JP2010029831A - Plasma treatment method for powder - Google Patents

Plasma treatment method for powder Download PDF

Info

Publication number
JP2010029831A
JP2010029831A JP2008197518A JP2008197518A JP2010029831A JP 2010029831 A JP2010029831 A JP 2010029831A JP 2008197518 A JP2008197518 A JP 2008197518A JP 2008197518 A JP2008197518 A JP 2008197518A JP 2010029831 A JP2010029831 A JP 2010029831A
Authority
JP
Japan
Prior art keywords
powder
electrode
plasma processing
functional group
discharge vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008197518A
Other languages
Japanese (ja)
Other versions
JP5089521B2 (en
Inventor
Keiko Koga
啓子 古賀
Yoichi Sano
洋一 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakamura Sangyo Gakuen
Original Assignee
Nakamura Sangyo Gakuen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakamura Sangyo Gakuen filed Critical Nakamura Sangyo Gakuen
Priority to JP2008197518A priority Critical patent/JP5089521B2/en
Publication of JP2010029831A publication Critical patent/JP2010029831A/en
Application granted granted Critical
Publication of JP5089521B2 publication Critical patent/JP5089521B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma treatment method for a powder capable of imparting a nitrogen functional group of high concentration to the powder under a stable glow discharge environment. <P>SOLUTION: The plasma treatment method for the powder uses a discharge container 1 having a central electrode 2, a cylindrical peripheral electrode 3 arranged through a predetermined gap 5 with respect to the central electrode 2 and a dielectric 4 provided to at least one of the surface of the central electrode 2 and the surface of the peripheral electrode 3 and includes a process for applying plasma treatment by glow discharge to a powder and a nitrogen functional group supply member for adding the nitrogen functional group to the powder in the gap 5 set to an inert gas atmosphere. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、粉体のプラズマ処理方法に関する。詳しくは大気圧下のグロー放電プラズマを利用して粉体の表面改質を行う粉体のプラズマ処理方法に係るものである。   The present invention relates to a powder plasma processing method. More specifically, the present invention relates to a powder plasma processing method for performing surface modification of powder using glow discharge plasma under atmospheric pressure.

プラズマ処理を利用して粉体の表面に各種官能基と反応する窒素官能基を付加することによって、親水性あるいは疎水性に改質する方法が試みられており、例えば、特許文献1にこうしたプラズマ処理を利用した改質技術が開示されている。具体的には図5に示すように、先ず、不活性気体のヘリウムガスをボンベ101よりガス貯蔵槽102に入れ、次にヘリウムガスを気化器103のアセトンの中を泡としてくぐらせ、ヘリウムガス中にアセトン蒸気を混合して混合気体を作り、こうして作られた混合気体をポンプ104により反応筒105の中に流入する。
ここで、高圧電源106により高周波の高電圧を印加させることによって反応筒105内にプラズマ放電を開始し、続いて粉体を収納したホッパー107を開くことにより一定量の粉体を反応筒105に吸引し、混合気体の気圧によって粉体を攪拌しながらプラズマ励起した中を通過することにより粉体の表面改質が行われる方法が開示されている。
Attempts have been made to improve the hydrophilicity or hydrophobicity by adding nitrogen functional groups that react with various functional groups to the surface of the powder using plasma treatment. A reforming technique using treatment is disclosed. Specifically, as shown in FIG. 5, first, an inert gas helium gas is put into the gas storage tank 102 from the cylinder 101, and then the helium gas is passed through the acetone of the vaporizer 103 as a bubble, and the helium gas Acetone vapor is mixed therein to produce a mixed gas, and the mixed gas thus produced is introduced into the reaction tube 105 by the pump 104.
Here, plasma discharge is started in the reaction tube 105 by applying a high-frequency high voltage from the high-voltage power source 106, and then a hopper 107 containing the powder is opened to put a certain amount of powder into the reaction tube 105. A method is disclosed in which surface modification of a powder is performed by suction and passing through a plasma excited while stirring the powder by the pressure of a mixed gas.

特開平4−135638号公報Japanese Patent Laid-Open No. 4-135638

ここで、特許文献1における発明は、混合気体による気流によって粉体を攪拌しながらプラズマ処理を行う方法であり、ヘリウムガスなどの不活性気体とアセトンなどのケトン類とを混合させた混合気体を作るための設備が必要となる。しかしながら、反応筒内における被処理粉体の処理量は限られているために設備に対して処理効率が充分であるとは言い難い。   Here, the invention in Patent Document 1 is a method of performing a plasma treatment while stirring powder by an air flow of a mixed gas, and a mixed gas obtained by mixing an inert gas such as helium gas and a ketone such as acetone is used. Equipment to make is required. However, since the processing amount of the powder to be processed in the reaction cylinder is limited, it is difficult to say that the processing efficiency is sufficient for the equipment.

また、ヘリウムガスとアンモニアガス、あるいはヘリウムガスと窒素ガスとの混合ガスを用いて窒素官能基を付与することができ、窒素ガス、あるいはアンモニアガスの配合割合を増すことにより多くの窒素官能基を付与することが可能となることが知られている。しかし、窒素ガス、あるいはアンモニアガスの配合割合を増した場合には、異常放電が起こり易くなり安定したグロー放電を維持することが困難となる。   In addition, nitrogen functional groups can be added using a mixed gas of helium gas and ammonia gas or helium gas and nitrogen gas, and by increasing the blending ratio of nitrogen gas or ammonia gas, many nitrogen functional groups can be added. It is known that it can be granted. However, when the blending ratio of nitrogen gas or ammonia gas is increased, abnormal discharge is likely to occur and it is difficult to maintain stable glow discharge.

本発明は、以上の点に鑑みて創案されたものであって、安定したグロー放電環境下において高濃度の窒素官能基の付与を可能とした粉体のプラズマ処理方法を提供することを目的とするものである。   The present invention was devised in view of the above points, and an object of the present invention is to provide a plasma treatment method for powder that can impart a high concentration of nitrogen functional groups in a stable glow discharge environment. To do.

上記の目的を達成するために、本発明に係る粉体のプラズマ処理方法は、中心電極と、中心電極と所定の空隙部を介して配置された筒状の周辺電極と、中心電極表面若しくは周辺電極表面の少なくとも一方に設けられた誘電体とを有する放電容器を用いた粉体のプラズマ処理方法であって、不活性気体雰囲気とされた空隙部内で、粉体と、粉体に窒素官能基を付加する窒素官能基供給部材にグロー放電によるプラズマ処理を行なう工程を備える。   In order to achieve the above object, a plasma treatment method for powder according to the present invention comprises a center electrode, a cylindrical peripheral electrode disposed via the center electrode and a predetermined gap, and the surface of the center electrode or the periphery. A powder plasma processing method using a discharge vessel having a dielectric provided on at least one of electrode surfaces, wherein the powder and a nitrogen functional group are contained in the powder in a void formed in an inert gas atmosphere. A step of performing plasma treatment by glow discharge on the nitrogen functional group supply member to which is added.

ここで、中心電極と周辺電極との間の空隙部内に粉体と共に、窒素官能基供給源となる物質を封入して中心電極と周辺電極間に発生させるプラズマ処理により、高濃度の官能基を粉体に付加することが可能となる。   Here, a high concentration of functional groups is formed by plasma treatment that encloses a substance serving as a nitrogen functional group supply source together with the powder in the gap between the central electrode and the peripheral electrodes and generates between the central electrode and the peripheral electrodes. It can be added to the powder.

また、プラズマ処理は、中心電極と周辺電極との間に交流またはパルス電圧を印加した状態で、中心電極を回転中心として放電容器を回転しながら行なうことにより、空隙部内に封入された粉体と窒素官能基供給源となる物質は攪拌されながら中心電極と周辺電極間に発生するプラズマ放電により均一、かつ高濃度の官能基を粉体に付加することが可能となる。   In addition, the plasma treatment is performed while rotating the discharge vessel around the center electrode, with an alternating current or pulse voltage applied between the center electrode and the peripheral electrode. The substance serving as the nitrogen functional group supply source can add a uniform and high concentration functional group to the powder by the plasma discharge generated between the central electrode and the peripheral electrode while being stirred.

また、粉体は、放電容器の空隙部内に投入され、かつ不活性気体は放電容器の一端側から空隙部内に供給されると共に、放電容器の他端側から排出されることにより、常に大気圧下での不活性気体の供給により粉体が均一に攪拌されることで好条件下での粉体の表面処理が可能となる。   In addition, the powder is always introduced into the gap of the discharge vessel, and the inert gas is supplied from one end of the discharge vessel into the gap and is discharged from the other end of the discharge vessel, so that the atmospheric pressure is always maintained. The powder is uniformly agitated by the supply of the inert gas below, so that the surface treatment of the powder under favorable conditions becomes possible.

また、窒素官能基供給部材は、窒素官能基を持ち、常温で固体の化合物により形成されるものであり、例えば窒素官能基の供給源となる脂肪族ナイロン、脂肪族ナイロンを含む共重合体、芳香族ナイロン、芳香族ナイロンを含む共重合体、あるいは尿素のいずれかにより形成されることにより、一定量以上の窒素ガスの量を増すことなく、安定なグロー放電下で効率的に高濃度の窒素官能基が粉体に付加することが可能となる。   Further, the nitrogen functional group supply member has a nitrogen functional group and is formed of a solid compound at room temperature, for example, aliphatic nylon serving as a nitrogen functional group supply source, a copolymer containing aliphatic nylon, By forming it with either aromatic nylon, a copolymer containing aromatic nylon, or urea, high concentration can be efficiently achieved under stable glow discharge without increasing the amount of nitrogen gas above a certain amount. Nitrogen functional groups can be added to the powder.

また、不活性気体が、ヘリウム、アルゴン、ネオン、あるいは窒素ガスのいずれか、またはこれらの混合により形成されることにより、例えばヘリウムと窒素ガス、あるいはアンモニアガスとの混合気体により高濃度の窒素官能基が粉体に付加することができると共に、ヘリウムのみの場合でも窒素官能基が粉体に付加することが可能となる。   In addition, when the inert gas is formed of helium, argon, neon, nitrogen gas, or a mixture thereof, for example, a high concentration nitrogen functional group is formed by a mixed gas of helium and nitrogen gas or ammonia gas. The group can be added to the powder, and even in the case of helium alone, the nitrogen functional group can be added to the powder.

また、中心電極に周辺電極方向に突出する第1の凸部が設けられ、若しくは、周辺電極に中心電極方向に突出する第2の凸部が設けられ、若しくは、中心電極に周辺電極方向に突出する第1の凸部が設けられると共に、周辺電極に中心電極方向に突出する第2の凸部が設けられた構成とすることにより、空隙部内に封入された粉体と窒素官能基供給源となる物質は、第1の凸部、若しくは第2の凸部によって効率良く攪拌されることによりプラズマ放電による均一な表面処理が可能となる。   The center electrode is provided with a first protrusion protruding in the direction of the peripheral electrode, the peripheral electrode is provided with a second protrusion protruding in the direction of the center electrode, or the center electrode protrudes in the direction of the peripheral electrode. The first convex portion to be provided and the second convex portion protruding in the direction of the center electrode on the peripheral electrode are provided, whereby the powder sealed in the gap portion and the nitrogen functional group supply source are provided. The resulting material can be efficiently agitated by the first convex portion or the second convex portion, thereby enabling uniform surface treatment by plasma discharge.

また、中心電極及び周辺電極と連設された仕切部が設けられた構成とすることにより各仕切部との間に形成されるスペースに粉体と窒素官能基供給源となる物質を封入することでプラズマ放電による粉体の処理量を増加させることが可能となる。   In addition, by providing a partition provided continuously with the center electrode and the peripheral electrode, a powder and a substance serving as a nitrogen functional group supply source are sealed in a space formed between each partition. This makes it possible to increase the amount of powder processed by plasma discharge.

本発明の粉体のプラズマ処理方法によれば、放電容器の中心電極と周辺電極との間の空隙部内に粉体と共に、窒素官能基供給源となる物質を封入してプラズマ処理することにより、高濃度の官能基を粉体に付加することが可能となる。   According to the plasma treatment method of the powder of the present invention, by enclosing a substance serving as a nitrogen functional group supply source together with the powder in the gap between the central electrode and the peripheral electrode of the discharge vessel, It becomes possible to add a high concentration of functional groups to the powder.

以下、本発明の実施の形態を、その図面を参酌しながら詳述する。
図1は本発明を適用した粉体のプラズマ処理方法を実施するために用いるプラズマ処理装置における放電容器の一例を示す正面断面図、図2は本発明を適用した粉体のプラズマ処理方法を実施するために用いるプラズマ処理装置における放電容器の一例を示す側面断面図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a front sectional view showing an example of a discharge vessel in a plasma processing apparatus used for carrying out a powder plasma processing method to which the present invention is applied, and FIG. 2 is a powder plasma processing method to which the present invention is applied. It is side surface sectional drawing which shows an example of the discharge vessel in the plasma processing apparatus used in order to do.

ここで示す放電容器1は、電極より形成される中心電極2と、この中心電極2と同軸状となる周辺電極3と、この中心電極2の外周面と周辺電極3の内周面に密接状に嵌着され誘電体4と、この誘電体4との間に形成される空隙部5とから構成されている。   The discharge vessel 1 shown here is in close contact with a central electrode 2 formed of electrodes, a peripheral electrode 3 coaxial with the central electrode 2, and an outer peripheral surface of the central electrode 2 and an inner peripheral surface of the peripheral electrode 3. It is comprised from the dielectric 4 and the space | gap part 5 formed between this dielectric 4 by this.

また、誘電体4はガラスなどの絶縁体より形成され、中心電極の外周面に嵌着された誘電体4と周辺電極の内週面に嵌着された誘電体4との間に形成される空隙部5はプラズマ放電に必要な一定の距離を保ちながら中心電極2と周辺電極3の直径、あるいは全長を長くすることにより空隙部5の容量を大きくすることができる構成とされている。   The dielectric 4 is made of an insulating material such as glass, and is formed between the dielectric 4 fitted on the outer peripheral surface of the center electrode and the dielectric 4 fitted on the inner week surface of the peripheral electrode. The gap 5 is configured such that the capacity of the gap 5 can be increased by increasing the diameter or total length of the center electrode 2 and the peripheral electrode 3 while maintaining a certain distance necessary for plasma discharge.

次に、周辺電極3の誘電体4の内周面に、凸部6が中心電極2方向の空隙部5に向けて突設され、この凸部6はガラス、セラミックスなどの耐熱性を有する絶縁部材、あるいは窒素官能基の供給源としてナイロンなどの絶縁部材より形成されると共に、空隙部5内に充填された粉体が放電容器1を回転させることによって凸部6によって攪拌することができる構成とされている。   Next, a convex portion 6 is projected on the inner peripheral surface of the dielectric 4 of the peripheral electrode 3 toward the gap portion 5 in the direction of the central electrode 2, and this convex portion 6 is an insulating material having heat resistance such as glass or ceramics. It is formed of an insulating member such as nylon as a member or a nitrogen functional group supply source, and the powder filled in the gap 5 can be stirred by the convex portion 6 by rotating the discharge vessel 1. It is said that.

また、放電容器1の一端側の空隙部5の開放端にはガス注入管7が取り付けられ、このガス注入管7は、シリコンゴムより形成される密閉膜部8に貫通した状態で取り付けられている。   In addition, a gas injection tube 7 is attached to the open end of the gap portion 5 on one end side of the discharge vessel 1, and this gas injection tube 7 is attached in a state of penetrating through a sealing film portion 8 formed of silicon rubber. Yes.

また、放電容器1の空隙部5の他端には、シリコンゴムより形成される密閉膜部8が取り付けられると共に、この密閉膜部8にガス排出穴9が開口され、このガス排出穴に気体のみを通過させるフィルター10が設けられている。   In addition, a sealing film portion 8 made of silicon rubber is attached to the other end of the gap portion 5 of the discharge vessel 1, and a gas discharge hole 9 is opened in the sealing film portion 8. A filter 10 that allows only the light to pass therethrough is provided.

ここで図3に示すように、放電容器1を卓上用ポットミル回転台11によって回転させるものであり、この卓上用ポットミル回転台11は電動モーター(図示せず。)によって同一方向に駆動回転する放電容器1の軸線と平行となるように2本の駆動回転体11との間に放電容器1を載置し、いずれか一方の駆動回転体14を回転させることで放電容器1を回転させる構成とされている。   Here, as shown in FIG. 3, the discharge vessel 1 is rotated by a tabletop pot mill rotating table 11, and this tabletop pot mill rotating table 11 is driven to rotate in the same direction by an electric motor (not shown). A configuration in which the discharge vessel 1 is placed between two drive rotators 11 so as to be parallel to the axis of the vessel 1 and the discharge vessel 1 is rotated by rotating any one of the drive rotators 14; Has been.

そして、放電容器1の中心電極2と周辺電極3に高周波電源(図示せず。)が印加されたブラシ電極端子12をそれぞれ接触させ、放電容器1のガス注入管7に混合気体を注入するガスホース13がベアリング等を介して放電容器1を回転させながら混合気体を注入することができるような構成とされている。   A gas hose that injects a mixed gas into the gas injection tube 7 of the discharge vessel 1 by bringing the brush electrode terminals 12 to which a high-frequency power source (not shown) is applied into contact with the center electrode 2 and the peripheral electrode 3 of the discharge vessel 1. 13 is configured to be able to inject the mixed gas while rotating the discharge vessel 1 via a bearing or the like.

ここで、前述したプラズマ処理装置を用いて本発明を適用した粉体のプラズマ処理方法によるポリプロピレン重合粉末の表面処理の実施例をそれぞれ示す。
実施例1
ノーメックス(芳香族ナイロンの共重合体からなる厚さ約0.7mmの絶縁紙、デュポン社製)より形成される羽根1枚を備える誘電体間の空隙部内に、ポリプロピレン重合粉末(日本ポリプロ(株)製、NOVATEC P−8000,平均粒径300マイクロメートル)12gとナイロンチップ(カネボウ製MC102)2gを投入し、卓上用ポットミル回転台(日陶科学(株)製 AZN−51S)に載せて5〜8rpmの回転速度範囲内にて回転させた。
Here, examples of the surface treatment of the polypropylene polymer powder by the plasma treatment method of the powder to which the present invention is applied using the plasma treatment apparatus described above will be shown.
Example 1
Polypropylene polymer powder (Nippon Polypro Co., Ltd.) is placed in the gap between the dielectrics with one blade formed from Nomex (a 0.7 mm thick insulating paper made of aromatic nylon copolymer, manufactured by DuPont). ), NOVATEC P-8000, average particle size 300 micrometers) 12 g and nylon chip (MC102 manufactured by Kanebo) 2 g are charged and placed on a tabletop pot mill rotary table (AZN-51S manufactured by Nippon Ceramics Co., Ltd.). It was rotated within a rotational speed range of ˜8 rpm.

更に、ヘリウム4.5l/min、窒素0.45l/minの混合ガスを放電容器の空隙部内に導入し、1分間流した後、そのまま混合ガスを流しながら高周波電源(春日電機(株)製 AGF−012)にて、36kHzの正弦波電圧を印加し、プラズマ出力200Wで5分間プラズマ処理を行った。   Further, a mixed gas of helium 4.5 l / min and nitrogen 0.45 l / min is introduced into the gap of the discharge vessel, and after flowing for 1 minute, a high frequency power source (AGF manufactured by Kasuga Electric Co., Ltd.) −012), a sine wave voltage of 36 kHz was applied, and a plasma treatment was performed at a plasma output of 200 W for 5 minutes.

前記プラズマ処理後、放電容器からポリプロピレン重合粉末およびナイロンチップを取り出し、ふるいにてナイロンチップを除去した。   After the plasma treatment, the polypropylene polymer powder and the nylon tip were taken out from the discharge vessel, and the nylon tip was removed with a sieve.

実施例2
次に、実施例1と試料充填は同じ条件で、ポリプロピレン重合粉末12gとナイロンチップ2gを投入し、卓上用ポットミル回転台に載せて5〜8rpmの回転速度範囲内にて回転させ、プラズマガスとして窒素を加えずに、ヘリウム4.5l/minのみを放電容器の空隙部内に導入し、1分間流した後、そのまま混合ガスを流しながら高周波電源にて、36kHzの正弦波電圧を印加し、プラズマ出力200Wで5分間プラズマ処理を行った後、放電容器からポリプロピレン重合粉末およびナイロンチップを取り出し、ふるいにてナイロンチップを除去した。
Example 2
Next, the sample filling is the same as in Example 1, and 12 g of polypropylene polymer powder and 2 g of nylon chip are charged, placed on a tabletop pot mill rotary table and rotated within a rotation speed range of 5 to 8 rpm, as plasma gas. Without adding nitrogen, only 4.5 l / min of helium was introduced into the gap of the discharge vessel, and after flowing for 1 minute, a sine wave voltage of 36 kHz was applied with a high frequency power source while flowing the mixed gas as it was, After performing plasma treatment at an output of 200 W for 5 minutes, the polypropylene polymer powder and the nylon chip were taken out from the discharge vessel, and the nylon chip was removed with a sieve.

実施例3
実施例1における放電容器の空隙部内に、ポリプロピレン重合粉末12gとテイジン(株)製の芳香族ポリアミドの共重合体繊維テクノラを長さ約2cmに切ったものを2g投入し、卓上用ポットミル回転台に載せて5〜8rpmの回転速度範囲内にて回転させ、ヘリウム4.5l/min、窒素0.45l/minの混合ガスを放電容器の空隙部内に導入し、1分間流した後、そのまま混合ガスを流しながら高周波電源にて、36kHzの正弦波電圧を印加し、プラズマ出力200Wで5分間プラズマ処理を行った後、放電容器からポリプロピレン重合粉末およびテクノラ繊維を取り出し、ふるいにてテクノラ繊維を除去した。
Example 3
Into the gap of the discharge vessel in Example 1, 2 g of polypropylene polymer powder 12 g and Teijin Co., Ltd. aromatic fiber copolymer fiber techno cut into length of about 2 cm were added, and the tabletop pot mill rotary table The mixture is rotated within a rotation speed range of 5 to 8 rpm, a mixed gas of helium 4.5 l / min and nitrogen 0.45 l / min is introduced into the gap of the discharge vessel, and after flowing for 1 minute, it is mixed as it is. A 36 kHz sine wave voltage is applied with a high frequency power supply while flowing gas, and after a plasma treatment is performed at a plasma output of 200 W for 5 minutes, the polypropylene polymer powder and technola fiber are taken out from the discharge vessel, and the technola fiber is removed with a sieve did.

実施例4
実施例1における放電容器の誘電体として、厚さ5mmのナイロンを使用し、ポリプロピレン重合粉末15gを空隙部内に投入し、卓上用ポットミル回転台に載せて5〜8rpmの回転速度範囲内にて回転させ、プラズマガスとして窒素を加えずに、ヘリウム4.5l/minのみを放電容器の空隙部内に導入し、1分間流した後、そのまま混合ガスを流しながら高周波電源にて、36kHzの正弦波電圧を印加し、プラズマ出力200Wで5分間プラズマ処理を行った
Example 4
Nylon with a thickness of 5 mm is used as the dielectric of the discharge vessel in Example 1, 15 g of polypropylene polymer powder is put into the gap, and it is placed on a tabletop pot mill rotary table and rotated within a rotation speed range of 5 to 8 rpm. Without adding nitrogen as a plasma gas, only 4.5 l / min of helium is introduced into the gap of the discharge vessel, and after flowing for 1 minute, a 36 kHz sine wave voltage is supplied by a high frequency power source while flowing the mixed gas as it is. And plasma treatment was performed at a plasma output of 200 W for 5 minutes.

比較例1
実施例1における放電容器の空隙部内に、ポリプロピレン重合粉末15gのみを投入し、卓上用ポットミル回転台に載せて5〜8rpmの回転速度範囲内にて回転させ、ヘリウム4.5l/min、窒素0.45l/minの混合ガスを放電容器の空隙部内に導入し、1分間流した後、そのまま混合ガスを流しながら高周波電源にて、36kHzの正弦波電圧を印加し、プラズマ出力200Wで5分間プラズマ処理を行った。
Comparative Example 1
Only 15 g of the polypropylene polymer powder was put into the gap of the discharge vessel in Example 1, placed on a tabletop pot mill rotary table, rotated within a rotation speed range of 5 to 8 rpm, helium 4.5 l / min, nitrogen 0 .45 l / min of mixed gas is introduced into the gap of the discharge vessel, and after flowing for 1 minute, a 36 kHz sine wave voltage is applied with a high frequency power source while flowing the mixed gas as it is, and plasma is output at a plasma output of 200 W for 5 minutes. Processed.

前記実施例1〜実施例5および比較例1においてプラズマ処理されたポリプロピレン粉末をX線光電子分光装置(XPS)((株)島津クレイトスAXIS−165)にて光電子スペクトルの測定を行いN1SピークおよびC1Sピークの面積からN/Cの原子比を算出した結果を下記表1に示す。 The polypropylene powder plasma-treated in Examples 1 to 5 and Comparative Example 1 was measured for a photoelectron spectrum with an X-ray photoelectron spectrometer (XPS) (Shimadzu Kratos AXIS-165), and N 1S peak and The results of calculating the N / C atomic ratio from the area of the C 1S peak are shown in Table 1 below.

Figure 2010029831
Figure 2010029831

以上の結果より、実施例1、実施例3および実施例4のようにポリプロピレン重合粉末とともにナイロンチップ、あるいはテクノラ繊維などの窒素基供給源を投入し、ヘリウムガスと窒素ガスとの混合気体を導入しながらのプラズマ処理によって0.20以上の原子比を得ることができ、比較例1のようにポリプロピレン重合粉末のみの場合の0.14の原子比と比較して大幅な窒素官能基の付加が可能となることが判明した。   From the above results, as in Example 1, Example 3 and Example 4, together with polypropylene polymer powder, a nitrogen group supply source such as nylon chip or techno fiber was introduced, and a mixed gas of helium gas and nitrogen gas was introduced. Plasma treatment, an atomic ratio of 0.20 or more can be obtained, and a significant addition of nitrogen functional groups compared to the atomic ratio of 0.14 in the case of only polypropylene polymer powder as in Comparative Example 1 is achieved. It turned out to be possible.

また、実施例2においては、ポリプロピレン重合粉末とともにナイロンチップを投入し、ヘリウムガスのみを導入しながらのプラズマ処理によって0.1の原子比を得ることが判明し、窒素ガスなしでも充分な窒素官能基の付加が可能であることを確認することができた。   Further, in Example 2, it was found that a nylon chip was introduced together with polypropylene polymer powder, and that an atomic ratio of 0.1 was obtained by plasma treatment while introducing only helium gas. It was confirmed that the group could be added.

更に、実施例5においては、誘電体として、ナイロンを使用し、ポリプロピレン重合粉末のみを投入し、しかもヘリウムガスのみを導入しながらのプラズマ処理によって0.043の原子比を得ることが判明し、窒素ガスなしでも窒素官能基の付加が可能であることを確認することができた。   Furthermore, in Example 5, it was found that nylon was used as the dielectric, only polypropylene polymer powder was added, and an atomic ratio of 0.043 was obtained by plasma treatment while introducing only helium gas. It was confirmed that addition of a nitrogen functional group was possible without nitrogen gas.

次に図4は、本発明を適用した粉体のプラズマ処理方法を実施するために用いるプラズマ処理装置における放電容器の他の例を示す正面断面図である。
ここで示す他の例では、放電容器1の中心電極1と周辺電極3との間に形成される空隙部5を仕切るための仕切部16が誘電体4間に渡設されるものであり、この仕切部16は、ガラス、セラミックス、あるいはナイロンなどの耐熱性を有する絶縁性素材により形成され、例えば2個の仕切部16によって空隙部5を2部屋に分ける(図4(A)参照。)、あるいは3個の仕切部16によって空隙部5を3部屋に分ける(図4(B)参照。)と共に、それぞれの部屋に粉体および窒素官能基供給源となる物質並びに不活性ガスを導入できる構成とされている。
Next, FIG. 4 is a front sectional view showing another example of the discharge vessel in the plasma processing apparatus used for carrying out the powder plasma processing method to which the present invention is applied.
In another example shown here, a partition 16 for partitioning the gap 5 formed between the center electrode 1 and the peripheral electrode 3 of the discharge vessel 1 is provided between the dielectrics 4. The partition 16 is formed of a heat-resistant insulating material such as glass, ceramics, or nylon. For example, the gap 5 is divided into two rooms by two partitions 16 (see FIG. 4A). Alternatively, the gap 5 is divided into three rooms by three partitions 16 (see FIG. 4 (B)), and a substance that serves as a powder and nitrogen functional group supply source and an inert gas can be introduced into each room. It is configured.

また、空隙部5内を仕切部16によって複数の部屋に分けることにより、前記実施例1から実施例5において実施したポリプロピレン重合粉末およびナイロンチップ、あるいはテクノラ繊維などの窒素基供給源を各部屋に投入することによりポリプロピレン重合粉末のプラズマ処理量を増加させることが可能となる。   Further, by dividing the inside of the gap portion 5 into a plurality of rooms by the partitioning portion 16, the nitrogen group supply source such as the polypropylene polymer powder and the nylon chip or the technola fiber implemented in the first to fifth embodiments is provided in each room. By adding it, it becomes possible to increase the plasma treatment amount of the polypropylene polymer powder.

なお、本実施例で詳述したプラズマ処理装置によって必ずしも粉体のプラズマ処理を行う必要性は無く、例えば吹き上げ式のプラズマ処理など粉体と窒素官能基供給源となる物質を一緒に投入して攪拌できるものであればいかなる装置であっても構わない。   Note that it is not always necessary to perform plasma processing of the powder by the plasma processing apparatus described in detail in this embodiment. For example, a powder and a substance serving as a nitrogen functional group supply source such as blow-up plasma processing are added together. Any apparatus that can stir may be used.

また、窒素官能基供給源としては、絶縁性の固体で、粉体、繊維、フィルム、チップなどの形状のもので良く、その化学構造にアミノ基、イミノ基などの窒素官能基を含むものであれば良く、例えば、各種アミン、アミド、アミノ酸、尿素、メラミン、ナイロンおよびその共重合体がある。   The nitrogen functional group supply source may be insulative solid and may be in the form of powder, fiber, film, chip, etc., and its chemical structure contains nitrogen functional groups such as amino groups and imino groups. For example, various amines, amides, amino acids, urea, melamine, nylon and copolymers thereof may be used.

更に、放電容器の使用されている誘電体、あるいは凸部、仕切部を窒素官能基供給源とされる物質により形成することもできる。   Further, the dielectric used in the discharge vessel, or the convex portion and the partitioning portion can be formed of a material which is a nitrogen functional group supply source.

本発明を適用した粉体のプラズマ処理方法を実施するために用いるプラズマ処理装置における放電容器の一例を示す正面断面図である。It is front sectional drawing which shows an example of the discharge vessel in the plasma processing apparatus used in order to implement the plasma processing method of the powder to which this invention is applied. 本発明を適用した粉体のプラズマ処理方法を実施するために用いるプラズマ処理装置における放電容器の一例を示す側面断面図である。It is side surface sectional drawing which shows an example of the discharge vessel in the plasma processing apparatus used in order to implement the plasma processing method of the powder to which this invention is applied. 本発明を適用した粉体のプラズマ処理方法を実施するために用いるプラズマ処理装置の一例を示す説明図である。It is explanatory drawing which shows an example of the plasma processing apparatus used in order to implement the plasma processing method of the powder to which this invention is applied. 本発明を適用した粉体のプラズマ処理方法を実施するために用いるプラズマ処理装置における放電容器の他の例を示す正面断面図である。It is front sectional drawing which shows the other example of the discharge vessel in the plasma processing apparatus used in order to implement the plasma processing method of the powder to which this invention is applied. 従来の粉体表面処理方法の一例を示す説明図である。It is explanatory drawing which shows an example of the conventional powder surface treatment method.

符号の説明Explanation of symbols

1 放電容器
2 中心電極
3 周辺電極
4 誘電体
5 空隙部
6 凸部
7 ガス注入管
8 密閉膜部
9 ガス排出穴
10 フィルター
11 卓上用ポットミル回転台
12 ブラシ電極端子
13 ガスホース
14 駆動回転体
16 仕切部
DESCRIPTION OF SYMBOLS 1 Discharge vessel 2 Center electrode 3 Peripheral electrode 4 Dielectric 5 Gap part 6 Protrusion part 7 Gas injection pipe 8 Sealed film part 9 Gas discharge hole 10 Filter 11 Tabletop pot mill rotary table 12 Brush electrode terminal 13 Gas hose 14 Drive rotary body 16 Partition Part

Claims (8)

中心電極と、該中心電極と所定の空隙部を介して配置された筒状の周辺電極と、前記中心電極表面若しくは前記周辺電極表面の少なくとも一方に設けられた誘電体とを有する放電容器を用いた粉体のプラズマ処理方法であって、
不活性気体雰囲気とされた前記空隙部内で、粉体と、該粉体に窒素官能基を付加する窒素官能基供給部材にグロー放電によるプラズマ処理を行なう工程を備える
粉体のプラズマ処理方法。
A discharge vessel having a central electrode, a cylindrical peripheral electrode disposed through the central electrode and a predetermined gap, and a dielectric provided on at least one of the surface of the central electrode or the surface of the peripheral electrode is used. A method for plasma processing of powder,
A powder plasma processing method comprising a step of performing plasma treatment by glow discharge on a powder and a nitrogen functional group supply member for adding a nitrogen functional group to the powder in the void portion in an inert gas atmosphere.
前記プラズマ処理は、前記中心電極と前記周辺電極との間に交流またはパルス電圧を印加した状態で、前記中心電極を回転中心として前記放電容器を回転しながら行なう
請求項1に記載のプラズマ処理方法。
2. The plasma processing method according to claim 1, wherein the plasma processing is performed while rotating the discharge vessel with the center electrode as a rotation center in a state where an alternating current or a pulse voltage is applied between the center electrode and the peripheral electrode. .
前記粉体は、前記放電容器の前記空隙部内に投入され、かつ前記不活性気体は前記放電容器の一端側から前記空隙部内に供給されると共に、前記放電容器の他端側から排出される
請求項1または請求項2に記載のプラズマ処理方法。
The powder is charged into the gap of the discharge vessel, and the inert gas is supplied into the gap from one end of the discharge vessel and discharged from the other end of the discharge vessel. The plasma processing method according to claim 1 or 2.
前記窒素官能基供給部材は、窒素官能基を持ち、常温で固体の化合物により形成される
請求項1、請求項2または請求項3に記載のプラズマ処理方法。
The plasma processing method according to claim 1, wherein the nitrogen functional group supply member has a nitrogen functional group and is formed of a solid compound at room temperature.
前記不活性気体が、ヘリウム、アルゴン、ネオン、あるいは窒素ガスのいずれか、またはこれらの混合により形成される
請求項1、請求項2、請求項3または請求項4に記載のプラズマ処理方法。
5. The plasma processing method according to claim 1, wherein the inert gas is formed by helium, argon, neon, nitrogen gas, or a mixture thereof.
前記中心電極に前記周辺電極方向に突出する第1の凸部が設けられ、
若しくは、
前記周辺電極に前記中心電極方向に突出する第2の凸部が設けられ、
若しくは、
前記中心電極に前記周辺電極方向に突出する第1の凸部が設けられると共に、前記周辺電極に前記中心電極方向に突出する第2の凸部が設けられた
請求項1に記載のプラズマ処理方法。
The central electrode is provided with a first convex portion protruding in the direction of the peripheral electrode,
Or
The peripheral electrode is provided with a second convex portion protruding in the direction of the central electrode,
Or
The plasma processing method according to claim 1, wherein the center electrode is provided with a first protrusion protruding in the direction of the peripheral electrode, and the peripheral electrode is provided with a second protrusion protruding in the direction of the center electrode. .
前記中心電極及び前記周辺電極と連設された仕切部が設けられた
請求項1に記載のプラズマ処理方法。
The plasma processing method according to claim 1, further comprising a partition portion that is connected to the center electrode and the peripheral electrode.
粉体と、該粉体に窒素官能基を付加する窒素官能基供給部材に対して不活性気体雰囲気でグロー放電によるプラズマ処理を行なう工程を備える
粉体のプラズマ処理方法。
A powder plasma processing method comprising: a step of performing a plasma treatment by glow discharge in an inert gas atmosphere on a powder and a nitrogen functional group supply member for adding a nitrogen functional group to the powder.
JP2008197518A 2008-07-31 2008-07-31 Powder plasma processing method Active JP5089521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008197518A JP5089521B2 (en) 2008-07-31 2008-07-31 Powder plasma processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008197518A JP5089521B2 (en) 2008-07-31 2008-07-31 Powder plasma processing method

Publications (2)

Publication Number Publication Date
JP2010029831A true JP2010029831A (en) 2010-02-12
JP5089521B2 JP5089521B2 (en) 2012-12-05

Family

ID=41734972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008197518A Active JP5089521B2 (en) 2008-07-31 2008-07-31 Powder plasma processing method

Country Status (1)

Country Link
JP (1) JP5089521B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104519993A (en) * 2012-12-10 2015-04-15 韩国基础科学支援研究院 Powder plasma treatment apparatus

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62298443A (en) * 1986-06-17 1987-12-25 Nara Kikai Seisakusho:Kk Method for reforming surface of solid particle
JPH04135638A (en) * 1990-07-25 1992-05-11 Ii C Kagaku Kk Surface treatment of powder
JPH05337354A (en) * 1992-06-04 1993-12-21 Daicel Chem Ind Ltd Mixing method for gas generating agent in gas generator for air bag
JPH06365A (en) * 1992-06-22 1994-01-11 Ii C Kagaku Kk Plasma treatment of powder
JPH0747223A (en) * 1993-08-06 1995-02-21 Mitsubishi Heavy Ind Ltd Electric field apparatus for gas oxidation
JPH09185246A (en) * 1995-12-27 1997-07-15 Canon Inc Developer carrier and developing device
JPH09327502A (en) * 1996-06-13 1997-12-22 Santen Pharmaceut Co Ltd Pasteurization processor for granular particles
JP2001310124A (en) * 2000-04-28 2001-11-06 Isao Yanagida Ion powder activating device
JP2002274834A (en) * 2001-03-20 2002-09-25 Kwangju Inst Of Science & Technol Surface-modified silica for epoxy molding material, method for producing the same, apparatus therefor and epoxy molding material for semiconductor package
JP2004027370A (en) * 1991-06-27 2004-01-29 Kimoto & Co Ltd Method for treating powder surface utilizing atmospheric pressure plasma reaction
JP2004506849A (en) * 2000-08-18 2004-03-04 アクセンタス パブリック リミテッド カンパニー Gas reactor assisted by plasma
WO2004112964A1 (en) * 2003-06-20 2004-12-29 Hosokawa Powder Technology Research Institute Powder treatment method, powder treatment device, and method of manufacturing porous granulated matter
JP2006008661A (en) * 2004-05-24 2006-01-12 Shiseido Co Ltd Water-dispersible powder for cosmetic
JP2009544854A (en) * 2006-07-31 2009-12-17 テクナ・プラズマ・システムズ・インコーポレーテッド Plasma surface treatment using dielectric barrier discharge

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62298443A (en) * 1986-06-17 1987-12-25 Nara Kikai Seisakusho:Kk Method for reforming surface of solid particle
JPH04135638A (en) * 1990-07-25 1992-05-11 Ii C Kagaku Kk Surface treatment of powder
JP2004027370A (en) * 1991-06-27 2004-01-29 Kimoto & Co Ltd Method for treating powder surface utilizing atmospheric pressure plasma reaction
JPH05337354A (en) * 1992-06-04 1993-12-21 Daicel Chem Ind Ltd Mixing method for gas generating agent in gas generator for air bag
JPH06365A (en) * 1992-06-22 1994-01-11 Ii C Kagaku Kk Plasma treatment of powder
JPH0747223A (en) * 1993-08-06 1995-02-21 Mitsubishi Heavy Ind Ltd Electric field apparatus for gas oxidation
JPH09185246A (en) * 1995-12-27 1997-07-15 Canon Inc Developer carrier and developing device
JPH09327502A (en) * 1996-06-13 1997-12-22 Santen Pharmaceut Co Ltd Pasteurization processor for granular particles
JP2001310124A (en) * 2000-04-28 2001-11-06 Isao Yanagida Ion powder activating device
JP2004506849A (en) * 2000-08-18 2004-03-04 アクセンタス パブリック リミテッド カンパニー Gas reactor assisted by plasma
JP2002274834A (en) * 2001-03-20 2002-09-25 Kwangju Inst Of Science & Technol Surface-modified silica for epoxy molding material, method for producing the same, apparatus therefor and epoxy molding material for semiconductor package
WO2004112964A1 (en) * 2003-06-20 2004-12-29 Hosokawa Powder Technology Research Institute Powder treatment method, powder treatment device, and method of manufacturing porous granulated matter
JP2006008661A (en) * 2004-05-24 2006-01-12 Shiseido Co Ltd Water-dispersible powder for cosmetic
JP2009544854A (en) * 2006-07-31 2009-12-17 テクナ・プラズマ・システムズ・インコーポレーテッド Plasma surface treatment using dielectric barrier discharge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104519993A (en) * 2012-12-10 2015-04-15 韩国基础科学支援研究院 Powder plasma treatment apparatus

Also Published As

Publication number Publication date
JP5089521B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
Huang et al. Deactivation of A549 cancer cells in vitro by a dielectric barrier discharge plasma needle
US20140054242A1 (en) Liquid treating apparatus and liquid treating method
EP2765837B1 (en) System and method for treatment of biofilms
US9580338B2 (en) Liquid treatment apparatus and liquid treatment method
JP2004509432A (en) Glow discharge plasma processing apparatus and glow discharge plasma processing method
US20110101862A1 (en) System and methods for plasma application
JP6628639B2 (en) Plasma processing equipment
KR101579349B1 (en) Water treatment apparatus using plasma-membrane and method using the same
JP2004165145A (en) Method and apparatus for processing substrate by atmospheric pressure glow plasma (apg)
JP6843894B2 (en) Submersible plasma device
JP6871556B2 (en) Plasma processing equipment and plasma torch
JP6707779B2 (en) Dispersion method of substance to be treated, dispersion device, and method of producing liquid in which substance to be treated and dispersion medium are mixed
JP2010029830A (en) Plasma treatment device
JP3974442B2 (en) Sterilization apparatus and sterilization method
KR20200087186A (en) Metal oxide thin film forming apparatus and metal oxide thin film forming method
JP5089521B2 (en) Powder plasma processing method
US9994683B2 (en) Method and apparatus for surface chemical functionalization of powders and nanoparticles
JP6511440B2 (en) Plasma irradiation method and plasma irradiation apparatus
RU2572895C2 (en) Device and method for processing of gaseous medium and application of said device for processing of gaseous medium, solid body, surface of their whatever combination
JP5080701B2 (en) Plasma processing equipment
JP2008174792A (en) Hydrophilizing modification method for fluorine base synthetic resin, and article obtained thereby
JP6006393B1 (en) Plasma processing equipment
Ghomi et al. Investigation on a DBD plasma reactor
RU2497601C1 (en) Method of plasma-chemical treatment of electrochemical catalyst caron carrier
JP2014010931A (en) Plasma processing method and plasma processing unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120911

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5089521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250