JP2010029797A - Lithium isotope separation and condensation method, apparatus, measure, lithium ion selective permeation membrane, and lithium isotope concentrate - Google Patents

Lithium isotope separation and condensation method, apparatus, measure, lithium ion selective permeation membrane, and lithium isotope concentrate Download PDF

Info

Publication number
JP2010029797A
JP2010029797A JP2008195404A JP2008195404A JP2010029797A JP 2010029797 A JP2010029797 A JP 2010029797A JP 2008195404 A JP2008195404 A JP 2008195404A JP 2008195404 A JP2008195404 A JP 2008195404A JP 2010029797 A JP2010029797 A JP 2010029797A
Authority
JP
Japan
Prior art keywords
lithium
concentration
isotope
solution
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008195404A
Other languages
Japanese (ja)
Other versions
JP5429658B2 (en
Inventor
Takeshi Hoshino
毅 星野
Katsuyoshi Tadenuma
克嘉 蓼沼
Tadahiro Nemoto
忠洋 根本
Natsuko Nakano
菜都子 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaken Co Ltd
Japan Atomic Energy Agency
Original Assignee
Kaken Co Ltd
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaken Co Ltd, Japan Atomic Energy Agency filed Critical Kaken Co Ltd
Priority to JP2008195404A priority Critical patent/JP5429658B2/en
Publication of JP2010029797A publication Critical patent/JP2010029797A/en
Application granted granted Critical
Publication of JP5429658B2 publication Critical patent/JP5429658B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for lithium isotope separation and condensation as well as a separation film and a system for lithium isotope separation. <P>SOLUTION: A lithium ion selective permeation membrane which is a porous body impregnated with a lithium ion conductive ionic liquid, e.g. TMPA-TFSI of PP13-TFSI, is arranged while being brought into contact with a lithium solution containing<SP>6</SP>Li isotope and<SP>7</SP>Li isotope to separate<SP>6</SP>Li isotope and<SP>7</SP>Li isotope by dialysis. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、リチウム同位体分離濃縮法、リチウム同位体分離濃縮装置、LiまたはLi濃縮回収方法、リチウムイオン選択的透過膜およびLi濃縮物またはLi濃縮物に関する。 The present invention relates to a lithium isotope separation and concentration method, a lithium isotope separation and concentration apparatus, a 6 Li or 7 Li concentration recovery method, a lithium ion selective permeable membrane, and a 6 Li concentrate or 7 Li concentrate.

リチウムの天然同位体はLiが約7.6%でLiが約92.4%の割合で存在する。核融合炉の燃料となるトリチウムは、6−リチウム(Li)と中性子との核反応により生産するが、核融合エネルギーを取り出すために必要となるトリチウム量を確保するためには天然同位体比より高い30〜90%濃縮Liが必要となる。一方、7−リチウム(Li)は、加圧水型原子力発電所の水素イオン調整用に使われており、その場合トリチウムを生成するLiが含まれないことが必要とされる。 Natural isotopes of lithium are 7 Li 6 Li of about 7.6% is present at a rate of about 92.4%. Tritium which is a fuel of a fusion reactor is produced by nuclear reaction with 6- lithium (6 Li) neutron, natural isotopic ratio in order to ensure the tritium amount required to retrieve the fusion energy Higher 30-90% concentrated 6 Li is required. On the other hand, 7-lithium ( 7 Li) is used for adjusting hydrogen ions in a pressurized water nuclear power plant, and in that case, it is required that 6 Li that generates tritium is not included.

世界各国において、将来のエネルギーとして核融合技術の開発が盛んに進められており、そのため濃縮Li資源の確保が必要不可欠になっている。濃縮Li資源については、日本では海外からの調達が考えられていたが、国際熱核融合実験炉(ITER)の建設決定に伴い世界的に核融合研究の競争が激しくなり、調達が不可能となった。 In countries around the world, the development of nuclear fusion technology has been promoted actively, to ensure that for concentrated 6 Li resource has become essential as the future of energy. Concentrated 6 Li resources were considered to be procured from overseas in Japan, but with the decision to construct the International Thermonuclear Experimental Reactor (ITER), competition for fusion research became intense worldwide, making procurement impossible. It became.

濃縮Li資源の回収技術の開発に関しては、1970年代にLi同位体分離の様々な原理に基づく研究が盛んに行われたが、それらのほとんどが同位体の分離効率が低く、工業化や大量製造のためのスケールアップが困難であったため、実用化されず現在に至っている。 Concentrated 6 Regarding the development of Li resource recovery technology, research based on various principles of Li isotope separation was actively conducted in the 1970s, but most of them have low isotope separation efficiency and are industrialized and mass-produced. Because it was difficult to scale up, it has not been put into practical use.

リチウム同位体分離としては、アマルガム法、分子蒸留、イオン交換法、電気泳動法(溶融塩法)、溶媒抽出法が知られている。その他のリチウム同位体分離法としては、クラウンエーテル抽出法、クラウンエーテル樹脂吸着クロマト分離法、グラファイトインターカレート法、リン酸ジルコニウム吸着クロマト分離法および電気化学的酸化還元法が知られている。   As the lithium isotope separation, an amalgam method, molecular distillation, ion exchange method, electrophoresis method (molten salt method), and solvent extraction method are known. As other lithium isotope separation methods, a crown ether extraction method, a crown ether resin adsorption chromatographic method, a graphite intercalation method, a zirconium phosphate adsorption chromatographic method, and an electrochemical redox method are known.

特許文献1には、リチウム同位体分離方法とその装置が記載されている。すなわち、この文献には、LiとLiとが混在する原料の中から、Liを分離する方法があって、Liイオン伝導体に電界を加え、LiとLiとの前記Liイオン伝導体のイオン伝導度の違いにより、Liを正電位側から負電位側へと前記Liイオン伝導体中を移動させ、原料の中からLiを分離することを特徴とするリチウム同位体分離方法が記載され、固体電解質セラミックを使用することが記載されている。しかしこの方法では、リチウム原料を溶融塩の状態に保つ必要があり、しかも前記Liイオン伝導体のリチウム透過分離効率を向上させるためには高温状態が必要であるため、システムの耐熱性の問題やリチウム同位体分離係数が低い方法であった。 Patent Document 1 describes a lithium isotope separation method and apparatus. That is, in this document, there is a method for separating 6 Li from raw materials in which 6 Li and 7 Li are mixed. An electric field is applied to a Li ion conductor, and the Li ions of 6 Li and 7 Li the difference in the ionic conductivity of the conductor, 6 Li and moving the Li ion conductor in the positive potential side to negative potential side, lithium isotope separation and separating the 6 Li from the raw material A method is described and the use of solid electrolyte ceramics is described. However, in this method, since it is necessary to keep the lithium raw material in a molten salt state, and in order to improve the lithium permeation separation efficiency of the Li ion conductor, a high temperature state is necessary. It was a method with a low lithium isotope separation factor.

特開2002−79059号公報JP 2002-79059 A

これまで実用化されているLi同位体分離法は、水酸化リチウム水溶液とリチウムアマルガム(リチウムと水銀の合金)との間のリチウム同位体の向流交換反応を用いるアマルガム法(特許文献2)である。このアマルガム法によるリチウム同位体分離係数は1.04−1.09の範囲のものである。しかし水銀による環境汚染の観点から、水銀を用いないイオン交換膜法及び溶融塩法を利用したLi同位体分離に関する研究が1970年代以降盛んに行われ今日に至っている。しかし、イオン交換膜法は同位体分離係数が小さく、溶融塩法はエネルギー消費量が大きく大量製造へのスケールアップも困難という結果が得られ、実用化には至らなかった。また、他の方法にあっても同位体の分離係数が1.001−1.01というように小さいものであった。   The Li isotope separation method that has been put to practical use so far is an amalgam method using a countercurrent exchange reaction of a lithium isotope between a lithium hydroxide aqueous solution and a lithium amalgam (alloy of lithium and mercury) (Patent Document 2). is there. The lithium isotope separation factor by this amalgam method is in the range of 1.04-1.09. However, from the viewpoint of environmental pollution by mercury, research on Li isotope separation using an ion exchange membrane method and a molten salt method that does not use mercury has been actively conducted since the 1970s, and has come to this day. However, the ion exchange membrane method has a small isotope separation factor, and the molten salt method has a large energy consumption and is difficult to scale up to mass production. Even in other methods, the isotope separation factor was as small as 1.001 to 1.01.

以上の理由から、工業的なLi同位体分離法としては、これまでアマルガム法以外には無かった。   For the above reasons, there has been no industrial Li isotope separation method other than the amalgam method.

本発明は、かかる点に鑑みてなされたもので、水銀を使用することなく扱い易く、同位体分離係数を従来法に比べて格段によくすることのできるリチウム同位体分離濃縮法および装置、並びにシステムを提供することを目的とする。   The present invention has been made in view of the above points, and is a lithium isotope separation and enrichment method and apparatus that can be easily handled without using mercury and can significantly improve the isotope separation factor compared to the conventional method, and The purpose is to provide a system.

本発明は、リチウムイオン伝導性を有するイオン液体あるいは該イオン液体にさらにリチウム選択的吸着性を有するクラウンエーテル化合物を混合溶解させたものを多孔質体に含浸保持させたリチウムイオン選択的透過膜に、Li同位体およびLi同位体を含むリチウム溶液を接して配置し、透析法によってLi同位体およびLi同位体を分離することを特徴とするリチウム同位体分離濃縮法を提供する。 The present invention provides a lithium ion selective permeable membrane in which a porous body is impregnated and held with an ionic liquid having lithium ion conductivity or a mixture obtained by mixing and dissolving a crown ether compound having lithium selective adsorptivity in the ionic liquid. A lithium isotope separation and concentration method is provided, wherein a lithium solution containing a 6 Li isotope and a 7 Li isotope is placed in contact with each other, and the 6 Li isotope and the 7 Li isotope are separated by dialysis.

本発明は、また、前記透析法として電気透析法もしくは塩濃度差透析法を用いることを特徴とするリチウム同位体分離濃縮法を提供する。   The present invention also provides a lithium isotope separation and concentration method characterized by using an electrodialysis method or a salt concentration difference dialysis method as the dialysis method.

本発明は、また、前記リチウムイオン選択的透過膜を、表面が密構造で内部が粗構造の多孔質体で形成したことを特徴とするリチウム同位体分離濃縮法を提供する。   The present invention also provides a method for separating and concentrating lithium isotopes, wherein the lithium ion selective permeable membrane is formed of a porous body having a dense surface and a rough inside.

本発明は、胴体と、該胴体内に配置される、リチウムイオン伝導性のイオン液体あるいは該イオン液体にさらにリチウム選択的吸着性を有するクラウンエーテル化合物を混合溶解させたものを多孔質体に含侵保持させたリチウムイオン選択的透過膜および該リチウム選択性透過膜に接した、Li同位体およびLi同位体を含むリチウム溶液槽と、を備えることを特徴とするリチウム同位体分離濃縮装置を提供する。 The present invention includes a porous body including a body and a lithium ion conductive ionic liquid disposed in the body or a mixture of a ionic liquid and a crown ether compound having lithium selective adsorptivity. A lithium isotope separation / concentration apparatus comprising: a lithium ion selective permeation membrane that has been impregnated and a lithium solution bath containing 6 Li isotopes and 7 Li isotopes in contact with the lithium selective permeation membrane I will provide a.

本発明は、また、前記リチウム同位体分離濃縮装置が、前記リチウムイオン選択的透過膜と前記リチウム溶液槽とが隣接するようにして多段に配置されて、Li濃縮溶液あるいはLi濃縮溶液が生成される第一プロセス、その後段に陽イオン交接樹脂濃縮回収装置を配置し生成されたLi同位体濃縮溶液あるいはLi同位体濃縮溶液からLiまたはLiを陽イオン交換樹脂によって吸着回収する第二プロセス、該陽イオン交換樹脂濃縮回収装置によって濃縮して回収された高濃度Li溶液あるいは高濃度Li溶液を電解透析濃縮回収装置によって濃縮Liまたは濃縮Liを水酸化リチウム溶液としてカソード側に回収し、同時にアノード側に塩酸を回収し、該生成回収塩酸を前段の陽イオン交換樹脂濃縮回収装置の吸着リチウムイオンの溶離液とできる第三プロセス、以上のプロセスから構成されることを特徴とするLiまたはLi同位体高濃縮回収方法またはシステムを提供する。 In the present invention, the lithium isotope separation and concentration apparatus is arranged in multiple stages so that the lithium ion selective permeable membrane and the lithium solution tank are adjacent to each other, and a 6 Li concentrated solution or a 7 Li concentrated solution is provided. Cation exchange resin concentration recovery device is placed in the first process after that, and 6 Li or 7 Li is adsorbed and recovered by cation exchange resin from the generated 6 Li isotope concentrated solution or 7 Li isotope concentrated solution A high concentration 6 Li solution or a high concentration 7 Li solution collected by concentration by the cation exchange resin concentration and recovery device, and concentrated 6 Li or concentrated 7 Li by an electrodialysis concentration and recovery device. At the same time, and at the same time, hydrochloric acid is recovered on the anode side. Providing the third process that can eluting the adsorbed lithium ions, the 6 Li or 7 Li isotopic withers concentration recovery method or system characterized in that they are composed of more processes.

本発明は、また、前記LiまたはLi濃縮回収システムで濃縮回収したことを特徴とするLi濃縮物またはLi濃縮物を提供する。 The present invention also provides a 6 Li concentrate or a 7 Li concentrate characterized by being concentrated and recovered by the 6 Li or 7 Li concentration recovery system.

本発明は、また、前記リチウム同位体分離濃縮装置が、前記リチウムイオン選択的透過膜と前記リチウム溶液槽とが隣接するようにして多段に配置されて多段型Li同位体分離濃縮装置が構成され、該多段型Li同位体分離濃縮装置をカスケードに多段階に構成したことを特徴とするLiまたはLi同位体高濃縮回収システムを提供する。 In the present invention, the lithium isotope separation and concentration apparatus is arranged in multiple stages so that the lithium ion selective permeation membrane and the lithium solution tank are adjacent to each other, thereby forming a multistage Li isotope separation and concentration apparatus. The 6 Li or 7 Li isotope highly concentrated recovery system is characterized in that the multi-stage Li isotope separation and concentration apparatus is configured in cascade in multiple stages.

本発明は、また、前記リチウムイオン選択的透過膜を提供する。   The present invention also provides the lithium ion selective permeable membrane.

本発明は、また、表面が密構造で内部が粗構造としたことを特徴とするリチウムイオン選択的透過膜を提供する。   The present invention also provides a lithium ion selective permeable membrane characterized in that the surface has a dense structure and the inside has a rough structure.

本発明はTMPA−TFSIあるいはPP3−TFSIに代表させるリチウムイオン伝導性を有するイオン溶液を多孔質体に含浸保持させて使用しており、これによって水銀を使用することなく扱い易く、同位体分離係数を従来法に比べて格段に高く向上できるリチウム同位体分離濃縮法および装置並びにシステムを提供することができる。   In the present invention, a porous body is impregnated and held with an ionic solution having lithium ion conductivity typified by TMPA-TFSI or PP3-TFSI, which makes it easy to handle without using mercury, and isotope separation coefficient. Thus, it is possible to provide a lithium isotope separation and concentration method, apparatus and system which can be improved significantly compared to conventional methods.

以下、本発明の実施例を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の実施例であるリチウム同位体分離濃縮の原理を示す図である。
図1に示すリチウム同位体分離濃縮装置100は、胴体1と、この胴体内に配置されるリチウムイオン伝導性のイオン液体あるいは該イオン液体にリチウムに対し選択的吸着性を有するクラウンエーテル化合物を混合溶解したものを多孔質に含浸保持されたリチウムイオン選択的透過膜2およびこのリチウムイオン選択的透過膜2に接したLi同位体およびLi同位体を含むリチウム溶液槽(リチウム原料溶液槽)3と、を備えて構成される。
FIG. 1 is a diagram showing the principle of lithium isotope separation and concentration according to an embodiment of the present invention.
A lithium isotope separation and concentration apparatus 100 shown in FIG. 1 is composed of a body 1 and a lithium ion conductive ionic liquid disposed in the body or a crown ether compound having selective adsorptivity to lithium in the ionic liquid. Lithium ion selective permeable membrane 2 impregnated and held in a porous state with a dissolved one, and a lithium solution tank containing 6 Li isotopes and 7 Li isotopes in contact with the lithium ion selective permeable membrane 2 (lithium raw material solution tank) 3.

リチウムイオン選択的透過膜2の他の側にはLiが分離濃縮されて収容されるLi分離濃縮槽4が形成される。 The other side of the lithium ion selectively permeable membrane 2 6 Li separation concentration tank 4 6 Li is accommodated are separated concentrated is formed.

リチウム溶液槽3にはアノード電極5が、そしてLi分離濃縮槽4にはカソード電極6が配設される。リチウム溶液槽3にはLiおよびLiが天然比で混在する例えば塩化リチウム(LiCl)などのLi/Li天然比溶液7を導入する導入路8およびLi/Li天然比溶液からLiが減損したLi減損液9を導出する導出路10が接続される。 An anode electrode 5 is disposed in the lithium solution tank 3, and a cathode electrode 6 is disposed in the 6 Li separation / concentration tank 4. From the introduction path 8 and the 6 Li / 7 Li natural ratio solution for introducing the 6 Li / 7 Li natural ratio solution 7 such as lithium chloride (LiCl) in which 6 Li and 7 Li are mixed in the natural ratio in the lithium solution tank 3. A lead-out path 10 for leading out the 6 Li-depleted liquid 9 in which 6 Li is impaired is connected.

Li分離濃縮槽4にはLiおよびLiが天然比で混在する例えば塩化リチウム(LiCl)溶液を導入する導入路12およびLi濃縮液13を導出する導出路14が接続される。そして、Li濃縮液13にLi回収14がなされる。 The 6 Li separation / concentration tank 4 is connected to an introduction path 12 for introducing, for example, a lithium chloride (LiCl) solution in which 6 Li and 7 Li are mixed in a natural ratio, and an outlet path 14 for deriving the 6 Li concentrated liquid 13. Then, 6 Li concentrated solution 13 in the 6 Li recovery 14 is made.

リチウムイオン選択的透過膜2は、リチウムイオン伝導性を有するイオン液体あるいは該イオン液体にさらにリチウム選択的吸着性を有するクラウンエーテル化合物を混合溶解させたものを疎水性多孔質体(多孔質膜を含む)15に含浸保持(イオン液体含浸保持16)させて構成される。   The lithium ion selective permeable membrane 2 is a hydrophobic porous body (porous membrane formed by mixing and dissolving an ionic liquid having lithium ion conductivity or a crown ether compound having lithium selective adsorptivity in the ionic liquid. 15) is impregnated and held (ionic liquid impregnated and held 16).

リチウムイオン選択性のあるイオン液体としてTMPA−TFSI(正式化学名:N,N,N-Trimethyl-N-propylammonium bis(trifluoromethanesulfonyl) imide)あるいはPP3−TFSI(正式化学名:N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl) imide)が使用されるが他のイオン液体であってもよい。他のイオン液体として、例えば、
1-Alkyl-3methylimidazoliumをカチオンとしてTFSIアニオン((CF3SO2)2N-)を組み合わせたイオン液体として、1-Ethyl-3methylimidazolium bis(trifluoromethanesulfonyl)imide や、1-Ethyl -2,3methylimidazolium bis(trifluoromethanesulfonyl)imide などのイミダゾリウム系イオン液体があり、1-Ethylpyridinium bis(trifluoromethanesulfonyl)imide や 1-Butylpyridinium bis(trifluoromethanesulfonyl)imide などのピリジニウム系イオン液体、Trimethylphosphonium bis(trifluoromethanesulfonyl)imide、Polyethyleneoxide(PEO) bis(trifluoromethanesulfonyl)imideなどのイオン液体、他にもスルフォン酸型Zwitterion、カルボン酸型Zwitterion、イミド酸型Zwitterion、ボレート型ZwitterionにそれぞれTFSIアニオンのイオン液体、以上のリチウムイオン伝導性イオン液体としては、TFSIアニオンを含むものが良好なリチウムイオン伝導性を有する。
さらに、それらイオン液体に混合溶解してリチウム同位体分離特性を高めるクラウンエーテル化合物としては、12−クラウン−4−エーテルが適している。いずれにしても本実施例にあっては、LiイオンとLiイオンを分離するに当って、リチウム同位体分離のために水溶液であるイオン液体あるいはそのイオン液体にクラウンエーテルを混合溶解させたものを使用することを特徴とする。
TMPA-TFSI (formal chemical name: N, N, N-Trimethyl-N-propylammonium bis (trifluoromethanesulfonyl) imide) or PP3-TFSI (formal chemical name: N-Methyl-N-propylpiperidinium) as an ionic liquid having lithium ion selectivity bis (trifluoromethanesulfonyl) imide) is used, but other ionic liquids may be used. Other ionic liquids, for example
The 1-Alkyl-3methylimidazolium TFSI anion as cation ((CF 3 SO 2) 2 N -) as an ionic liquid which is a combination of, or 1-Ethyl-3methylimidazolium bis (trifluoromethanesulfonyl ) imide, 1-Ethyl -2,3methylimidazolium bis (trifluoromethanesulfonyl ) imide and other imidazolium-based ionic liquids, such as 1-Ethylpyridinium bis (trifluoromethanesulfonyl) imide and 1-Butylpyridinium bis (trifluoromethanesulfonyl) imide, trimethylphosphonium bis (trifluoromethanesulfonyl) imide, Polyethyleneoxide (PEO) bis (trifluoromethanesulfonyl) ) Ionic liquids such as imide, sulfonic acid type Zwitterion, carboxylic acid type Zwitterion, imidoic acid type Zwitterion, borate type Zwitterion, TFSI anion ionic liquid, and the above lithium ion conductive ionic liquid, TFSI anion The inclusions have good lithium ion conductivity.
Furthermore, 12-crown-4-ether is suitable as a crown ether compound which is mixed and dissolved in these ionic liquids to enhance lithium isotope separation characteristics. In any case, in this example, in separating 6 Li ions and 7 Li ions, an ionic liquid that is an aqueous solution or a crown ether was mixed and dissolved in the ionic liquid to separate lithium isotopes. It is characterized by using things.

透過法として、電気透過法あるいは塩素濃度透析法が用いられるが、他の透析法であってもよい。   As the permeation method, an electropermeation method or a chlorine concentration dialysis method is used, but other dialysis methods may be used.

図2は、リチウム選択的透過膜2を円筒形に構成した例を示す。
図2(a)に示すように、円筒形に構成されたリチウムイオン選択的透過膜2は円筒状の胴体1の中央部周囲に配置され、外周部にLi溶液槽3が、そしてリチウムイオン選択性透過膜2の中央部、すなわち胴体1の中央部にLi濃縮槽4が形成される。Li分離濃縮槽4には、図1と同様にリチウム溶液13の導入路12、Li濃縮溶液13の導出路14が接続される。
FIG. 2 shows an example in which the lithium selective permeable membrane 2 is formed in a cylindrical shape.
As shown in FIG. 2 (a), a lithium ion selective permeable membrane 2 configured in a cylindrical shape is disposed around the central portion of a cylindrical body 1, a 6 Li solution tank 3 on the outer peripheral portion, and a lithium ion A 6 Li concentration tank 4 is formed at the center of the selective permeable membrane 2, that is, at the center of the body 1. The 6 Li separation / concentration tank 4 is connected to an introduction path 12 for the lithium solution 13 and a lead-out path 14 for the 6 Li concentrated solution 13 as in FIG.

図2(b)に示すように、リチウムイオン選択的透過膜2は円筒型に、疎水性多孔質膜15(図1)にイオン液体を含浸保持16(図1)したイオン液体含浸部16Aを構成する。イオン液体含浸多孔質隔膜で形成される。この多孔質隔膜の材質としては、例えばテフロン(登録商標)などの撥水性材料が望ましい。   As shown in FIG. 2B, the lithium ion selective permeable membrane 2 has a cylindrical shape, and an ionic liquid impregnated portion 16A in which a hydrophobic porous membrane 15 (FIG. 1) is impregnated and held 16 (FIG. 1). Constitute. It is formed of an ionic liquid impregnated porous diaphragm. As a material of the porous diaphragm, a water repellent material such as Teflon (registered trademark) is desirable.

図2(b)のA部断面拡大図を図2(c)に示す。図2(c)において、イオン液体を、表面(外表面、内表面)が密構造で、内部が粗構造の多孔質体(多孔質膜を含む。)のフィルタ状物質に含浸させることで、粗部分の含浸部をイオンが比較的自由に動き得るようにして、内外表面部でイオン液体が多孔質体外へ脱離することを低減あるいは防止することができる。この円筒内外表面に疎水性多孔質膜を貼付けることも、イオン液体の脱離防止に効果的である。   FIG. 2C shows an enlarged cross-sectional view of the A part in FIG. In FIG. 2C, the ionic liquid is impregnated into a filter-like substance of a porous body (including a porous film) having a dense structure on the surface (outer surface, inner surface) and a rough structure on the inside, It is possible to reduce or prevent the ionic liquid from desorbing from the porous body at the inner and outer surface portions by allowing ions to move relatively freely in the impregnated portion of the rough portion. Adhering a hydrophobic porous membrane to the inner and outer surfaces of the cylinder is also effective in preventing the ionic liquid from being detached.

図2に示す例にあってはリチウムイオン選択的透過膜2を円筒形に形成したが、平板状に形成して平板状隔膜構成とすることもでき、構成は上述した図1と同様とすることができる。   In the example shown in FIG. 2, the lithium ion selective permeable membrane 2 is formed in a cylindrical shape. However, the lithium ion selective permeable membrane 2 can be formed in a flat plate shape to have a flat plate-like diaphragm configuration, and the configuration is the same as in FIG. be able to.

本発明は、Liイオンの同位体を選択的に分離回収するに当ってイオン液体あるいはイオン液体にクラウンエーテル化合物を混合溶解したものを多孔質隔膜に含浸させたものを使用することを特徴とし、Liイオンの選択的透過性を有するイオン液体を含浸させた無機あるいは有機の多孔質隔膜を用いて透析法によってLiイオンとLiイオンに分離することを原理とする。LiイオンとLiイオンではイオン半径がわずかに異なるだけでなく、イオンの移動度はイオンの質量に依存することにより、イオン液体含浸多孔隔膜中のLi同位体毎のイオン伝導速度に差が生じるため、伝導速度の速いLiがイオン液体含浸多孔隔膜(特に有機質の多孔隔膜)を通して選択的に回収される。 The present invention is characterized by using a porous membrane impregnated with an ionic liquid or a mixture of a crown ether compound and dissolved in an ionic liquid when selectively separating and recovering Li ion isotopes, The principle is to separate into 6 Li ions and 7 Li ions by a dialysis method using an inorganic or organic porous membrane impregnated with an ionic liquid having selective permeability of Li ions. 6 Li ions and 7 Li ions not only have slightly different ionic radii, but the ion mobility depends on the mass of the ions, so that there is a difference in the ionic conduction velocity for each Li isotope in the ionic liquid-impregnated porous diaphragm. As a result, 6 Li having a high conduction speed is selectively recovered through an ionic liquid-impregnated porous diaphragm (particularly an organic porous diaphragm).

図1に示すように、天然同位体比のLi水溶液(Li/Li天然比溶液7、アノード側)とLiが透過する溶液(Li/Li天然比溶液11、カソード側)の間で、Liイオンに選択的吸着性を有するイオン液体を含浸した多孔隔膜(リチウムイオン選択的透過膜2)の両側に電位を加えることにより、イオン液体含浸多孔質隔膜を通してLiイオンのみが移動する。移動の際、LiイオンはLiイオンより移動速度が速いため、Liイオンは速くLi分離濃縮槽4に移動し、Liは、リチウム溶液槽3に多く留まる。Li移動後には、カソード側でLiが濃縮された溶液となり、一方元の溶液であるリチウム溶液はLiが減損し、Li濃度が移動前のLi/Liの比に比べて増大した状態になる。 As shown in FIG. 1, natural Li isotope ratio Li aqueous solution ( 6 Li / 7 Li natural ratio solution 7, anode side) and 6 Li permeate solution ( 6 Li / 7 Li natural ratio solution 11, cathode side) In the meantime, by applying a potential to both sides of a porous membrane (lithium ion selective permeable membrane 2) impregnated with an ionic liquid having selective adsorptivity to Li ions, only Li ions move through the ionic liquid-impregnated porous membrane. . During movement, 6 Li ions move faster than 7 Li ions, so 6 Li ions move quickly to the 6 Li separation and concentration tank 4, and 7 Li remains in the lithium solution tank 3 in a large amount. After 6 Li moved, 6 Li becomes enriched solution at the cathode side, whereas lithium solution is the original solution 6 Li is impaired, the 7 Li concentration than the ratio of 6 Li / 7 Li before movement Increased state.

分離濃縮されたLi液はLi回収溶液(Li/Li天然比LiCl溶液)に伴われてLi濃縮液13として取り出され、Li回収14される。一方、Liが減損したリチウム溶液(Li減損液9)からはLiの減損に伴って相対的に濃度の増したLiがLi濃縮液として回収される。 6 Li liquid separated enriched is taken as 6 Li recovery solution (6 Li / 7 Li natural ratio LiCl solution) to accompanied being by 6 Li concentrated liquid 13 is 6 Li recovered 14. On the other hand, from the lithium solution in which 6 Li is depleted ( 6 Li depleted solution 9), 7 Li having a relatively increased concentration with the loss of 6 Li is recovered as a 7 Li concentrated solution.

図3は、イオン液体としてTMPA−TESIあるいはPP13−TFSIを使用した場合のLi同位体分離試験効果を示す。   FIG. 3 shows the Li isotope separation test effect when TMPA-TESI or PP13-TFSI is used as the ionic liquid.

図3においては、X軸は印加する電流の強さを示し、Y軸はLi分離係数を示す。Li同位体分離濃縮体を得るには、Li同位体分離係数が高く、Li回収量の多いことが望ましい。印加する電流を増加させるといずれかの場合にあっても従来例に比べ格段に高いLi分離係数が得られる。30mA以上にあっては大きなLi分離係数が得られないが、10mA以内において従来例に比べて格段に高いLi分離係数が得られる。PP13−TFSIの場合、約3mAの場合に1.20という極めて高いLi分離係数が得られる。従来の方法であるアマルガム法のLi分離係数が1.04〜1.09、イオン交換法の1.001〜1.01に比べ、本発明の場合はLi分離係数が非常に高く1.15〜1.40の効率でLiを分離回収できることが判る。 In FIG. 3, X-axis represents the intensity of the current to be applied, Y axis represents the 6 Li separation factor. In order to obtain a Li isotope separation concentrate, it is desirable that the Li isotope separation factor is high and the amount of recovered Li is large. When the current to be applied is increased, a 6 Li separation coefficient that is significantly higher than that of the conventional example can be obtained in any case. If it is 30 mA or more, a large 6 Li separation coefficient cannot be obtained, but a 6 Li separation coefficient much higher than that of the conventional example can be obtained within 10 mA. In the case of PP13-TFSI, a very high 6 Li separation factor of 1.20 is obtained at about 3 mA. 6 Li separation factor of the amalgam method, which is a conventional method is 1.04 to 1.09, compared with 1.001 to 1.01 of an ion exchange method, very is 6 Li separation factor in the case of the present invention high 1. It can be seen that 6 Li can be separated and recovered with an efficiency of 15 to 1.40.

図4は、本実施例による透析電流の強さに対するLi同位体分離係数の値を示すLi同位体分離試験結果である。この条件においても図3と同様に、従来例に比べて格段に高い6Li同位体分離係数が得られている。従って、格段に高いLi同位体分離効率があることが判る。 FIG. 4 is a Li isotope separation test result showing the value of 6 Li isotope separation coefficient with respect to the intensity of dialysis current according to this example. Even under this condition, as in FIG. 3, a 6 Li isotope separation factor much higher than that of the conventional example is obtained. Therefore, it can be seen that there is a remarkably high 6 Li isotope separation efficiency.

図5はイオン液体の種類を変え、リチウムイオン選択的透過膜の隔膜厚、透過電流、LiCl濃度を変化させた場合に得られるLi同位体分離係数を示す。この場合に使用したイオン液体(TMPA−TFSI)の場合は、図4に比べ低いLi同位体分離係数であり、従来法のアマルガム法に比べて同様程度のLi同位体分離係数が得られているが、この場合のイオン液体(TMPA−TFSI)の場合は、Liの収量が高いことが特徴である。従って、格段に高いLi同位体分離効率があることが判る。 FIG. 5 shows the 6 Li isotope separation factor obtained when the type of ionic liquid is changed and the diaphragm thickness, permeation current, and LiCl concentration of the lithium ion selective permeable membrane are changed. For the ionic liquid used in this case (TMPA-TFSI), a 6 Li isotope separation factor lower than that of FIG. 4, 6 Li isotope separation factor of about similar as compared to the amalgam method of the prior art is obtained However, the ionic liquid (TMPA-TFSI) in this case is characterized by a high yield of 6 Li. Therefore, it can be seen that there is a remarkably high 6 Li isotope separation efficiency.

図6も同様のLi同位体分離効率が得られた結果を示す。この図の場合、X軸にリチウム溶液槽のLiCl濃度を表示し、Y軸にLi同位体分離係数を表示している。 FIG. 6 also shows the result of obtaining the same 6 Li isotope separation efficiency. In this figure displays a LiCl concentration of lithium solution tank to the X-axis, and displays the 6 Li isotope separation factor in the Y-axis.

図7は、多段型電気透析セル構造のLi同位体分離濃縮装置(多段型Li同位体分離濃縮装置)200を示す。この多段型Li同位体分離濃縮装置200は、図1に示す単セル型電気透析構造のリチウム同位体分離濃縮装置100を多段化することによって構成される。   FIG. 7 shows a Li isotope separation and concentration apparatus (multistage Li isotope separation and concentration apparatus) 200 having a multistage electrodialysis cell structure. The multi-stage Li isotope separation and concentration apparatus 200 is configured by multi-stages the lithium isotope separation and concentration apparatus 100 having a single cell type electrodialysis structure shown in FIG.

図7において、多段型Li同位体分離濃縮装置200は、胴体1内に多数の単セル型のリチウム同位体分離濃縮装置100(単セル)が組み込まれて構成され、図には5つの単セル100を組み込んだ例を示す。   In FIG. 7, a multistage Li isotope separation / concentration device 200 is configured by incorporating a large number of single-cell type lithium isotope separation / concentration devices 100 (single cells) into the body 1. An example incorporating 100 is shown.

胴体1には、極液21を導入する導入路22、排出23する排出路24が接続してある。胴体1内の極液のある周辺部に図1に示すと同様にカソード電極6A、アノード電極5Aが設けてある。   The body 1 is connected to an introduction path 22 for introducing the polar liquid 21 and a discharge path 24 for discharging 23. As shown in FIG. 1, a cathode electrode 6A and an anode electrode 5A are provided in the periphery of the body 1 where the polar liquid is present.

単セル100は、リチウム溶液槽3、Li分離濃縮槽4およびその間のリチウム選択的透過膜2から構成され、図にあってはKLiと表示してあり、公知の有機隔膜電気透析法が適用可能となる。 The single cell 100 is composed of a lithium solution tank 3, a 6 Li separation / concentration tank 4, and a lithium selective permeable membrane 2 therebetween, which is indicated as K Li in the figure, and a known organic diaphragm electrodialysis method is used. Applicable.

単セル100の間、すなわちリチウム溶液槽3と隣接するLi分離濃縮槽4との間には陰イオン透析膜25が配設してあり、図にあってはAと表示してある。 During the unit cell 100, that is, between the lithium solution chamber 3 and the adjacent 6 Li separating and concentrating tank 4 Yes by arranging anion permeable membrane 25, in the drawings are indicated as A.

単セル間の隣接するリチウム溶液槽3間は接続配管26によってそれぞれ接続され、Li分離濃縮槽4間は接続配管27によってそれぞれ接続される。図に示すように、接続配管26と接続配管27とは向流するようにされており、従ってリチウム溶液およびLi分離濃縮液は向流し、逆方向に流れることになる。 The adjacent lithium solution tanks 3 between the single cells are connected by connection pipes 26, and the 6 Li separation and concentration tanks 4 are connected by connection pipes 27, respectively. As shown, the connecting pipe 26 and the connecting pipe 27 are adapted to countercurrent, thus lithium solution and 6 Li separated concentrate flow direction, will flow in the opposite direction.

脱塩側にあるリチウム溶液槽3にはLiCl溶液31を導入する導入路32が接続され、濃縮側にあるリチウム溶液槽3には低塩(Li濃縮)38Aを排出する導出路35が接続される。 An introduction path 32 for introducing the LiCl solution 31 is connected to the lithium solution tank 3 on the desalting side, and a lead-out path 35 for discharging low salt ( 7 Li concentrated) 38A is connected to the lithium solution tank 3 on the concentration side. Is done.

濃縮側にあるLi分離濃縮槽4にはLiCl溶液36を導入する導入路37が接続され脱塩側にあるLi分離濃縮槽4にはLi濃縮溶液38を回収する導出路39が接続される。 6 Li separation outlet passage 39 to the concentration tank 4 for collecting the 6 Li concentrated solution 38 in the 6 Li separation concentration tank 4 in the desalting side is connected introduction passage 37 for introducing the LiCl solution 36 is connected on the concentration-side Is done.

各セル100でリチウム溶液からイオン液体を用いた有機隔膜電気透析法の適用によって、Liが分離され、各接続配管27を介して順次Li分離濃縮4を流れて順次濃縮度を増しながら最終段の脱塩側のLi分離濃縮槽4からLi濃縮溶液38として回収され、多段Li濃縮処理によってLi高濃縮液39とされる。 By applying an organic diaphragm electrodialysis method using an ionic liquid from a lithium solution in each cell 100, 6 Li is separated, and sequentially flows through 6 Li separation and concentration 4 through each connection pipe 27, and finally increases the concentration. recovered from 6 Li separating and concentrating tank 4 desalting side of the step as a 6 Li concentrated solution 38, is a 6 Li high concentrate 39 by multistage 6 Li concentration treatment.

一方各セル100内においてLiの分離によって濃縮されたLiは接続配管26を流過し、濃縮側のリチウムの濃縮槽3から回収される。LiからみるとLi減損溶液とされ、LiからみるとLi濃縮溶液となる。 On the other hand, 7 Li concentrated by the separation of 6 Li in each cell 100 flows through the connection pipe 26 and is recovered from the lithium concentration tank 3 on the concentration side. When viewed from 6 Li, it is a 6 Li depleted solution, and when viewed from 7 Li, it is a 7 Li concentrated solution.

回収されたLi濃縮溶液はLi濃縮溶液38と同様にLi濃縮溶液38Aとされ、多段Li濃縮処理されて、順次濃縮度を増してLi高濃縮液39Aとされる。 Recovered 7 Li enriched solution is similarly to 7 Li concentrated solution 38A and 6 Li concentrated solution 38, are multistage 7 Li concentration treatment, are increased sequentially enrichment 7 Li High concentrate 39A.

このようにLiイオンとLiイオンを分離するイオン液体含浸有機隔膜を配した電気透析セルを多段(カスケード)に配置し、それら多段電気透析セル間を交互に繋ぎ天然同位体比のLi水溶液を通液し電極に電位を印加することで、Liが高濃度に濃縮したLi濃縮流(Li減損流)とLiが減損した高濃度のLi濃縮流が得られる。 In this way, electrodialysis cells having an ionic liquid-impregnated organic diaphragm separating 6 Li ions and 7 Li ions are arranged in multiple stages (cascades), and these multistage electrodialysis cells are alternately connected to each other, and an aqueous Li solution having a natural isotope ratio. the passed through and by applying a potential to the electrodes, 6 Li is high 6 Li enriched stream concentrated in the concentration (7 Li depleted stream) and a high concentration of 7 Li enriched stream 6 Li is impaired is obtained.

有機隔膜電気透析法のメリットとしては次の事項が挙げられる。
・工業化し易い方法
・スケールアップ可能
・生産性が高く経済的な方法
・同位体分離係数が高い
以下、図7に示す本方式の多段型Li同位体分離濃縮装置200をKLi−A複合隔膜方式電気透析セルと称する。
The following matters are mentioned as the merit of the organic diaphragm electrodialysis method.
· Industrialized easily method, scaleable, high productivity economical method, isotope separation factor less high, the multistage Li isotope separation concentrator 200 of the present system shown in FIG. 7 K Li -A composite membrane This is called a system electrodialysis cell.

図8は、図7に示す多段型Li同位体分離濃縮装置200の変形例を示す。同一の構成には同一の番号を付してある。図8に示す多段型Li同位体分離濃縮装置200にあっては、図7に“A”で示す陰イオン透析膜25は、カソード電極直近部のみ使用し、他はKLiで示すリチウム選択的透過膜だけを使用している。Liが隣接するリチウムリチウム溶液槽とLi分離濃縮槽に次々に透過され、高濃縮されることになる。この例はLiについて高濃縮しているが、同様にしてLiについても高濃縮することができる。以下、図8に示す本方式の多段型Li同位体分離濃縮装置200をKLi隔膜方式電気透析セルと称する。 FIG. 8 shows a modification of the multistage Li isotope separation and concentration apparatus 200 shown in FIG. The same number is attached | subjected to the same structure. In the multistage Li isotope separation / concentration apparatus 200 shown in FIG. 8, the anion dialysis membrane 25 shown by “A” in FIG. 7 is used only in the immediate vicinity of the cathode electrode, and the others are lithium selective shown by K Li. Only permeable membranes are used. 6 Li is permeated one after another to the adjacent lithium lithium solution tank and 6 Li separation / concentration tank to be highly concentrated. In this example, 6 Li is highly concentrated, but similarly 7 Li can be highly concentrated. Hereinafter, the multi-stage Li isotope separation / concentration device 200 of this system shown in FIG. 8 is referred to as a K Li diaphragm type electrodialysis cell.

図9に、図7に示す多段型Li同位体分離濃縮装置200によって構成される電気透析式多段型Li同位体分離系に、イオン交換樹脂濃縮による濃縮Li同位体回収系301、電解透析による電解透析LiOH回収系302に接続してLi高濃縮液を得るLi高濃縮回収システム300を示す。図9にはLi高濃縮液を回収するシステムについて示すが、Li濃縮液も同様にして回収させる。 FIG. 9 shows an electrodialysis multi-stage 6 Li isotope separation system constituted by the multi-stage Li isotope separation and concentration apparatus 200 shown in FIG. 7, a concentrated 6 Li isotope recovery system 301 by ion exchange resin concentration, and electrodialysis. 6 shows a 6 Li highly concentrated recovery system 300 that is connected to the electrodialyzed 6 LiOH recovery system 302 to obtain a 6 Li highly concentrated solution. Although FIG. 9 shows a system for recovering the 6 Li concentrated solution, the 7 Li concentrated solution is recovered in the same manner.

図9において、多段型Li同位体分離濃縮装置200の構成は図5に示すものと同一であるのでこれ以上は説明しない。この図において、LiCl粉末41、42は水溶液のLi溶液(脱塩側)31、LiCl溶液(濃縮側)36とされ、その場合にそれぞれLi濃度及びLi/Li比分析43、44がなされLi同位体分離濃縮体回収のデータとなる。 In FIG. 9, the configuration of the multistage Li isotope separation and concentration apparatus 200 is the same as that shown in FIG. In this figure, LiCl powders 41 and 42 are an Li solution (desalting side) 31 and a LiCl solution (concentration side) 36 of an aqueous solution, in which case Li concentration and 6 Li / 7 Li ratio analysis 43 and 44 are performed, respectively. It becomes data of Li isotope separation concentrate collection.

濃縮Li同位体回収系301は陽イオン交換樹脂51を用いた陽イオン交換樹脂濃縮回収装置50によって構成される。図では2塔の陽イオン交換樹脂濃縮回収装置50が図示してある。 The concentrated 6 Li isotope recovery system 301 is constituted by a cation exchange resin concentration recovery device 50 using a cation exchange resin 51. In the figure, two towers of cation exchange resin concentration recovery apparatus 50 are shown.

各陽イオン交換樹脂濃縮回収装置50下部には多段型Li同位体分離濃縮装置200で回収されたLi濃縮溶液38が配管52を介して導入される。濃縮Li成分は陽イオン交換樹脂51に吸着される。吸着されたLi成分は配管54を介して導入される陽イオン交換樹脂溶離のための再生液53としての塩酸溶液によって脱着され、陽イオン交換樹脂濃縮回収装置50上部からLi高濃縮回収液56として回収される。 The 6 Li concentrated solution 38 recovered by the multistage Li isotope separation / concentration device 200 is introduced through the pipe 52 to the lower part of each cation exchange resin concentration recovery device 50. The concentrated 6 Li component is adsorbed by the cation exchange resin 51. Regeneration liquid is desorbed by a solution of hydrochloric acid as a 53, 6 Li high concentration recovery solution from the cation exchange resin concentration recovery device 50 the top for the cation exchange resin, eluting 6 Li component adsorbed is introduced through a pipe 54 56 is collected.

Li高濃縮回収液56は配管55を介して電解透析LiOH回収系302に導かれる。 The 6 Li highly concentrated recovery liquid 56 is guided to the electrodialysis 6 LiOH recovery system 302 via the pipe 55.

陽イオン交換樹脂濃縮回収装置50から排出される樹脂再生廃液57は配管57を介して回収され、図におけるLiCl溶液31あるいは陽イオン交換樹脂溶離用の再生液53として再利用される。   The resin regeneration waste liquid 57 discharged from the cation exchange resin concentration recovery apparatus 50 is recovered through the pipe 57 and reused as the LiCl solution 31 or the regeneration liquid 53 for cation exchange resin elution in the figure.

電解透析LiOH回収系302は電解透析回収装置60によって構成される。電解透析濃縮回収装置60としては周知の電解透析装置が採用される。 Electrodialysis 6 The LiOH recovery system 302 is constituted by an electrodialysis recovery device 60. As the electrodialysis concentration recovery apparatus 60, a known electrodialysis apparatus is employed.

電解透析濃縮回収装置60において、Aには陰イオン透析膜が使用され、Kには陽イオン透析膜が使用される。電解透析装置60のカソード反応及びアノード反応は次のようになる。
[カソード反応] 2Li+2HO+2e → 2LiOH+H
[アノード反応] 2Cl+HO−2e → 2HCl+1/2O
LiOH回収液61は配管62から回収される。
In the electrodialysis concentration recovery apparatus 60, an anion dialysis membrane is used for A, and a cation dialysis membrane is used for K. The cathode reaction and anode reaction of the electrodialyzer 60 are as follows.
[Cathode reaction] 2Li + + 2H 2 O + 2e → 2LiOH + H 2
[Anode Reaction] 2Cl + H 2 O-2e → 2HCl + 1 / 2O 2
6 The LiOH recovery liquid 61 is recovered from the pipe 62.

電解透析濃縮回収装置60において、共存する塩素イオンを除去回収し、目的とする高濃度LiOHを回収する。この高濃度LiOH溶液を加熱して水分を除去し乾燥することで、目的とするLiOH・HO粉末65を得る。この濃縮LiOH・HOは、Liの濃縮されたLiOH・HOあるいはLiの濃縮されたLiOH・HOとなる。 In the electrodialysis concentration recovery device 60, the coexisting chlorine ions are removed and recovered, and the target high concentration LiOH is recovered. This high-concentration LiOH solution is heated to remove moisture and dried to obtain the target LiOH · H 2 O powder 65. The concentrated LiOH · H 2 O becomes concentrated 7 LiOH · H 2 O in concentrated 6 LiOH · H 2 O or 7 Li of 6 Li.

電解透析濃縮回収装置60において、陰イオン透析膜で透析反応によって生成された塩素イオンは塩酸63に変換されて、配管64を介して陽イオン交換樹脂溶離、用の再生液53として回収される。   In the electrolytic dialysis concentration recovery device 60, the chlorine ions generated by the dialysis reaction at the anion dialysis membrane are converted into hydrochloric acid 63 and recovered as a regenerated solution 53 for elution of the cation exchange resin via the pipe 64.

濃縮LiOH回収液61は乾燥処理されて濃縮LiOH・HOの粉末65とされる。これらの系統において、各溶液についてLi濃度及びLi/Li比分析43−49がなされる。 The concentrated 6 LiOH recovery liquid 61 is dried to obtain concentrated 6 LiOH.H 2 O powder 65. In these systems, Li concentration and 6 Li / 7 Li ratio analysis 43-49 is performed for each solution.

原料となるリチウム天然同位体比の塩化リチウムLiClの水溶液を多段型Li同位体分離濃縮装置200の多段に構成された単セルに導入し、各セルでLiとLiを分離することで、Liが濃縮したLi減損流とLiが減損したLi濃縮流が得られる。多段の単セルで所定の濃縮Li水溶液を得た後、陽イオン交換樹脂でLi濃縮Li成分を捕集した後、その捕集したLi濃縮Li成分を塩酸などで溶離して高濃縮Li濃縮Li成分を得る。さらに、この高濃縮されたLi濃縮Li成分を電解透析法により、水酸化リチウム(LiOH)溶液と塩酸溶液に分解回収する。この結果、電解透析槽のカソード側に回収されるLiOH溶液は、Li濃縮Li成分を含む。電解透析槽のアノード側には、電解透析処理によって塩酸が回収される。この回収塩酸は、前段の陽イオン交換樹脂で捕集したLi濃縮Li成分の回収のための溶離液として再利用される。 By introducing an aqueous solution of lithium chloride LiCl having a natural lithium isotope ratio as a raw material into a multi-stage single cell of the multi-stage Li isotope separation and concentration apparatus 200, and separating 6 Li and 7 Li in each cell, 6 Li is 7 Li enriched stream 7 Li depleted stream and 6 Li and concentrating is impaired is obtained. After obtaining a predetermined concentrated 6 Li aqueous solution in a multi-stage single cell, the 6 Li concentrated Li component is collected with a cation exchange resin, and the collected 6 Li concentrated Li component is eluted with hydrochloric acid or the like to be highly concentrated. 6 Li-concentrated Li component is obtained. Further, this highly concentrated 6 Li concentrated Li component is decomposed and recovered into a lithium hydroxide (LiOH) solution and a hydrochloric acid solution by electrodialysis. As a result, the LiOH solution recovered on the cathode side of the electrodialysis tank contains a 6 Li-concentrated Li component. On the anode side of the electrodialysis tank, hydrochloric acid is recovered by electrodialysis treatment. The recovered hydrochloric acid is reused as an eluent for recovering the 6 Li-concentrated Li component collected by the cation exchange resin in the previous stage.

一方、Liが減損して得られたLi濃縮液から同様にして陽イオン交換樹脂および電解透析法の適用によって濃縮LiOH回収液、更には濃縮LiOH、HOの粉末を得る。 On the other hand, a concentrated 7 LiOH recovery liquid and further concentrated 7 LiOH and H 2 O powders are obtained from the 7 Li concentrated liquid obtained by depletion of 6 Li by the application of a cation exchange resin and electrodialysis.

このようにして、リチウム同位体分離濃縮装置100が、リチウムイオン選択的透過膜2とリチウム溶液槽3とが隣接するようにして多段に配置されて、Li濃縮体あるいはLi濃縮体が生成させ、生成されたLi濃縮体あるいはLi濃縮体からLiまたはLiを陽イオン交換樹脂51によって濃縮回収する陽イオン交換樹脂回収装置50および電解透析プロセスによって更に濃縮して回収する電解透析濃縮回収装置60を設けて、濃縮されたLiまたはLiを回収するLiまたはLi高濃縮回収システム300を構成するLiまたはLi濃縮回収システム300によりLi濃縮物またはLi濃縮物が回収される。 In this way, the lithium isotope separation and concentration apparatus 100 is arranged in multiple stages so that the lithium ion selective permeable membrane 2 and the lithium solution tank 3 are adjacent to each other, thereby producing a 6 Li concentrate or a 7 Li concentrate. The cation exchange resin recovery device 50 for concentrating and recovering 6 Li or 7 Li from the produced 6 Li concentrate or 7 Li concentrate by the cation exchange resin 51 and electrodialysis for further concentration recovery by the electrodialysis process A concentration recovery device 60 is provided to recover the concentrated 6 Li or 7 Li. The 6 Li or 7 Li concentrated recovery system 300 constituting the 6 Li or 7 Li high concentration recovery system 300 constitutes the 6 Li concentrate or 7 Li concentration. Things are collected.

Li分離濃縮液38のデータを示せば次の通りである。 The data of 6 Li separation concentrate 38 is as follows.

Li天然同位体比=Li(7.59%):Li(92.41%)
単セルによるLi同位体分離係数:1.20(Li9.11%)
10段連続濃縮セルの場合のLi同位体分離係数:6.19(Li47.0%)
Li分離濃縮液56のデータを示せば次の通りである。
Li natural isotope ratio = 6 Li (7.59%): 7 Li (92.41%)
6 Li isotope separation factor of single cell: 1.20 (6 Li9.11%)
6 Li isotope separation factor in the case of a 10-stage continuous concentration cell: 6.19 ( 6 Li 47.0%)
The data of 6 Li separation concentrate 56 is as follows.

10段連続濃縮セルの場合のLi同位体(47.0%)の溶液中Li濃度(例えば0.2M/L)を10−25倍に増大して、2.0〜5.0M/Lの高濃縮Li溶液を回収する。 The Li concentration (for example, 0.2 M / L) in the solution of 6 Li isotope (47.0%) in the case of the 10-stage continuous concentration cell is increased 10 to 25 times to be 2.0 to 5.0 M / L. The highly concentrated Li solution is recovered.

図10は、図9に示すLiまたはLi高濃縮回収システムについてのシステムフローを示す。 FIG. 10 shows a system flow for the 6 Li or 7 Li highly concentrated recovery system shown in FIG.

図10に示す例にあっては、透析法として電気透析法あるいは塩濃度勾配透析法を用いている。これらを併用してシステムフローを形成することもできる。   In the example shown in FIG. 10, an electrodialysis method or a salt concentration gradient dialysis method is used as the dialysis method. These can be used together to form a system flow.

以上のように構成されるLiまたはLi(LiおよびLiを含む。)高濃度回収システム300によるLiまたはLi高濃度回収法は、常温で同位体分離と濃縮運転が可能であり、消費電力が少なく、同位体分離係数が高くLi、Liの高濃縮回収ができる。 The 6 Li or 7 Li high concentration recovery method using the 6 Li or 7 Li (including 6 Li and 7 Li) high concentration recovery system 300 configured as described above can perform isotope separation and concentration operation at room temperature. Yes, low power consumption, high isotope separation factor, and highly concentrated recovery of 6 Li and 7 Li.

本発明によれば、Li同位体の大量製造のためのスケールアップが容易なだけでなく、これまで唯一実用化されている水銀アマルガム法の同位体分離係数(約1.06)を超える分離係数を得ることができる。   According to the present invention, not only the scale-up for mass production of Li isotopes is easy, but also a separation factor exceeding the isotope separation factor (about 1.06) of the mercury amalgam method which has been put to practical use until now. Can be obtained.

図11は、図7に示すKLi−A複合隔膜方式電気透析セル200と図8に示すKLi隔膜方式電気透析セル200を用いて構成したLi同位体分離カスケード400としてシステム化した例を示す。 Figure 11 shows an example of the system as K Li -A composite diaphragm type electrodialysis cell 200 and Li isotope separation cascade 400 constructed using the K Li diaphragm type electrodialysis cell 200 shown in FIG. 8 as shown in FIG. 7 .

図11において、Li同位体分離カスケード400は、Liの1段濃縮および2段濃縮にKLi−A複合隔膜方式電気透析セル200を用い、本例で最終段とされた多段濃縮にKLi隔膜方式電気透析セル200を用いている。それぞれの電気透析セルについては、図7および図8に示して説明してあるので、内部詳細説明は割愛し、接続関係について説明する。本例にあっては、1段濃縮に3つの、そして2段濃縮に2つのKLi−A複合隔膜方式電気透析セル200を用いているが、これらの数には限定されない。いずれにしても段数が上るに従って用いられる電気透析セル200数が溶液量との関係で減少する。1段濃縮で得られた1段濃縮Li401は2つに分岐されて、2段目のKLi−A複合隔膜方式電気透析セル200のLiCl溶液(Li濃縮側)とされてリチウム溶液槽3に導入され、(1段濃縮Li402は合流または分岐されて2段目のKLi−A複合隔膜方式電気透析セル200のLiCl溶液(Li濃縮、Li脱塩側)とされてLi分離濃縮槽4に導入される。排出されたLiについては7Li回収系403で回収される。 In FIG. 11, the Li isotope separation cascade 400 uses a K Li -A composite diaphragm type electrodialysis cell 200 for 1-stage concentration and 2-stage concentration of 6 Li, and K Li for multi-stage concentration, which is the final stage in this example. A diaphragm type electrodialysis cell 200 is used. Since each electrodialysis cell has been described with reference to FIGS. 7 and 8, the detailed internal description is omitted and the connection relationship will be described. In this example, three KLi- A composite diaphragm type electrodialysis cells 200 are used for one-stage concentration and two-stage concentration, but the number is not limited. In any case, as the number of stages increases, the number of electrodialysis cells 200 used decreases in relation to the amount of solution. The first stage concentrating 6 Li401 obtained in one stage concentrate is branched into two, is the second stage of the K Li -A composite membrane system LiCl solution electrodialysis cell 200 (6 Li concentrated side) lithium solution bath is introduced into the 3, it is the (one-stage concentrate 6 Li402 is merged or branched with 2-stage K Li -A composite membrane system LiCl solution electrodialysis cell 200 (6 Li concentrated, 7 Li desalination side) 6 It is introduced into the Li separation / concentration tank 4. The discharged 7 Li is recovered by the 7 Li recovery system 403.

同様にして2段濃縮で得られた2段濃縮404は、混合または分岐されてそれぞれ3段目のKLi隔膜方式電気透析セル200のLiCl溶液とされてリチウム溶液槽3に導入されてLi濃縮液4(Li濃縮,Li脱塩側)を得る。この2−3段目のLi減損液(Li脱塩,Li濃縮側)はLi回収系405、407として別系のKLi−A複合隔膜方式電気透析セル200、あるいは1−2段目のLi分離濃縮液3に導入され再度Li回収がなされる。
このようにして、カスケード処理されて最終段からLi高濃縮液406が回収される。
この例はLiの回収について示したが、Liについても同様のカスケードで構成して回収することができる。
Similarly, the two-stage concentration 404 obtained by the two-stage concentration is mixed or branched into the LiCl solution of the third stage K Li diaphragm type electrodialysis cell 200 and introduced into the lithium solution tank 3 to form 6 Li. concentrate 4 (6 Li concentrated, 7 Li desalination side) obtained. 6 Li impairment solution of 2-3-stage (6 Li desalting, 7 Li concentration side) 6 K Li another system as Li recovery system 405, 407 -A composite diaphragm type electrodialysis cell 200 or 1-2, It is introduced into the 6 Li separation / concentration liquid 3 at the stage and 6 Li is recovered again.
In this way, the cascading is 6 Li high concentrate from the final stage 406 is recovered.
Although this example shows the recovery of 6 Li, 7 Li can also be configured and recovered in the same cascade.

本発明の応用性について記載すれば次のようである。
核融合の実現に寄与
本発明の高い効率の濃縮Li製造法は、核融合炉の燃料として必要なトリチウムの確保に寄与するため、核融合炉実現に向けて大きな課題を克服できる。
他の原子力分野への応用
他の原子力研究開発の分野においては、トリチウム同位体であるLiは、加圧水型原子力発電では水素イオンの濃縮を制御して構造材腐食を低減させるためLiOHの形態で使われているが、Li同位体の熱中性子吸収断面積はLiが940b、Liが0.037bであるため、Liの含有率が0.001%以下のLi(濃縮度99.99%以上)を用いる必要があるがこれに対応することができる。
リチウム電池への応用
Li溶解液中のLiはLiより移動度が高いことから、Liの多いLi溶解液中ではLiイオン伝導率の向上が見込まれる。この特性はLiイオン電池に生かすことができ、濃縮Liを使用したLiイオン電池は天然Liを使用したこれまでのLiイオン電池の性能を凌ぐ強力Li電池の実現が見込める。
The applicability of the present invention will be described as follows.
Concentrated 6 Li preparation of high efficiency of the present invention contribute to the realization of nuclear fusion, in order to contribute to ensuring the necessary tritium as fuel for fusion reactors, can overcome the major challenges towards a fusion reactor achieved.
Application to other nuclear fields In another field of nuclear energy research and development, 7 Li, which is a tritium isotope, is a form of 7 LiOH in the pressurized water nuclear power generation system that controls the concentration of hydrogen ions to reduce structural material corrosion. are used which are but, since the thermal neutron absorption cross section of the Li isotope 6 Li is 940b, 7 Li is 0.037B, 7 content of 6 Li is less 0.001% Li (enrichment 99 .99% or more) must be used, but this can be accommodated.
Application to Lithium Battery Since 6 Li in a Li solution has higher mobility than 7 Li, an improvement in Li ion conductivity is expected in a Li solution containing a large amount of 6 Li. This characteristic can be utilized in a Li ion battery, and a Li ion battery using concentrated 6 Li can be expected to realize a powerful Li battery that surpasses the performance of conventional Li ion batteries using natural Li.

本発明の原理を説明する図。The figure explaining the principle of this invention. 本発明に用いるリチウムイオン選択的透過膜構成の1例を示す図。The figure which shows one example of the lithium ion selective permeable membrane structure used for this invention. 本発明の実施例による効果を示す図。The figure which shows the effect by the Example of this invention. Li同位体分離試験結果を示す図。The figure which shows a Li isotope separation test result. Li同位体分離試験結果を示す図。The figure which shows a Li isotope separation test result. Li同位体分離試験結果を示す図。The figure which shows a Li isotope separation test result. 本発明の実施例である多段型Li同位体分離濃縮装置の構成を示す図。The figure which shows the structure of the multistage Li isotope separation and concentration apparatus which is an Example of this invention. 図7に示す多段型Li同位体分離濃縮装置の変形例を示す図。The figure which shows the modification of the multistage type Li isotope separation and concentration apparatus shown in FIG. 本発明の実施例であるLiまたはLi高濃縮回収システムを示す図。It shows a 6 Li or 7 Li high concentration recovery system which is an embodiment of the present invention. LiまたはLi高濃縮回収システムのシステムフローの1例を示す図。View showing an example of a system flow of 6 Li or 7 Li high concentration recovery system. 本発明の実施例であるLi同位体分離カスケードの1例を示す図。The figure which shows one example of the Li isotope separation cascade which is an Example of this invention.

符号の説明Explanation of symbols

1…胴体、2…リチウムイオン選択的透過膜、3…リチウム溶液槽、4…Li分離濃縮槽、5…アノード電極、6…カソード電極、7…Li/Li天然比溶液、9…Li減損液、13…Li濃縮液、26,27…接続配管、50…陽イオン交換樹脂、51…陽イオン交換樹脂濃縮回収装置、60…電解透析濃縮回収装置、61…LiOH回収液、100…リチウム同位体分離濃縮装置(単セル)、200…多段型電気透析セル構造のLi同位体分離濃縮装置(多段型Li同位体分離濃縮装置、多段型セル)、300…Li高濃縮回収システム(LiまたはLi高濃度回収システム)、301…イオン交換樹脂濃縮による濃縮Li同位体回収系(濃縮LiまたはLi同位体回収系)、302…電解透析LiOH回収系(電解透過LiOHまたはLiOH回収系)。 DESCRIPTION OF SYMBOLS 1 ... Body, 2 ... Lithium ion selective permeable membrane, 3 ... Lithium solution tank, 4 ... 6 Li separation concentration tank, 5 ... Anode electrode, 6 ... Cathode electrode, 7 ... 6 Li / 7 Li natural ratio solution, 9 ... 6 Li depleted solution, 13 ... 6 Li concentrated solution, 26, 27 ... Connection piping, 50 ... Cation exchange resin, 51 ... Cation exchange resin concentrated recovery device, 60 ... Electrodialysis concentration recovery device, 61 ... 6 LiOH recovery solution , 100 ... Lithium isotope separation / concentration device (single cell), 200 ... Li-isotope separation / concentration device (multi-stage Li isotope separation / concentration device, multi-stage cell) having a multistage electrodialysis cell structure, 300 ... 6 Li high concentration recovery system (6 Li or 7 Li-rich recovery system), 301 ... ion exchange resin concentration by concentrating 6 Li isotope recovery system (concentrated 6 Li or 7 Li isotope recovery system), 302 ... electrodialysis LiOH recovery system (electrolysis transmission 6 LiOH or 7 LiOH recovery system).

Claims (11)

リチウムイオン伝導性を有するイオン液体を多孔質体に含浸保持させたリチウムイオン選択的透過膜に、Li同位体およびLi同位体を含むリチウム溶液を接して配置し、透析法によってLi同位体およびLi同位体を分離することを特徴とするリチウム同位体分離濃縮法。 An ionic liquid having lithium ion conductivity of the lithium ion selectively permeable membrane impregnated held in the porous body, disposed in contact with the lithium solution containing 6 Li isotopic and 7 Li isotope, 6 Li isotopic by dialysis And a 7 Li isotope are separated from each other. リチウムイオン伝導性を有するイオン液体にリチウムに対し選択的吸着性を有するクラウンエーテル化合物を混合溶解したものを多孔質体に含浸保持させたリチウムイオン選択的透過膜に、Li同位体およびLi同位体を含むリチウム溶液を接して配置し、透析法によってLi同位体およびLi同位体を分離することを特徴とするリチウム同位体分離濃縮法。 6 Li isotopes and 7 Li are applied to a lithium ion selective permeation membrane in which a porous body is impregnated and held by mixing and dissolving a crown ether compound having selective adsorptivity to lithium in an ionic liquid having lithium ion conductivity. lithium isotope separation concentration method, characterized in that arranged in contact with the lithium solution containing isotope, separating 6 Li isotopic and 7 Li isotopic by dialysis. 請求項1または2において、前記透析法として電気透析法もしくは塩濃度差透析法を用いることを特徴とするリチウム同位体分離濃縮法。   3. The lithium isotope separation and concentration method according to claim 1 or 2, wherein an electrodialysis method or a salt concentration difference dialysis method is used as the dialysis method. 請求項1または2において、前記リチウムイオン選択的透過膜を、表面が密構造で内部が粗構造の多孔質体で形成したことを特徴とするリチウム同位体分離濃縮法。   3. The lithium isotope separation and enrichment method according to claim 1, wherein the lithium ion selective permeable membrane is formed of a porous body having a dense surface and a rough inside. 胴体と、該胴体内に配置される、リチウムイオン伝導性を有するイオン液体を多孔質体に含侵保持させたリチウムイオン選択的透過膜および該リチウム選択的透過膜に接した、Li同位体およびLi同位体を含むリチウム溶液槽と、を備えることを特徴とするリチウム同位体分離濃縮装置。 A body, a lithium ion selective permeable membrane in which the porous body is impregnated and held with an ionic liquid having lithium ion conductivity, and a 6 Li isotope in contact with the lithium selective permeable membrane And a lithium solution tank containing 7 Li isotopes. 胴体と、該胴体内に配置される、リチウムイオン伝導性を有するイオン液体にリチウムに対し選択的吸着性を有するクラウンエーテル化合物を混合溶解したものを多孔質体に含侵保持させたリチウムイオン選択的透過膜および該リチウムイオン選択的透過膜に接した、Li同位体およびLi同位体を含むリチウム溶液槽と、を備えることを特徴とするリチウム同位体分離濃縮装置。 Lithium ion selection in which a porous body is impregnated and retained by mixing and dissolving a fuselage and a crown ether compound having selective adsorptivity to lithium in an ionic liquid having lithium ion conductivity disposed in the fuselage And a lithium solution bath containing a 6 Li isotope and a 7 Li isotope in contact with the lithium ion selective permeable membrane. 請求項5または6に記載したリチウム同位体分離濃縮装置が、前記リチウムイオン選択的透過膜と前記リチウム溶液槽とが隣接するようにして多段に配置されて多段型Li同位体分離濃縮装置が構成され、該多段型Li同位体分離濃縮装置をカスケードに多段階に構成したことを特徴とするLiまたはLi同位体高濃縮回収システム。 The lithium isotope separation / concentration device according to claim 5 or 6 is arranged in multiple stages so that the lithium ion selective permeation membrane and the lithium solution tank are adjacent to each other, thereby constituting a multistage Li isotope separation / concentration device A 6 Li or 7 Li isotope highly concentrated recovery system, wherein the multi-stage Li isotope separation and concentration apparatus is configured in cascade in multiple stages. 請求項5または6に記載したリチウム同位体分離濃縮装置を、前記リチウムイオン選択的透過膜と前記リチウム溶液槽とが隣接するようにして多段に配置して、Li濃縮溶液あるいはLi濃縮溶液が生成される第一プロセス、その後段に陽イオン交接樹脂濃縮回収装置を配置し生成されたLi同位体濃縮溶液あるいはLi同位体濃縮溶液からLiまたはLiを陽イオン交換樹脂によって吸着回収する第二プロセス、該陽イオン交換樹脂濃縮回収装置によって濃縮して回収された高濃度Li溶液あるいは高濃度Li溶液を電解透析濃縮回収装置によって濃縮Liまたは濃縮Liを水酸化リチウム溶液としてカソード側に回収し、同時にアノード側に塩酸を回収し、該生成回収塩酸を前段の陽イオン交換樹脂濃縮回収装置の吸着リチウムイオンの溶離液とできる第三プロセスから構成されることを特徴とするLiまたはLi同位体高濃縮回収方法。 The lithium isotope separation and concentration apparatus according to claim 5 or 6 is arranged in multiple stages so that the lithium ion selective permeation membrane and the lithium solution tank are adjacent to each other, and a 6 Li concentrated solution or a 7 Li concentrated solution adsorption but first process spawned by 6 Li isotopic enrichment solution or 7 Li isotopic enrichment solution from 6 Li or 7 Li cation exchange resins produced by placing the cation intercourse resin concentration recovery device to a subsequent stage Second concentration to be recovered, concentrated 6 Li solution or concentrated 7 Li solution recovered by concentrating by the cation exchange resin concentration and recovery device, and concentrated 6 Li or concentrated 7 Li to lithium hydroxide by electrodialysis concentration and recovery device The solution is recovered on the cathode side, and at the same time, hydrochloric acid is recovered on the anode side. 6 Li or 7 Li isotopic withers concentration recovery method, characterized in that it comprises a third process that can eluting the adsorbed lithium ions device. 請求項8のLiまたはLi濃縮回収方法で濃縮回収したことを特徴とするLi濃縮物またはLi濃縮物。 6 Li or 7 Li 6 Li concentrate, characterized in that concentrated recovered by concentrating recovery method or 7 Li concentrate of claim 8. 請求項1から9のいずれかにおいて記載したリチウムイオン選択的透過膜。   The lithium ion selective permeable membrane according to any one of claims 1 to 9. 請求項10において、表面が密構造で内部が粗構造としたことを特徴とするリチウムイオン選択的透過膜。   11. The lithium ion selective permeable membrane according to claim 10, wherein the surface has a dense structure and the inside has a rough structure.
JP2008195404A 2008-07-29 2008-07-29 Lithium isotope separation and concentration method and apparatus, and 6Li isotope or 7Li isotope highly concentrated recovery system and recovery method Expired - Fee Related JP5429658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008195404A JP5429658B2 (en) 2008-07-29 2008-07-29 Lithium isotope separation and concentration method and apparatus, and 6Li isotope or 7Li isotope highly concentrated recovery system and recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008195404A JP5429658B2 (en) 2008-07-29 2008-07-29 Lithium isotope separation and concentration method and apparatus, and 6Li isotope or 7Li isotope highly concentrated recovery system and recovery method

Publications (2)

Publication Number Publication Date
JP2010029797A true JP2010029797A (en) 2010-02-12
JP5429658B2 JP5429658B2 (en) 2014-02-26

Family

ID=41734939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008195404A Expired - Fee Related JP5429658B2 (en) 2008-07-29 2008-07-29 Lithium isotope separation and concentration method and apparatus, and 6Li isotope or 7Li isotope highly concentrated recovery system and recovery method

Country Status (1)

Country Link
JP (1) JP5429658B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102373341A (en) * 2010-08-12 2012-03-14 独立行政法人日本原子力研究开发机构 Recovering method and devcie of lithium
JP2012055881A (en) * 2010-08-12 2012-03-22 Japan Atomic Energy Agency Method for recovering lithium, and lithium recovering apparatus
CN102430338A (en) * 2011-12-16 2012-05-02 江南大学 Method for extracting and separating lithium isotope aqueous solution
CN103768945A (en) * 2014-02-27 2014-05-07 江南大学 Method for extraction separating of lithium isotope by virtue of sol-gel material
JPWO2013153692A1 (en) * 2012-04-13 2015-12-17 旭化成株式会社 Lithium recovery method
JP2017131863A (en) * 2016-01-29 2017-08-03 国立研究開発法人量子科学技術研究開発機構 Lithium permselective membrane, lithium recovery apparatus, lithium recovery method, hydrogen production method
CN108619909A (en) * 2018-02-05 2018-10-09 天津工业大学 A kind of method of Multistage Membranes chromatography concatenation technology separation lithium isotope
CN108854534A (en) * 2017-05-15 2018-11-23 中国科学院上海有机化学研究所 The technique of crown ether extraction separation lithium isotope
CN108854535A (en) * 2017-05-15 2018-11-23 中国科学院上海有机化学研究所 Separate the shunting extraction process of lithium isotope
CN108854537A (en) * 2017-05-15 2018-11-23 中国科学院上海有机化学研究所 A kind of technique of liquid-liquid extraction separation lithium isotope
CN109200822A (en) * 2018-11-16 2019-01-15 天津工业大学 A kind of method of field coupling crown ether graft polymers perforated membrane separation lithium isotope
JP2019141808A (en) * 2018-02-22 2019-08-29 国立大学法人弘前大学 Lithium isotope concentrator, multistage lithium isotope concentrator, and lithium isotope concentration method
JPWO2020203166A1 (en) * 2019-03-29 2020-10-08
CN112058087A (en) * 2020-09-10 2020-12-11 中国科学院青海盐湖研究所 Method for separating lithium isotope by multi-stage air flotation extraction
CN113262638A (en) * 2020-02-14 2021-08-17 中国科学院青海盐湖研究所 Separation and enrichment7Method for Li isotope
CN113262637A (en) * 2020-02-14 2021-08-17 中国科学院青海盐湖研究所 Electromigration separation and enrichment6Method for Li isotope
CN113262636A (en) * 2020-02-14 2021-08-17 中国科学院青海盐湖研究所 Extraction-electromigration coupling separation and enrichment7Method for Li isotope
WO2021159674A1 (en) * 2020-02-14 2021-08-19 中国科学院青海盐湖研究所 Li isotope separation and enrichment method
CN114380431A (en) * 2022-01-17 2022-04-22 桐乡市思远环保科技有限公司 Method for recovering lithium from seawater

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4180115A4 (en) 2020-07-07 2024-08-28 Univ Hirosaki Lithium isotope concentration device, multi-stage lithium isotope concentration device, and lithium isotope concentration method
JPWO2023003044A1 (en) 2021-07-21 2023-01-26

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5371796A (en) * 1976-12-06 1978-06-26 Toyama Yakuhin Kougiyou Kk Method of continuously separating isotope by ion exchange
JPH10113541A (en) * 1996-10-14 1998-05-06 Agency Of Ind Science & Technol Lithium isotope separating agent and separating process for lithium isotope
JPH1119478A (en) * 1997-06-30 1999-01-26 Agency Of Ind Science & Technol Lithium isotope separating agent and separation of lithium isotope using the same
JP2002079059A (en) * 2000-09-08 2002-03-19 Japan Atom Energy Res Inst Method for separating lithium isotope and its apparatus
JP2005254230A (en) * 2004-02-12 2005-09-22 Tatsuya Suzuki Isotope separation method, isotope separation apparatus and isotope separation means
JP2006185913A (en) * 2004-12-02 2006-07-13 Ohara Inc All solid lithium ion secondary battery and solid electrolyte

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5371796A (en) * 1976-12-06 1978-06-26 Toyama Yakuhin Kougiyou Kk Method of continuously separating isotope by ion exchange
JPH10113541A (en) * 1996-10-14 1998-05-06 Agency Of Ind Science & Technol Lithium isotope separating agent and separating process for lithium isotope
JPH1119478A (en) * 1997-06-30 1999-01-26 Agency Of Ind Science & Technol Lithium isotope separating agent and separation of lithium isotope using the same
JP2002079059A (en) * 2000-09-08 2002-03-19 Japan Atom Energy Res Inst Method for separating lithium isotope and its apparatus
JP2005254230A (en) * 2004-02-12 2005-09-22 Tatsuya Suzuki Isotope separation method, isotope separation apparatus and isotope separation means
JP2006185913A (en) * 2004-12-02 2006-07-13 Ohara Inc All solid lithium ion secondary battery and solid electrolyte

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101779805B1 (en) * 2010-08-12 2017-09-19 고쿠리츠겐큐가이하츠호징 니혼겐시료쿠겐큐가이하 츠기코 Lithium recovering method and lithium recovering apparatus
JP2012055881A (en) * 2010-08-12 2012-03-22 Japan Atomic Energy Agency Method for recovering lithium, and lithium recovering apparatus
CN102373341A (en) * 2010-08-12 2012-03-14 独立行政法人日本原子力研究开发机构 Recovering method and devcie of lithium
CN102430338A (en) * 2011-12-16 2012-05-02 江南大学 Method for extracting and separating lithium isotope aqueous solution
JPWO2013153692A1 (en) * 2012-04-13 2015-12-17 旭化成株式会社 Lithium recovery method
CN103768945A (en) * 2014-02-27 2014-05-07 江南大学 Method for extraction separating of lithium isotope by virtue of sol-gel material
KR20180098362A (en) * 2016-01-29 2018-09-03 국립연구개발법인 양자과학기술연구개발기구 Lithium selective permeable membrane, lithium recovery apparatus, lithium recovery method, hydrogen production method
WO2017131051A1 (en) * 2016-01-29 2017-08-03 国立研究開発法人量子科学技術研究開発機構 Lithium-selective permeable membrane, lithium recovery device, lithium recovery method and hydrogen production method
KR102064692B1 (en) 2016-01-29 2020-01-08 국립연구개발법인 양자과학기술연구개발기구 Lithium selective permeable membrane, lithium recovery apparatus, lithium recovery method, hydrogen production method
US10689766B2 (en) 2016-01-29 2020-06-23 National Institutes For Quantum And Radiological Science And Technology Lithium selective permeable membrane, lithium recovery device, lithium recovery method, and hydrogen production method
JP2017131863A (en) * 2016-01-29 2017-08-03 国立研究開発法人量子科学技術研究開発機構 Lithium permselective membrane, lithium recovery apparatus, lithium recovery method, hydrogen production method
AU2017212260B2 (en) * 2016-01-29 2019-09-12 National Institutes For Quantum And Radiological Science And Technology Lithium-selective permeable membrane, lithium recovery device, lithium recovery method and hydrogen production method
CN108854534A (en) * 2017-05-15 2018-11-23 中国科学院上海有机化学研究所 The technique of crown ether extraction separation lithium isotope
CN108854535A (en) * 2017-05-15 2018-11-23 中国科学院上海有机化学研究所 Separate the shunting extraction process of lithium isotope
CN108854537A (en) * 2017-05-15 2018-11-23 中国科学院上海有机化学研究所 A kind of technique of liquid-liquid extraction separation lithium isotope
CN108619909A (en) * 2018-02-05 2018-10-09 天津工业大学 A kind of method of Multistage Membranes chromatography concatenation technology separation lithium isotope
JP2019141808A (en) * 2018-02-22 2019-08-29 国立大学法人弘前大学 Lithium isotope concentrator, multistage lithium isotope concentrator, and lithium isotope concentration method
JP7029798B2 (en) 2018-02-22 2022-03-04 国立大学法人弘前大学 Lithium isotope concentrator and multi-stage lithium isotope concentrator, and lithium isotope enrichment method
CN109200822A (en) * 2018-11-16 2019-01-15 天津工业大学 A kind of method of field coupling crown ether graft polymers perforated membrane separation lithium isotope
JPWO2020203166A1 (en) * 2019-03-29 2020-10-08
JP7360740B2 (en) 2019-03-29 2023-10-13 国立研究開発法人量子科学技術研究開発機構 Metal ion recovery device, metal recovery system, and metal ion recovery method
WO2021159673A1 (en) * 2020-02-14 2021-08-19 中国科学院青海盐湖研究所 Method for electromigration separation and enrichment of isotope 6li
CN113262636A (en) * 2020-02-14 2021-08-17 中国科学院青海盐湖研究所 Extraction-electromigration coupling separation and enrichment7Method for Li isotope
CN113262637A (en) * 2020-02-14 2021-08-17 中国科学院青海盐湖研究所 Electromigration separation and enrichment6Method for Li isotope
WO2021159674A1 (en) * 2020-02-14 2021-08-19 中国科学院青海盐湖研究所 Li isotope separation and enrichment method
CN113262638A (en) * 2020-02-14 2021-08-17 中国科学院青海盐湖研究所 Separation and enrichment7Method for Li isotope
CN113262636B (en) * 2020-02-14 2024-04-05 中国科学院青海盐湖研究所 Extraction-electromigration coupling separation and enrichment 7 Method for producing Li isotopes
CN112058087A (en) * 2020-09-10 2020-12-11 中国科学院青海盐湖研究所 Method for separating lithium isotope by multi-stage air flotation extraction
CN112058087B (en) * 2020-09-10 2024-04-09 中国科学院青海盐湖研究所 Method for separating lithium isotopes by multistage air-floatation extraction
CN114380431A (en) * 2022-01-17 2022-04-22 桐乡市思远环保科技有限公司 Method for recovering lithium from seawater

Also Published As

Publication number Publication date
JP5429658B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP5429658B2 (en) Lithium isotope separation and concentration method and apparatus, and 6Li isotope or 7Li isotope highly concentrated recovery system and recovery method
Gmar et al. Recent advances on electrodialysis for the recovery of lithium from primary and secondary resources
Hoshino Preliminary studies of lithium recovery technology from seawater by electrodialysis using ionic liquid membrane
JP5897512B2 (en) Method for electrolytic concentration of heavy water
US11083993B2 (en) Low-energy electrochemical separation of isotopes
JP5765850B2 (en) Lithium recovery method and lithium recovery device
JP7167032B2 (en) Method and apparatus for providing high purity hydrogen isotope diatomic molecules
KR20180098362A (en) Lithium selective permeable membrane, lithium recovery apparatus, lithium recovery method, hydrogen production method
CN109200822A (en) A kind of method of field coupling crown ether graft polymers perforated membrane separation lithium isotope
Xiao et al. Selective removal of halides from spent zinc sulfate electrolyte by diffusion dialysis
EP3785791A1 (en) Dual-membrane on-line generator for acid or alkali solution
US20160310898A1 (en) Advanced tritium system and advanced permeation system for separation of tritium from radioactive wastes
Siekierka et al. Electro-driven materials and processes for lithium recovery—A review
WO2020038383A1 (en) Method and device for purifying electrolyte solution of flow battery
JP7181367B2 (en) A new tritium system and a new permeation system for separating tritium from radioactive waste
CN117383666B (en) Flow electrode, application and regeneration method thereof, and method for enriching uranium in uranium-containing water body by utilizing flow electrode capacitance deionizing device
CN113262636B (en) Extraction-electromigration coupling separation and enrichment 7 Method for producing Li isotopes
JP7385297B2 (en) Metal ion recovery device, metal recovery system, and metal ion recovery method
CN109970546B (en) Preparation method and device of electronic grade citric acid
CN107930420B (en) Hydrophobic acid-resistant high-conductivity anion exchange membrane and preparation method thereof
JPS62210039A (en) Method for extracting and transferring tritium
Lounis et al. Treatment of uranium leach solution by electrodialysis for anion impurities removal
JP4385424B2 (en) Carbon dioxide concentration method and apparatus
WO2024071106A1 (en) Hydrogen isotope transport device and hydrogen isotope transport method
Dong et al. The Technologies of Electrochemical Extraction Lithium Process from Lithium-Containing Solutions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5429658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees