JP5305290B2 - Sphere drive omnidirectional movement device - Google Patents

Sphere drive omnidirectional movement device Download PDF

Info

Publication number
JP5305290B2
JP5305290B2 JP2009020408A JP2009020408A JP5305290B2 JP 5305290 B2 JP5305290 B2 JP 5305290B2 JP 2009020408 A JP2009020408 A JP 2009020408A JP 2009020408 A JP2009020408 A JP 2009020408A JP 5305290 B2 JP5305290 B2 JP 5305290B2
Authority
JP
Japan
Prior art keywords
spheres
sphere
driving force
force transmission
wheels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009020408A
Other languages
Japanese (ja)
Other versions
JP2010173570A (en
Inventor
弘之 宮本
優輝 宅見
毅 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Seibu Electric and Machinery Co Ltd
Original Assignee
Kyushu Institute of Technology NUC
Seibu Electric and Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC, Seibu Electric and Machinery Co Ltd filed Critical Kyushu Institute of Technology NUC
Priority to JP2009020408A priority Critical patent/JP5305290B2/en
Publication of JP2010173570A publication Critical patent/JP2010173570A/en
Application granted granted Critical
Publication of JP5305290B2 publication Critical patent/JP5305290B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Motorcycle And Bicycle Frame (AREA)

Description

本発明は、狭い場所でも床面上で移動及び回転が自由にできる球体駆動式全方向移動装置に係り、例えば、搬送台車、家庭用ロボット、電動車椅子等に使用可能な球体駆動式全方向移動装置に関する。 The present invention relates to a sphere-driven omnidirectional movement device that can freely move and rotate on a floor surface even in a narrow place, for example, a sphere-driven omnidirectional movement that can be used for a carriage, a home robot, an electric wheelchair, etc. Relates to the device.

従来、比較的高速移動が可能で制御が容易なオムニホイール方式が全方向移動装置(以下、単に移動装置ともいう)として多く用いられてきた。この方式は、台車本体の底部に配置されたホイールの外周部に、回転が自由なフリーローラをホイールの円周方向に設けたもので、ホイールの駆動に加えて、ホイールの幅方向の移動が可能である(例えば、非特許文献1参照)。 Conventionally, an omni-wheel system capable of relatively high-speed movement and easy control has been widely used as an omnidirectional movement apparatus (hereinafter also simply referred to as a movement apparatus). In this system, a free roller that can rotate freely is provided in the circumferential direction of the wheel on the outer periphery of the wheel arranged at the bottom of the carriage body. In addition to driving the wheel, movement in the width direction of the wheel is possible. It is possible (for example, refer nonpatent literature 1).

しかしながら、フリーローラがホイールの幅方向の移動を可能にしているため、全方向移動装置の床面上での並進運動や回転運動において、全方向移動装置の走行が安定性を欠く等が課題となる。
このため、床面の表面が凹凸状となっている場合、1のホイールに備えられたフリーローラと床面との摩擦が小さい場合は、走行の安定性が著しく欠く可能性があった。
従って、例えば、絨毯のように床面の状態が一様でない場所での走行には適さず、安定した走行ができる場所に制限がある。
However, since the free roller enables the movement of the wheel in the width direction, it is a problem that the omnidirectional movement device lacks stability in the translational movement and the rotation movement on the floor surface of the omnidirectional movement device. Become.
For this reason, when the surface of the floor surface is uneven, if the friction between the free roller provided on one wheel and the floor surface is small, there is a possibility that the running stability is remarkably lacking.
Therefore, for example, it is not suitable for traveling in a place where the state of the floor surface is not uniform, such as a carpet, and there is a limit to a place where stable traveling is possible.

一方、球体駆動方式の全方向移動装置は簡単な構造で床面上の並進運動及び回転運動を可能にし、また、床面上のどの方向への移動も速度ムラが出にくい等の特徴がある。
更に、床面との接点において、球体の駆動方向と異なる方向で自由に移動できる機構を有していないため、例えば、絨毯上でも安定した走行が可能となる。このような、球体駆動方式を用いた移動装置としては、例えば、3つの球体にそれぞれ1つの駆動用モータが設けられた三球式移動装置(例えば、非特許文献2参照)がある。
On the other hand, the spherical drive type omnidirectional movement device has a simple structure that enables translational and rotational movements on the floor surface, and has features such as being less susceptible to uneven speed in movement in any direction on the floor surface. .
Furthermore, since there is no mechanism that can freely move in a direction different from the driving direction of the sphere at the contact point with the floor surface, for example, stable running is possible even on a carpet. As such a moving device using the sphere driving method, for example, there is a three-sphere moving device in which one driving motor is provided for each of three spheres (for example, see Non-Patent Document 2).

ところが、この球体駆動方式の三球式移動装置は、例えば搬送台車として用いられ、移動装置の頂上部に配置された載置台に荷物が置かれた状態で走行する場合、荷物の重心の位置によって、走行中の挙動が不安定となることがある。これは、図9(A)、(B)で示すように、三球式移動装置100はそれぞれ1つの駆動用モータ104が設けられた3つの球体101〜103が床面106と3点で接するが、重心位置により、それぞれの接点に加わる重量が異なるためで、走行状態等によっては全方向移動装置の台車本体105が傾き、その一部が床面106に接することもあり得ることによる。 However, this sphere-driven three-ball type moving device is used as, for example, a transport carriage, and when traveling with a load placed on a mounting table arranged at the top of the moving device, depending on the position of the center of gravity of the load. , Behavior during running may become unstable. As shown in FIGS. 9A and 9B, the three-sphere moving device 100 has three spheres 101 to 103 each provided with one driving motor 104 in contact with the floor 106 at three points. However, because the weight applied to each contact differs depending on the position of the center of gravity, depending on the traveling state, the cart body 105 of the omnidirectional moving device may be tilted and a part thereof may be in contact with the floor surface 106.

また、静止状態で三球式移動装置100と床面106の3つの接点に均一の重量が加わっていたとしても、床面の凹凸等の影響により、球体101(球体102、103も同様)と床面106の間に生じる摩擦力が他の球体102、103と床面106の間の摩擦力よりも小さいときは、著しく走行が不安定となる可能性がある。 In addition, even when a uniform weight is applied to the three contact points of the three-sphere moving device 100 and the floor surface 106 in a stationary state, the sphere 101 (the same applies to the spheres 102 and 103) due to the unevenness of the floor surface. When the frictional force generated between the floor surfaces 106 is smaller than the frictional force between the other spheres 102 and 103 and the floor surface 106, the traveling may become extremely unstable.

藤沢正一郎、大久保慶治、師玉康成、山浦弘夫、「四輪独立駆動型全方向移動ロボットの運動学と走行特性」、日本機械学会論文集、1996年12月、第62巻、第604号、p.149−155Shoichiro Fujisawa, Keiji Okubo, Yasunari Shidama, Hiroo Yamaura, "Kinematics and running characteristics of four-wheel independent drive omnidirectional mobile robot", Transactions of the Japan Society of Mechanical Engineers, December 1996, Vol. 62, No. 604, p. 149-155 松本直樹、竹田滋、飯田慎二、伊東正篤、「3つの球を使った全方位移動機構の運動と制御」、日本機械学会論文集、1994年8月、第60巻、第576号、p.266−273Naoki Matsumoto, Shigeru Takeda, Shinji Iida, Masatsugu Ito, “Movement and control of omnidirectional movement mechanism using three spheres”, Transactions of the Japan Society of Mechanical Engineers, August 1994, Vol. 60, No. 576, p. 266-273

そこで、4つの球体にそれぞれ2つの駆動力伝達機構が当接して配置され、駆動力伝達機構にそれぞれ1つの駆動用モータが設けられた四球式移動装置が提案されている。
図10(A)、(B)に示すように、この四球式移動装置110は、台車本体116の底部に配置された4つの球体111〜114それぞれが床面117と接し、合計4つの接点が存するため、接点が3つとなる三球式移動装置に比して走行の安定性が増す。しかしながら、床面117上の自由な並進運動及び回転運動を可能とするには、原理的に異なる3方向の駆動力、即ちx及びy方向の移動用と回転用の3つの駆動用モータがあればよいが、この四球式移動装置110は駆動用モータ115を4つ要するため、製造コストが高くなり経済的ではない。
Therefore, a four-ball type moving device has been proposed in which two driving force transmission mechanisms are disposed in contact with four spheres, and one driving motor is provided for each driving force transmission mechanism.
As shown in FIGS. 10A and 10B, in this four-ball moving device 110, four spheres 111 to 114 arranged at the bottom of the carriage main body 116 are in contact with the floor surface 117, and a total of four contact points are provided. Therefore, the running stability is increased as compared with the three-ball type moving device having three contact points. However, in order to allow free translational and rotational movement on the floor 117, there are in principle three different driving forces, ie three driving motors for movement in the x and y directions and for rotation. However, since the four-ball moving device 110 requires four drive motors 115, the manufacturing cost is increased and it is not economical.

本発明はこのような四球式移動装置が抱える課題を解決し、製造コストを抑え、かつ安定した走行を実現する球体駆動式全方向移動装置を提供することを目的とする。 An object of the present invention is to solve the problems of such a four-ball type moving device, and to provide a sphere-driven omnidirectional moving device that suppresses manufacturing costs and realizes stable traveling.

前記目的に沿う本発明に係る球体駆動式全方向移動装置は、台車本体と、前記台車本体の底部に転動可能に配置され、かつそれぞれの球心が平面視して四角形を形成する4つの球体1〜4と、前記台車本体に取付けられ、前記4つの球体1〜4のうち、隣り合って又は対角線上に位置する前記球体1〜4の周面に当接する車輪を有し、該球体1〜4に同時にそれぞれ同一方向の回転力を与える少なくとも5つの駆動力伝達機構と、前記駆動力伝達機構の3つに設けられ、該駆動力伝達機構に駆動力を与えるモータとを備え、しかも、それぞれの前記球体1〜4には、2又は3の前記駆動力伝達機構が異なる方向から当接し、更に異なる方向から当接した前記駆動力伝達機構には、0若しくは1又は2の前記モータが設けられている。 The sphere-driven omnidirectional movement device according to the present invention that meets the above-mentioned object is arranged in a trolley main body and a bottom portion of the trolley main body so as to be able to roll, and each sphere center forms a quadrangle in plan view. A sphere 1 to 4 and a wheel attached to the cart body, the wheel having a contact with the peripheral surface of the sphere 1 to 4 that is adjacent to or diagonally located among the four spheres 1 to 4; Including at least five driving force transmission mechanisms that simultaneously apply rotational force in the same direction to 1 to 4 and three motors that are provided in three of the driving force transmission mechanisms and that provide the driving force to the driving force transmission mechanism, Each of the spheres 1 to 4 has two or three driving force transmission mechanisms abutting from different directions, and the driving force transmission mechanism abutted from different directions has 0, 1 or 2 motors. Is provided.

本発明に係る球体駆動式全方向移動装置において、前記球体1〜4は、ボールキャスターを介して前記台車本体に取付けられていることが好ましい。
また、本発明に係る球体駆動式全方向移動装置において、前記駆動力伝達機構は対となる前記球体1〜4の周面にそれぞれ当接する2つの前記車輪と、前記2つの車輪の一方の回転を他方に伝える動力伝達手段とを有するのが好ましい。
In the sphere driven omnidirectional movement device according to the present invention, it is preferable that the spheres 1 to 4 are attached to the cart body via a ball caster.
Moreover, in the spherical body drive type omnidirectional movement apparatus according to the present invention, the driving force transmission mechanism is configured such that the two wheels that respectively contact the peripheral surfaces of the pair of the spheres 1 to 4 and the rotation of one of the two wheels. It is preferable to have power transmission means for transmitting the power to the other.

本発明に係る球体駆動式全方向移動装置において、前記動力伝達手段は、前記2つの車輪のそれぞれ同軸上に取付けられている補助歯付き車(タイミングベルト用の歯付き車、及びチェーンに噛合するスプロケットを含む)と、対となる前記補助歯付き車に噛合するベルト又はチェーンとを有するのが好ましい。
本発明に係る球体駆動式全方向移動装置において、前記球体1〜4は同一半径の球体であって、該球体1〜4の球心によって形成される四角形は長方形又は正方形であることが好ましい。
In the sphere-driven omnidirectional movement device according to the present invention, the power transmission means meshes with a toothed vehicle (a toothed vehicle for a timing belt and a chain) attached on the same axis of each of the two wheels. (Including a sprocket) and a belt or chain that meshes with the auxiliary toothed wheel.
In the sphere-driven omnidirectional movement device according to the present invention, it is preferable that the spheres 1 to 4 are spheres having the same radius, and the quadrangle formed by the sphere centers of the spheres 1 to 4 is a rectangle or a square.

本発明に係る球体駆動式全方向移動装置において、前記駆動力伝達機構に備えられる前記車輪と前記球体1〜4が当接する箇所それぞれについて、該車輪の外周と該球体1〜4の周面の速度及び向きが同一であるのが望ましい。 In the sphere-driven omnidirectional movement device according to the present invention, the outer periphery of the wheel and the peripheral surfaces of the spheres 1 to 4 are respectively provided at locations where the wheels and the spheres 1 to 4 are provided in the driving force transmission mechanism. It is desirable that the speed and direction be the same.

本発明に係る球体駆動式全方向移動装置において、(1)前記球体1〜4の球心の座標をそれぞれ(dR、d)、(−dL、d)、(−dL、−dB)、(dR、−dB)とし、(2)前記球体1、2、前記球体2、3、前記球体3、4、前記球体4、1、前記球体1、3、並びに前記球体2、4と当接するそれぞれ同一半径の前記駆動力伝達機構の車輪の半径をそれぞれQ12、Q23、Q34、Q41、Q13、Q24とし、(3)それぞれの前記車輪の角速度をλ12、λ23、λ34、λ41、λ13、λ24とし、(4)更に、床面に対する該球体駆動式全方向移動装置の原点Oを基準とする角速度をrとすると共に、原点Oの前記床面に対する並進運動の速度について、x成分をv、y成分をvとし、(5)以下の式1、式2が成り立つことを条件として、
以下の式3から、左辺に記載した行列(λ12、λ23、λ34、λ41、λ13、λ24)と右辺の6行行列について同一の3行を除いて得た正方行列に、逆行列が存在する条件で、選ばれた左辺の3個の角速度となる前記車輪を備える前記駆動力伝達機構に、前記モータを設けるのがよい。即ち、左辺の行列と右辺の6行行列について同一の3行を除いて得た右辺に3次正方行列を有する関係式のうち、前記3次正方行列に逆行列が存在する関係式において、左辺に存する車輪の角速度に係る該車輪を備える前記駆動力伝達機構に、前記モータを設けている。
In the sphere-driven omnidirectional movement apparatus according to the present invention, (1) the coordinates of the sphere centers of the spheres 1 to 4 are (d R , d F ), (−d L , d F ), (−d L , -D B ), (d R , -d B ), and (2) the spheres 1, 2, the spheres 2, 3, the spheres 3, 4, the spheres 4, 1, the spheres 1, 3, and the The radii of the driving force transmission mechanisms having the same radius in contact with the spheres 2 and 4 are Q 12 , Q 23 , Q 34 , Q 41 , Q 13 , and Q 24 , respectively. (3) Angular velocities of the wheels. Λ 12 , λ 23 , λ 34 , λ 41 , λ 13 , λ 24 , (4) Furthermore, the angular velocity with respect to the origin O of the sphere-driven omnidirectional moving device relative to the floor surface is defined as r, the speed of translation with respect to the floor of the origin O, and x component v x, the y component and v y, the following (5) On the condition that Equation 1 and Equation 2 hold,
From the following Equation 3, a square matrix obtained by excluding the same three rows for the matrix (λ 12 , λ 23 , λ 34 , λ 41 , λ 13 , λ 24 ) described on the left side and the 6-row matrix on the right side, The motor may be provided in the driving force transmission mechanism including the wheels having three angular velocities on the selected left side under the condition that an inverse matrix exists. That is, among the relational expressions having a cubic square matrix on the right side obtained by removing the same three rows for the left-side matrix and the right-side 6-row matrix, in the relational expression in which the inverse matrix exists in the cubic square matrix, The motor is provided in the driving force transmission mechanism provided with the wheel according to the angular velocity of the existing wheel.

Figure 0005305290
Figure 0005305290

請求項1〜7記載の球体駆動式全方向移動装置は、台車本体の底部に転動可能に配置された4つの球体それぞれが、異なる2又は3方向から駆動力を与えられるので、床面上の自由な並進運動及び回転運動を可能とする。
また、床面と4点で接して走行するので、床面と3点で接する移動装置に比べ、台車本体に置かれた荷物の重心位置による影響を受けにくく、更に、床面表面の凹凸等により、球体の1つと床面の間に生じる摩擦力が他の球体に生じるものよりも小さいことによっても、走行が不安定になりにくい。
しかも、用いられるモータの数は、床面上の自由な並進運動及び回転運動を可能とするのに必要な最小値にあたる3つのため、製造コストを抑え、経済的である。
Since the sphere-driven omnidirectional movement device according to any one of claims 1 to 7 is provided with a driving force from two or three different directions, each of the four spheres arranged so as to be able to roll on the bottom of the carriage main body, Allows free translational and rotational movement.
In addition, since it travels in contact with the floor surface at four points, it is less affected by the center of gravity position of the load placed on the cart body than the moving device that contacts the floor surface at three points, and further, unevenness on the floor surface, etc. Thus, even when the frictional force generated between one of the spheres and the floor surface is smaller than that generated on the other spheres, the traveling is less likely to become unstable.
In addition, since the number of motors used is three, which is the minimum value required to enable free translational and rotational movement on the floor surface, the manufacturing cost is reduced and it is economical.

特に、請求項2記載の球体駆動式全方向移動装置は、4つの球体がボールキャスターを介して台車本体に取り付けられているので、床面に対して垂直方向における球体の球心と台車本体間の距離を一定に保ち、また、球体が大きな抵抗を受けることなく転動することができる。 In particular, in the sphere-driven omnidirectional movement device according to claim 2, since the four spheres are attached to the carriage main body via the ball caster, the sphere center and the carriage main body in the direction perpendicular to the floor surface are provided. The distance can be kept constant, and the sphere can roll without receiving great resistance.

請求項3記載の球体駆動式全方向移動装置は、駆動力伝達機構が有する2つの車輪の一方の回転が、動力伝達手段により、他方に伝わるので、車輪に当接する2つの球体に同じ向きの回転成分を与えることができる。 In the sphere-driven omnidirectional movement device according to claim 3, since the rotation of one of the two wheels of the driving force transmission mechanism is transmitted to the other by the power transmission means, the two spheres contacting the wheel have the same orientation. A rotational component can be provided.

請求項4記載の球体駆動式全方向移動装置は、2つの車輪のそれぞれ同軸上に取付けられている補助歯付き車に噛合するベルト又はチェーンとを有するので、補助歯付き車とベルト又はチェーンの間で滑りを生じることなく、車輪の一方の回転を他方へ確実に伝えることができる。 The spherically driven omnidirectional movement device according to claim 4 has a belt or a chain that meshes with an auxiliary toothed vehicle that is coaxially mounted on each of the two wheels. The rotation of one of the wheels can be reliably transmitted to the other without slipping between them.

請求項5記載の球体駆動式全方向移動装置は、それぞれの球体が同一半径の球体のため、各球体が床面と滑りを生じずに走行するための制御を容易にできる。
また、平面視して球体の球心が長方形又は正方形を形成するので、長方形又は正方形と辺の長さが同一である他の四角形の場合に比べ、台車本体に置かれた荷物の重心位置が走行の安定性に及ぼす影響を少なくできる。
In the sphere-driven omnidirectional movement device according to the fifth aspect, since each sphere has the same radius, it is easy to control each sphere to travel without causing a slip on the floor surface.
In addition, since the spherical center of the sphere forms a rectangle or square in plan view, the position of the center of gravity of the load placed on the main body of the cart is larger than in the case of the rectangle or the other square having the same side length. The influence on running stability can be reduced.

請求項6記載の球体駆動式全方向移動装置は、駆動力伝達機構に備えられる車輪と球体が当接する箇所それぞれについて、車輪の外周と球体の周面の速度及び向きが同一であるので、球体と車輪との間に滑りを生じることなく各球体が回転し、球体及び車輪の磨耗が発生するのを防ぎ、また、球体駆動式全方向移動装置の各部品の破損を抑えることができる。 Since the sphere-driven omnidirectional movement device according to claim 6 has the same speed and direction of the outer periphery of the wheel and the peripheral surface of the sphere at each of the locations where the wheel and the sphere are provided in the driving force transmission mechanism, Each sphere rotates without causing a slip between the wheel and the wheel, and wear of the sphere and the wheel can be prevented, and damage to each part of the sphere driven omnidirectional movement device can be suppressed.

そして、請求項7記載の球体駆動式全方向移動装置は、少なくとも5つある駆動力伝達機構のうち3つにモータが設けられるが、安定した走行を確保するために、いずれの駆動力伝達機構にモータを設ければよいかを確実に決定することができる。 In the spherical drive omnidirectional movement device according to claim 7, motors are provided in three of at least five drive force transmission mechanisms. Any of the drive force transmission mechanisms may be used to ensure stable running. It is possible to reliably determine whether or not a motor should be provided.

(A)、(B)は本発明の第1の実施の形態に係る球体駆動式全方向移動装置の一部省略平面図及び正断面図である。(A), (B) is a partially omitted plan view and a front sectional view of the spherical body drive type omnidirectional movement device according to the first embodiment of the present invention. (A)、(B)は本発明の第2の実施の形態に係る球体駆動式全方向移動装置の一部省略平面図及び正断面図である。(A), (B) is a partially omitted plan view and a front sectional view of a spherical body drive type omnidirectional movement device according to a second embodiment of the present invention. 本発明の第3の実施の形態に係る球体駆動式全方向移動装置の平断面図である。It is a plane sectional view of the spherical body drive type omnidirectional movement device concerning a 3rd embodiment of the present invention. 同球体駆動式全方向移動装置の正断面図である。It is a front sectional view of the same sphere drive type omnidirectional movement device. 本発明の球体駆動式全方向移動装置の動作の説明図である。It is explanatory drawing of operation | movement of the spherical body drive type omnidirectional movement apparatus of this invention. (A)〜(C)は本発明の球体駆動式全方向移動装置の動作の説明図である。(A)-(C) are explanatory drawings of operation | movement of the spherical body drive type omnidirectional movement apparatus of this invention. (A)、(B)は本発明の球体駆動式全方向移動装置の動作の説明図である。(A), (B) is explanatory drawing of operation | movement of the spherical body drive type omnidirectional movement apparatus of this invention. (A)、(B)はそれぞれ本発明の球体駆動式全方向移動装置のモータの配置位置及び比較例に係る球体駆動式全方向移動装置のモータの配置位置の説明図である。(A), (B) is explanatory drawing of the arrangement position of the motor of the sphere drive type omnidirectional movement apparatus of this invention, and the arrangement position of the motor of the sphere drive type omnidirectional movement apparatus which concerns on a comparative example, respectively. (A)、(B)はそれぞれ従来例に係る三球式移動装置の平断面図、一部切欠き正面図である。(A), (B) is the plane sectional view of the three-ball type moving device concerning a conventional example, and a partially notched front view, respectively. (A)、(B)はそれぞれ四球式移動装置の平断面図、一部切欠き正面図である。(A) and (B) are a plane sectional view and a partially cutaway front view of a four-ball type moving device, respectively.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。 Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.

図1(A)、(B)に示すように、本発明の第1の実施の形態に係る球体駆動式全方向移動装置(以下、単に「移動装置」ともいう)10は、台車本体11と、台車本体11の底部に転動可能に配置され、それぞれの球心が平面視して四角形を形成するように配置された4つの球体1〜4と、隣り合って位置する球体(1、2)、(2、3)、(3、4)、(4、1)及び対角線上に位置する球体(1、3)、(2、4)に同時にそれぞれ同一方向の回転力を与える6つの駆動力伝達機構12〜17とを有する。このうち3つの駆動力伝達機構13〜15にはそれぞれ駆動力を与えるモータ18〜20が設けられ、水平な床面72上で任意の方向に移動できる装置である。なお、各モータ18〜20は図示しない制御部により、その回転の角速度が制御されている。また、駆動力伝達機構12〜17は内部に図示しない軸受とそのハウジングからなる支持部材21によって台車本体11に固定されている。 As shown in FIGS. 1A and 1B, a sphere-driven omnidirectional moving device (hereinafter, also simply referred to as “moving device”) 10 according to the first embodiment of the present invention includes a cart body 11 and The four spheres 1 to 4 are arranged on the bottom of the carriage body 11 so as to be able to roll, and the respective sphere centers are arranged so as to form a quadrangle in plan view, and the spheres (1, 2 ), (2, 3), (3, 4), (4, 1), and the spheres (1, 3), (2, 4) located on the diagonal line simultaneously apply six driving forces respectively to the same direction. Force transmission mechanisms 12-17. Of these, the three driving force transmission mechanisms 13 to 15 are each provided with motors 18 to 20 that give driving force, and can move in any direction on the horizontal floor surface 72. Note that the rotational speeds of the motors 18 to 20 are controlled by a control unit (not shown). The driving force transmission mechanisms 12 to 17 are fixed to the carriage main body 11 by a support member 21 including a bearing (not shown) and its housing.

図1に示すように、台車本体11は正方形の平板からなる載置台22と載置台22の周囲に垂下して取付けられた4枚の側板23を備える。また、載置台22の四隅近傍の下面であって、球体1〜4の球心位置にはボールキャスター24〜27がそれぞれ設けられ、それぞれのボールキャスター24〜27には、同一半径の転動可能なボール28を1つ有する。更に、4枚の側板23の内側には車輪型キャスター29〜36が2つずつ取付けられており、それぞれの車輪型キャスター29〜36には、球体1〜4にx方向、y方向から当接して転動するガイド車輪37が設けられている。なお、ガイド車輪37の位置は、球体1〜4の球心高さに配置されている。 As shown in FIG. 1, the cart body 11 includes a mounting table 22 made of a square flat plate and four side plates 23 attached to the periphery of the mounting table 22. In addition, ball casters 24 to 27 are respectively provided on the bottom surfaces of the mounting table 22 near the four corners of the balls 1 to 4, and the ball casters 24 to 27 can roll with the same radius. One ball 28 is provided. Further, two wheel type casters 29 to 36 are attached to the inside of the four side plates 23. The wheel type casters 29 to 36 are in contact with the spheres 1 to 4 from the x direction and the y direction, respectively. The guide wheel 37 which rolls is provided. In addition, the position of the guide wheel 37 is arrange | positioned at the spherical center height of the spherical bodies 1-4.

それぞれの駆動力伝達機構12〜17は載置台22の底部に2つの支持部材21を介して取り付けられ、対となる球体1〜4の周面に当接する2つの車輪(39、40)、(41、42)、(43、44)、(45、46)、(47、48)、(49、50)を有している。これらの車輪39〜50は回転軸51を介して支持部材21の下部に、球体1〜4の球心高さ位置で回転自在に取付けられ、かつ各回転軸51には、車輪39〜50それぞれと軸心と角速度が共に同一となる補助歯付き車52〜63が設けられている。
対となる補助歯付き車(52、53)、(54、55)、(56、57)、(58、59)、(60、61)、(62、63)にはそれぞれ歯付きベルト(タイミングベルト)64〜69がかけ渡されている。ここで、対応する補助歯付き車(52、53)、(54、55)、(56、57)、(58、59)、(60、61)、(62、63)と歯付きベルト64〜69とで動力伝達手段を形成している。
Each of the driving force transmission mechanisms 12 to 17 is attached to the bottom of the mounting table 22 via the two support members 21 and has two wheels (39, 40) that contact the peripheral surfaces of the paired spheres 1 to 4. 41, 42), (43, 44), (45, 46), (47, 48), (49, 50). These wheels 39 to 50 are attached to the lower part of the support member 21 via the rotation shaft 51 so as to be rotatable at the sphere center height positions of the spheres 1 to 4, and the wheels 39 to 50 are respectively attached to the rotation shafts 51. There are also provided auxiliary toothed wheels 52 to 63 having the same axial center and angular velocity.
A pair of auxiliary toothed wheels (52, 53), (54, 55), (56, 57), (58, 59), (60, 61), (62, 63) have toothed belts (timing). Belt) 64 to 69 is stretched over. Here, the corresponding auxiliary toothed wheels (52, 53), (54, 55), (56, 57), (58, 59), (60, 61), (62, 63) and the toothed belts 64 to 69 constitutes a power transmission means.

前述のように、駆動力伝達機構13〜15にはモータ18〜20が設けられ、モータ18〜20の回転によって、その出力軸に設けられている動力歯付き車70が回転し、この動力歯付き車70に噛合する歯付きベルト65〜67を駆動するため、対となる補助歯付き車(54、55)、(56、57)、(58、59)がそれぞれ同一方向に回転し、この回転に伴って対となる車輪(41、42)、(43、44)、(45、46)もそれぞれ同一方向に回転する。
また、モータ18〜20はそれぞれ支持部材を介して台車本体11の底部に固定されている。駆動力伝達機構13〜15の車輪41〜46が当接する球体1〜4が所定方向に回転するようになっている。
なお、この実施の形態では、球体3(球体4も原理的には同様)には、モータ18、19付きの駆動力伝達機構13、14(正確には車輪)が異なる水平2方向から当接され、その2方向から駆動力が与えられるため、モータ18、19それぞれの回転速度を調整することで球体3の回転について、回転軸の方向及び回転速度を自在に制御できる。
As described above, the driving force transmission mechanisms 13 to 15 are provided with the motors 18 to 20, and the rotation of the motors 18 to 20 causes the power toothed wheel 70 provided on the output shaft to rotate. In order to drive the toothed belts 65 to 67 meshing with the attached wheel 70, the pair of auxiliary toothed wheels (54, 55), (56, 57), (58, 59) rotate in the same direction, A pair of wheels (41, 42), (43, 44), (45, 46) rotate in the same direction along with the rotation.
The motors 18 to 20 are each fixed to the bottom of the carriage body 11 via a support member. The spheres 1 to 4 with which the wheels 41 to 46 of the driving force transmission mechanisms 13 to 15 abut are rotated in a predetermined direction.
In this embodiment, the sphere 3 (the sphere 4 is also the same in principle) comes into contact with the driving force transmission mechanisms 13 and 14 (precisely wheels) with motors 18 and 19 from two different horizontal directions. Since the driving force is applied from the two directions, the direction of the rotation axis and the rotation speed can be freely controlled with respect to the rotation of the sphere 3 by adjusting the rotation speeds of the motors 18 and 19.

また、球体1(球体2も原理的には同様)には、球体3に一端を当接する駆動力伝達機構16の他端が当接されているので、球体1と球体3の球心を結ぶ直線の成分について、球体1に球体3の回転が伝わると共に、異なる水平方向からモータ20付きの駆動力伝達機構15が当接されている。ここで、球体3は床面72上で、球体1と球体3の球心を結ぶ直線上の方向を含むどの方向にも回転するので、球体1は駆動力伝達機構15、16が当接する異なる水平2方向から回転力が与えられ、床面72上でどの方向にも転動可能な力を受けることができる。
よって、この実施の形態では3つの駆動力伝達機構13〜15にモータ18〜20が設けられているが、一つの球体に対して異なる方向から当接して駆動力を与えるモータ付きの駆動力伝達機構(正確には車輪)が最大で2つのため、モータ18〜20を任意の回転速度で回転させても、球体1〜4はスリップ等を生じることなく回転する。
なお、1つの球体にモータ付きの駆動力伝達機構が異なる3方向以上から当接し駆動力が与えられる形態の移動装置の場合は、モータを任意の回転速度で回転させると、球体と駆動力伝達機構との間にスリップ、移動装置内部に大きな負荷等が生じ、破損等を招来する。
Further, since the other end of the driving force transmission mechanism 16 that abuts one end of the sphere 1 (the sphere 2 is the same in principle) is in contact with the sphere 3, the sphere 1 and the sphere 3 are connected to each other. Regarding the linear component, the rotation of the sphere 3 is transmitted to the sphere 1, and the driving force transmission mechanism 15 with the motor 20 is brought into contact with the sphere 1 from different horizontal directions. Here, since the sphere 3 rotates on the floor surface 72 in any direction including the direction on a straight line connecting the sphere 1 and the sphere 3, the sphere 1 is different in contact with the driving force transmission mechanisms 15 and 16. A rotational force is given from two horizontal directions, and a force capable of rolling in any direction on the floor surface 72 can be received.
Therefore, in this embodiment, the three driving force transmission mechanisms 13 to 15 are provided with the motors 18 to 20, but the driving force transmission with a motor that abuts against one sphere from different directions to provide the driving force. Since the mechanisms (precisely the wheels) are two, the spheres 1 to 4 rotate without causing a slip or the like even if the motors 18 to 20 are rotated at an arbitrary rotational speed.
In the case of a moving device in which a driving force transmission mechanism with a motor is in contact with one sphere from three or more different directions and a driving force is applied, when the motor is rotated at an arbitrary rotational speed, the driving force is transmitted to the sphere. Slip between the mechanism and a large load or the like is generated inside the moving device, causing damage or the like.

各球体1〜4は、その周面の上方向からボールキャスター24〜27が、水平の異なる2方向(直角)から車輪型キャスター29〜36が、更に、異なる水平3方向から駆動力伝達機構12〜17の車輪39〜50が、それぞれ当接して、台車本体11に固定されており、球体1〜4の回転により移動装置10が水平な床面72上を球体1〜4が当接状態で移動することができる。
また、球体1〜4は、同一半径の球体となっている。これによって、移動装置10は載置台22を床面72と平行な位置関係で保ち、各球体1〜4が床面72と滑りを生じることなく走行するための制御を容易にできる。なお、4つの球体1〜4の球心は平面視して長方形、正方形、ひし形や他の形状の四角形でもよい。
更に、球体1〜4は、シリコン樹脂、ウレタン樹脂のような硬質弾性材料を使用しているが、例えば、ステンレス、銅合金、セラミック、プラスチック等を原材料とすることができる。
Each of the spheres 1 to 4 has the ball casters 24 to 27 from above the peripheral surface, the wheel casters 29 to 36 from two different horizontal directions (right angles), and the driving force transmission mechanism 12 from three different horizontal directions. -17 wheels 39 to 50 are in contact with each other and fixed to the carriage body 11, and the spheres 1 to 4 are in contact with the moving device 10 on the horizontal floor surface 72 by the rotation of the spheres 1 to 4. Can move.
The spheres 1 to 4 are spheres having the same radius. Thereby, the moving apparatus 10 can maintain the mounting table 22 in a positional relationship parallel to the floor surface 72, and can easily control each sphere 1 to 4 to travel without causing any slippage with the floor surface 72. The spheres of the four spheres 1 to 4 may be rectangles, squares, rhombuses or other shapes when viewed from above.
Furthermore, although the spheres 1-4 use hard elastic materials such as silicon resin and urethane resin, for example, stainless steel, copper alloy, ceramic, plastic, and the like can be used as raw materials.

以上に説明した駆動力伝達機構13〜15にモータ18〜20を備えることによって、移動装置10は、安定した走行をし、更に、床面72上で任意方向への進行、旋回を行うことが可能である。
しかも、モータ18〜20各々を任意の回転速度で駆動しても、駆動力伝達機構13〜15に備わる車輪41〜46と球体1〜4が当接する箇所それぞれについて、車輪41〜46の外周と球体1〜4の周面が共に同一の速度及び向きを保ちながら回転することとなり、車輪41〜46と球体1〜4との間に滑りが発生しない。この理由について図5〜図8を参照し詳細に説明する。
By providing the motors 18 to 20 in the driving force transmission mechanisms 13 to 15 described above, the moving device 10 can travel stably and can further advance and turn in an arbitrary direction on the floor surface 72. Is possible.
In addition, even if each of the motors 18 to 20 is driven at an arbitrary rotational speed, the outer circumferences of the wheels 41 to 46 are respectively determined at locations where the wheels 41 to 46 and the spheres 1 to 4 of the driving force transmission mechanisms 13 to 15 abut. Both the peripheral surfaces of the spheres 1 to 4 rotate while maintaining the same speed and direction, and no slip occurs between the wheels 41 to 46 and the spheres 1 to 4. The reason for this will be described in detail with reference to FIGS.

図5に示すように、dR、dL、d、dBは全て正の値として、球体1〜4の球心P1〜P4の座標をそれぞれ(dR、d)、(−dL、d)、(−dL、−dB)、(dR、−dB)とし、球心P1、P3を結ぶ直線と球心P1、P4を結ぶ直線の成す鋭角の角度をξとする。そして、球体1、2、球体2、3、球体3、4、球体4、1、球体1、3、並びに球体2、4と当接するそれぞれ同一半径の駆動力伝達機構12〜17の車輪39〜50の半径をそれぞれQ12、Q23、Q34、Q41、Q13、Q24とする。
また、図1(A)に示すそれぞれ対となる車輪(39、40)、(41、42)、(43、44)、(45、46)、(47、48)、(49、50)の角速度をλ12、λ23、λ34、λ41、λ13、λ24とし、これらの角速度の正の向きは、角速度λ12はy軸の正から負の向きにみて、λ23はx軸の負から正の向きにみて、λ34はy軸の負から正の向きにみて、λ41はx軸の正から負の向きにみて、λ13は球心P1、P3を結ぶ直線に垂直な方向で球体4側からみて、λ24は球心P2、P4を結ぶ直線に垂直な方向で球体3側からみて時計回りとする。
更に、床面72に対する移動装置10の原点Oを基準とする回転運動に係る角速度は、反時計回りを正としてrで表し、原点Oの床面72に対する並進運動の速度について、x成分をv、y成分をvと表す(図5参照)。
As shown in FIG. 5, d R , d L , d F , and d B are all positive values, and the coordinates of the spherical centers P1 to P4 of the spheres 1 to 4 are (d R , d F ), (−d, respectively). L, d F), (- d L, -d B), (d R, and -d B), the acute angle formed by the straight line connecting the straight line and spherical center P1, P4 connecting the spherical center P1, P3 xi] And Then, the wheels 39 of the driving force transmission mechanisms 12 to 17 having the same radius contacting the spheres 1 and 2, spheres 2 and 3, spheres 3 and 4, spheres 4 and 1, spheres 1 and 3, and spheres 2 and 4, respectively. The radii of 50 are Q 12 , Q 23 , Q 34 , Q 41 , Q 13 , and Q 24 , respectively.
Further, the pair of wheels (39, 40), (41, 42), (43, 44), (45, 46), (47, 48), (49, 50) shown in FIG. 12 an angular velocity λ, λ 23, λ 34, λ 41, λ 13, and lambda 24, the positive direction of these angular velocities, angular lambda 12 is viewed in the negative direction from the positive y-axis, lambda 23 is x-axis Λ 34 is viewed from the negative to positive direction of the y-axis, λ 41 is viewed from the positive to negative direction of the x-axis, and λ 13 is perpendicular to the straight line connecting the ball centers P1 and P3. Λ 24 is clockwise when viewed from the sphere 3 side in a direction perpendicular to the straight line connecting the sphere centers P2 and P4.
Furthermore, the angular velocity related to the rotational motion relative to the floor surface 72 with respect to the origin O of the moving device 10 is represented by r with the counterclockwise direction being positive, and the x component of the velocity of the translational motion of the origin O relative to the floor surface 72 is represented by v. The x and y components are represented as v y (see FIG. 5).

ここで球体1〜4の球心の床面72に対する並進運動の速度について、それぞれをx成分、y成分の順にwx1、wy1、wx2、wy2、wx3、wy3、wx4、wy4とすると以下の式4〜式7の関係が成り立つ。 Here, with regard to the speed of the translational motion of the spheres 1 to 4 with respect to the floor 72 of the sphere, each of them is in the order of x component and y component, w x1 , w y1 , w x2 , w y2 , w x3 , w y3 , w x4 , When wy4 is established, the following expressions 4 to 7 are satisfied.

Figure 0005305290
Figure 0005305290

また、隣り合う又は対角線上に位置する球体1〜4の周面に当接する車輪39〜50の角速度及び半径と球体1〜4の並進運動の速度との間に以下の式8〜式11が成り立つ。図6(A)〜(C)には球体1について角速度と並進運動の速度を示し、wx1、wy1、λ12、λ41について矢印の向きが正の向きを示す。 Further, the following formulas 8 to 11 are set between the angular velocity and radius of the wheels 39 to 50 that are in contact with the circumferential surfaces of the spheres 1 to 4 that are adjacent or diagonally positioned, and the translational speed of the spheres 1 to 4. It holds. FIGS. 6A to 6C show the angular velocity and the translational velocity for the sphere 1, and the arrow direction indicates the positive direction for w x1 , w y1 , λ 12 , and λ 41 .

Figure 0005305290
Figure 0005305290

更に、sξ、cξをdF、dB、dR、dLからなる式1及び式2で定義する。 Further, s ξ and c ξ are defined by Equations 1 and 2 consisting of d F , d B , d R and d L.

対角線上に位置する球体(1、3)、(2、4)の周面に当接する車輪47〜50の角速度及び半径と球体1〜4の並進運動の速度との間に以下の式12〜式15が成り立つ。図7(A)、(B)には球体1について角速度と並進運動の速度を示し、wx1、wy1、λ12、λ41、λ13について矢印の向きが正の向きを示す。 Between the angular velocities and radii of the wheels 47 to 50 that are in contact with the circumferential surfaces of the spheres (1, 3) and (2, 4) positioned on the diagonal line, and the translational motion speeds of the spheres 1 to 4, Equation 15 holds. 7A and 7B show the angular velocity and the translational velocity for the sphere 1, and the direction of the arrow indicates the positive direction for w x1 , w y1 , λ 12 , λ 41 , and λ 13 .

Figure 0005305290
Figure 0005305290

ここで、式4〜式11から以下の式16〜式19が導かれる。 Here, the following equations 16 to 19 are derived from the equations 4 to 11.

Figure 0005305290
Figure 0005305290

また、式4〜式7、式12〜式15から以下の式20〜式23が導かれる。 Further, the following Expressions 20 to 23 are derived from Expressions 4 to 7, and Expressions 12 to 15.

Figure 0005305290
Figure 0005305290

式16〜式21をまとめて行列式で表すと、以下の式24が得られる。 When Expression 16 to Expression 21 are collectively expressed as a determinant, the following Expression 24 is obtained.

Figure 0005305290
Figure 0005305290

したがって、この移動装置10の原点Oを基準とする回転運動の角速度と原点Oの床面72に対する並進運動の速度から、車輪39〜50の角速度が式3で求まる。 Therefore, the angular velocity of the wheels 39 to 50 can be obtained by Equation 3 from the angular velocity of the rotational motion with respect to the origin O of the moving device 10 and the translational velocity of the origin O with respect to the floor surface 72.

式3の行列は正方行列ではなく、一般に逆行列は得られない。ここで、移動装置10は3つのモータ18〜20を備えることに着目し、式3の左辺の行列と右辺の6行行列について同一の3行を除くと、3次正方行列を含む、全てが3行行列式で構成された関係式を得ることができる。 The matrix of Equation 3 is not a square matrix and generally an inverse matrix cannot be obtained. Here, paying attention to the fact that the moving apparatus 10 includes three motors 18 to 20 and excluding the same three rows for the left-side matrix and the right-side six-row matrix of Equation 3, all including the cubic square matrix are all A relational expression composed of a three-row determinant can be obtained.

そして、この全てが3行行列式で構成された関係式において、前記3次正方行列に逆行列が存在するとき、3つの車輪の角速度値を決めれば、球体駆動式全方向移動装置10の床面72に対する原点Oにおける回転運動に係る角速度と原点Oの球体1〜4の床面72に対する並進運動の速度の値が定まるとの関係が成り立つ。
すなわち、3つの車輪が駆動することで、移動装置10が床面72上で任意の方向に移動できる。
Then, in the relational expression constituted by a three-row determinant, when there is an inverse matrix in the cubic square matrix, if the angular velocity values of the three wheels are determined, the floor of the sphere-driven omnidirectional mobile device 10 is determined. The relationship between the angular velocity relating to the rotational motion at the origin O relative to the surface 72 and the value of the translational motion velocity relative to the floor surface 72 of the spheres 1 to 4 at the origin O is established.
That is, the driving device 10 can move in any direction on the floor surface 72 by driving the three wheels.

図8(A)に示す配置で、モータ18〜20が駆動力伝達機構13〜15に設けられた本発明の第1の実施の形態に係る移動装置10では、車輪(41、42)、(43、44)、(45、46)に係る角速度λ23、λ34、λ41と、v、v、rについて以下の式25が成り立つ。 In the arrangement shown in FIG. 8A, in the moving device 10 according to the first embodiment of the present invention in which the motors 18 to 20 are provided in the driving force transmission mechanisms 13 to 15, the wheels (41, 42), ( 43, 44), (45, 46), the following equations 25 are established for the angular velocities λ 23 , λ 34 , λ 41 and v x , v y , r.

Figure 0005305290
Figure 0005305290

ここで、式25の右辺にある3次正方行列は式26に示すように逆行列が存在する。 Here, the cubic matrix on the right side of Equation 25 has an inverse matrix as shown in Equation 26.

Figure 0005305290
Figure 0005305290

したがって、図8(A)のモータ18、19、20の配置では、移動装置10が床面72上で任意の方向に移動できる。
一方、図8(B)はモータ73、74、75が駆動機構14、15、17にそれぞれ設けられているので、モータ73、74、75で駆動される車輪(43、44)、(45、46)、(49、50)に係る角速度λ34、λ41、λ24と、v、v、rについて以下の式27が成り立つ。
Therefore, in the arrangement of the motors 18, 19, and 20 in FIG. 8A, the moving device 10 can move in any direction on the floor surface 72.
On the other hand, in FIG. 8B, since the motors 73, 74, 75 are provided in the drive mechanisms 14, 15, 17, respectively, the wheels (43, 44), (45, 46), (49, 50), angular velocity λ 34 , λ 41 , λ 24 , and v x , v y , r, the following equation 27 holds.

Figure 0005305290
Figure 0005305290

ここで、式27の右辺にある3次正方行列は、式1、式2よりsξ(dF+dB)とcξ(dL+dR)が常に同値となることが明らかなため、以下の式28に示すように逆行列が存在しない。 Here, since the cubic square matrix on the right side of Expression 27 is clear from Expression 1 and Expression 2 that s ξ (d F + d B ) and c ξ (d L + d R ) are always equal, As shown in Equation 28, there is no inverse matrix.

Figure 0005305290
Figure 0005305290

したがって、図8(B)のモータ73〜75の配置では、モータ73〜75それぞれの回転速度の制御により球体駆動式全方向移動装置が床面72上で任意の方向に移動できるが、モータ73〜75の回転制御によっては、例えば車輪44、45、50と球体4との間の当接箇所において、車輪44、45、50の外周面と球体4の周面の速度の速さや向きが異なることによる滑りや、球体駆動式全方向移動装置の内部に大きな負荷等が発生し得る。 Therefore, in the arrangement of the motors 73 to 75 in FIG. 8B, the sphere-driven omnidirectional moving device can move in any direction on the floor surface 72 by controlling the rotational speed of each of the motors 73 to 75. Depending on the rotation control of ˜75, for example, the speed and direction of the speed of the outer peripheral surface of the wheels 44, 45, 50 and the peripheral surface of the sphere 4 are different at the contact points between the wheels 44, 45, 50 and the sphere 4 This can cause slippage or a large load inside the sphere-driven omnidirectional movement device.

図2に示すように、本発明の第2の実施の形態に係る球体駆動式全方向移動装置76について説明する。この移動装置76は、第1の実施の形態に係る移動装置10において、6つの駆動力伝達機構12〜17を有する代わりに、駆動力伝達機構16を省略し、5つの駆動力伝達機構12〜15、17を有している。なお、移動装置10と同一の構成要素については同一の番号を付して詳しい説明を省略する(以下の実施の形態においても同じ)。 As shown in FIG. 2, a sphere-driven omnidirectional moving device 76 according to a second embodiment of the present invention will be described. In the moving device 10 according to the first embodiment, the moving device 76 has the six driving force transmission mechanisms 12 to 17 in place of the six driving force transmission mechanisms 12 to 17 and omits the five driving force transmission mechanisms 12 to 17. 15 and 17. In addition, the same number is attached | subjected about the component same as the moving apparatus 10, and detailed description is abbreviate | omitted (the same also in the following embodiment).

この移動装置76においては、モータ18〜20が設けられた駆動力伝達機構13〜15の配置は本発明の第1の実施の形態に係る移動装置10と同じであり、駆動力伝達機構13〜15に備わる対となる車輪(41、42)、(43、44)、(45、46)に係る角速度λ23、λ34、λ41について成り立つ式25の右辺にある3次正方行列は式26に示すように逆行列が存在する。
本発明の第1の実施の形態に係る移動装置10に比べて移動装置76は、対角線上に位置する球体に当接する駆動力伝達機構を1つ除いて、駆動力伝達機構の数を6つから5つにし、製造コストを安価にできる。
In this moving device 76, the arrangement of the driving force transmission mechanisms 13 to 15 provided with the motors 18 to 20 is the same as that of the moving device 10 according to the first embodiment of the present invention. The cubic matrix on the right side of the equation 25 that holds for the angular velocities λ 23 , λ 34 , and λ 41 related to the paired wheels (41, 42), (43, 44), (45, 46) of FIG. An inverse matrix exists as shown in FIG.
Compared to the moving device 10 according to the first embodiment of the present invention, the moving device 76 has six driving force transmitting mechanisms except for one driving force transmitting mechanism that abuts on a sphere located on a diagonal line. The manufacturing cost can be reduced.

ただし、球体1(球体3も同様)は、球体1の周面に当接する2つの車輪39、46のうち一方の車輪が磨耗等によって球体1と滑りを生じるような状態になったとき、滑りを生じずに球体1に駆動力を与えるのは他方の車輪、即ち一方向からのみとなり、走行が不安定になることがある。
これに対し、図1に示すように6つの駆動力伝達機構12〜17を配置すれば、各球体1〜4は異なる3方向から車輪によって駆動力を与えられるので、たとえ1方向から当接される車輪との間に滑りが生じるようになっても、他の異なる2方向から車輪によって駆動力を与えられ、移動装置10は安定した走行ができる。
However, the sphere 1 (same for the sphere 3) slips when one of the two wheels 39 and 46 contacting the peripheral surface of the sphere 1 slips with the sphere 1 due to wear or the like. The driving force is applied to the sphere 1 without causing the sphere 1 only from the other wheel, that is, from one direction, and the running may become unstable.
On the other hand, if the six driving force transmission mechanisms 12 to 17 are arranged as shown in FIG. 1, each of the spheres 1 to 4 can be given a driving force by wheels from three different directions. Even when slippage occurs between the two wheels, the driving force is given by the wheels from two different directions, and the moving device 10 can travel stably.

次に、図3、図4を参照しながら、本発明の第3の実施の形態に係る球体駆動式全方向移動装置77について説明する。
この球体駆動式全方向移動装置77は、図3に示すように、4つの球体1〜4と5つの駆動力伝達機構78〜82を有する。
Next, a sphere-driven omnidirectional moving device 77 according to a third embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 3, the sphere-driven omnidirectional moving device 77 includes four spheres 1 to 4 and five driving force transmission mechanisms 78 to 82.

台車本体83は正方形状の載置台83aと、その下部で内側には球体1〜4を有する位置には、高さ調整部材85を介して取付けられた全部で8枚の側板84とを有している。各側板84の内側には、車輪型キャスター86が長尺の4本のボルト87を介して取り付けられている。この4本のボルト87はスプリング88によって内側方向に付勢され、車輪型キャスター86が一定の圧力で各球体1〜4の側面に当接するようになっている。 The carriage main body 83 has a square mounting table 83a and a total of eight side plates 84 attached via height adjusting members 85 at positions below the spheres 1 to 4 inside the square. ing. Inside each side plate 84, a wheel caster 86 is attached via four long bolts 87. The four bolts 87 are urged inward by a spring 88 so that the wheel caster 86 abuts against the side surfaces of the spheres 1 to 4 with a constant pressure.

各球体1〜4において、車輪型キャスター86が当接する側の反対側に、駆動力伝達機構78〜81の端部に設けられている車輪(78a、78b)、(79a、79b)、(80a、80b)、(81a、81b)が当接している。なお、駆動力伝達機構79〜81の車輪(79a、79b)、(80a、80b)、(81a、81b)は、歯付きベルト93〜95及び歯付き車を介してモータ90〜92によって回転駆動されている。
この実施の形態では、球体1〜4の駆動は第2の実施の形態と同様(すなわち、球体2、4の周面に当接する車輪を備えた駆動力伝達機構を有していない)であるので、モータ90〜92の回転によって球体駆動式全方向移動装置77を任意の方向に移動させることができる。
In each sphere 1-4, the wheels (78a, 78b), (79a, 79b), (80a) provided at the ends of the driving force transmission mechanisms 78-81 on the opposite side to the side on which the wheel casters 86 abut. , 80b) and (81a, 81b) are in contact with each other. The wheels (79a, 79b), (80a, 80b), (81a, 81b) of the driving force transmission mechanisms 79 to 81 are rotationally driven by motors 90 to 92 via toothed belts 93 to 95 and a toothed vehicle. Has been.
In this embodiment, the driving of the spheres 1 to 4 is the same as that of the second embodiment (that is, it does not have a driving force transmission mechanism provided with wheels contacting the peripheral surfaces of the spheres 2 and 4). Therefore, the sphere-driven omnidirectional moving device 77 can be moved in an arbitrary direction by the rotation of the motors 90 to 92.

また、球体1〜4は2方向からスプリング88によって押圧される車輪型キャスター86によって保持されているので、車輪型キャスター86の車輪が磨耗等によりその半径が小さくなっても、車輪型キャスター86が球体1〜4の周面に圧接され、駆動力伝達機構78〜82と球体1〜4の間に滑りが生じない。 Further, since the spheres 1 to 4 are held by the wheel type casters 86 pressed by the springs 88 from two directions, even if the wheels of the wheel type casters 86 are worn away, the wheel type casters 86 are It is press-contacted with the surrounding surface of the spheres 1-4, and a slip does not arise between the driving force transmission mechanisms 78-82 and the spheres 1-4.

本発明は、狭い場所でも床面上で方向転換を伴った移動や旋回動作を含む自由な移動、動作をすることが求められる、例えば、搬送台車、家庭用ロボット、電動車椅子、電気自動車等に適用できる。 The present invention is required to move freely and move including turning and turning operations on a floor surface even in a narrow place. For example, in a transport carriage, a home robot, an electric wheelchair, an electric vehicle, etc. Applicable.

1〜4:球体、10:球体駆動式全方向移動装置、11:台車本体、12〜17:駆動力伝達機構、18〜20:モータ、21:支持部材、22:載置台、23:側板、24〜27:ボールキャスター、28:ボール、29〜36:車輪型キャスター、37:ガイド車輪、39〜50:車輪、51:回転軸、52〜63:補助歯付き車、64〜69:歯付きベルト、70:動力歯付き車、72:床面、73〜75:モータ、76:球体駆動式全方向移動装置、77:球体駆動式全方向移動装置、78〜82:駆動力伝達機構、78a〜81a、78b〜81b:車輪、83:台車本体、83a:載置台、84:側板、85:高さ調整部材、86:車輪型キャスター、87:ボルト、88:スプリング、90〜92:モータ、93〜95:歯付きベルト 1-4: Sphere, 10: Sphere drive omnidirectional movement device, 11: Cart body, 12-17: Driving force transmission mechanism, 18-20: Motor, 21: Support member, 22: Mounting table, 23: Side plate, 24-27: Ball caster, 28: Ball, 29-36: Wheel type caster, 37: Guide wheel, 39-50: Wheel, 51: Rotating shaft, 52-63: Car with auxiliary teeth, 64-69: With tooth Belt: 70: Power toothed vehicle, 72: Floor surface, 73 to 75: Motor, 76: Spherical drive type omnidirectional movement device, 77: Spherical drive type omnidirectional movement device, 78 to 82: Driving force transmission mechanism, 78a ˜81a, 78b˜81b: wheels, 83: carriage main body, 83a: mounting table, 84: side plate, 85: height adjusting member, 86: wheel caster, 87: bolt, 88: spring, 90 to 92: motor, 93-95: Toothed Belt

Claims (7)

台車本体と、前記台車本体の底部に転動可能に配置され、かつそれぞれの球心が平面視して四角形を形成する4つの球体1〜4と、前記台車本体に取付けられ、前記4つの球体1〜4のうち、隣り合って又は対角線上に位置する前記球体1〜4の周面に当接する車輪を有し、該球体1〜4に同時にそれぞれ同一方向の回転力を与える少なくとも5つの駆動力伝達機構と、前記駆動力伝達機構の3つに設けられ、該駆動力伝達機構に駆動力を与えるモータとを備え、しかも、それぞれの前記球体1〜4には、2又は3の前記駆動力伝達機構が異なる方向から当接し、更に異なる方向から当接した前記駆動力伝達機構には、0若しくは1又は2の前記モータが設けられていることを特徴とする球体駆動式全方向移動装置。 A trolley body, four spheres 1 to 4 that are arranged to roll on the bottom of the trolley body, and each sphere center forms a quadrangle in plan view, and the four spheres attached to the trolley body. 1-4 having at least five wheels which are in contact with the circumferential surfaces of the spheres 1 to 4 located next to each other or diagonally, and simultaneously apply rotational forces in the same direction to the spheres 1 to 4 respectively. A force transmission mechanism, and a motor that is provided in three of the driving force transmission mechanisms and applies a driving force to the driving force transmission mechanism, and each of the spheres 1 to 4 has two or three of the drives A spherically driven omnidirectional moving device characterized in that the force transmission mechanism abuts from different directions, and the driving force transmission mechanism abutted from different directions is provided with 0, 1 or 2 motors. . 請求項1記載の球体駆動式全方向移動装置において、前記球体1〜4は、ボールキャスターを介して前記台車本体に取付けられていることを特徴とする球体駆動式全方向移動装置。 2. The sphere-driven omnidirectional movement device according to claim 1, wherein the spheres 1 to 4 are attached to the carriage main body via a ball caster. 請求項1及び2のいずれか1項に記載の球体駆動式全方向移動装置において、前記駆動力伝達機構は対となる前記球体1〜4の周面にそれぞれ当接する2つの前記車輪と、前記2つの車輪の一方の回転を他方に伝える動力伝達手段とを有することを特徴とする球体駆動式全方向移動装置。 3. The sphere-driven omnidirectional movement device according to claim 1, wherein the driving force transmission mechanism includes two wheels that respectively contact the peripheral surfaces of the spheres 1 to 4 that form a pair; A sphere-driven omnidirectional movement device comprising power transmission means for transmitting one rotation of two wheels to the other. 請求項3記載の球体駆動式全方向移動装置において、前記動力伝達手段は、前記2つの車輪のそれぞれ同軸上に取付けられている補助歯付き車と、対となる前記補助歯付き車に噛合するベルト又はチェーンとを有することを特徴とする球体駆動式全方向移動装置。 4. The sphere-driven omnidirectional movement device according to claim 3, wherein the power transmission means meshes with the auxiliary toothed vehicle mounted on the same axis of each of the two wheels and the paired auxiliary toothed vehicle. A sphere-driven omnidirectional movement device comprising a belt or a chain. 請求項1〜4のいずれか1項に記載の球体駆動式全方向移動装置において、前記球体1〜4は同一半径の球体であって、該球体1〜4の球心によって形成される四角形は長方形又は正方形であることを特徴とする球体駆動式全方向移動装置。 5. The sphere-driven omnidirectional movement device according to claim 1, wherein the spheres 1 to 4 are spheres having the same radius, and a quadrangle formed by the sphere centers of the spheres 1 to 4 is A sphere-driven omnidirectional movement device characterized by being rectangular or square. 請求項1〜5のいずれか1項に記載の球体駆動式全方向移動装置において、前記駆動力伝達機構に備えられる前記車輪と前記球体1〜4が当接する箇所それぞれについて、該車輪の外周と該球体1〜4の周面の速度及び向きが同一であることを特徴とする球体駆動式全方向移動装置。 The spherical body drive type omnidirectional movement device according to any one of claims 1 to 5, wherein the wheel provided in the driving force transmission mechanism and an outer periphery of the wheel are respectively in contact with the spherical bodies 1 to 4. A sphere-driven omnidirectional movement device characterized in that the peripheral surfaces of the spheres 1 to 4 have the same speed and direction. 請求項5記載の球体駆動式全方向移動装置において、(1)前記球体1〜4の球心の座標をそれぞれ(dR、d)、(−dL、d)、(−dL、−dB)、(dR、−dB)とし、(2)前記球体1、2、前記球体2、3、前記球体3、4、前記球体4、1、前記球体1、3、並びに前記球体2、4と当接するそれぞれ同一半径の前記駆動力伝達機構の車輪の半径をそれぞれQ12、Q23、Q34、Q41、Q13、Q24とし、(3)それぞれの前記車輪の角速度をλ12、λ23、λ34、λ41、λ13、λ24とし、(4)更に、床面に対する該球体駆動式全方向移動装置の原点Oを基準とする角速度をrとすると共に、原点Oの前記床面に対する並進運動の速度について、x成分をv、y成分をvとし、(5)以下の式1、式2が成り立つことを条件として、
以下の式3から、左辺に記載した行列(λ12、λ23、λ34、λ41、λ13、λ24)と右辺の6行行列について同一の3行を除いて得た正方行列に、逆行列が存在する条件で、選ばれた左辺の3個の角速度となる前記車輪を備える前記駆動力伝達機構に、前記モータを設けることを特徴とする球体駆動式全方向移動装置。
Figure 0005305290
6. The sphere-driven omnidirectional moving device according to claim 5, wherein (1) coordinates of the sphere centers of the spheres 1 to 4 are (d R , d F ), (−d L , d F ), (−d L ), respectively. , −d B ), (d R , −d B ), and (2) the spheres 1, 2, the spheres 2, 3, the spheres 3, 4, the spheres 4, 1, the spheres 1, 3, and The radii of the wheels of the driving force transmission mechanism having the same radius that are in contact with the spheres 2 and 4 are Q 12 , Q 23 , Q 34 , Q 41 , Q 13 , and Q 24 , respectively. (3) The angular velocities are λ 12 , λ 23 , λ 34 , λ 41 , λ 13 , and λ 24. (4) Further, the angular velocity with respect to the origin O of the sphere-driven omnidirectional moving device with respect to the floor is defined as r. , the speed of translational movement relative to the floor of the origin O, and the x component v x, the y component and v y, (5) below On the condition that Equation 1 and Equation 2 are satisfied,
From the following Equation 3, a square matrix obtained by excluding the same three rows for the matrix (λ 12 , λ 23 , λ 34 , λ 41 , λ 13 , λ 24 ) described on the left side and the 6-row matrix on the right side, A sphere-driven omnidirectional movement device characterized in that the motor is provided in the driving force transmission mechanism including the wheels having three angular velocities on a selected left side under the condition that an inverse matrix exists.
Figure 0005305290
JP2009020408A 2009-01-30 2009-01-30 Sphere drive omnidirectional movement device Expired - Fee Related JP5305290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009020408A JP5305290B2 (en) 2009-01-30 2009-01-30 Sphere drive omnidirectional movement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009020408A JP5305290B2 (en) 2009-01-30 2009-01-30 Sphere drive omnidirectional movement device

Publications (2)

Publication Number Publication Date
JP2010173570A JP2010173570A (en) 2010-08-12
JP5305290B2 true JP5305290B2 (en) 2013-10-02

Family

ID=42704945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009020408A Expired - Fee Related JP5305290B2 (en) 2009-01-30 2009-01-30 Sphere drive omnidirectional movement device

Country Status (1)

Country Link
JP (1) JP5305290B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5311646B2 (en) * 2009-03-16 2013-10-09 国立大学法人九州工業大学 Sphere drive omnidirectional movement device
CN102152817A (en) * 2011-03-07 2011-08-17 李锦明 Spherical wheel driving and traveling mechanism
JP6318081B2 (en) * 2014-12-09 2018-04-25 リーフ株式会社 Sphere drive module and self-propelled carriage using the same
JP6904533B2 (en) * 2017-01-25 2021-07-21 三井住友建設株式会社 Inspection device
JP6920726B2 (en) * 2017-09-07 2021-08-18 独立行政法人国立高等専門学校機構 Wheelchair attachment
CN107697180B (en) * 2017-10-26 2023-10-17 桂林电子科技大学 Spherical omnidirectional wheel mechanism based on artificial potential field
GB201804867D0 (en) * 2018-03-27 2018-05-09 Ocado Innovation Ltd A transporting device
CN115485182A (en) 2020-05-26 2022-12-16 国立大学法人九州工业大学 Ball driving type moving device
KR102534823B1 (en) * 2021-11-11 2023-05-26 주식회사 칼만텍 Movable platform with independent suspension

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6331804A (en) * 1986-07-28 1988-02-10 Fujitsu Ltd Spherical type steering wheel
JPS63149270A (en) * 1986-12-10 1988-06-22 Mitsui Miike Mach Co Ltd Carrier vehicle
JPH06171562A (en) * 1992-12-10 1994-06-21 Nippondenso Co Ltd Running device
JPH07257422A (en) * 1994-03-19 1995-10-09 Hideaki Maehara Omnidirectional drive wheel and omnidirectional traveling vehicle providing the same
JP3093580B2 (en) * 1994-08-30 2000-10-03 理化学研究所 Drive transmission mechanism for omnidirectional vehicles
JP3669181B2 (en) * 1998-10-26 2005-07-06 松下電工株式会社 Electric wheelchair and recording medium
JP2001063645A (en) * 1999-08-27 2001-03-13 Institute Of Tsukuba Liaison Co Ltd Wheel type moving body
JP3498044B2 (en) * 2000-06-14 2004-02-16 川崎重工業株式会社 Control device for omnidirectional mobile device
JP4175212B2 (en) * 2003-07-28 2008-11-05 株式会社Ihi Mobile robot leg structure
JP2005075328A (en) * 2003-08-30 2005-03-24 Kazutake Mutou Automobile using spherical wheel
JP5305285B2 (en) * 2008-07-25 2013-10-02 国立大学法人九州工業大学 Sphere drive omnidirectional movement device

Also Published As

Publication number Publication date
JP2010173570A (en) 2010-08-12

Similar Documents

Publication Publication Date Title
JP5305290B2 (en) Sphere drive omnidirectional movement device
EP1832445B1 (en) Universal transmission roller wheel
US8485938B2 (en) Omni-wheel based driving device with enhanced main wheel structure
JP6549121B2 (en) Hinged vehicle chassis
JP5396398B2 (en) Friction type driving device and omnidirectional moving body using the same
JP5311646B2 (en) Sphere drive omnidirectional movement device
TWI507277B (en) Industrial robots
JP5305285B2 (en) Sphere drive omnidirectional movement device
US9573416B1 (en) Wheel assembly with multi-sphere omniwheels and omnidirectional devices including the wheel assembly
Damoto et al. Holonomic omnidirectional vehicle with new omni-wheel mechanism
JPH06171562A (en) Running device
JP3180975U (en) Traveling device
JP7558562B2 (en) Ball-driven mobile device
CN211001619U (en) Double-roller omnidirectional power caster of mobile robot and omnidirectional mobile platform
WO2013022017A1 (en) Multi-directionally movable body module
Wada et al. A new active-caster drive system with a dual-ball transmission for omnidirectional mobile robots
CN105857360A (en) Steering device of manual hydraulic carrier
JP3498044B2 (en) Control device for omnidirectional mobile device
Wu et al. A novel spherical wheel driven by Omni wheels
Ferriere et al. Rollmobs, a new omnimobile robot
JP2015005020A (en) Unmanned carrier
Aoki et al. Development of cart with constant steerability regardless of loading weight or position: 1st Report: Proposal of an active steering caster and its arrangement
Wu et al. A novel spherical wheel driven by chains with guiding wheels
JP4427956B2 (en) Mobile device
CN214393994U (en) Omni-directional motion test platform for single-wheel robot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130618

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5305290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees