して、走行可能な床面の適応範囲が広くなる。しかし、その運動原理はオムニホイール方式と同様であるため、床面の凹凸等の影響により、1つの駆動用球体と床面の摩擦が極端に小さい場合は、走行の安定性が著しく損なわれる可能性がある。
更に、4つの駆動用球体にそれぞれ2つの駆動用モータが設けられた移動装置は、4つの駆動用球体を使用し、しかも合計8つの駆動用モータが必要となるため無駄であり、製造コストの上昇につながるため経済的でない。
Further, in the moving device in which one driving motor is provided for each of the three driving spheres, each driving sphere is driven by one driving motor, so the above-described driving motor is not wasted. In this case, since the driving sphere is used, for example, stable running can be performed even on a carpet, and the applicable range of the floor surface on which the vehicle can travel is widened as compared with the omni wheel method described above. However, the principle of motion is the same as that of the omni-wheel system, so if the friction between one driving sphere and the floor surface is extremely small, the stability of running may be significantly impaired due to the unevenness of the floor surface. There is sex.
Furthermore, the moving device in which each of the four driving spheres is provided with two driving motors uses four driving spheres and requires a total of eight driving motors. It is not economical because it leads to a rise.

本発明はかかる事情に鑑みてなされたもので、製造コストの低減が図れ、床面の凹凸等の影響を受けにくく、走行時の安定性が高い球体駆動式全方向移動装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and it is intended to provide a spherically driven omnidirectional movement device that can reduce manufacturing costs, is not easily affected by unevenness of the floor surface, and has high stability during traveling. Objective.

前記目的に沿う本発明に係る球体駆動式全方向移動装置は、平面視して三角形の頂点位置に配置される同一形状の3つの駆動用球体と、隣り合って配置される該駆動用球体を同時に同一方向に回転駆動させる3つの駆動手段とを有する。
本発明に係る球体駆動式全方向移動装置において、前記三角形は正三角形であることが好ましい。
The sphere-driven omnidirectional movement device according to the present invention that meets the above-described object includes three driving spheres having the same shape arranged at the apex position of a triangle in plan view, and the driving spheres arranged adjacent to each other. And three driving means for simultaneously rotating in the same direction.
In the sphere-driven omnidirectional movement device according to the present invention, the triangle is preferably a regular triangle.

本発明に係る球体駆動式全方向移動装置において、前記駆動手段は、前記隣り合って配置される駆動用球体の周面に同時に接触するロータと、該ロータを回転駆動する駆動用モータとを有することが好ましい。
本発明に係る球体駆動式全方向移動装置において、前記駆動手段は、前記隣り合って配置される駆動用球体の周面にそれぞれ接触するロータと、該2つのロータを連結する動力伝達用ベルトと、該2つのロータの一方を回転駆動する駆動用モータとを有することが好ましい。
In the sphere-driven omnidirectional movement device according to the present invention, the driving means includes a rotor that simultaneously contacts the circumferential surface of the driving spheres arranged adjacent to each other, and a driving motor that rotationally drives the rotor. It is preferable.
In the sphere-driven omnidirectional movement device according to the present invention, the driving means includes a rotor that contacts each of the peripheral surfaces of the driving spheres arranged adjacent to each other, and a power transmission belt that connects the two rotors. It is preferable to have a drive motor that rotationally drives one of the two rotors.

本発明に係る球体駆動式全方向移動装置において、前記各駆動用球体の横方向の位置決めに、該駆動用球体の回転中心と同一高さ位置で該駆動用球体の側面に接触し、該駆動用球体を上下方向に回転可能とする車輪型キャスターを用いることが好ましい。
本発明に係る球体駆動式全方向移動装置において、前記各駆動用球体の横方向の位置決めに、該駆動用球体の周面に接触する全方向に回転可能なボール型キャスターを用いることが好ましい。
In the sphere-driven omnidirectional movement device according to the present invention, the lateral positioning of each driving sphere is brought into contact with the side surface of the driving sphere at the same height as the rotation center of the driving sphere, and the drive It is preferable to use a wheel caster that can rotate the spherical body in the vertical direction.
In the sphere-driven omnidirectional movement device according to the present invention, it is preferable to use a ball-type caster that can rotate in all directions in contact with the circumferential surface of the driving sphere for lateral positioning of the driving spheres.

本発明に係る球体駆動式全方向移動装置において、前記各駆動用球体は、該各駆動用球体の配置位置に応じて開口部が形成された脱落防止用カバーを下部に備える台車に設けられ、前記各駆動用球体の下部を前記開口部からそれぞれ突出させると共に、該各駆動用球体の前記台車からの脱落を防止することが好ましい。
本発明に係る球体駆動式全方向移動装置において、前記脱落防止用カバーの前記開口部の内側には、前記各駆動用球体の表面に接触する刷毛部材が設けられていることが好ましい。
In the sphere-driven omnidirectional movement device according to the present invention, each of the driving spheres is provided on a carriage provided with a drop-off prevention cover having an opening formed at a lower portion in accordance with an arrangement position of each of the driving spheres, It is preferable that the lower portions of the driving spheres are protruded from the openings, respectively, and the driving spheres are prevented from falling off the carriage.
In the sphere-driven omnidirectional movement device according to the present invention, it is preferable that a brush member that contacts the surface of each driving sphere is provided inside the opening of the drop-preventing cover.

請求項1〜8記載の球体駆動式全方向移動装置は、3つの駆動用球体と3つの駆動手段を有するので、駆動手段の無駄がなく、製造コストの低減が図れ経済的である。
また、各駆動手段は、それぞれ隣り合って配置される駆動用球体を同時に回転駆動させるので、各駆動手段の動作をそれぞれ制御することで、各駆動用球体の回転方向と球体駆動式全方向移動装置の移動方向を一致させることができる。これにより、各駆動用球体に横滑りが生じなくなるため、床面の凹凸等の影響を受けにくく、走行時の安定性が高い球体駆動式全方向移動装置を提供できる。
従って、球体駆動式全方向移動装置を、例えば、家庭用ロボット、電動車椅子(福祉関係)、工業用搬送台車等へ使用できる。
Since the sphere-driven omnidirectional moving device according to the first to eighth aspects includes the three driving spheres and the three driving means, the driving means is not wasted, and the manufacturing cost can be reduced, which is economical.
In addition, since each driving means simultaneously drives and drives the driving spheres arranged adjacent to each other, the rotation direction of each driving sphere and the sphere-driven omnidirectional movement can be controlled by controlling the operation of each driving means. The moving direction of the device can be matched. As a result, no side slip occurs in each driving sphere, so that it is possible to provide a sphere-driven omnidirectional movement device that is not easily affected by unevenness on the floor surface and has high stability during traveling.
Accordingly, the sphere-driven omnidirectional moving device can be used for, for example, a home robot, an electric wheelchair (welfare related), an industrial transport carriage, and the like.

特に、請求項2記載の球体駆動式全方向移動装置は、3つの駆動用球体を平面視して正三角形の頂点位置に配置するので、3つの駆動用球体が、正三角形の重心を中心として120度ごとに配置されることになる。これにより、正三角形の重心と各頂点位置を結ぶ線を基準とし、重心を中心として±60度の領域について、球体駆動式全方向移動装置の走行パターンを決定することで、この走行パターンを他の2つの領域にも適用できるので、走行パターンを単純化できる。 In particular, the sphere-driven omnidirectional movement device according to claim 2 arranges the three driving spheres at the vertex positions of the equilateral triangle in plan view, so that the three driving spheres are centered on the center of gravity of the equilateral triangle. It will be arranged every 120 degrees. As a result, the travel pattern of the sphere-driven omnidirectional mobile device is determined on the basis of the line connecting the center of gravity of the equilateral triangle and each vertex position with respect to the region of ± 60 degrees centered on the center of gravity. Therefore, the traveling pattern can be simplified.

請求項3記載の球体駆動式全方向移動装置は、隣り合って配置される駆動用球体の周面に同時に接触するロータとこれを駆動する駆動用モータで駆動手段を構成するので、隣り合って配置される駆動用球体を、簡単な構成で同時に回転駆動できる。 In the sphere-driven omnidirectional moving device according to claim 3, the driving means is constituted by the rotor that simultaneously contacts the peripheral surface of the driving sphere arranged adjacent to the driving sphere, and the driving motor that drives the rotor. The arranged driving spheres can be simultaneously rotated with a simple configuration.

請求項4記載の球体駆動式全方向移動装置は、隣り合って配置される駆動用球体の周面にそれぞれ接触するロータと、このロータを連結する動力伝達用ベルトと、ロータを駆動する駆動用モータで駆動手段を構成するので、例えば、隣り合って配置される駆動用球体の各中心位置の間隔を大きく広げたい場合でも、駆動用球体やロータを大きくすることなく、同時に回転駆動できる。 According to a fourth aspect of the present invention, there is provided a sphere-driven omnidirectional moving device that includes a rotor that is in contact with a circumferential surface of a driving sphere arranged adjacent to each other, a power transmission belt that connects the rotors, and a drive that drives the rotor. Since the driving means is constituted by a motor, for example, even when it is desired to increase the interval between the central positions of the driving spheres arranged adjacent to each other, the driving spheres and the rotor can be simultaneously driven without increasing the size.

請求項5記載の球体駆動式全方向移動装置は、各駆動用球体の横方向の位置決めに車輪型キャスターを用いるので、例えば、駆動用球体の表面に付着したごみが車輪型キャスターに付着しても、そのごみが車輪型キャスター内に滞留する恐れを低減できる。これにより、車輪型キャスターの回転は安定に行われるため、球体駆動式全方向移動装置が指示とは異なる方向へ移動することを防止でき、更には球体駆動式全方向移動装置のメンテナンス頻度も低減できる。
また、車輪型キャスターは、駆動用球体の回転中心と同一高さ位置で駆動用球体の側面に接触し、駆動用球体を上下方向に回転可能とするので、駆動用球体が車輪型キャスターと点接触する位置を中心として回転する場合以外は、駆動用球体の回転方向に伴って車輪型キャスターを回転させることができる。これにより、車輪型キャスターに対する駆動用球体の摺れを低減できるので、駆動用球体の損傷を低減でき、駆動用球体の交換頻度を低減できる。
Since the sphere-driven omnidirectional movement device according to claim 5 uses a wheel caster for lateral positioning of each drive sphere, for example, dust attached to the surface of the drive sphere adheres to the wheel caster. However, it is possible to reduce the possibility that the waste will stay in the wheel caster. As a result, rotation of the wheel type caster is performed stably, so that the sphere-driven omnidirectional movement device can be prevented from moving in a direction different from the instruction, and the maintenance frequency of the sphere-driven omnidirectional movement device is also reduced. it can.
In addition, the wheel type caster contacts the side surface of the driving sphere at the same height as the rotation center of the driving sphere, and the driving sphere can be rotated in the vertical direction. The wheel type caster can be rotated in accordance with the rotation direction of the driving sphere, except when rotating around the contact position. Thereby, since the sliding of the driving sphere with respect to the wheel caster can be reduced, the damage of the driving sphere can be reduced, and the replacement frequency of the driving sphere can be reduced.

請求項6記載の球体駆動式全方向移動装置は、各駆動用球体の横方向の位置決めに全方向に回転可能なボール型キャスターを用いるので、ボール型キャスターを駆動用球体の周面のいずれの位置に接触させても、駆動用球体の回転方向に伴ってボール型キャスターを回転させることができる。これにより、ボール型キャスターに対する駆動用球体の摺れを低減できるので、駆動用球体の損傷を低減でき、駆動用球体の交換頻度を低減できる。 The sphere-driven omnidirectional movement device according to claim 6 uses a ball-type caster that can rotate in all directions for lateral positioning of each drive sphere, so that the ball-type caster is attached to any of the peripheral surfaces of the drive sphere. Even if it is brought into contact with the position, the ball caster can be rotated in accordance with the rotation direction of the driving sphere. Thereby, since the sliding of the driving sphere with respect to the ball type caster can be reduced, damage to the driving sphere can be reduced, and the replacement frequency of the driving sphere can be reduced.

請求項7記載の球体駆動式全方向移動装置は、各駆動用球体を台車に設け、しかも各駆動用球体の下部を、台車の下部に設けられた脱落防止用カバーの開口部からそれぞれ突出させるので、各駆動用球体を駆動手段によって回転駆動させた場合でも、各駆動用球体が台車から脱落することなく回転駆動できる。
請求項8記載の球体駆動式全方向移動装置は、脱落防止用カバーの開口部の内側に、各駆動用球体の表面に接触する刷毛部材を設けているので、各駆動用球体に付着したごみや汚れ等を、台車の走行と同時に取り除くことができる。
The sphere-driven omnidirectional movement device according to claim 7 is provided such that each driving sphere is provided on a carriage, and a lower portion of each driving sphere is protruded from an opening of a drop-off prevention cover provided on a lower part of the carriage. Therefore, even when each driving sphere is rotationally driven by the driving means, each driving sphere can be rotationally driven without falling off the carriage.
The spherically driven omnidirectional movement device according to claim 8 is provided with a brush member in contact with the surface of each driving sphere inside the opening of the dropout prevention cover, so that the dust adhered to each driving sphere. And dirt can be removed simultaneously with the traveling of the carriage.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1(A)、(B)に示すように、本発明の一実施の形態に係る球体駆動式全方向移動装置(以下、単に移動装置ともいう)10は、平面視して正三角形の頂点位置P1、P2、P3にそれぞれ配置される3つの駆動用球体11〜13と、隣り合って配置される駆動用球体11と駆動用球体12、駆動用球体12と駆動用球体13、駆動用球体13と駆動用球体11を、それぞれ同時に同一方向に回転駆動させる3つの駆動手段14〜16とを有し、床面17上を全方向に移動できる装置である。なお、各駆動手段14〜16は、図示しない制御部により、その動作が制御されている。以下、詳しく説明する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As shown in FIGS. 1A and 1B, a sphere-driven omnidirectional moving device (hereinafter also simply referred to as a moving device) 10 according to an embodiment of the present invention is a vertex of an equilateral triangle in plan view. Three driving spheres 11 to 13 arranged at positions P1, P2, and P3, a driving sphere 11 and a driving sphere 12, which are arranged adjacent to each other, a driving sphere 12 and a driving sphere 13, and a driving sphere. 13 and three driving means 14 to 16 for driving and rotating the driving sphere 11 in the same direction at the same time, and is a device that can move on the floor surface 17 in all directions. The operation of each of the driving units 14 to 16 is controlled by a control unit (not shown). This will be described in detail below.

図1(A)、(B)に示すように、移動装置10は、上部に平板状の載置台18が取付けられた台車19を有している。なお、前記した制御部は、有線で台車19とは異なる位置に配置しているが、無線でもよく、またこの台車19に設けてもよい。
載置台18は、プラスチック製又は金属製のものであり、平面視して六角形となっているが、この形状に限定されるものではなく、例えば、他の多角形やこの多角形の角部に丸みを形成した形状、更には円形又は楕円形でもよい。
載置台18の下方には、各駆動用球体11〜13が、載置台18の下面23に取付けられた全方向に回転可能な支持用ボール型キャスター20〜22を介して、回転可能に設けられている。なお、各支持用ボール型キャスター20〜22は、それぞれ駆動用球体11〜13の頂点位置に接触している。
As shown in FIGS. 1 (A) and 1 (B), the moving device 10 has a carriage 19 having a flat plate-like mounting table 18 attached to the upper part thereof. The control unit described above is wired and disposed at a position different from the carriage 19, but may be wireless or provided on the carriage 19.
The mounting table 18 is made of plastic or metal and has a hexagonal shape in a plan view. However, the mounting table 18 is not limited to this shape. For example, other polygons and corners of the polygons. The shape may be round, or may be circular or elliptical.
Below the mounting table 18, the driving spheres 11 to 13 are rotatably provided via supporting ball casters 20 to 22 that are attached to the lower surface 23 of the mounting table 18 and can rotate in all directions. ing. Each of the supporting ball type casters 20 to 22 is in contact with the apex position of the driving spheres 11 to 13.

各駆動用球体11〜13は、例えば、シリコーン樹脂やウレタン樹脂のような弾性材料で構成され、その直径は、例えば、5〜15cm(好ましくは、7〜10cm)程度で、同一形状(同一直径)となっている。このように、各駆動用球体11〜13が同一形状であるため、載置台18の下面23は床面17と平行になり、また、各駆動用球体11〜13が回転するときの回転速度は同一となる。
図1(A)に示すように、各駆動用球体11〜13の回転中心は、平面視して正三角形の重心Gを中心として等角度(120度)に、しかも重心Gから等距離に、それぞれ配置されている(即ち、正三角形の頂点位置P1、P2、P3に配置されている)。
Each of the driving spheres 11 to 13 is made of, for example, an elastic material such as silicone resin or urethane resin, and has a diameter of, for example, about 5 to 15 cm (preferably 7 to 10 cm) and the same shape (same diameter). ). As described above, since the driving spheres 11 to 13 have the same shape, the lower surface 23 of the mounting table 18 is parallel to the floor surface 17, and the rotation speed when the driving spheres 11 to 13 rotate is as follows. It will be the same.
As shown in FIG. 1A, the rotation centers of the driving spheres 11 to 13 are equiangular (120 degrees) around the center of gravity G of the equilateral triangle in plan view, and equidistant from the center of gravity G. They are respectively arranged (that is, arranged at vertex positions P1, P2, and P3 of the equilateral triangle).

図1(A)、(B)に示すように、駆動手段15(駆動手段14、16も同様)は、隣り合って配置される駆動用球体12と駆動用球体13の周面に同時に接触するロータ24と、ロータ24を回転駆動する駆動用モータ25とを有する。
このロータ24は、その回転軸26の軸心が、床面17と平行になるように、また軸心の高さ位置が、各駆動用球体12、13の回転中心と同一高さ位置となるように、平面視して駆動用球体12と駆動用球体13の回転中心を結ぶ線上に配置されている。なお、ロータ24の直径は、駆動用球体12と駆動用球体13の直径よりも小さい。
これにより、ロータ24を床面17に接触させることなく、2つの駆動用球体12、13を同時に同一方向に回転駆動できる。
As shown in FIGS. 1A and 1B, the driving means 15 (the driving means 14 and 16 are also the same) simultaneously contact the peripheral surfaces of the driving sphere 12 and the driving sphere 13 arranged adjacent to each other. A rotor 24 and a drive motor 25 that rotationally drives the rotor 24 are included.
The rotor 24 has its rotational axis 26 parallel to the floor surface 17, and the height of the axial center is the same as the rotational center of the driving spheres 12, 13. As described above, the driving sphere 12 and the driving sphere 13 are arranged on a line connecting the rotation centers in plan view. The diameter of the rotor 24 is smaller than the diameters of the driving sphere 12 and the driving sphere 13.
Accordingly, the two driving spheres 12 and 13 can be simultaneously rotated in the same direction without bringing the rotor 24 into contact with the floor surface 17.

なお、駆動手段は、図2(A)、(B)に示す駆動手段27〜29で構成することもできる。
この駆動手段28(駆動手段27、29も同様)は、隣り合って配置される駆動用球体12、13の周面にそれぞれ接触するロータ30、31と、2つのロータ30、31を連結する動力伝達用ベルト32(例えば、チェーンベルト)と、一方のロータ30(ロータ31でもよい)を回転駆動する駆動用モータ33とを有する。
このロータ30、31は、その回転軸34、35の軸心が、床面17と平行になるように、また軸心の高さ位置が、各駆動用球体12、13の回転中心と同一高さ位置となるように、平面視して駆動用球体12と駆動用球体13の回転中心を結ぶ線上に配置されている。
これにより、使用用途に応じて、隣り合う駆動用球体12と駆動用球体13の中心間の距離を変えた場合でも、2つの駆動用球体12、13を同時に同一方向に回転駆動できる。
The driving means can also be constituted by driving means 27 to 29 shown in FIGS. 2 (A) and 2 (B).
This driving means 28 (same for the driving means 27 and 29) is the power for connecting the rotors 30 and 31 that are in contact with the peripheral surfaces of the driving spheres 12 and 13 arranged adjacent to each other and the two rotors 30 and 31, respectively. It has a transmission belt 32 (for example, a chain belt) and a drive motor 33 that rotationally drives one rotor 30 (or the rotor 31).
The rotors 30 and 31 are arranged so that the axes of the rotation shafts 34 and 35 are parallel to the floor surface 17 and the height position of the axes is the same as the rotation center of the driving spheres 12 and 13. It is arranged on a line connecting the rotation centers of the driving sphere 12 and the driving sphere 13 in plan view so as to be in the vertical position.
Thereby, even when the distance between the centers of the adjacent driving spheres 12 and the driving spheres 13 is changed according to the usage, the two driving spheres 12 and 13 can be simultaneously rotated in the same direction.

図1(A)、(B)に示すように、駆動用球体11(駆動用球体12、13も同様)は、その周面が、台車19の内側面36に取付けられた車輪型キャスター37に接触している。
この車輪型キャスター37は、一方向に回転可能な従来公知のものであり、駆動手段14、16のロータ24とは、駆動用球体11を挟み込むように取付けられている。このように、車輪型キャスター37は、一方向に回転可能なものであるため、駆動用球体11を上下方向(縦方向)に回転可能にガイドするように、台車19の内側面36へ取付ける。なお、車輪型キャスター37の設置個数は、1つの駆動用球体に対して1つでもよいが、2つ以上の複数でもよい。
これにより、駆動用球体11は、2つのロータ24と車輪型キャスター37に挟み込まれるため、駆動用球体11の横方向の位置決めがなされる。
As shown in FIGS. 1 (A) and 1 (B), the driving sphere 11 (and the driving spheres 12 and 13 are the same) has a circumferential surface attached to a wheel caster 37 attached to the inner side surface 36 of the carriage 19. In contact.
The wheel caster 37 is a conventionally known one that can rotate in one direction, and is attached to the rotor 24 of the driving means 14 and 16 so as to sandwich the driving sphere 11 therebetween. Thus, since the wheel type caster 37 is rotatable in one direction, it is attached to the inner side surface 36 of the carriage 19 so as to guide the driving sphere 11 so as to be rotatable in the vertical direction (vertical direction). The number of wheel casters 37 may be one for one driving sphere, but may be two or more.
Thereby, since the driving sphere 11 is sandwiched between the two rotors 24 and the wheel casters 37, the driving sphere 11 is positioned in the lateral direction.

ここで、移動装置10の駆動原理について、駆動用球体13とロータ24とを使用して、以下説明する。
球体駆動式の移動装置10では、図3に示すように、駆動用モータ25に取付けられたロータ24が、駆動用球体13と走行面の間に生じる摩擦力を介して、駆動用球体13を回転させることにより推進力を得る。ここで、fをロータ24と駆動用球体13の間の摩擦力、Fを駆動用球体13と走行面との間の摩擦力とする。
移動装置10では、前記したように、駆動用球体13を挟み込むように、駆動用球体13の側面に、駆動用球体13の回転を保持する車輪型キャスター37とロータ24を配置することで、圧接駆動を行う。
Here, the driving principle of the moving device 10 will be described below using the driving sphere 13 and the rotor 24.
In the sphere-driven moving device 10, as shown in FIG. 3, the rotor 24 attached to the drive motor 25 causes the drive sphere 13 to move through the frictional force generated between the drive sphere 13 and the traveling surface. Propulsion is obtained by rotating. Here, f is a frictional force between the rotor 24 and the driving sphere 13 and F is a frictional force between the driving sphere 13 and the running surface.
In the moving device 10, as described above, the wheel-type caster 37 that holds the rotation of the driving sphere 13 and the rotor 24 are arranged on the side surface of the driving sphere 13 so as to sandwich the driving sphere 13. Drive.

ここで、ロータ24の取付け位置は、ロータ24と駆動用球体13の回転方向との間の滑りをなくすために、f>Fとなるように調節している。なお、駆動用球体13と走行面での接触は、転がり接触となることから、移動装置10が任意の方向に移動した場合でも、横滑りが生じない。
駆動用球体13の回転を滑らかに保持するためには、図4(A)に示すように、ロータ24及び車輪型キャスター37が、3つの球の中心を含む水平面内で接触しなければならない。一方、図4(B)に示すように、ロータ24を上記した水平面内からずれた位置で接触させると、駆動用球体13の回転軸が水平方向を向かない場合が生じる。
Here, the mounting position of the rotor 24 is adjusted to satisfy f> F in order to eliminate slippage between the rotor 24 and the rotation direction of the driving sphere 13. Since the contact between the driving sphere 13 and the running surface is a rolling contact, no side slip occurs even when the moving device 10 moves in an arbitrary direction.
In order to keep the rotation of the driving sphere 13 smoothly, as shown in FIG. 4A, the rotor 24 and the wheel caster 37 must be in contact in a horizontal plane including the centers of the three spheres. On the other hand, as shown in FIG. 4B, when the rotor 24 is brought into contact with the position shifted from the horizontal plane, the rotation axis of the driving sphere 13 may not be directed in the horizontal direction.

ここで、駆動用球体13の回転軸が床面に対して水平方向を向く場合は、図5(A)に示すように、回転軸から球接地点までの距離が、駆動用球体13の半径Rと同値で一定となる。
一方、駆動用球体13の回転軸が水平方向を向かない場合は、図5(B)に示すように、回転軸から走行面の球接地点までの距離が、駆動用球体13の半径Rに対して短くなる(R´)。このように、駆動用球体13の回転軸が水平方向を向かない場合では、回転軸から走行面の球接地点までの距離、つまり有効半径が一定に定まらないため、制御システムが複雑になる。
なお、駆動用球体13が任意の方向に回転運動を行った場合、ロータ24との回転速度の関係は、図6に示すようになる。即ち、駆動用球体13の回転方向に平行でロータ24と駆動用球体13の接触点を通る円の半径R´、R´´は、球の回転方向とロータ24の回転方向が一致する場合を除いて、駆動用球体13の半径Rより短くなる。
Here, when the rotation axis of the driving sphere 13 faces the horizontal direction with respect to the floor surface, as shown in FIG. 5A, the distance from the rotation axis to the ball contact point is the radius of the driving sphere 13. It is constant at the same value as R.
On the other hand, when the rotation axis of the driving sphere 13 does not face the horizontal direction, the distance from the rotation axis to the ball contact point on the running surface is equal to the radius R of the driving sphere 13 as shown in FIG. On the other hand, it becomes shorter (R ′). As described above, when the rotation axis of the driving sphere 13 does not face the horizontal direction, the distance from the rotation axis to the ball contact point on the running surface, that is, the effective radius is not fixed, and the control system becomes complicated.
When the driving sphere 13 rotates in an arbitrary direction, the relationship between the rotational speed of the rotor 24 and the rotor 24 is as shown in FIG. In other words, the radii R ′ and R ″ of the circle parallel to the rotation direction of the driving sphere 13 and passing through the contact point between the rotor 24 and the driving sphere 13 indicate that the rotation direction of the sphere coincides with the rotation direction of the rotor 24. Except for this, it becomes shorter than the radius R of the driving sphere 13.

また、駆動用球体13の回転軸が、床面に対して水平方向を向かない場合には、以下の問題もある。
以下、駆動用球体13とロータ24の回転軸26を使用して、図7(A)〜(H)を参照しながら説明する。ここで、図7(A)は、ロータ24の回転軸26の軸心の高さ位置を、駆動用球体13の回転中心と同一高さ位置とした場合の説明図であり、また(B)は、回転軸26の軸心の高さ位置を、駆動用球体13の回転中心より下位置とした場合の説明図である。なお、図7(C)〜(E)は、図7(A)の位置関係で駆動用球体13を回転させたときの説明図であり、図7(F)〜(H)は図7(B)の位置関係で駆動用球体13を回転させたときの説明図である。
In addition, when the rotation axis of the driving sphere 13 does not face the horizontal direction with respect to the floor surface, there are the following problems.
Hereinafter, the driving sphere 13 and the rotating shaft 26 of the rotor 24 will be used and described with reference to FIGS. Here, FIG. 7A is an explanatory diagram when the height position of the axis of the rotation shaft 26 of the rotor 24 is the same height position as the rotation center of the driving sphere 13, and FIG. These are explanatory drawings when the height position of the axis of the rotation shaft 26 is set to a position below the rotation center of the driving sphere 13. 7C to 7E are explanatory diagrams when the driving sphere 13 is rotated in the positional relationship of FIG. 7A, and FIGS. 7F to 7H are FIGS. It is explanatory drawing when the driving sphere 13 is rotated in the positional relationship of B).

図7(C)、(F)のように、駆動用球体13の回転軸(軸心)とロータ24の回転軸26の軸心が平行となるように、駆動用球体13を回転させる場合、ロータ24は駆動用球体13の表面を擦ることなく、駆動用球体13の回転方向をロータ24の回転方向とは反対方向に回転できる。
また、他のロータ24の回転と床面17との接触により、駆動用球体13の回転軸を、図7(C)、(F)とは平面視して90度ずらす場合、図7(D)では、駆動用球体13とロータ24とが点接触した位置を中心として、駆動用球体13が回転する。このため、ロータ24は、点接触によって駆動用球体13の表面を擦るが、このときの摩擦力によって駆動用球体13の表面を損傷させたり、また駆動用球体13の回転方向が目的とする方向からずれるという恐れは低減できる。
When the driving sphere 13 is rotated so that the rotational axis (axial center) of the driving sphere 13 and the rotational axis 26 of the rotor 24 are parallel to each other as shown in FIGS. The rotor 24 can rotate the rotation direction of the driving sphere 13 in a direction opposite to the rotation direction of the rotor 24 without rubbing the surface of the driving sphere 13.
Further, when the rotation axis of the driving sphere 13 is shifted 90 degrees in plan view from FIGS. 7C and 7F due to the rotation of the other rotor 24 and the contact with the floor surface 17, FIG. ), The driving sphere 13 rotates around the position where the driving sphere 13 and the rotor 24 are in point contact. For this reason, the rotor 24 rubs the surface of the driving sphere 13 by point contact, but the surface of the driving sphere 13 is damaged by the frictional force at this time, and the rotation direction of the driving sphere 13 is the target direction. The risk of swaying can be reduced.

一方、図7(G)では、駆動用球体13とロータ24の回転方向が直交するため、ロータ24が回転することなく、駆動用球体13の表面を擦る。このため、このときの摩擦力によって駆動用球体13の表面を損傷させたり、また駆動用球体13の回転方向が目的とする方向からずれる恐れがある。
なお、各ロータ24の回転と床面17との接触により、駆動用球体13の回転軸を、図7(C)、(D)と図7(F)、(G)との間、例えば、図7(C)、(F)の回転軸とは平面視して45度ずらす場合、図7(E)では、ロータ24は駆動用球体13の表面を擦ることなく回転することができるが、図7(H)では、ロータ24は回転しながら駆動用球体13の表面を擦ってしまう。
On the other hand, in FIG. 7G, since the rotation directions of the driving sphere 13 and the rotor 24 are orthogonal, the surface of the driving sphere 13 is rubbed without the rotor 24 rotating. For this reason, the surface of the driving sphere 13 may be damaged by the frictional force at this time, and the rotation direction of the driving sphere 13 may deviate from the intended direction.
In addition, by the rotation of each rotor 24 and the contact with the floor surface 17, the rotational axis of the driving sphere 13 is changed between FIGS. 7C and 7D and FIGS. In the case of shifting by 45 degrees in plan view from the rotation axis of FIGS. 7C and 7F, in FIG. 7E, the rotor 24 can rotate without rubbing the surface of the driving sphere 13. In FIG. 7H, the rotor 24 rubs against the surface of the driving sphere 13 while rotating.

以上のことから、各ロータ24の回転軸26の軸心の高さ位置を、各駆動用球体11〜13の回転中心と同一高さ位置とする必要がある。なお、各ロータ30、31についても同様である。
また、各ロータ24を、平面視して駆動用球体12と駆動用球体13の回転中心を結ぶ線上に配置させることで、駆動用球体12、13が、ロータ24を両側から安定に挟み込むことができる。
これにより、駆動用球体12、13とロータ24との位置ずれを防止できる。
なお、各ロータ24の回転軸26の軸心の高さ位置を、各駆動用球体11〜13の回転中心と同一高さ位置とした場合、各ロータ24の回転により、駆動用球体11〜13が台車19から外れる恐れがある。
From the above, it is necessary to set the height position of the axis of the rotation shaft 26 of each rotor 24 to the same height position as the rotation center of each driving sphere 11 to 13. The same applies to the rotors 30 and 31.
Further, by arranging each rotor 24 on a line connecting the rotation centers of the driving sphere 12 and the driving sphere 13 in plan view, the driving spheres 12 and 13 can stably sandwich the rotor 24 from both sides. it can.
Thereby, it is possible to prevent displacement between the driving spheres 12 and 13 and the rotor 24.
In addition, when the height position of the axial center of the rotating shaft 26 of each rotor 24 is set to the same height position as the rotation center of each driving sphere 11 to 13, the driving sphere 11 to 13 is rotated by the rotation of each rotor 24. May come off the carriage 19.

このため、台車の下部に、脱落防止用カバー(図示しない)を設けることが好ましい。この脱落防止用カバーは、各駆動用球体11〜13の配置位置に応じて、各駆動用球体11〜13の直径よりも小さい内径からなる開口部が形成されている。これにより、各駆動用球体11〜13の下部を開口部からそれぞれ突出させると共に、各駆動用球体11〜13を駆動手段14〜16で回転させた場合でも、台車19からの脱落を防止できる。なお、柔らかい刷毛状のもの(刷毛部材)を、開口部内側に向けて各駆動用球体11〜13に軽く接触するように取り付けることで、各駆動用球体11〜13のごみや汚れ等を、台車19の走行と同時に取り除くことができる。
また、各駆動用球体11〜13の横方向の位置決めに、各駆動用球体11〜13の周面に接触する全方向に回転可能なボール型キャスターを用いてもよい。この場合、駆動用球体11〜13への接触場所に影響されることなく、ボール型キャスターが回転するため、各駆動用球体11〜13が台車19から外れないようにできる。
以上のように、球体駆動式全方向移動装置10を構成することで、移動装置10を全方向に移動できる。
For this reason, it is preferable to provide a fall prevention cover (not shown) at the bottom of the carriage. This drop prevention cover is formed with an opening having an inner diameter smaller than the diameter of each of the driving spheres 11 to 13 in accordance with the arrangement position of each of the driving spheres 11 to 13. Accordingly, the lower portions of the driving spheres 11 to 13 are protruded from the openings, respectively, and even when the driving spheres 11 to 13 are rotated by the driving means 14 to 16, the dropping from the carriage 19 can be prevented. In addition, by attaching a soft brush-like object (brush member) so as to lightly contact each of the driving spheres 11 to 13 toward the inside of the opening, dust and dirt of each of the driving spheres 11 to 13 can be removed. It can be removed simultaneously with the traveling of the carriage 19.
Moreover, you may use the ball-type caster which can rotate to the omnidirectional which contacts the surrounding surface of each driving sphere 11-13 for the positioning of each driving sphere 11-13 in the horizontal direction. In this case, since the ball type caster rotates without being affected by the place of contact with the driving spheres 11 to 13, the driving spheres 11 to 13 can be prevented from being detached from the carriage 19.
As described above, by configuring the sphere-driven omnidirectional moving device 10, the moving device 10 can be moved in all directions.

続いて、前記した球体駆動式全方向移動装置10の進行方向の制御方法について説明する。
まず、図8(A)に示すように、移動装置10に固定した座標系を定義する。
ここで、3つの駆動用球体を、それぞれ球1〜3として三角形の各頂点に配置し、この三角形の内部に原点Oをとる。なお、y軸は球1の接地点の方向に、x軸はy軸と直交する方向に、それぞれとる。また、各球の番号は、球1より反時計周りに与える。そして、添字i(i=1、2、3)は球の番号を示す。更に、原点Oから各球iまでの距離をLi(m)とする。
Next, a method for controlling the traveling direction of the sphere-driven omnidirectional moving device 10 will be described.
First, as shown in FIG. 8A, a coordinate system fixed to the moving device 10 is defined.
Here, three driving spheres are arranged as spheres 1 to 3 at respective vertices of the triangle, and the origin O is set inside the triangle. The y axis is taken in the direction of the ground contact point of the sphere 1 and the x axis is taken in the direction perpendicular to the y axis. The number of each sphere is given counterclockwise from the sphere 1. The subscript i (i = 1, 2, 3) indicates the number of the sphere. Further, let Li (m) be the distance from the origin O to each sphere i.

次に、各球iに対する座標系を、図8(B)に示すように定義する。
ここで、各球iの接地点を点Oiとし、原点OからOiに向かう方向にy軸、これと直交する方向にx軸を、それぞれとる。そして、各球座標系の移動機構座標系からの回転角度をθi(rad)とする。
移動機構座標系での各球iの接地点Oiの座標は、原点Oからの距離Liとy軸とO−Oiのなす角度θi(反時計周りを正とする)で表すことができる。
Next, a coordinate system for each sphere i is defined as shown in FIG.
Here, the contact point of each sphere i is defined as a point Oi, and the y i axis is taken in the direction from the origin O to Oi, and the x i axis is taken in the direction orthogonal thereto. The rotation angle of each spherical coordinate system from the moving mechanism coordinate system is defined as θi (rad).
The coordinates of the contact point Oi of each sphere i in the movement mechanism coordinate system can be expressed by the distance Li from the origin O, the angle θi formed by the y-axis and O-Oi (counterclockwise is positive).

図9(A)に移動装置10の速度を示す。
ここで、移動装置10の原点Oにおける並進速度のx方向成分をv(m/s)、y方向成分をv(m/s)、原点O周りの反時計方向の回転角速度(回転数)をr(rad/s)とする。このとき、回転角速度成分rは、原点Oから点Oiの方向に直交する。つまり、この回転角速度成分rは、x軸と平行になる。
ここで、各球接地点Oiにおいて、移動装置10の速度のx軸方向成分をwxi(m/s)、y軸方向成分をwyi(m/s)とすると、次の関係が成り立つ。
FIG. 9A shows the speed of the moving device 10.
Here, the x-direction component of the translation speed at the origin O of the moving device 10 is v x (m / s), the y-direction component is v y (m / s), and the counterclockwise rotation angular velocity (number of revolutions) around the origin O is set. ) Is r (rad / s). At this time, the rotational angular velocity component r is orthogonal to the direction from the origin O to the point Oi. That is, the rotational angular velocity component r is parallel to the xi axis.
Here, in each sphere ground point Oi, the speed of the x i axis component of the mobile device 10 w xi (m / s) , when the y i axis component and w yi (m / s), the following relationship It holds.

Figure 2010030360
Figure 2010030360

Figure 2010030360
Figure 2010030360

ここで、移動装置10の原点Oでの速度ベクトルをv=(v , v , r)とおくとき、vと各軸の成分ベクトルには、次の関係が成り立つ。 Here, when the velocity vector at the origin O of the moving apparatus 10 is v = (v x , v y , r) T , the following relationship is established between v and the component vector of each axis.

Figure 2010030360
Figure 2010030360

Figure 2010030360
Figure 2010030360

図9(B)に、球接地点での速度成分wxi(m/s)とwyi(m/s)を、それぞれ示す。
球1と球2を駆動するロータの角速度をλ(rad/s)、球2と球3を駆動するロータの角速度をλ(rad/s)、球3と球1を駆動するロータの角速度をλ(rad/s)とする。ここで、λiは移動装置10の外側からみて時計周りを正とする。
ロータの有効半径をδi(m)とすると、ロータの角速度と、球接地点でのロータの回転軸に直交する方向の速度成分δiλiは、x成分とy成分に分解できるので、次の関係が成り立つ。
FIG. 9B shows velocity components w xi (m / s) and w yi (m / s) at the sphere contact point, respectively.
The angular velocity of the rotor driving sphere 1 and sphere 2 is λ 1 (rad / s), the angular velocity of the rotor driving sphere 2 and sphere 3 is λ 2 (rad / s), and the rotor driving sphere 3 and sphere 1 Assume that the angular velocity is λ 3 (rad / s). Here, λi is positive in the clockwise direction when viewed from the outside of the moving device 10.
If the effective radius of the rotor is δi (m), the angular velocity of the rotor and the velocity component δiλi in the direction perpendicular to the rotation axis of the rotor at the sphere contact point can be decomposed into the x i component and the y i component. A relationship is established.

Figure 2010030360
Figure 2010030360

Figure 2010030360
Figure 2010030360

また、式(3)と式(5)から、次の関係が成り立つ。 Further, the following relationship is established from the equations (3) and (5).

Figure 2010030360
Figure 2010030360

ここで、式(7)において、次のようにおく。 Here, in Equation (7), the following is set.

Figure 2010030360
Figure 2010030360

Figure 2010030360
Figure 2010030360

これにより、移動装置10の並進移動速度と回転速度は、ロータの回転角速度から、次のように求まる。 Thereby, the translational movement speed and rotation speed of the moving apparatus 10 are calculated | required as follows from the rotation angular velocity of a rotor.

Figure 2010030360
Figure 2010030360

逆に、移動装置10の並進速度と回転速度から、ロータの回転角速度が、次のように求まる。 Conversely, the rotational angular velocity of the rotor is determined from the translation speed and the rotational speed of the moving device 10 as follows.

Figure 2010030360
Figure 2010030360

特に、各球の中心が正三角形の頂点位置に配置される場合、即ちδ=δ=δ=δ、θ=0、θ=2/3・π、θ=4/3・π、L=L=L=L、ξi=ψi=1/6・πのとき、上記したPとUは、以下のように簡単になる。 In particular, when the center of each sphere is arranged at the vertex position of an equilateral triangle, that is, δ = δ 1 = δ 2 = δ 3 , θ 1 = 0, θ 2 = 2/3 · π, θ 3 = 4/3. When π, L = L 1 = L 2 = L 3 , and ξi = ψi = 1/6 · π, the above P and U are simplified as follows.

Figure 2010030360
Figure 2010030360

Figure 2010030360
Figure 2010030360

以上に示した関係により、各ロータの回転角速度を導出できるので、これらをプログラミングすることで、移動装置10の駆動制御が可能となる。
なお、移動装置10の運動を考えると、移動装置10の運動はx軸方向、y軸方向、及び原点O周りの運動方程式により規定され、その加速度は、各球の走行面との接地点における摩擦力により生じる。このとき、次の関係が成り立つ。
The rotational angular velocities of the rotors can be derived from the relationship shown above, so that the drive control of the moving device 10 can be performed by programming them.
Considering the movement of the moving device 10, the movement of the moving device 10 is defined by the equations of motion around the x-axis direction, the y-axis direction, and the origin O, and the acceleration is at the contact point with the running surface of each sphere. Caused by frictional forces. At this time, the following relationship holds.

Figure 2010030360
Figure 2010030360

Figure 2010030360
Figure 2010030360

Figure 2010030360
Figure 2010030360

ただし、移動装置10の質量をM(kg)、原点O周りの慣性モーメントをIv(kgm)とする。なお、FxiとFyiは、球と床面の接地による摩擦力であり、垂直抗力と摩擦係数の積で表される。
上記した関係をプログラミングすることで、移動装置10の加速度を制御できる。
However, the mass of the moving device 10 is M (kg), and the moment of inertia around the origin O is Iv (kgm 2 ). Note that Fxi and Fyi are frictional forces due to the contact between the sphere and the floor, and are represented by the product of the normal force and the friction coefficient.
By programming the above relationship, the acceleration of the mobile device 10 can be controlled.

以上に示した方法を使用し、制御部により各駆動用球体11〜13を回転させる各ロータ24を駆動用モータ25により回転させ、移動装置10を動作させる。ここで、移動装置10の代表的な動きを、移動装置10の前側には駆動用球体11、右側には駆動用球体12、左側には駆動用球体13が、それぞれ位置するとして、以下説明する。
まず、移動装置10を前方向へ直進走行させる場合について説明する。
図10(A)に示すように、左右両側に位置する駆動用球体12、13に同時に接触するロータ24の回転を停止させた状態で、移動装置10を平面視して、前側に位置する駆動用球体11に接触した2つのロータ24を、駆動用球体11側から駆動用球体12側及び駆動用球体13側へ、同一回転速度で回転させる。
これにより、駆動用球体11は移動装置10を前進させる方向に回転し、また他の駆動用球体12、13は、それぞれに接触するロータ24の接触点を中心として回転するので、移動装置10は前方向へ直進走行できる。なお、移動装置10をそのままの状態で後ろ方向(図10(A)に示す移動方向とは逆方向)へ直進走行させる場合は、駆動用球体11に接触する2つのロータ24の回転方向を、上記した方向とは逆方向にすればよい。
Using the method shown above, the rotor 24 for rotating the driving spheres 11 to 13 is rotated by the driving motor 25 by the control unit, and the moving device 10 is operated. Here, a typical movement of the moving device 10 will be described below assuming that the driving sphere 11 is located on the front side, the driving sphere 12 is located on the right side, and the driving sphere 13 is located on the left side. .
First, the case where the moving apparatus 10 is made to travel straight forward is described.
As shown in FIG. 10A, in a state where the rotation of the rotor 24 that is simultaneously in contact with the driving spheres 12 and 13 located on the left and right sides is stopped, the driving device 10 located on the front side in the plan view of the moving device 10 The two rotors 24 in contact with the sphere 11 for rotation are rotated at the same rotational speed from the sphere 11 for driving to the sphere 12 for driving and the sphere 13 for driving.
As a result, the driving sphere 11 rotates in the direction of moving the moving device 10 forward, and the other driving spheres 12 and 13 rotate around the contact point of the rotor 24 that contacts each other. You can go straight ahead. In the case where the moving device 10 is allowed to travel straight in the rearward direction (the direction opposite to the moving direction shown in FIG. 10A) without changing the rotational direction of the two rotors 24 that are in contact with the driving sphere 11, What is necessary is just to make it the opposite direction to the above-mentioned direction.

次に、移動装置10を左方向に直進走行させる場合について説明する。
図10(B)に示すように、移動装置10を平面視して、左右両側に位置する駆動用球体12、13に同時に接触したロータ24を、駆動用球体13側から駆動用球体12側へ、回転させると共に、前側に位置する駆動用球体11に接触した他の2つのロータ24を、駆動用球体13側から駆動用球体11側へ、及び駆動用球体11側から駆動用球体12側へ、それぞれ回転させる。なお、前側に位置する駆動用球体11に接触する他の2つのロータ24は、同一回転速度で回転している。
これにより、移動装置10は左方向へ直進走行できる。なお、移動装置10を右方向(図10(B)に示す移動方向とは逆方向)へ直進走行させる場合は、各ロータ24の回転方向を、上記した方向とは逆方向にすればよい。
Next, the case where the moving apparatus 10 is made to travel straight in the left direction will be described.
As shown in FIG. 10B, when the moving device 10 is viewed in plan, the rotor 24 that is in contact with the driving spheres 12 and 13 located on the left and right sides at the same time is moved from the driving sphere 13 to the driving sphere 12. The other two rotors 24 that are rotated and in contact with the driving sphere 11 located on the front side are moved from the driving sphere 13 side to the driving sphere 11 side and from the driving sphere 11 side to the driving sphere 12 side. Rotate each. The other two rotors 24 that are in contact with the driving sphere 11 located on the front side rotate at the same rotational speed.
Thereby, the moving device 10 can travel straight in the left direction. When the moving device 10 travels straight in the right direction (the direction opposite to the moving direction shown in FIG. 10B), the rotation direction of each rotor 24 may be set to the opposite direction to the above-described direction.

移動装置10を左斜め前方向に直進走行させる場合について説明する。
図10(C)に示すように、各駆動用球体11〜13が、移動装置10の移動方向と一致するように、3つのロータ24をそれぞれ回転させる。具体的には、移動装置10を平面視して、右側に位置する駆動用球体12に接触した2つのロータ24を、駆動用球体11側及び駆動用球体13側から駆動用球体12側へ回転させると共に、他のロータ24を駆動用球体11側から駆動用球体13側へ回転させる。このとき、右側に位置する駆動用球体12に接触した2つのロータ24の各回転速度は、移動装置10の移動方向に応じて、その回転速度が異なっている。
これにより、移動装置10は左斜め前方向に直進走行できる。なお、移動装置10を右斜め後ろ方向(図10(C)に示す移動方向とは逆方向)へ直進走行させる場合は、各ロータ24の回転を上記した方向とは逆方向にすればよい。また、移動装置10を右斜め前方向に直進走行させる場合は、駆動用球体11に接触する2つのロータ24の回転速度を逆にし、他の駆動用球体12、13に同時に接触するロータ24の回転を上記した方向とは逆方向にすればよい。
The case where the moving apparatus 10 is made to travel straight ahead in the diagonally left direction will be described.
As shown in FIG. 10C, the three rotors 24 are rotated so that the driving spheres 11 to 13 coincide with the moving direction of the moving device 10. Specifically, in plan view of the moving device 10, the two rotors 24 that are in contact with the driving sphere 12 located on the right side are rotated from the driving sphere 11 side and the driving sphere 13 side to the driving sphere 12 side. The other rotor 24 is rotated from the driving sphere 11 side to the driving sphere 13 side. At this time, the rotational speeds of the two rotors 24 that are in contact with the driving sphere 12 located on the right side differ depending on the moving direction of the moving device 10.
Thereby, the moving apparatus 10 can travel straight ahead in the diagonally left direction. In addition, what is necessary is just to make rotation of each rotor 24 into the opposite direction to the above-mentioned direction, when making the moving apparatus 10 drive straight ahead in the diagonally right backward direction (the direction opposite to the moving direction shown in FIG. 10C). Further, when the moving device 10 travels straight forward in the diagonally right direction, the rotational speeds of the two rotors 24 that contact the driving sphere 11 are reversed, and the rotor 24 that contacts the other driving spheres 12 and 13 simultaneously. What is necessary is just to make rotation into the reverse direction to the above-mentioned direction.

最後に、移動装置10を反時計周りに旋回させる場合について説明する。
図10(D)に示すように、全てのロータ24を、同一方向でしかも同一回転速度で回転させる。なお、図10(D)は、旋回の途中の状態を示している。
これにより、移動装置10を反時計周りに旋回できる。なお、移動装置10を時計周りに旋回させる場合は、各ロータ24の回転を上記した方向とは逆方向にすればよい。
以上に示すように、球体駆動式全方向移動装置10は、各駆動用球体11〜13の全てが、移動装置10の移動方向と同一方向に回転している。このため、製造コストの低減が図れ、床面の凹凸等の影響を受けにくく、走行時の安定性が高い球体駆動式全方向移動装置10を提供できる。
Finally, a case where the moving device 10 is turned counterclockwise will be described.
As shown in FIG. 10D, all the rotors 24 are rotated in the same direction and at the same rotational speed. FIG. 10D shows a state in the middle of turning.
Thereby, the moving apparatus 10 can be turned counterclockwise. In addition, what is necessary is just to make rotation of each rotor 24 into the opposite direction to the above-mentioned direction, when turning the moving apparatus 10 clockwise.
As described above, in the sphere driven omnidirectional moving device 10, all of the driving spheres 11 to 13 are rotated in the same direction as the moving direction of the moving device 10. For this reason, the manufacturing cost can be reduced, and the sphere-driven omnidirectional movement device 10 that is not easily affected by the unevenness of the floor surface and has high stability during traveling can be provided.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の球体駆動式全方向移動装置を構成する場合も本発明の権利範囲に含まれる。
また、前記実施の形態においては、3つの駆動用球体を、平面視して正三角形の頂点位置に配置した場合について説明したが、これに限定されるものではなく、例えば、二等辺三角形でもよい。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, a case where the sphere-driven omnidirectional moving device of the present invention is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the right of the present invention.
In the above embodiment, the case where the three driving spheres are arranged at the vertex positions of the equilateral triangle in plan view has been described. However, the present invention is not limited to this, and may be an isosceles triangle, for example. .

そして、前記実施の形態においては、駆動手段を、ロータと駆動用モータで構成した場合、またロータと動力伝達用ベルトと駆動用モータで構成した場合について、それぞれ説明した。しかし、これに限定されるものではなく、例えば、駆動手段の1又は2を、ロータと駆動用モータで構成し、その他をロータと動力伝達用ベルトと駆動用モータで構成してもよい。
更に、3つの駆動用球体を用いた球体駆動式全方向移動装置を1セットとし、台車の規模に応じて、1セット又は2セット以上の複数セット、台車に設けることもできる。また、球体駆動式全方向移動装置を1セット、台車の重心位置に配置し、台車の周囲に補助のキャスターを取付けてもよい。
In the above embodiment, the case where the driving means is constituted by the rotor and the driving motor, and the case where the driving means is constituted by the rotor, the power transmission belt, and the driving motor have been described. However, the present invention is not limited to this. For example, one or two of the driving means may be configured by a rotor and a driving motor, and the other may be configured by a rotor, a power transmission belt, and a driving motor.
Further, the sphere-driven omnidirectional moving device using three driving spheres can be provided as one set, and can be provided in one set or a plurality of sets of two or more sets, depending on the scale of the cart. Further, one set of sphere-driven omnidirectional moving devices may be arranged at the center of gravity of the carriage, and an auxiliary caster may be attached around the carriage.

(A)、(B)はそれぞれ本発明の一実施の形態に係る球体駆動式全方向移動装置の平断面図、一部切欠き正面図である。(A), (B) is the plane sectional view of the spherical body drive type omnidirectional movement device concerning one embodiment of the present invention, respectively, and a partially notched front view. (A)、(B)は変形例に係る球体駆動式全方向移動装置の平断面図、一部切欠き正面図である。(A), (B) is the plane sectional view of the spherical body drive type omnidirectional movement device concerning a modification, and a partial notch front view. 駆動用球体とロータの摩擦力を示す説明図である。It is explanatory drawing which shows the frictional force of the spherical body for a drive, and a rotor. (A)、(B)はそれぞれ駆動用球体に対するロータの配置位置を示す説明図である。(A), (B) is explanatory drawing which shows the arrangement position of the rotor with respect to the driving sphere, respectively. (A)、(B)はそれぞれ駆動用球体の回転軸と有効半径との関係を示す説明図である。(A), (B) is explanatory drawing which shows the relationship between the rotating shaft of a driving sphere, and an effective radius, respectively. 駆動用球体とロータの回転速度との関係を示す説明図である。It is explanatory drawing which shows the relationship between the spherical body for a drive, and the rotational speed of a rotor. (A)は回転軸の軸心を駆動用球体の回転中心と同一高さ位置とした場合の説明図、(B)は駆動用球体の回転中心より下位置とした場合の説明図、(C)〜(E)は(A)の位置関係で駆動用球体を回転させたときの説明図、(F)〜(H)は(B)の位置関係で駆動用球体を回転させたときの説明図である。(A) is an explanatory view when the axis of the rotation shaft is at the same height position as the rotation center of the driving sphere, (B) is an explanatory view when the position is lower than the rotation center of the driving sphere, (C ) To (E) are explanatory diagrams when the driving sphere is rotated with the positional relationship of (A), and (F) to (H) are explanatory diagrams when the driving sphere is rotated with the positional relationship of (B). FIG. (A)、(B)はそれぞれ本発明の一実施の形態に係る球体駆動式全方向移動装置の位置座標の定義の説明図、同球体駆動式全方向移動装置の駆動用球体の位置座標の定義の説明図である。(A), (B) is explanatory drawing of the definition of the position coordinate of the sphere drive type omnidirectional movement apparatus which concerns on one embodiment of this invention, respectively, and the position coordinate of the drive sphere of the same sphere drive type omnidirectional movement apparatus It is explanatory drawing of a definition. (A)、(B)はそれぞれ同球体駆動式全方向移動装置の速度の説明図、同球体駆動式全方向移動装置の駆動用球体の速度成分の説明図である。(A), (B) is explanatory drawing of the speed of the same spherical body drive type omnidirectional movement apparatus, respectively, and explanatory drawing of the speed component of the driving sphere of the same spherical body drive type omnidirectional movement apparatus. (A)〜(D)はそれぞれ同球体駆動式全方向移動装置の前方向への直進走行時の説明図、左方向への直進走行時の説明図、左斜め前方向への直進走行時の説明図、旋回時の説明図である。(A)-(D) are explanatory drawings at the time of straight traveling in the forward direction of the same spherical body drive type omnidirectional moving device, explanatory diagrams at the time of straight traveling to the left, and at the time of straight traveling to the left diagonally forward It is explanatory drawing and explanatory drawing at the time of turning.

符号の説明Explanation of symbols

10:球体駆動式全方向移動装置、11〜13:駆動用球体、14〜16:駆動手段、17:床面、18:載置台、19:台車、20〜22:支持用ボール型キャスター、23:下面、24:ロータ、25:駆動用モータ、26:回転軸、27〜29:駆動手段、30、31:ロータ、32:動力伝達用ベルト、33:駆動用モータ、34、35:回転軸、36:内側面、37:車輪型キャスター 10: Sphere-driven omnidirectional moving device, 11-13: Driving sphere, 14-16: Driving means, 17: Floor surface, 18: Mounting table, 19: Carriage, 20-22: Ball type caster for support, 23 : Lower surface, 24: Rotor, 25: Driving motor, 26: Rotating shaft, 27 to 29: Driving means, 30, 31: Rotor, 32: Power transmission belt, 33: Driving motor, 34, 35: Rotating shaft , 36: inner surface, 37: wheel caster

Claims (8)

平面視して三角形の頂点位置に配置される同一形状の3つの駆動用球体と、隣り合って配置される該駆動用球体を同時に同一方向に回転駆動させる3つの駆動手段とを有することを特徴とする球体駆動式全方向移動装置。 It has three driving spheres of the same shape arranged at the apex position of the triangle in plan view, and three driving means for simultaneously rotating the driving spheres arranged adjacent to each other in the same direction. A sphere-driven omnidirectional moving device. 請求項1記載の球体駆動式全方向移動装置において、前記三角形は正三角形であることを特徴とする球体駆動式全方向移動装置。 2. The sphere-driven omnidirectional movement device according to claim 1, wherein the triangle is a regular triangle. 請求項1及び2のいずれか1項に記載の球体駆動式全方向移動装置において、前記駆動手段は、前記隣り合って配置される駆動用球体の周面に同時に接触するロータと、該ロータを回転駆動する駆動用モータとを有することを特徴とする球体駆動式全方向移動装置。 3. The sphere-driven omnidirectional movement device according to claim 1, wherein the driving unit includes a rotor that simultaneously contacts a circumferential surface of the driving sphere arranged adjacent to the sphere, and the rotor. A spherically driven omnidirectional moving device comprising a driving motor for rotational driving. 請求項1及び2のいずれか1項に記載の球体駆動式全方向移動装置において、前記駆動手段は、前記隣り合って配置される駆動用球体の周面にそれぞれ接触するロータと、該2つのロータを連結する動力伝達用ベルトと、該2つのロータの一方を回転駆動する駆動用モータとを有することを特徴とする球体駆動式全方向移動装置。 3. The sphere-driven omnidirectional movement device according to claim 1, wherein the driving unit includes a rotor that contacts a peripheral surface of the driving sphere arranged adjacent to each other, and the two A sphere-driven omnidirectional movement device comprising a power transmission belt for connecting a rotor and a drive motor for rotationally driving one of the two rotors. 請求項1〜4のいずれか1項に記載の球体駆動式全方向移動装置において、前記各駆動用球体の横方向の位置決めに、該駆動用球体の回転中心と同一高さ位置で該駆動用球体の側面に接触し、該駆動用球体を上下方向に回転可能とする車輪型キャスターを用いることを特徴とする球体駆動式全方向移動装置。 5. The sphere-driven omnidirectional movement device according to claim 1, wherein the driving sphere is positioned at the same height as the rotation center of the driving sphere for lateral positioning of the driving spheres. A sphere-driven omnidirectional movement device using a wheel-type caster that contacts a side surface of a sphere and makes the driving sphere rotatable in the vertical direction. 請求項1〜4のいずれか1項に記載の球体駆動式全方向移動装置において、前記各駆動用球体の横方向の位置決めに、該駆動用球体の周面に接触する全方向に回転可能なボール型キャスターを用いることを特徴とする球体駆動式全方向移動装置。 5. The sphere-driven omnidirectional movement device according to claim 1, wherein each of the driving spheres is rotatable in all directions in contact with a peripheral surface of the driving sphere for lateral positioning. A sphere-driven omnidirectional movement device characterized by using a ball-type caster. 請求項5及び6のいずれか1項に記載の球体駆動式全方向移動装置において、前記各駆動用球体は、該各駆動用球体の配置位置に応じて開口部が形成された脱落防止用カバーを下部に備える台車に設けられ、前記各駆動用球体の下部を前記開口部からそれぞれ突出させると共に、該各駆動用球体の前記台車からの脱落を防止することを特徴とする球体駆動式全方向移動装置。 7. The sphere-driven omnidirectional movement device according to claim 5, wherein each of the driving spheres has a drop prevention cover in which an opening is formed in accordance with an arrangement position of each of the driving spheres. Sphere-driven omnidirectional, characterized in that the lower part of each driving sphere protrudes from the opening and prevents the driving sphere from falling off the carriage. Mobile equipment. 請求項7記載の球体駆動式全方向移動装置において、前記脱落防止用カバーの前記開口部の内側には、前記各駆動用球体の表面に接触する刷毛部材が設けられていることを特徴とする球体駆動式全方向移動装置。 8. The sphere-driven omnidirectional movement device according to claim 7, wherein a brush member that contacts the surface of each driving sphere is provided inside the opening of the drop-off prevention cover. A sphere-driven omnidirectional movement device.
JP2008192590A 2008-07-25 2008-07-25 Sphere drive omnidirectional movement device Active JP5305285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008192590A JP5305285B2 (en) 2008-07-25 2008-07-25 Sphere drive omnidirectional movement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008192590A JP5305285B2 (en) 2008-07-25 2008-07-25 Sphere drive omnidirectional movement device

Publications (2)

Publication Number Publication Date
JP2010030360A true JP2010030360A (en) 2010-02-12
JP5305285B2 JP5305285B2 (en) 2013-10-02

Family

ID=41735398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008192590A Active JP5305285B2 (en) 2008-07-25 2008-07-25 Sphere drive omnidirectional movement device

Country Status (1)

Country Link
JP (1) JP5305285B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010173570A (en) * 2009-01-30 2010-08-12 Kyushu Institute Of Technology Spherical body driving type omnidirectional moving device
JP2010215082A (en) * 2009-03-16 2010-09-30 Kyushu Institute Of Technology Omnidirectional moving device of sphere driving type
CN102152817A (en) * 2011-03-07 2011-08-17 李锦明 Spherical wheel driving and traveling mechanism
GB2487709A (en) * 2010-10-30 2012-08-08 Autoset Production Ltd Powered omniball
JP2015024160A (en) * 2014-09-30 2015-02-05 国立大学法人九州工業大学 Self-supporting type walking support device
WO2020110651A1 (en) * 2018-11-28 2020-06-04 国立大学法人 九州工業大学 Spherical body drive type movement device
WO2021240912A1 (en) * 2020-05-26 2021-12-02 国立大学法人 九州工業大学 Mobile device with spherical drive system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6331804A (en) * 1986-07-28 1988-02-10 Fujitsu Ltd Spherical type steering wheel
JPH03279081A (en) * 1990-03-28 1991-12-10 Hitachi Ltd Self-travelling truck
JPH06171562A (en) * 1992-12-10 1994-06-21 Nippondenso Co Ltd Running device
JPH07257422A (en) * 1994-03-19 1995-10-09 Hideaki Maehara Omnidirectional drive wheel and omnidirectional traveling vehicle providing the same
JP2000350749A (en) * 1999-06-11 2000-12-19 Matsushita Electric Works Ltd Electromotive chair
JP2001063645A (en) * 1999-08-27 2001-03-13 Institute Of Tsukuba Liaison Co Ltd Wheel type moving body
JP2001354155A (en) * 2000-06-14 2001-12-25 Kawasaki Heavy Ind Ltd Control device of omnidirectional moving device
JP2005046949A (en) * 2003-07-28 2005-02-24 Ishikawajima Harima Heavy Ind Co Ltd Leg structure of mobile robot
JP2006508806A (en) * 2002-07-25 2006-03-16 インタッチ−ヘルス・インコーポレーテッド Medical remote control robot system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6331804A (en) * 1986-07-28 1988-02-10 Fujitsu Ltd Spherical type steering wheel
JPH03279081A (en) * 1990-03-28 1991-12-10 Hitachi Ltd Self-travelling truck
JPH06171562A (en) * 1992-12-10 1994-06-21 Nippondenso Co Ltd Running device
JPH07257422A (en) * 1994-03-19 1995-10-09 Hideaki Maehara Omnidirectional drive wheel and omnidirectional traveling vehicle providing the same
JP2000350749A (en) * 1999-06-11 2000-12-19 Matsushita Electric Works Ltd Electromotive chair
JP2001063645A (en) * 1999-08-27 2001-03-13 Institute Of Tsukuba Liaison Co Ltd Wheel type moving body
JP2001354155A (en) * 2000-06-14 2001-12-25 Kawasaki Heavy Ind Ltd Control device of omnidirectional moving device
JP2006508806A (en) * 2002-07-25 2006-03-16 インタッチ−ヘルス・インコーポレーテッド Medical remote control robot system
JP2005046949A (en) * 2003-07-28 2005-02-24 Ishikawajima Harima Heavy Ind Co Ltd Leg structure of mobile robot

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010173570A (en) * 2009-01-30 2010-08-12 Kyushu Institute Of Technology Spherical body driving type omnidirectional moving device
JP2010215082A (en) * 2009-03-16 2010-09-30 Kyushu Institute Of Technology Omnidirectional moving device of sphere driving type
GB2487709A (en) * 2010-10-30 2012-08-08 Autoset Production Ltd Powered omniball
CN102152817A (en) * 2011-03-07 2011-08-17 李锦明 Spherical wheel driving and traveling mechanism
JP2015024160A (en) * 2014-09-30 2015-02-05 国立大学法人九州工業大学 Self-supporting type walking support device
WO2020110651A1 (en) * 2018-11-28 2020-06-04 国立大学法人 九州工業大学 Spherical body drive type movement device
CN112739606A (en) * 2018-11-28 2021-04-30 国立大学法人九州工业大学 Ball driving type moving device
DE112019005925T5 (en) 2018-11-28 2021-10-14 Kyushu Institute Of Technology Ball body drive type moving device
WO2021240912A1 (en) * 2020-05-26 2021-12-02 国立大学法人 九州工業大学 Mobile device with spherical drive system
DE112021002961T5 (en) 2020-05-26 2023-04-27 Kyushu Institute Of Technology Mobile device with ball drive system

Also Published As

Publication number Publication date
JP5305285B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
JP5305285B2 (en) Sphere drive omnidirectional movement device
JP6870032B2 (en) Hinged vehicle chassis
JP3661894B2 (en) Sphere moving device
JP5292283B2 (en) Omnidirectional drive device and omnidirectional vehicle using the same
JP5305290B2 (en) Sphere drive omnidirectional movement device
JP2009113135A (en) Biped mobile mechanism
US9573416B1 (en) Wheel assembly with multi-sphere omniwheels and omnidirectional devices including the wheel assembly
JP2006282160A (en) Omnidirectional mobile robot and omnidirectional motion driving mechanism therefor
JPH06171562A (en) Running device
KR101845325B1 (en) 6 dof ball-driven robot with a 3 dof parallel kinematic manipulator
JP5311646B2 (en) Sphere drive omnidirectional movement device
JP2016101887A (en) Travel device
KR101626862B1 (en) A ball drive unit and a ball drive vehicle comprising the same
CN112739606B (en) Sphere driving type moving device
CN106043427A (en) Multi-caterpillar-band type all-directional mobile platform
US10730346B2 (en) Caster apparatus and transferring apparatus including the same
KR101685339B1 (en) Ball-driven robot
US20160194042A1 (en) Three-wheeled mobile robot
JP2016049921A (en) Wheel driving device
JP2016107965A (en) Running device
Doroftei et al. Design and control of an omni-directional mobile robot
KR20140106304A (en) Moving object having driving unit
JP2001354155A (en) Control device of omnidirectional moving device
TW201430241A (en) Face-to-face arrangement omnidirectional wheel transmission device
KR102597420B1 (en) Modular dual swivel wheel and platform including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130618

R150 Certificate of patent or registration of utility model

Ref document number: 5305285

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250