JP2010028683A - Piezoelectric device and its manufacturing method - Google Patents

Piezoelectric device and its manufacturing method Download PDF

Info

Publication number
JP2010028683A
JP2010028683A JP2008190378A JP2008190378A JP2010028683A JP 2010028683 A JP2010028683 A JP 2010028683A JP 2008190378 A JP2008190378 A JP 2008190378A JP 2008190378 A JP2008190378 A JP 2008190378A JP 2010028683 A JP2010028683 A JP 2010028683A
Authority
JP
Japan
Prior art keywords
wiring pattern
piezoelectric element
substrate
adhesive
excitation electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008190378A
Other languages
Japanese (ja)
Inventor
Kuniyuki Yanagisawa
国之 柳澤
Yuki Ueno
有貴 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Finetech Miyota Co Ltd
Original Assignee
Citizen Finetech Miyota Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Finetech Miyota Co Ltd filed Critical Citizen Finetech Miyota Co Ltd
Priority to JP2008190378A priority Critical patent/JP2010028683A/en
Publication of JP2010028683A publication Critical patent/JP2010028683A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive piezoelectric device has a good conductivity between a wiring pattern on a substrate and an exciting electrode on the surface of a piezoelectric element, and also a method of manufacturing the piezoelectric device. <P>SOLUTION: The piezoelectric element 2 is directly mounted on a wiring pattern 11 provided on a substrate 1 without any conductive member such as a conductive adhesive provided between the wiring pattern 11 and an exciting electrode 2a on the surface of the piezoelectric element 2. The wiring pattern 11 on the substrate 1 is mechanically and electrically connected to the exciting electrode 2a on the piezoelectric element 2 by a means for enabling direct junction, e.g., by welding. With such an arrangement, since a conductive member, which has been provided between the wiring pattern 11 and the exciting electrode 2a, is eliminated, its material cost is correspondingly reduced and a conductivity between both is increased. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、圧電デバイス及びその製造方法に関するものである。   The present invention relates to a piezoelectric device and a manufacturing method thereof.

従来、基板上に形成された導電パターン上に導電性接着剤などの導電性部材を介して水晶片などの圧電素子が実装された圧電デバイスが知られている。(例えば、特許文献1〜3参照)   Conventionally, a piezoelectric device in which a piezoelectric element such as a crystal piece is mounted on a conductive pattern formed on a substrate via a conductive member such as a conductive adhesive is known. (For example, see Patent Documents 1 to 3)

図6は、従来の圧電デバイスを示す図で、(a)上面図、(b)(a)のA−A断面図である。尚、(a)上面図では、内部の構成を分かり易くするため、一部の構成を図示省略としてある。ここに示す従来の圧電デバイスは、平面視矩形状の凹部1aを備えた箱型の絶縁性基板1(以下、単に基板)と、凹部1aの内部に収納された平板状の圧電素子2と、基板1の上端部に接合された平板状の蓋部材3とで大略構成され、基板1と蓋部材3とで形成された空間内に圧電素子2が気密封止された状態となっている。   6A and 6B are diagrams showing a conventional piezoelectric device, where FIG. 6A is a top view and FIG. 6B is a cross-sectional view taken along line AA in FIG. In the top view (a), a part of the configuration is not shown in order to make the internal configuration easy to understand. The conventional piezoelectric device shown here includes a box-shaped insulating substrate 1 (hereinafter simply referred to as a substrate) having a concave portion 1a having a rectangular shape in plan view, a plate-like piezoelectric element 2 housed inside the concave portion 1a, The plate-shaped lid member 3 joined to the upper end of the substrate 1 is roughly configured, and the piezoelectric element 2 is hermetically sealed in a space formed by the substrate 1 and the lid member 3.

基板1の凹部1a底面の一部には、所定の落差を有する段差部1bが形成されており、その上面に金属などの導電性材料から成る二つの配線パターン4が敷設され、その上にAg(銀)などの導電性粒子(ナノフィラー)を含有して成るUV硬化型の導電性接着剤5を介して圧電素子2が片持ち状態で実装されている。   A step portion 1b having a predetermined drop is formed on a part of the bottom surface of the recess 1a of the substrate 1, and two wiring patterns 4 made of a conductive material such as metal are laid on the top surface, and Ag is formed thereon. The piezoelectric element 2 is mounted in a cantilever state via a UV curable conductive adhesive 5 containing conductive particles (nanofiller) such as (silver).

圧電素子2の表裏面には、圧電素子2を励振駆動させるための互いに電気的極性の異なる二つの励振電極2aが設けられており、それらは圧電素子2の長手方向一端側の同一面(裏面)上に引回され、段差部1b上の二つの配線パターン4と導電性接着剤5を介して機械的及び電気的にそれぞれ接続されている。   Two excitation electrodes 2 a having different electrical polarities for driving the piezoelectric element 2 are provided on the front and back surfaces of the piezoelectric element 2, and they are the same surface (back surface) on one end side in the longitudinal direction of the piezoelectric element 2. ) And mechanically and electrically connected to the two wiring patterns 4 on the stepped portion 1b and the conductive adhesive 5 respectively.

段差部1b上の二つの配線パターン4は、基板1の肉厚部に設けられた図示しない貫通配線などを介して基板1の下面に形成された二つの外部接続端子6と電気的に接続されており、そこを通じて圧電素子2に対する電気信号の入出力が行われる。   The two wiring patterns 4 on the step portion 1b are electrically connected to two external connection terminals 6 formed on the lower surface of the substrate 1 through a through wiring (not shown) provided in the thick portion of the substrate 1. Through this, electric signals are input / output to / from the piezoelectric element 2.

以上の圧電デバイスにおいて、圧電素子2表面の励振電極2aと段差部1b上の配線パターン4との間に介在する導電性接着剤5は、圧電素子2を基板1上に固定する役割と、励振電極2aと配線パターン4とを互いに導通させる役割を兼ねたもので、使用される材料としては導電性接着剤に限らず半田などの種々のものが適宜選択され得る。
特開2007−267101号公報 特開2007−195138号公報 特開2008−85469号公報
In the piezoelectric device described above, the conductive adhesive 5 interposed between the excitation electrode 2a on the surface of the piezoelectric element 2 and the wiring pattern 4 on the stepped portion 1b serves to fix the piezoelectric element 2 on the substrate 1 and to excite it. The electrode 2a and the wiring pattern 4 also serve to conduct each other. The material used is not limited to a conductive adhesive, and various materials such as solder can be appropriately selected.
JP 2007-267101 A JP 2007-195138 A JP 2008-85469 A

しかしながら、従来の圧電デバイスにおいては、基板上の配線パターンと圧電素子表面の励振電極とを導電性部材(導電性接着剤、半田等)を介して互いに導通させているため、その分のコスト(材料費)が掛かるという問題があり、また、配線パターンと励振電極との間に導電性部材が介在することで互いの導通性が低下し、圧電素子の電気的特性に影響を及ぼす虞がある。特に圧電デバイスが小型化すると、それに伴って導電性部材の塗布領域が制限されて導電性材料の総量が減少するため、導通性がよりいっそう低下する。   However, in the conventional piezoelectric device, the wiring pattern on the substrate and the excitation electrode on the surface of the piezoelectric element are electrically connected to each other through a conductive member (conductive adhesive, solder, etc.). There is a problem that the material cost is increased, and the electrical conductivity of the piezoelectric element may be affected due to a decrease in mutual conductivity due to the presence of the conductive member between the wiring pattern and the excitation electrode. . In particular, when the piezoelectric device is downsized, the application area of the conductive member is limited accordingly, and the total amount of the conductive material is reduced, so that the conductivity is further lowered.

本発明は、以上の問題点に鑑みて成されたものであり、基板上の配線パターンと圧電素子表面の励振電極との導通性が良好な安価な圧電デバイス及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and provides an inexpensive piezoelectric device having a good electrical connection between the wiring pattern on the substrate and the excitation electrode on the surface of the piezoelectric element, and a method for manufacturing the piezoelectric device. Objective.

少なくとも、基板と、当該基板上に形成された配線パターンと、表面に励振電極が形成された圧電素子とを備え、前記励振電極と前記配線パターンとが互いに当接した状態で前記圧電素子が前記配線パターン上に導電性部材を介さず直接実装圧電デバイスとする。   And at least a substrate, a wiring pattern formed on the substrate, and a piezoelectric element having an excitation electrode formed on a surface thereof, and the piezoelectric element is in a state where the excitation electrode and the wiring pattern are in contact with each other. A piezoelectric device is mounted directly on the wiring pattern without using a conductive member.

前記励振電極と前記配線パターンとは、互いに接合されている圧電デバイスとされ得る。   The excitation electrode and the wiring pattern may be a piezoelectric device bonded to each other.

前記圧電素子と前記基板との間に接着剤が介在している圧電デバイスとされ得る。   It may be a piezoelectric device in which an adhesive is interposed between the piezoelectric element and the substrate.

少なくとも、基板上に配線パターンを形成する工程と、当該配線パターン上に励振電極を備えた圧電素子を載置する工程と、前記配線パターンと前記励振電極とを互いに接合させる工程とを有する圧電デバイスの製造方法とする。   A piezoelectric device comprising at least a step of forming a wiring pattern on a substrate, a step of placing a piezoelectric element having an excitation electrode on the wiring pattern, and a step of bonding the wiring pattern and the excitation electrode to each other The manufacturing method is as follows.

前記基板上に液体状乃至はペースト状の導電性材料を塗布することで前記配線パターンを形成し、前記配線パターンが未硬化の状態で前記配線パターン上に前記圧電素子を載置し、前記配線パターンを硬化させることで前記配線パターンと前記励振電極とを互いに接合させる圧電デバイスの製造方法とされ得る。   The wiring pattern is formed by applying a liquid or paste conductive material on the substrate, the piezoelectric element is placed on the wiring pattern in a state where the wiring pattern is uncured, and the wiring It can be set as the manufacturing method of the piezoelectric device which joins the said wiring pattern and the said excitation electrode mutually by hardening a pattern.

少なくとも、基板上に配線パターンを形成する工程と、前記基板上に硬化収縮型の接着剤を塗布する工程と、前記接着剤が未硬化の状態で前記接着剤上に励振電極を備えた圧電素子を載置する工程と、前記接着剤を硬化させてその硬化収縮により前記励振電極と前記配線パターンとを互いに密着させる工程とを有する圧電デバイスの製造方法とする。   At least a step of forming a wiring pattern on a substrate, a step of applying a curing shrinkable adhesive on the substrate, and a piezoelectric element having an excitation electrode on the adhesive in a state where the adhesive is uncured The method of manufacturing a piezoelectric device includes: a step of placing the substrate; and a step of curing the adhesive and causing the excitation electrode and the wiring pattern to adhere to each other by curing shrinkage.

本発明によれば、基板上の配線パターンと圧電素子表面の励振電極とを導電性部材を使わずに互いに導通させることで、配線パターンと励振電極との導通性が高まると共に、導電性部材の材料費が削減されることで低コスト化が達成される。   According to the present invention, the wiring pattern on the substrate and the excitation electrode on the surface of the piezoelectric element are electrically connected to each other without using the conductive member, so that the electrical connection between the wiring pattern and the excitation electrode is increased, and Cost reduction is achieved by reducing material costs.

少なくとも、基板と、基板上に形成された配線パターンと、表面に励振電極が形成された圧電素子とを備え、励振電極と配線パターンとが互いに当接した状態で圧電素子が配線パターン上に導電性部材を介さず直接実装されている圧電デバイスである。   At least a substrate, a wiring pattern formed on the substrate, and a piezoelectric element having an excitation electrode formed on the surface, and the piezoelectric element is electrically conductive on the wiring pattern in a state where the excitation electrode and the wiring pattern are in contact with each other. It is a piezoelectric device that is directly mounted without using a sex member.

図1は、本発明による圧電デバイスの一実施形態を示す図で、(a)上面図、(b)(a)のA−A断面図及びその要部拡大図である。尚、(a)上面図では、内部の構成を分かり易くするため、一部の構成を図示省略としてある。ここに示す本発明の圧電デバイスは、平面視矩形状の凹部1aを備えた箱型の絶縁性基板1(以下、単に基板)と、凹部1aの内部に収納された水晶などから成る平板状の圧電素子2と、基板1の上端部に接合された金属などから成る平板状の蓋部材3とで大略構成され、基板1と蓋部材3とで形成された空間内に圧電素子2が気密封止された状態となっている。   1A and 1B are diagrams showing an embodiment of a piezoelectric device according to the present invention. FIG. 1A is a top view, FIG. 1B is an AA cross-sectional view of FIG. In the top view (a), a part of the configuration is not shown in order to make the internal configuration easy to understand. The piezoelectric device of the present invention shown here has a flat plate shape made of a box-shaped insulating substrate 1 (hereinafter simply referred to as a substrate) having a concave portion 1a having a rectangular shape in plan view, and a crystal housed in the concave portion 1a. The piezoelectric element 2 and the flat lid member 3 made of metal or the like bonded to the upper end of the substrate 1 are generally configured. The piezoelectric element 2 is hermetically sealed in the space formed by the substrate 1 and the lid member 3. It is in a stopped state.

基板1の凹部1a底面の一部には、所定の落差を有する段差部1bが設けられており、その上面に導電性材料から成る平面視矩形状の二つの配線パターン11が形成され、それらの上に圧電素子2が導電性接着剤などの導電性部材を介さず直接実装されている。   A step portion 1b having a predetermined drop is provided on a part of the bottom surface of the concave portion 1a of the substrate 1, and two wiring patterns 11 having a rectangular shape in a plan view made of a conductive material are formed on the upper surface. The piezoelectric element 2 is directly mounted on the top without a conductive member such as a conductive adhesive.

圧電素子2の表裏面には、圧電素子2を励振駆動させるための互いに電気的極性の異なる二つの励振電極2aが形成されており、それらは圧電素子2の長手方向一端側の同一面(裏面)上に引回され、段差部1b上の二つの配線パターン11のうち各々対応する配線パターン11と機械的に接続(接合)されると共に、その機械的結合力によって圧電素子2自体が配線パターン11を介して基板1上に固定された状態となっている。   Two excitation electrodes 2 a having different electrical polarities for driving the piezoelectric element 2 are formed on the front and back surfaces of the piezoelectric element 2, and they are the same surface (back surface) on one end side in the longitudinal direction of the piezoelectric element 2. ) And mechanically connected (joined) to the corresponding wiring pattern 11 out of the two wiring patterns 11 on the stepped portion 1b, and the piezoelectric element 2 itself is connected to the wiring pattern by the mechanical coupling force. 11 is fixed on the substrate 1 through 11.

以上の構成では、圧電素子2表面の励振電極2aと段差部1b上の配線パターンとの間には、従来の圧電デバイスのように両者を導通させるための導電性部材(導電性接着剤、半田等)が介在していないため、励振電極2aと配線パターン4との導電性が向上すると共に、導電性部材自体が省略されることでその分の材料費が削減される。   In the above configuration, between the excitation electrode 2a on the surface of the piezoelectric element 2 and the wiring pattern on the stepped portion 1b, a conductive member (conductive adhesive, solder, etc.) for conducting both of them as in a conventional piezoelectric device. Etc.), the conductivity between the excitation electrode 2a and the wiring pattern 4 is improved, and the conductive material itself is omitted, thereby reducing the material cost.

段差部1b上の二つの配線パターン11は、基板1の肉厚部に設けられた図示しない貫通配線などを介して基板1の下面に形成された二つの外部接続端子6とそれぞれ電気的に接続されており、そこを通じて圧電素子2に対する電気信号の入出力が行われる。   The two wiring patterns 11 on the stepped portion 1b are electrically connected to two external connection terminals 6 formed on the lower surface of the substrate 1 through a through wiring (not shown) provided in the thick portion of the substrate 1, respectively. An electric signal is input / output to / from the piezoelectric element 2 through this.

図2は、図1に示した本発明の圧電デバイスの製造方法を示す断面図である。図1に示した本発明の圧電デバイスを製造する際には、まず、図2(a)に示すように、予め一主面側に平面視矩形状の凹部1aが形成された基板1の段差部1b上に、所定の粘度に調整された液体状乃至はペースト状の導電性材料を用いて、圧電素子2を実装するための二つの配線パターン11を形成する。   2 is a cross-sectional view showing a method of manufacturing the piezoelectric device of the present invention shown in FIG. When manufacturing the piezoelectric device of the present invention shown in FIG. 1, first, as shown in FIG. 2 (a), the step of the substrate 1 in which a concave portion 1a having a rectangular shape in plan view is formed in advance on one main surface side. Two wiring patterns 11 for mounting the piezoelectric element 2 are formed on the part 1b using a liquid or paste conductive material adjusted to a predetermined viscosity.

ここで配線パターン11を形成するに当たっては、例えば、インクジェット法が選択される。インクジェット法は、液体状乃至はペースト状の材料を吐出ノズルから液滴として高速で吐出させて対象物に付着させるもので、吐出ノズルを対象物に対して水平に移動させて吐出位置を少しずつずらしていくことで、対象物の表面に任意のパターンを精確に描画することが可能である。   Here, in forming the wiring pattern 11, for example, an ink jet method is selected. The ink jet method is a method in which a liquid or pasty material is ejected as droplets from a discharge nozzle at a high speed and adhered to an object. The discharge nozzle is moved horizontally with respect to the object, and the discharge position is gradually changed. By shifting the position, it is possible to accurately draw an arbitrary pattern on the surface of the object.

本実施例においては、吐出材料として溶媒中に微小な導電性粒子(ナノフィラー)を混入させて成る導電性材料を用い、それを基板1の段差部1b上に吐出させることで配線パターン11を形成する。この時、予め導電性材料の粘度を適宜調整しておくことで、吐出された液滴が基板1の段差部1b上に着弾した後も所定時間は固化(硬化)せず一定の粘度を保つようにしておく。尚、配線パターン11の厚みを増加させたい場合には、この時点で所望の厚みになるまで同様の工程を繰り返して厚く堆積させる。   In the present embodiment, a conductive material obtained by mixing minute conductive particles (nanofiller) in a solvent is used as a discharge material, and the wiring pattern 11 is discharged by discharging it onto the stepped portion 1b of the substrate 1. Form. At this time, by appropriately adjusting the viscosity of the conductive material in advance, even after the discharged droplets land on the stepped portion 1b of the substrate 1, it does not solidify (harden) for a predetermined time and maintains a constant viscosity. Keep it like that. If it is desired to increase the thickness of the wiring pattern 11, the same process is repeated until a desired thickness is reached at this point, so that the wiring pattern 11 is deposited thickly.

次に、図2(b)に示すように、未硬化状態の配線パターン11上に圧電素子2をその表面の励振電極2aを対応させて載置し、必要に応じて上方から適度に加圧する。この状態において圧電素子2は、配線パターン11を構成する導電性材料の粘着力により配線パターン11上に保持されているが、圧電素子2に位置ずれや傾きが生じる虞がある場合には、治具などで補助的に保持するようにしてもよい。   Next, as shown in FIG. 2B, the piezoelectric element 2 is placed on the uncured wiring pattern 11 in correspondence with the excitation electrode 2a on the surface, and is appropriately pressed from above as necessary. . In this state, the piezoelectric element 2 is held on the wiring pattern 11 by the adhesive force of the conductive material constituting the wiring pattern 11. If there is a possibility that the piezoelectric element 2 may be displaced or tilted, the piezoelectric element 2 is cured. You may make it hold | maintain auxiliary with tools.

次に、図2(c)に示すように、構成部材全体を加熱又は配線パターン11のみを局所的に加熱することで配線パターン11を硬化させる。これにより、圧電素子2表面の励振電極2aと段差部1b上の配線パターン11とが機械的に強固に結合(接合)されると同時に、配線パターン11の内部に存在する無数の導電性粒子が凝集して両者が互いに導通した状態となる。   Next, as shown in FIG. 2C, the wiring pattern 11 is cured by heating the entire constituent member or locally heating only the wiring pattern 11. As a result, the excitation electrode 2a on the surface of the piezoelectric element 2 and the wiring pattern 11 on the step portion 1b are mechanically firmly coupled (bonded), and at the same time, innumerable conductive particles existing inside the wiring pattern 11 are formed. Aggregates and the two become conductive.

以上の製造工程では、従来のように圧電素子2表面の励振電極2aと段差部1b上の配線パターン11との間に導電性接着剤などの導電性部材を介在させる工程が無いため、その分生産性が向上している。   In the above manufacturing process, there is no step of interposing a conductive member such as a conductive adhesive between the excitation electrode 2a on the surface of the piezoelectric element 2 and the wiring pattern 11 on the stepped portion 1b as in the prior art. Productivity is improving.

圧電素子2を配線パターン11上の実装した後は、真空雰囲気中で基板1の上端部に蓋部材3を接合することで、圧電素子2が基板1と蓋部材3との接合体(パッケージ)内部に気密封止された状態となる。尚、以上の説明では、貫通配線や外部接続端子6などは、圧電素子2を配線パターン11上に実装する前の任意の段階で予め形成されているものとしてある。   After the piezoelectric element 2 is mounted on the wiring pattern 11, the lid member 3 is joined to the upper end portion of the substrate 1 in a vacuum atmosphere, so that the piezoelectric element 2 is joined to the substrate 1 and the lid member 3 (package). It will be in the state airtightly sealed inside. In the above description, the through wiring, the external connection terminal 6 and the like are preliminarily formed at an arbitrary stage before the piezoelectric element 2 is mounted on the wiring pattern 11.

また、本実施例1においては、配線パターン11自体を固化させることで圧電素子2表面の励振電極2aと段差部1b上の配線パターン11とを機械的及び電気的に接続しているが、それと同等の作用及び効果がある構成として、互いの構成材料を適宜選択した上で励振電極2aと配線パターン11とを超音波、レーザー、紫外線、表面活性化などにより接合することが挙げられる。それら何れの場合であっても、励振電極2aと配線パターン11との間には導電性部材が別体として介在することはなく、従来技術の問題点を解決することが可能である。   In Example 1, the wiring pattern 11 itself is solidified to mechanically and electrically connect the excitation electrode 2a on the surface of the piezoelectric element 2 and the wiring pattern 11 on the stepped portion 1b. As a configuration having the same operation and effect, it is possible to join the excitation electrode 2a and the wiring pattern 11 by ultrasonic waves, laser, ultraviolet rays, surface activation, and the like after appropriately selecting each other's constituent materials. In either case, the conductive member is not interposed as a separate member between the excitation electrode 2a and the wiring pattern 11, and the problems of the prior art can be solved.

図3は、本発明による圧電デバイスの他の実施形態を示す図で、(a)上面図、(b)(a)のA−A断面図及びその要部拡大図である。尚、(a)上面図では、内部の構成を分かり易くするため、一部の構成を図示省略としてある。ここに示す本発明の圧電デバイスは、前述の実施例1と同様の基本構成を備え、その特徴は圧電素子表面の励振電極と基板上の配線パターンとが互いに接合されていないことにある。   FIGS. 3A and 3B are diagrams showing another embodiment of the piezoelectric device according to the present invention, in which FIG. 3A is a top view, FIG. 3B is a cross-sectional view taken along line A-A in FIG. In the top view (a), a part of the configuration is not shown in order to make the internal configuration easy to understand. The piezoelectric device of the present invention shown here has the same basic configuration as that of the first embodiment described above, and is characterized in that the excitation electrode on the surface of the piezoelectric element and the wiring pattern on the substrate are not joined to each other.

本実施例2において、基板1の段差部1b上には、圧電素子2の外形領域内に収まるような比較して外形サイズの小さい平面視矩形状を成す二つの配線パターン12が形成され、それらの周囲に配線パターン12と接しないように絶縁性接着剤13が四箇所にわたって塗布されている。圧電素子2は、それら絶縁性接着剤13と接した状態で配線パターン12上に表面の励振電極2aを対応させて載置され、励振電極2aと配線パターン12とが互いに当接することで両者間の電気的接続が成されており、一方で圧電素子2と基板1との間に接着剤が介在することで、その固着力により圧電素子2が段差部1b上に固定されている。ここで絶縁性接着剤13は、硬化時に収縮する性質を備えた所謂硬化収縮型の接着剤であり、その収縮力により圧電素子2が基板1側へ引き寄せられることで、圧電素子2表面の励振電極2aが段差部1b上の配線パターン12に密着した状態となっている。   In the second embodiment, on the step portion 1b of the substrate 1, there are formed two wiring patterns 12 having a rectangular shape in plan view with a smaller outer size so as to be within the outer region of the piezoelectric element 2. Insulative adhesive 13 is applied to four locations so as not to contact the wiring pattern 12 around the periphery. The piezoelectric element 2 is placed on the wiring pattern 12 in contact with the insulating adhesive 13 so as to correspond to the excitation electrode 2a on the surface, and the excitation electrode 2a and the wiring pattern 12 are in contact with each other, so On the other hand, an adhesive is interposed between the piezoelectric element 2 and the substrate 1, so that the piezoelectric element 2 is fixed on the stepped portion 1 b by its fixing force. Here, the insulating adhesive 13 is a so-called curing / shrinking type adhesive having a property of contracting at the time of curing, and the piezoelectric element 2 is attracted to the substrate 1 side by the contracting force, thereby exciting the surface of the piezoelectric element 2. The electrode 2a is in close contact with the wiring pattern 12 on the step portion 1b.

以上の構成では、圧電素子2表面の励振電極2aと段差部1b上の配線パターン12とを導通させるために流動性のある導電性材料を使用していないことから、導電性材料が周囲に流出して隣接する導電パターン12間が短絡するようなことはなく、また、圧電素子2を基板1に固定するに当たっては、実施例1のように粘着性のある導電性材料を接着剤として兼用するのではなく、導電性を考慮しない接着力に特化した材料を選択することができることから、圧電素子2の基板1に対する固定力を増大させることが可能であり、加えて、絶縁性接着剤は導電性接着剤よりも一般的に安価であるため、その分コストが削減される。   In the above configuration, since the conductive material having fluidity is not used to connect the excitation electrode 2a on the surface of the piezoelectric element 2 and the wiring pattern 12 on the step portion 1b, the conductive material flows out to the surroundings. Thus, the adjacent conductive patterns 12 are not short-circuited, and when the piezoelectric element 2 is fixed to the substrate 1, an adhesive conductive material is used as an adhesive as in the first embodiment. However, since a material specialized for the adhesive force that does not consider conductivity can be selected, it is possible to increase the fixing force of the piezoelectric element 2 to the substrate 1, and in addition, the insulating adhesive Since it is generally cheaper than a conductive adhesive, the cost is reduced accordingly.

図4は、図3に示した本発明の圧電デバイスの製造方法を示す断面図である。図3に示した本発明の圧電デバイスを製造する際には、まず、図4(a)に示すように、予め一主面側に平面視矩形状の凹部1aが形成された基板1の段差部1b上に、速乾性が高い液体状乃至はペースト状の導電性材料をインクジェット法により吐出させ、圧電素子2を実装するための二つの配線パターン12を形成する。この時、インクジェット法により吐出された導電性材料の液滴は、段差部1bの表面に着弾した直後に乾燥して固化するため、この時点で配線パターン12は粘着性を有していない。尚、配線パターン12の厚みを増加させたい場合には、この時点で所望の厚みになるまで同じ工程を繰り返して厚く堆積させる。また、配線パターン12は、この時点で粘着性を有しない状態で固化してさえいればよく、その形成方法としては、インクジェット法に限らずスパッタ法なども採用され得る。   4 is a cross-sectional view showing a method of manufacturing the piezoelectric device of the present invention shown in FIG. When the piezoelectric device of the present invention shown in FIG. 3 is manufactured, first, as shown in FIG. 4A, a step of the substrate 1 in which a concave portion 1a having a rectangular shape in plan view is formed on one main surface side in advance. On the part 1b, a liquid or paste-like conductive material having a high quick-drying property is discharged by an ink jet method to form two wiring patterns 12 for mounting the piezoelectric element 2. At this time, since the droplets of the conductive material discharged by the ink jet method are dried and solidified immediately after landing on the surface of the stepped portion 1b, the wiring pattern 12 does not have adhesiveness at this time. If it is desired to increase the thickness of the wiring pattern 12, the same process is repeated until a desired thickness is obtained at this point, and the wiring pattern 12 is deposited thickly. Further, the wiring pattern 12 only needs to be solidified in a state having no adhesiveness at this time, and the formation method is not limited to the ink jet method, and a sputtering method or the like can also be adopted.

次に、図4(b)に示すように、二つの配線パターン12の周囲にディスペンス法やインクジェット法などを用いて、硬化収縮型で紫外線硬化型の絶縁性接着剤13(以下、単に接着剤)を塗布する。このとき、接着剤13は、配線パターン12の厚みよりも適度に高く盛り上がるように、且つ接着剤13が周囲に濡れ広がった際にも配線パターン12と接触しない位置及び量に塗布される。接着剤13を塗布するのにインクジェット法を用いる場合には、接着剤13が所望の高さ(厚み)が得られるまで同様の塗布作業を繰り返して厚く堆積させる。尚、この時点で接着剤13が配線パターン12に接触し、その表面が接着剤13で覆われていると、圧電素子2表面の励振電極2aと段差部1b上の配線パターン12との導通が阻害される虞がある。   Next, as shown in FIG. 4B, a curing shrinkable and ultraviolet curable insulating adhesive 13 (hereinafter simply referred to as an adhesive) is used around the two wiring patterns 12 by using a dispensing method or an inkjet method. ) Is applied. At this time, the adhesive 13 is applied at a position and amount that does not come into contact with the wiring pattern 12 even when the adhesive 13 wets and spreads to the periphery so that the adhesive 13 swells to an appropriate height than the thickness of the wiring pattern 12. When the inkjet method is used to apply the adhesive 13, the same application operation is repeated until the adhesive 13 has a desired height (thickness) and is deposited thickly. At this time, when the adhesive 13 contacts the wiring pattern 12 and the surface thereof is covered with the adhesive 13, the conduction between the excitation electrode 2a on the surface of the piezoelectric element 2 and the wiring pattern 12 on the step portion 1b is established. There is a risk of being disturbed.

次に、図4(c)に示すように、圧電素子2をその表面の励振電極2aを配線パターン12に対応させた状態で接着剤13の上に載置し、必要に応じて上方から適度に加圧する。この状態において圧電素子2は、接着剤13の粘着力により保持されているが、圧電素子2に位置ずれや傾きが生じる虞がある場合には、治具などで補助的に保持するようにしてもよい。   Next, as shown in FIG. 4C, the piezoelectric element 2 is placed on the adhesive 13 in a state where the excitation electrode 2a on the surface thereof corresponds to the wiring pattern 12, and it is appropriately adjusted from above if necessary. Pressurize. In this state, the piezoelectric element 2 is held by the adhesive force of the adhesive 13, but if there is a possibility that the piezoelectric element 2 may be displaced or tilted, the piezoelectric element 2 should be supplementarily held by a jig or the like. Also good.

次に、図4(d)に示すように、接着剤13に紫外線を照射して硬化させ、その硬化時の収縮により圧電素子2表面の励振電極2aと段差部1b上の配線パターン12とを互いに密着させる。これにより、圧電素子2表面の励振電極2aは、段差部1b上の配線パターン12と確実に当接して互いに導通し、その一方で圧電素子2自体は、接着剤13により基板1に強固に固定される。   Next, as shown in FIG. 4D, the adhesive 13 is irradiated with ultraviolet rays to be cured, and the excitation electrode 2a on the surface of the piezoelectric element 2 and the wiring pattern 12 on the step portion 1b are contracted by shrinkage at the time of curing. Adhere to each other. Thereby, the excitation electrode 2a on the surface of the piezoelectric element 2 is surely brought into contact with the wiring pattern 12 on the step portion 1b and is electrically connected to each other, while the piezoelectric element 2 itself is firmly fixed to the substrate 1 by the adhesive 13. Is done.

尚、以上の製造方法では、基板1に接着剤13を塗布した後に圧電素子2を基板1上に載置しているが、例えば、先に圧電素子2を基板1上に載置して治具などにより保持しておき、その状態で圧電素子2の外周部と基板1との境界付近に接着剤13を塗布したり、圧電素子2と基板1との隙間に接着剤3を浸透させるようにしてもよい。   In the above manufacturing method, the piezoelectric element 2 is placed on the substrate 1 after the adhesive 13 is applied to the substrate 1. For example, the piezoelectric element 2 is placed on the substrate 1 first and then cured. In this state, the adhesive 13 is applied near the boundary between the outer periphery of the piezoelectric element 2 and the substrate 1, or the adhesive 3 is permeated into the gap between the piezoelectric element 2 and the substrate 1. It may be.

また、圧電素子2表面の励振電極2aと段差部1b上の配線パターン12とを互いに密着させて導通の信頼性を高める意味では、使用する接着剤は硬化収縮型のものが好ましいが、両者の導通が確保される限りにおいてはそれに限定されるものではなく、また、紫外線硬化型でなく、熱硬化型などであってもよい。   In addition, in order to increase the reliability of conduction by bringing the excitation electrode 2a on the surface of the piezoelectric element 2 and the wiring pattern 12 on the stepped portion 1b into close contact with each other, it is preferable that the adhesive used is a curing shrink type, It is not limited to that as long as conduction is ensured, and it may be a thermosetting type instead of an ultraviolet curable type.

図5は、圧電素子を実装するための配線パターンとその周囲に塗布された接着剤を示す上面図である。以上説明した実施例2の構成に関し、圧電素子2を実装するための配線パターン12の形状と接着剤13の塗布位置について言及すると、例えば、図5(a)に示すように、配線パターン12を平面視十字状とし、その周囲の四つの空白領域に接着剤13を塗布したり、図5(b)に示すように、配線パターン12を平面視断続的な円弧状とし、その円弧の中心に接着剤13を塗布するようにしてもよい。   FIG. 5 is a top view showing a wiring pattern for mounting a piezoelectric element and an adhesive applied around the wiring pattern. Regarding the configuration of the second embodiment described above, referring to the shape of the wiring pattern 12 for mounting the piezoelectric element 2 and the application position of the adhesive 13, for example, as shown in FIG. In the plan view cross shape, the adhesive 13 is applied to the four blank areas around it, and as shown in FIG. 5 (b), the wiring pattern 12 is formed in an intermittent arc shape in plan view, and the center of the arc is formed. Adhesive 13 may be applied.

特に図5(a)に示した構成では、限られたスペースの中で配線パターン12と接着剤13の面積を効率的に確保することができ、また、図5(b)に示した構成では、互いに隣接する配線パターン12間に隙間が生じていることから、接着剤13が硬化する際にガスが発生したとしても、そのガスは個片パターン間の隙間から外部へと逃がされ、配線パターン12で囲まれた領域内に籠もることはなく、ガスの圧力で圧電素子2に位置ずれが生じるようなことはない。   In particular, in the configuration shown in FIG. 5A, the areas of the wiring pattern 12 and the adhesive 13 can be efficiently secured in a limited space, and in the configuration shown in FIG. Since there is a gap between the wiring patterns 12 adjacent to each other, even if gas is generated when the adhesive 13 is cured, the gas is released to the outside through the gap between the individual patterns. The region surrounded by the pattern 12 does not stagnate, and the position of the piezoelectric element 2 is not shifted by the gas pressure.

尚、配線パターン12の形状と接着剤13の塗布位置との関係は、それらに限定されるものではなく、本発明の主旨を逸脱しない範囲において、その他種々のものが適宜選択され得る。   The relationship between the shape of the wiring pattern 12 and the application position of the adhesive 13 is not limited to these, and various other types can be selected as appropriate without departing from the spirit of the present invention.

また、以上説明した実施例1、2の構成は、互いに組み合わせて実施することが可能であり、例えば、実施例1の構成において圧電素子2と段差部1bとの間に実施例2で示したような硬化収縮型の接着剤13を介在させ、圧電素子2の基板1に対する固定強度と、圧電素子2表面の励振電極2aと段差部1b上の配線パターン12との密着力を向上させるようにしてもよい。   The configurations of the first and second embodiments described above can be implemented in combination with each other. For example, in the configuration of the first embodiment, the configuration shown in the second embodiment between the piezoelectric element 2 and the stepped portion 1b is shown. The hardening shrinkable adhesive 13 is interposed to improve the fixing strength of the piezoelectric element 2 to the substrate 1 and the adhesion between the excitation electrode 2a on the surface of the piezoelectric element 2 and the wiring pattern 12 on the step portion 1b. May be.

本発明による圧電デバイスの一実施形態を示す図で、(a)上面図、(b)(a)のA−A断面図及びその要部拡大図(実施例1)BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows one Embodiment of the piezoelectric device by this invention, (a) Top view, (b) AA sectional drawing of (a), and its principal part enlarged view (Example 1). 図1に示した本発明の圧電デバイスの製造方法を示す断面図(実施例1)Sectional drawing which shows the manufacturing method of the piezoelectric device of this invention shown in FIG. 1 (Example 1) 本発明による圧電デバイスの他の実施形態を示す図で、(a)上面図、(b)(a)のA−A断面図及びその要部拡大図(実施例2)It is a figure which shows other embodiment of the piezoelectric device by this invention, (a) Top view, (b) AA sectional drawing of (a), and its principal part enlarged view (Example 2). 図3に示した本発明の圧電デバイスの製造方法を示す断面図(実施例2)Sectional drawing which shows the manufacturing method of the piezoelectric device of this invention shown in FIG. 3 (Example 2) 圧電素子を実装するための配線パターンとその周囲に塗布された接着剤を示す上面図Top view showing wiring pattern for mounting piezoelectric element and adhesive applied around it 従来の圧電デバイスを示す図で、(a)上面図、(b)(a)のA−A断面図It is a figure which shows the conventional piezoelectric device, (a) Top view, (b) AA sectional drawing of (a).

符号の説明Explanation of symbols

1 基板
1a 凹部
1b 段差部
2 圧電素子
2a 励振電極
3 蓋部材
4 配線パターン
5 導電性接着剤
6 外部接続端子
11 配線パターン
12 配線パターン
13 絶縁性接着剤
DESCRIPTION OF SYMBOLS 1 Board | substrate 1a Concave part 1b Step part 2 Piezoelectric element 2a Excitation electrode 3 Cover member 4 Wiring pattern 5 Conductive adhesive 6 External connection terminal 11 Wiring pattern 12 Wiring pattern 13 Insulating adhesive

Claims (6)

少なくとも、基板と、当該基板上に形成された配線パターンと、表面に励振電極が形成された圧電素子とを備え、前記励振電極と前記配線パターンとが互いに当接した状態で前記圧電素子が前記配線パターン上に導電性部材を介さず直接実装されていることを特徴とする圧電デバイス。   And at least a substrate, a wiring pattern formed on the substrate, and a piezoelectric element having an excitation electrode formed on a surface thereof, and the piezoelectric element is in a state where the excitation electrode and the wiring pattern are in contact with each other. A piezoelectric device which is directly mounted on a wiring pattern without a conductive member. 前記励振電極と前記配線パターンとは、互いに接合されていることを特徴とする請求項1に記載の圧電デバイス。   The piezoelectric device according to claim 1, wherein the excitation electrode and the wiring pattern are bonded to each other. 前記圧電素子と前記基板との間に接着剤が介在していることを特徴とする請求項1、又は2に記載の圧電デバイス。   The piezoelectric device according to claim 1, wherein an adhesive is interposed between the piezoelectric element and the substrate. 少なくとも、
基板上に配線パターンを形成する工程と、
当該配線パターン上に励振電極を備えた圧電素子を載置する工程と、
前記配線パターンと前記励振電極とを互いに接合させる工程とを有することを特徴とする圧電デバイスの製造方法。
at least,
Forming a wiring pattern on the substrate;
Placing a piezoelectric element having an excitation electrode on the wiring pattern;
A method for manufacturing a piezoelectric device comprising the step of bonding the wiring pattern and the excitation electrode to each other.
前記基板上に液体状乃至はペースト状の導電性材料を塗布することで前記配線パターンを形成し、前記配線パターンが未硬化の状態で前記配線パターン上に前記圧電素子を載置し、前記配線パターンを硬化させることで前記配線パターンと前記励振電極とを互いに接合させることを特徴とする請求項4に記載の圧電デバイスの製造方法。   The wiring pattern is formed by applying a liquid or paste conductive material on the substrate, the piezoelectric element is placed on the wiring pattern in a state where the wiring pattern is uncured, and the wiring The method for manufacturing a piezoelectric device according to claim 4, wherein the wiring pattern and the excitation electrode are bonded to each other by curing the pattern. 少なくとも、
基板上に配線パターンを形成する工程と、
前記基板上に硬化収縮型の接着剤を塗布する工程と、
前記接着剤が未硬化の状態で前記接着剤上に励振電極を備えた圧電素子を載置する工程と、
前記接着剤を硬化させてその硬化収縮により前記励振電極と前記配線パターンとを互いに密着させる工程とを有することを特徴とする圧電デバイスの製造方法。
at least,
Forming a wiring pattern on the substrate;
Applying a curing shrinkable adhesive on the substrate;
Placing a piezoelectric element having an excitation electrode on the adhesive in an uncured state of the adhesive;
A method of manufacturing a piezoelectric device, comprising: a step of curing the adhesive and causing the excitation electrode and the wiring pattern to adhere to each other by curing shrinkage thereof.
JP2008190378A 2008-07-24 2008-07-24 Piezoelectric device and its manufacturing method Pending JP2010028683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008190378A JP2010028683A (en) 2008-07-24 2008-07-24 Piezoelectric device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008190378A JP2010028683A (en) 2008-07-24 2008-07-24 Piezoelectric device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2010028683A true JP2010028683A (en) 2010-02-04

Family

ID=41734047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008190378A Pending JP2010028683A (en) 2008-07-24 2008-07-24 Piezoelectric device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2010028683A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011000661A1 (en) 2010-02-12 2012-03-15 Denso Corporation current sensor
JP2014131161A (en) * 2012-12-28 2014-07-10 Fujitsu Ltd Electronic device and electronic device manufacturing method
CN114333914A (en) * 2020-09-29 2022-04-12 日本发条株式会社 Method and apparatus for manufacturing suspension for magnetic disk device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011000661A1 (en) 2010-02-12 2012-03-15 Denso Corporation current sensor
JP2014131161A (en) * 2012-12-28 2014-07-10 Fujitsu Ltd Electronic device and electronic device manufacturing method
CN114333914A (en) * 2020-09-29 2022-04-12 日本发条株式会社 Method and apparatus for manufacturing suspension for magnetic disk device
CN114333914B (en) * 2020-09-29 2023-08-29 日本发条株式会社 Method and apparatus for manufacturing suspension for magnetic disk device

Similar Documents

Publication Publication Date Title
CN107546135B (en) Electronic component device, method for mounting electronic component device on circuit board, and mounting structure
US7486160B2 (en) Electronic component and manufacturing method thereof
JP4675973B2 (en) Microelectromechanical device, method for manufacturing the same, and wiring board
WO2000058205A1 (en) Narrow-pitch connector, electrostatic actuator, piezoelectric actuator, ink-jet head, ink-jet printer, micromachine, liquid crystal panel, and electronic apparatus
JP2007013444A (en) Piezo-electric oscillating device and method for manufacturing the same
JP2010028683A (en) Piezoelectric device and its manufacturing method
WO2010001505A1 (en) Electronic component
KR100414464B1 (en) Piezoelectric device and manufacturing method therefor
JP5828936B1 (en) Liquid discharge head and manufacturing method thereof
JPH09246311A (en) Method and apparatus for manufacturing semiconductor device
JP2004241695A (en) Manufacturing method of optical device
JP2005286284A (en) Functional device packaging module, optically functional device packaging module, and manufacturing method of same
JP2002110269A (en) Connector, ink jet head, ink jet printer, display device, electronic equipment, and method of manufacturing connector
JP2005101507A (en) Method of manufacturing electronic component package and method of manufacturing electrooptic device
JP2019206159A (en) Liquid discharge head and method for production the same
JP2008085742A (en) Crystal oscillator, and its manufacturing method
JP4247634B2 (en) Manufacturing method of electronic component mounting body, manufacturing method of electro-optical device
JP2005295041A (en) Process for fabricating piezoelectric vibrator
JP2007208521A (en) Manufacturing method of piezoelectric oscillator
JP2014240136A (en) Method of manufacturing liquid discharge head, and liquid discharge head
JP2005101506A (en) Electronic component package, method of manufacturing the same, electrooptic device and method of manufacturing the same
JP2008016690A (en) Connection structure for connecting electrode of substrate and connection method
JP2004228979A (en) Package for piezoelectric vibrator, and piezoelectric vibrator
JP2008035303A (en) Method for manufacturing piezoelectric device
JP2020093496A (en) Liquid discharge head, electric wiring board, manufacturing method for liquid discharge head, and manufacturing method for electric wiring board