JPH10113541A - Lithium isotope separating agent and separating process for lithium isotope - Google Patents

Lithium isotope separating agent and separating process for lithium isotope

Info

Publication number
JPH10113541A
JPH10113541A JP8291156A JP29115696A JPH10113541A JP H10113541 A JPH10113541 A JP H10113541A JP 8291156 A JP8291156 A JP 8291156A JP 29115696 A JP29115696 A JP 29115696A JP H10113541 A JPH10113541 A JP H10113541A
Authority
JP
Japan
Prior art keywords
solution
lithium
separating agent
separating
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8291156A
Other languages
Japanese (ja)
Other versions
JP2847182B2 (en
Inventor
Kazuhisa Hiratani
和久 平谷
Hideki Sugihara
秀樹 杉原
Kenta Oi
健太 大井
Hirobumi Kano
博文 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP8291156A priority Critical patent/JP2847182B2/en
Publication of JPH10113541A publication Critical patent/JPH10113541A/en
Application granted granted Critical
Publication of JP2847182B2 publication Critical patent/JP2847182B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a separating agent and a process thereof for separating<6> Li from<7> Li which can synthesize the separating agent easily, can be used repeatedly and can treat a large amount of lithium ions by using a small amount of the separating agent. SOLUTION: A lithium isotope separating agent is formed of a bis(1,10- phenanthroline) derivative represented by the formula. In the process of carrying lithium ions contained in a solution to a lithium acceptive liquid through a cation carrying agent, the above-referred lithium isotope separating agent is used as an ion carrying agent, and<6> Li ions are carried selectively in the acceptive liquid. In the formula, R represents hydrogen or a hydrocarbon, and (n) represents integers of l-10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウム同位体分離
剤及びそれを用いるリチウム同位体の分離方法に関する
ものである。
The present invention relates to a lithium isotope separating agent and a method for separating lithium isotopes using the same.

【0002】[0002]

【従来の技術】リチウムの自然界における同位体存在比
6Li約7%、7Li約93%である。6Liと7Liの分離
が注目されるようになってきたのは、放射化しない7Li
が原子炉の一次冷却用材料として使用できること、及び
6Liが中性子を照射することでトリチウムに変換できる
ことにある。特に、6Liから生成するトリチウムは将来
核融合反応における原料として多量の需要が見込まれる
もので、6Liの分離方法の開発はきわめて重要性が大き
い。現在、6Liと7Liの分離は水銀アマルガム法により
米国及びフランスで実施されている。この方法による6
Liの分離係数(S.F)は約1.05であり、多段分
離による6Liの濃縮が必要であり、大量の水銀を必要と
するとともに、アマルガムが水に溶出する欠点を有して
いる。このため、クラウンエーテルを使用する溶媒抽出
法やカラムによる分離方法等が各国で研究段階にある。
また、本発明者らの一部は、1,3−ビス(8−キノリ
ルオキシ)プロパン誘導体を用いるリチウム同位体分離
方法を提案しているが(特許第1838392号)、こ
の方法は、分離速度等に問題があった。
Isotope abundance ratio in nature of the Prior Art Lithium 6 Li about 7%, 7 Li is about 93%. 6 the separation of Li and 7 Li has come to be noted that no activation 7 Li
Can be used as primary cooling material for the reactor, and
6 Li can be converted to tritium by irradiating neutrons. In particular, in which a large amount of demand is expected as a raw material in the tritium future fusion reaction to produce the 6 Li, a large development is very important in the method of separating 6 Li. Currently, the separation of 6 Li and 7 Li is implemented by the mercury amalgam method in the United States and France. 6 by this method
Li the separation factor (S.F.) is about 1.05, it is necessary to concentrate the 6 Li by multistage separation, as well as require a large amount of mercury, has the disadvantage that amalgam is eluted into water . For this reason, solvent extraction methods using crown ethers, separation methods using columns, and the like are in the research stage in various countries.
Further, some of the present inventors have proposed a lithium isotope separation method using a 1,3-bis (8-quinolyloxy) propane derivative (Japanese Patent No. 1838392). Had a problem.

【0003】[0003]

【発明が解決しようとする課題】本発明は、6Liと7Li
とを分離するための新しい分離剤及び方法を提供するこ
とをその課題とする。
The present invention relates to 6 Li and 7 Li.
It is an object of the present invention to provide a new separating agent and a method for separating the same.

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意研究を重ねた結果、下記一般式(1)
で表されるビス(1,10−フェナントロリン)誘導体
がリチウム同位体分離剤として作用することを見出し、
本発明を完成するに至った。即ち、本発明によれば、下
記一般式(1)で表されるビス(1,10−フェナント
ロリン)誘導体からなるリチウム同位体分離剤が提供さ
れる。また、本発明によれば、溶液中に含まれるリチウ
ムイオンを陽イオン輸送剤を介してリチウム受容液に輸
送する方法において、該陽イオン輸送剤として前記リチ
ウム同位体分離剤を用い、6Liイオンを選択的に受容液
に輸送させることを特徴とするリチウム同位体の分離方
法が提供される。さらに、本発明によれば、溶液中に含
まれるリチウムイオンを抽出剤溶液と接触させてリチウ
ムイオンを抽出剤溶液に抽出する方法において、該抽出
剤溶液として前記リチウム同位体分離剤を含む溶液を用
い、6Liイオンを選択的に抽出剤溶液に抽出させること
を特徴とするリチウム同位体の分離方法が提供される。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, the following general formula (1)
It has been found that a bis (1,10-phenanthroline) derivative represented by the following formula acts as a lithium isotope separating agent,
The present invention has been completed. That is, according to the present invention, a lithium isotope separating agent comprising a bis (1,10-phenanthroline) derivative represented by the following general formula (1) is provided. Further, according to the present invention, a method of transporting lithium ions contained in the solution of lithium acceptor liquid through the cation-transporting agent, using the lithium isotope separation agent as cation transport agent, 6 Li ions Is selectively transported to a receiving solution, whereby a method for separating a lithium isotope is provided. Further, according to the present invention, in a method for extracting lithium ions into an extractant solution by contacting lithium ions contained in the solution with the extractant solution, the extractant solution includes the solution containing the lithium isotope separating agent. The present invention provides a method for separating a lithium isotope, wherein the method comprises selectively extracting 6 Li ions into an extractant solution.

【0005】[0005]

【化1】 (前記式中、Rは水素又は炭化水素基であり、nは1〜
10の数を示す)
Embedded image (In the above formula, R is hydrogen or a hydrocarbon group, and n is 1 to
Indicate the number of 10)

【0006】[0006]

【発明の実施の形態】前記一般式(1)において、Rを
示す炭化水素基には、脂肪族炭化水素基及び芳香族炭化
水素基が包含される。脂肪族炭化水素基としては、アル
キル基やシクロアルキル基が挙げられる。アルキル基の
具体例としては、炭素数1〜12、好ましくは2〜6の
もの、例えば、エチル、プロピル、ブチル、ヘキシル等
が示される。シクロアルキル基としては、シクロヘキシ
ル等が示される。芳香族基としては、アリール基やアリ
ールアルキル基が挙げられる。アリール基の具体例とし
ては、フェニル、トリル、キシリル、ナフチル等が示さ
れる。アリールアルキル基としては、ベンジル、フェネ
チル等が示される。前記一般式(1)におけるnは、1
〜10、好ましくは4〜8の数である。前記一般式
(1)におけるRの具体的種類は、そのビス(1,10
−フェナントロリン)誘導体に所望される有機溶媒に対
する溶解性等に応じて適宜決められる。本発明で用いら
れるビス(1,10−フェナントロリン)誘導体は公知
の化合物であり、その製造方法については、文献(Ch
em.Letters,1994,397)に記載され
ている。
BEST MODE FOR CARRYING OUT THE INVENTION In the general formula (1), the hydrocarbon group represented by R includes an aliphatic hydrocarbon group and an aromatic hydrocarbon group. Examples of the aliphatic hydrocarbon group include an alkyl group and a cycloalkyl group. Specific examples of the alkyl group include those having 1 to 12 carbon atoms, preferably 2 to 6 carbon atoms, for example, ethyl, propyl, butyl, hexyl and the like. Examples of the cycloalkyl group include cyclohexyl and the like. Examples of the aromatic group include an aryl group and an arylalkyl group. Specific examples of the aryl group include phenyl, tolyl, xylyl, naphthyl and the like. Examples of the arylalkyl group include benzyl, phenethyl and the like. N in the general formula (1) is 1
10 to 10, preferably 4 to 8. The specific type of R in the general formula (1) is the bis (1,10
-Phenanthroline) derivative is appropriately determined according to the desired solubility in an organic solvent and the like. The bis (1,10-phenanthroline) derivative used in the present invention is a known compound, and its production method is described in the literature (Ch
em. Letters, 1994 , 397).

【0007】本発明で用いる前記一般式(1)で表され
るビス(1,10−フェナントロリン)誘導体(以下、
単に分離剤とも言う)は、リチウム同位体分離剤として
作用する。即ち、溶液中に含まれるリチウムイオンを陽
イオン輸送剤(キャリヤー)を介してリチウムイオン受
容液に輸送するに際し、その陽イオン輸送剤として、前
記分離剤を用いることにより、6Liイオンを選択的又は
優勢的に受容液に輸送することができる。また、溶液中
に含まれるリチウムイオンを抽出剤溶液と接触させてリ
チウムイオンを抽出剤溶液に抽出するに際し、その抽出
剤溶液として、前記分離剤溶液を用いることにより、6
Liイオンを選択的に抽出剤溶液に抽出させることがで
きる。本発明によるリチウム同位体の分離方法における
同位体分離係数は、水銀アマルガム法と同程度である
が、本発明の場合、その分離剤の合成が容易である上、
繰返し使用することができるので、少量の分離剤の使用
で多量のリチウムイオンを処理することができる等の利
点を有する。
The bis (1,10-phenanthroline) derivative represented by the general formula (1) used in the present invention (hereinafter, referred to as
Simply acts as a lithium isotope separating agent). That is, when the lithium ions contained in the solution are transported to the lithium ion receiving solution via the cation transport agent (carrier), the 6 Li ions can be selectively used by using the separating agent as the cation transport agent. Alternatively, it can be predominantly transported to the receiving fluid. Further, when the lithium ions contained in the solution are brought into contact with the extractant solution to extract the lithium ions into the extractant solution, by using the separating agent solution as the extractant solution, 6
Li ions can be selectively extracted into the extractant solution. The isotope separation coefficient in the method for separating lithium isotopes according to the present invention is almost the same as that of the mercury amalgam method, but in the case of the present invention, the separation agent is easily synthesized,
Since it can be used repeatedly, there is an advantage that a large amount of lithium ions can be treated by using a small amount of the separating agent.

【0008】本発明の分離剤を陽イオン輸送剤として用
いてリチウムイオン同位体を分離するには、リチウムイ
オンを含む溶液Aと、リチウムイオン受容液Bとを本発
明の分離剤を介して接触させればよい。このための方法
としては、分離剤を、溶液A及び受容液Bに対して非混
和性の有機溶媒に溶解させて、分離剤溶液Mを作り、こ
の溶液Mを介して溶液Aと受容液Bを間接的に接触させ
る方法、溶液Mを隔膜により仕切られた区画室に収容さ
せ、この区画室を介して溶液Aと受容液Bとを間接的に
接触させる方法、溶液Mを多孔質高分子膜や濾紙等の支
持体に吸収させて溶液M吸収体を作り、この吸収体を介
して溶液Aと受容液Bとを間接的に接触させる方法等が
挙げられる。
In order to separate lithium ion isotopes using the separating agent of the present invention as a cation transporting agent, a solution A containing lithium ions and a lithium ion receiving solution B are contacted via the separating agent of the present invention. It should be done. As a method for this, a separating agent is dissolved in an organic solvent immiscible with the solution A and the receiving solution B to form a separating agent solution M, and the solution A and the receiving solution B are dissolved through the solution M. The solution M is accommodated in a compartment partitioned by a diaphragm, and the solution A and the receiving solution B are indirectly contacted via the compartment; There is a method in which a solution M absorber is prepared by absorbing the solution M into a support such as a membrane or filter paper, and the solution A and the receiving solution B are indirectly contacted via the absorber.

【0009】図1に、溶液Aと受容液Bとを溶液Mを介
して間接的に接触させる場合の装置説明図を示す。1
は、U字形の容器を示し、筒状容器2、3とそれらの下
部を連結する連結管4とから構成される。5、6は撹拌
機である。この装置を用いてリチウム同位体を分離する
には、この容器に対して、先ず分離剤溶液Mを中間溶液
層として入れ、次に、一方の筒状容器に溶液A及び他方
の筒状容器3に受容液Bを入れる。なお、溶液Mは溶液
A及び受容液Bと実質上非混和性のものである。溶液A
は、輸送対象となるリチウムイオンを含むもので、通
常、水溶液が用いられるが、必ずしも水溶液に限定され
るものではなく、有機溶媒と水との混合溶液や、アルコ
ール等の有機溶媒も適用される。また、この溶液Aは、
通常、pH6〜7近辺の中性溶液ないしアルカリ性溶液
が用いられる。受容液Bは、輸送されるリチウムイオン
を受け取るためのもので、脱イオン溶液が用いられ、一
般には、中性の水溶液が用いられる。溶液Mの形成に用
いられる溶媒は、溶液A及び受容液Bと実質上非混和性
のもの、例えば、溶液A及び受容液Bが水溶液である場
合は、クロロホルム、ジクロルエタンなどの有機ハロゲ
ン化物や、ベンゼン、トルエン等の炭化水素、さらにヘ
キサノール、オクタノールなどの水難溶性アルコール等
が適用される。
FIG. 1 is an explanatory view of an apparatus in a case where a solution A and a receiving solution B are indirectly contacted via a solution M. 1
Denotes a U-shaped container, which is composed of cylindrical containers 2 and 3 and a connecting pipe 4 connecting the lower portions thereof. 5 and 6 are agitators. In order to separate lithium isotopes using this apparatus, first, a separating agent solution M is put into this container as an intermediate solution layer, and then the solution A and the other cylindrical container 3 are placed in one cylindrical container. Put the receiving solution B into the container. The solution M is substantially immiscible with the solution A and the receiving solution B. Solution A
Is a solution containing lithium ions to be transported, and usually an aqueous solution is used, but the solution is not necessarily limited to the aqueous solution, and a mixed solution of an organic solvent and water, or an organic solvent such as alcohol is also applied. . Also, this solution A
Usually, a neutral solution or an alkaline solution having a pH of about 6 to 7 is used. The receiving liquid B is for receiving lithium ions to be transported, and a deionized solution is used. Generally, a neutral aqueous solution is used. The solvent used for forming the solution M is substantially immiscible with the solution A and the receiving solution B. For example, when the solution A and the receiving solution B are aqueous solutions, an organic halide such as chloroform and dichloroethane, Hydrocarbons such as benzene and toluene, and poorly water-soluble alcohols such as hexanol and octanol are used.

【0010】前記のようにして、溶液A及び受容液Bを
分離剤を介して間接接触させるときには、溶液A中のリ
チウムイオンは分離剤に捕捉され、このリチウムイオン
を捕捉した分離剤は、受容液Bと接触し、受容液B中に
その捕捉したリチウムイオンを放出する。このようにし
て、溶液A中のリチウムイオンは受容液B中に輸送され
る。即ち、溶液A中に溶解していたリチウムイオンは溶
液M中を移動し、受容液B中に放出される。この際、リ
チウム同位体のうち6Liが選択的に受容液B中に輸送さ
れるが、その6Liイオンが受容液B中に輸送される割合
は、下記式で表される同位体分離係数(α)により決ま
る。 ここで、([6Li]/[7Li])(B)及び([6Li]/
7Li])(A)はそれぞれ、受容液B、溶液Aにおける
リチウムイオンの同位体存在比を示す。
As described above, the solution A and the receiving solution B
When indirectly contacting via a separating agent, the solution in solution A
The lithium ions are trapped by the separating agent,
The separating agent having captured is contacted with the receiving solution B, and
The captured lithium ions are released. Like this
Thus, the lithium ions in the solution A are transported into the receiving solution B.
You. That is, the lithium ions dissolved in the solution A are dissolved.
It moves in the liquid M and is released into the receiving liquid B. At this time,
Of the isotopes of T6Li is selectively transported into the receiving solution B.
But that6Rate at which Li ions are transported into receiving solution B
Is determined by the isotope separation coefficient (α)
You. here,([6Li] / [7Li])(B)as well as([6Li] /
[7Li])(A)In the receiving solution B and the solution A, respectively.
This shows the isotope abundance ratio of lithium ions.

【0011】一方、本発明の分離剤を抽出剤として用い
て溶液A中に存在するリチウムイオンを抽出するには、
リチウムイオン含有溶液に対して分離剤溶液Mを接触さ
せた後、溶液Aと溶液Mとを相分離させればよい。この
操作によって溶液A中のリチウムイオンは溶液M中に抽
出移動される。この場合、溶液Aと溶液Mは実質的に非
混和性のものであり、通常、溶液Aとしては水溶液が用
いられ、溶液Mとしては、非水溶性有機溶媒溶液が用い
られる。溶液A中のリチウムイオンのうちの6Liイオン
が溶液Mに抽出移動する割合は、下記式で表される同位
体分離係数(α)により決まる。 ここで、([6Li]/[7Li])(M)及び([6Li]/
7Li])(A)はそれぞれ、溶液M相、溶液A相におけ
るリチウムイオンの同位体存在比を示す。
On the other hand, the separating agent of the present invention is used as an extracting agent.
To extract lithium ions present in the solution A by
The separating agent solution M is brought into contact with the lithium ion-containing solution.
After that, the solution A and the solution M may be phase-separated. this
By the operation, lithium ions in the solution A are extracted into the solution M.
Move out. In this case, solution A and solution M are substantially non-
It is miscible, and usually an aqueous solution is used as the solution A.
As the solution M, a water-insoluble organic solvent solution is used.
Can be Of lithium ions in solution A6Li ion
Is extracted and moved to the solution M by the isotope represented by the following formula.
It is determined by the body separation coefficient (α). here,([6Li] / [7Li])(M)as well as([6Li] /
[7Li])(A)In the solution M phase and the solution A phase, respectively.
Shows the isotope abundance ratio of lithium ions.

【0012】前記のようにして、6Liイオンの濃縮され
た溶液が得られるが、このようにして得られた6Liイオ
ン濃縮溶液に対し、再度前記と同様の分離操作を施すこ
とにより、6Liイオンがさらに濃縮された溶液を得るこ
とができる。このような濃縮操作を繰返し行うことによ
り、6Liイオンを高濃度で含む溶液を得ることができ
る。
[0012] As described above, but concentrated solution of 6 Li ions is obtained, thus to 6 Li ions concentrated solution thus obtained, by applying the same separating operation again, 6 A solution in which Li ions are further concentrated can be obtained. By repeatedly performing such a concentration operation, a solution containing a high concentration of 6 Li ions can be obtained.

【0013】[0013]

【実施例】次に本発明を実施例によりさらに詳細に説明
する。
Next, the present invention will be described in more detail with reference to examples.

【0014】実施例1 図1に示した装置を用いてリチウムイオンの輸送試験を
25℃で行った。輸送剤としては、前記一般式(1)に
おいて、n=4〜8、R=n−ブチルの化合物を用い
た。溶液A、受容液B及び分離剤溶液Mの成分組成は次
の通りである。 溶液A :2.0M ヨウ化リチウムを含む水溶液15ml。 受容液B :脱イオン水15ml。 分離剤溶液M:分離剤3×10-4mol(R=n−ブチル、n=6の化合物の みは1×10-4molを使用した)をクロロホルム30mlに 溶解して形成した溶液。 溶液A、受容液B及び分離剤溶液Mは恒温槽中25℃に
保持した。溶液Aから受容液Bへ輸送された2日後のリ
チウムイオン量を原子吸光分析により測定し、リチウム
イオン同位体比を質量分析計により測定した。表1に、
全リチウムイオン輸送量及び6Liに関する分離係数αを
示す。
Example 1 A transport test of lithium ions was conducted at 25 ° C. using the apparatus shown in FIG. As the transport agent, a compound in which n = 4 to 8 and R = n-butyl in the general formula (1) was used. The component compositions of the solution A, the receiving solution B, and the separating agent solution M are as follows. Solution A: 15 ml of an aqueous solution containing 2.0 M lithium iodide. Recipient B: 15 ml of deionized water. Separating agent solution M: a solution formed by dissolving 3 × 10 −4 mol of separating agent (1 × 10 −4 mol was used only for the compound of R = n-butyl, n = 6) in 30 ml of chloroform. Solution A, receiving solution B and separating agent solution M were kept at 25 ° C. in a thermostat. Two days after the transport from the solution A to the receiving solution B, the amount of lithium ions was measured by atomic absorption spectrometry, and the lithium ion isotope ratio was measured by a mass spectrometer. In Table 1,
The total lithium ion transport rate and the separation coefficient α for 6 Li are shown.

【0015】[0015]

【表1】 [Table 1]

【0016】実施例2 抽出剤溶液Mとして、3.0×10-4molの分離剤
(前記一般式(1)において、n=7、R=n−ブチ
ル)を15mlクロロホルムに溶解した溶液を用い、こ
の溶液Mを、2.0Mヨウ化リチウムを含む水溶液A1
5mlとともに振とうした後、クロロホルム相を分離
し、リチウム塩をクロロホルム相から抽出剤とともに取
り出し、質量分析して同位体比を調べた。25℃での同
位体分離係数としてα=1.014が得られた。
Example 2 As an extractant solution M, a solution prepared by dissolving 3.0 × 10 −4 mol of a separating agent (n = 7 in the above formula (1), R = n-butyl) in 15 ml of chloroform was used. This solution M was used as an aqueous solution A1 containing 2.0 M lithium iodide.
After shaking with 5 ml, the chloroform phase was separated, and the lithium salt was taken out of the chloroform phase together with the extractant and subjected to mass spectrometry to determine the isotope ratio. Α = 1.014 was obtained as the isotope separation coefficient at 25 ° C.

【0017】[0017]

【発明の効果】本発明の分離剤を用いることにより、6
Liイオンと7Liイオンを分離することができる。
[Effect of the Invention] By using the separating agent of the present invention, 6
Li ions and 7 Li ions can be separated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のビス(1,10−フェナントロリン)
誘導体を輸送剤として用いて陽イオンの輸送を行う場合
の装置説明図である。
FIG. 1. Bis (1,10-phenanthroline) of the present invention
It is an explanatory view of a device in the case of carrying out cation transport using a derivative as a transport agent.

【符号の説明】[Explanation of symbols]

1 U字型容器 2 筒状容器 3 筒状容器 4 連結管 5 撹拌機 6 攪拌機 DESCRIPTION OF SYMBOLS 1 U-shaped container 2 Cylindrical container 3 Cylindrical container 4 Connecting pipe 5 Stirrer 6 Stirrer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加納 博文 香川県高松市林町2217番14 工業技術院四 国工業技術研究所 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hirofumi Kano 2217-14 Hayashi-cho, Takamatsu-shi, Kagawa Pref.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式 【化1】 (式中、nは1〜10の数であり、Rは水素原子又は炭
化水素基を示す)で表わされるビス(1,10−フェナ
ントロリン)誘導体からなるリチウム同位体分離剤。
[Claim 1] The following general formula: (Wherein n is a number from 1 to 10, and R represents a hydrogen atom or a hydrocarbon group). A lithium isotope separating agent comprising a bis (1,10-phenanthroline) derivative represented by the following formula:
【請求項2】 溶液中に含まれるリチウムイオンを陽イ
オン輸送剤を介してリチウム受容液に輸送する方法にお
いて、該陽イオン輸送剤として請求項1のリチウム同位
体分離剤を用い、6Liイオンを選択的に受容液に輸送さ
せることを特徴とするリチウム同位体の分離方法。
2. A method for transporting lithium ions contained in a solution to a lithium receiving solution via a cation transport agent, wherein the lithium isotope separating agent according to claim 1 is used as the cation transport agent, and 6 Li ions are used. A lithium isotope is selectively transported to a receiving solution.
【請求項3】 溶液中に含まれるリチウムイオンを抽出
剤溶液と接触させてリチウムイオンを抽出剤溶液に抽出
する方法において、該抽出剤溶液として請求項1のリチ
ウム同位体分離剤を含む溶液を用い、6Liイオンを選択
的に抽出剤溶液に抽出させることを特徴とするリチウム
同位体の分離方法。
3. A method for contacting lithium ions contained in a solution with an extractant solution to extract lithium ions into the extractant solution, wherein the extractant solution comprises the solution containing the lithium isotope separating agent according to claim 1. A method for separating lithium isotopes, wherein 6 Li ions are selectively extracted into an extractant solution.
JP8291156A 1996-10-14 1996-10-14 Lithium isotope separating agent and method for separating lithium isotope Expired - Lifetime JP2847182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8291156A JP2847182B2 (en) 1996-10-14 1996-10-14 Lithium isotope separating agent and method for separating lithium isotope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8291156A JP2847182B2 (en) 1996-10-14 1996-10-14 Lithium isotope separating agent and method for separating lithium isotope

Publications (2)

Publication Number Publication Date
JPH10113541A true JPH10113541A (en) 1998-05-06
JP2847182B2 JP2847182B2 (en) 1999-01-13

Family

ID=17765178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8291156A Expired - Lifetime JP2847182B2 (en) 1996-10-14 1996-10-14 Lithium isotope separating agent and method for separating lithium isotope

Country Status (1)

Country Link
JP (1) JP2847182B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010029797A (en) * 2008-07-29 2010-02-12 Japan Atomic Energy Agency Lithium isotope separation and condensation method, apparatus, measure, lithium ion selective permeation membrane, and lithium isotope concentrate
WO2013026866A2 (en) 2011-08-23 2013-02-28 Syngenta Participations Ag Novel microbiocides
CN104147929A (en) * 2013-06-17 2014-11-19 中国科学院上海有机化学研究所 Novel reflux cascade technology for producing lithium-7 isotopes
JP2015536234A (en) * 2012-11-05 2015-12-21 上海 インスティテュート オブ オーガニック ケミストリー、チャイニーズ アカデミー オブ サイエンシーズShanghai Institute Of Organic Chemistry, Chinese Academy Of Sciences Extraction agent for lithium isotope separation and its application
CN112619417A (en) * 2020-12-17 2021-04-09 中国科学院青海盐湖研究所 Extraction separation and enrichment based on multi-stage oscillation7Method for Li

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010029797A (en) * 2008-07-29 2010-02-12 Japan Atomic Energy Agency Lithium isotope separation and condensation method, apparatus, measure, lithium ion selective permeation membrane, and lithium isotope concentrate
WO2013026866A2 (en) 2011-08-23 2013-02-28 Syngenta Participations Ag Novel microbiocides
JP2015536234A (en) * 2012-11-05 2015-12-21 上海 インスティテュート オブ オーガニック ケミストリー、チャイニーズ アカデミー オブ サイエンシーズShanghai Institute Of Organic Chemistry, Chinese Academy Of Sciences Extraction agent for lithium isotope separation and its application
CN104147929A (en) * 2013-06-17 2014-11-19 中国科学院上海有机化学研究所 Novel reflux cascade technology for producing lithium-7 isotopes
CN112619417A (en) * 2020-12-17 2021-04-09 中国科学院青海盐湖研究所 Extraction separation and enrichment based on multi-stage oscillation7Method for Li

Also Published As

Publication number Publication date
JP2847182B2 (en) 1999-01-13

Similar Documents

Publication Publication Date Title
EP0701630B1 (en) Solid bonded oxygen-donor macrocyclic ligands for removing and concentrating metals
Sliwa et al. Calixarene complexes with metal ions
Sastre et al. Improved techniques in liquid membrane separations: an overview
US3914373A (en) Method for separating isotopes
Happel et al. Sr/Y separation by supported liquid membranes based on nuclear track micro filters
JP2847182B2 (en) Lithium isotope separating agent and method for separating lithium isotope
JP3020146B2 (en) Lithium isotope separating agent and method for separating lithium isotope using the same
Kimura et al. Separation of strontium ion from a large amount of calcium ion by the use of a macrocyclic ether
Buchachenko et al. Magnetic and spin effects in photoreduction of uranyl salts
Shimojo et al. Solvent extraction of lanthanides into an ionic liquid containing N, N, N′, N′-Tetrakis (2-pyridylmethyl) ethylenediamine
JPH0555172B2 (en)
Gherrou et al. Specific membrane transport of silver and copper as Ag (CN) 32− and Cu (CN) 43− ions through a supported liquid membrane using K+-crown ether as a carrier
JP4741171B2 (en) Isotope separation method
JPH10510202A (en) Method for separating cesium from industrial effluents containing other alkali metals using poly (hydroxyarylene) polymer resin
Teramoto et al. Separation of gallium and indium by supported liquid membranes containing 2-bromodecanoic acid as carrier: design of supported liquid membrane module based on batch permeation experiments
EP1825027A2 (en) Process for the recovery of acids
EP1188733A4 (en) Method of continuously and selectively separating clathrate and apparatus therefor
Reyes et al. Radiochemical separation of alkali ions by solvent extraction of cryptate complexes
Alpoğuz et al. Mechanism and kinetics of copper (II) transport through a liquid membrane containing a dithiophosphonate derivative as carrier
Mishra et al. Uranium processing
JP2002303694A (en) Decontamination method for uranium waste using supercritical carbon dioxide containing nitric acid tributyl phosphate(tbp) complex as medium
Awasthy et al. Design and synthesis of redox-switched lariat ethers and their application for transport of alkali and alkaline-earth metal cations across supported liquid membrane
Dozol et al. Application of crown-ethers to caesium and strontium removal from Marcoule reprocessing concentrate
JPH09173832A (en) Production of porous resin carried with copper hexacyanoferrate (ii)
JPS5857204B2 (en) How to separate heavy metal ions from aqueous solutions

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term