JP2010027900A - Stacked solid electrolytic capacitor - Google Patents

Stacked solid electrolytic capacitor Download PDF

Info

Publication number
JP2010027900A
JP2010027900A JP2008188401A JP2008188401A JP2010027900A JP 2010027900 A JP2010027900 A JP 2010027900A JP 2008188401 A JP2008188401 A JP 2008188401A JP 2008188401 A JP2008188401 A JP 2008188401A JP 2010027900 A JP2010027900 A JP 2010027900A
Authority
JP
Japan
Prior art keywords
cathode
anode
lead frame
solid electrolytic
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008188401A
Other languages
Japanese (ja)
Inventor
Kazuo Uzawa
一夫 鵜沢
昭宏 ▲角▼
Akihiro Sumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2008188401A priority Critical patent/JP2010027900A/en
Publication of JP2010027900A publication Critical patent/JP2010027900A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stacked solid electrolytic capacitor which can reduce influences caused by an electromagnetic wave to be radiated to the outside and the electromagnetic wave coming from the outside. <P>SOLUTION: This capacitor comprises: a stacked body obtained by stacking a plurality of capacitor elements C1 to C4 which comprise anode parts P1 to P4 on one side and cathode parts N1 to N4 on the other side so that the positions of the cathode parts are aligned and the protruding directions of the anode parts are alternately inversed; a cathode lead frame connected to one side face of a cathode body comprising a plurality of cathode parts; an anode lead frame 8 on one side connected to the anode part protruding to one side of the cathode body; and an anode lead frame 8' on the other side connected to the anode part protruding to the other side of the cathode body. This capacitor further comprises a conductive shield member 12 which is connected to the cathode lead frame and covers at least a part of the side face of the cathode body. At least each part of the cathode lead frame, the anode lead frame on one side, and the anode lead frame on the other side is exposed, and a remaining portion of each lead frame, the stacked body, and the shield member are sealed by an insulating sealer 13. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、積層型固体電解コンデンサに関するものであり、特に陰極端子の両側に陽極端子を有する多端子構造の積層型固体電解コンデンサに関するものである。   The present invention relates to a multilayer solid electrolytic capacitor, and more particularly to a multilayer solid electrolytic capacitor having a multi-terminal structure having anode terminals on both sides of a cathode terminal.

従来、固体電解コンデンサには、通常の2端子構造の他に、陽極端子と陰極端子の引き出し方向が互いに直交するように配置される多端子構造のものが提案されている(例えば、特許文献1〜3参照)。   Conventionally, as a solid electrolytic capacitor, in addition to a normal two-terminal structure, there has been proposed a multi-terminal structure in which the lead-out directions of the anode terminal and the cathode terminal are orthogonal to each other (for example, Patent Document 1). To 3).

また一般に、固体電解コンデンサは、アルミニウム、タンタルなどの弁作用金属を陽極とし、その上に形成した酸化皮膜層を誘電体とし、さらに、その上に固体電解質層を形成して陰極を構成したものが多く使われている。この固体電解質としては二酸化マンガンの他、TCNQ錯体、導電性高分子などが知られている(例えば、特許文献4参照)。   In general, a solid electrolytic capacitor has a valve action metal such as aluminum or tantalum as an anode, an oxide film layer formed thereon as a dielectric, and a solid electrolyte layer formed thereon to form a cathode. Is often used. As this solid electrolyte, in addition to manganese dioxide, a TCNQ complex, a conductive polymer, and the like are known (for example, see Patent Document 4).

近年、電子機器の小型・高周波化が進み、コンデンサに対しても高周波領域での低インピーダンス化が要求されるようになり、高導電率の導電性高分子を固体電解質に用いた固体電解コンデンサが商品化されている。この固体電解コンデンサは、固体電解質に高導電率の導電性高分子を用いているため、二酸化マンガンを用いた固体電解コンデンサに比べて低ESR化を実現する事ができることからさまざまな改良がなされている(例えば、特許文献5参照)。   In recent years, electronic devices have been reduced in size and frequency, and capacitors have been required to have low impedance in the high-frequency region. Solid electrolytic capacitors using high-conductivity conductive polymers as solid electrolytes have been developed. It has been commercialized. Since this solid electrolytic capacitor uses a high-conductivity conductive polymer for the solid electrolyte, various improvements have been made since lower ESR can be achieved compared to solid electrolytic capacitors using manganese dioxide. (For example, see Patent Document 5).

また、コンピュータのCPUの低電圧化と高速化に伴い、コンデンサに流れる電流が飛躍的に大きくなっているため、コンデンサのESRが高いと、その発熱量が大きく、コンデンサの故障の原因となる。従って各コンデンサは低ESRである事が必須の条件となりつつある。   In addition, since the current flowing through the capacitor is dramatically increased as the voltage and speed of the CPU of the computer are reduced, if the ESR of the capacitor is high, the amount of heat generated is large, causing a failure of the capacitor. Therefore, it is becoming an essential condition that each capacitor has a low ESR.

この低ESR化を実現するための一つの方法として、コンデンサ素子を積層構造とし、その積層枚数を増やす手法がある。
積層型固体電解コンデンサの積層構造としては、陽極部と、固体電解質層からなる陰極部を備えた単板コンデンサ素子を、その陽極部は陽極部同士、陰極部は陰極部同士が互いに重なり合うように複数枚積層し、各電極にそれぞれ電位取り出し用リードフレーム(端子板)を接続した構成のものが知られている(例えば、特許文献6参照)。
また、本願出願人は、単板コンデンサ素子を陽極部が陰極部を中心に対向するように交互に積層し、陽極部及び陰極部を複数に分岐して引き出すことで磁界を打ち消し、さらにESLを下げる構造を提案した(例えば、特許文献7参照)。
As one method for realizing the low ESR, there is a method in which a capacitor element is formed in a multilayer structure, and the number of stacked layers is increased.
The multilayer structure of the multilayer solid electrolytic capacitor includes a single plate capacitor element having an anode part and a cathode part made of a solid electrolyte layer, with the anode part overlapping the anode part and the cathode part overlapping each other. A structure in which a plurality of layers are stacked and a potential extracting lead frame (terminal plate) is connected to each electrode is known (see, for example, Patent Document 6).
In addition, the applicant of the present application alternately stacked the single-plate capacitor elements so that the anode portions face each other with the cathode portion as the center, and branched out the anode portion and the cathode portion to draw out the magnetic field. A structure for lowering was proposed (see, for example, Patent Document 7).

特開昭63−155607号公報Japanese Unexamined Patent Publication No. 63-155607 実開昭63−188937号公報Japanese Utility Model Publication No. 63-188937 特開平06−120088号公報Japanese Patent Laid-Open No. 06-120088 特許第2969692号公報Japanese Patent No. 2996992 特開2003−45753号公報JP 2003-45753 A 特開2000−68158号公報JP 2000-68158 A 特開2007−180327号公報JP 2007-180327 A

近年、電子機器の高周波領域での使用に伴い、高周波回路で使用される多端子構造の積層型固体電解コンデンサに、数MHz〜数GHzの高周波電流が流れる。このため、積層型固体電解コンデンサ本体から発生し、外部に向けて輻射される電磁波、および外部から積層型固体電解コンデンサに飛来する電磁波による機器に対するノイズの影響が問題となっている。   In recent years, with the use of electronic devices in a high-frequency region, a high-frequency current of several MHz to several GHz flows through a multi-terminal stacked solid electrolytic capacitor used in a high-frequency circuit. For this reason, the influence of noise on the equipment due to electromagnetic waves generated from the multilayer solid electrolytic capacitor main body and radiated to the outside and electromagnetic waves flying from the outside to the multilayer solid electrolytic capacitor is a problem.

しかしながら、特許文献1〜7に記載の技術では、上記積層型固体電解コンデンサから外部に向けて輻射される電磁波、および外部から積層型固体電解コンデンサに飛来する電磁波による影響に関しては十分に考慮されておらず、これら電磁波ノイズの影響により機器が誤動作を引き起こすおそれがあった。   However, in the techniques described in Patent Documents 1 to 7, sufficient consideration is given to the influence of electromagnetic waves radiated from the multilayer solid electrolytic capacitor to the outside and electromagnetic waves flying from the outside to the multilayer solid electrolytic capacitor. There is a risk that the device may malfunction due to the influence of these electromagnetic noises.

本発明は、上記課題に鑑みてなされたものであり、外部に向けて輻射される電磁波、および外部から飛来する電磁波による影響を低減することができる積層型固体電解コンデンサを提供することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide a multilayer solid electrolytic capacitor capable of reducing the influence of electromagnetic waves radiated to the outside and electromagnetic waves flying from the outside. To do.

上記目的を達成するため、本発明は、一方側に陽極部、他方側に陰極部を備えた平板状のコンデンサ素子を複数枚、前記陰極部の位置を整合させ、前記陽極部の突出方向が交互に反対になるように積み重ねた積層体と、前記複数個の陰極部からなる陰極体の一側面に電気的に接続された陰極リードフレームと、前記陰極体の一方側に突出した前記陽極部に電気的に接続され、前記陰極リードフレームと離間しながら同一平面に配置された一方側陽極リードフレームと、前記陰極体の他方側に突出した前記陽極部に電気的に接続され、前記陰極リードフレームと離間しながら同一平面に配置された他方側陽極リードフレームと、を備えた積層型固体電解コンデンサであって、前記陰極リードフレームに電気的に接続されるとともに、前記陰極体の側面の少なくとも一部を覆う導電性のシールド部材をさらに備え、前記陰極リードフレーム、前記一方側陽極リードフレームおよび前記他方側陽極リードフレームの各々の少なくとも一部を露出させながら、各リードフレームの残余部分、前記積層体および前記導電性のシールド部材を絶縁性封止材で封止したことを特徴としている。   In order to achieve the above object, the present invention provides a plurality of plate-like capacitor elements each having an anode portion on one side and a cathode portion on the other side, aligning the position of the cathode portion, and the protruding direction of the anode portion is Laminated bodies stacked alternately and oppositely, a cathode lead frame electrically connected to one side of the cathode body composed of the plurality of cathode sections, and the anode section protruding to one side of the cathode body A cathode lead frame which is electrically connected to the cathode lead frame and arranged on the same plane while being spaced apart from the cathode lead frame; and the anode lead protruding to the other side of the cathode body; A laminated solid electrolytic capacitor having an anode lead frame on the other side disposed on the same plane while being separated from the frame, the cathode solid being electrically connected to the cathode lead frame; A conductive shield member covering at least a part of the side surface, and exposing at least a part of each of the cathode lead frame, the one-side anode lead frame, and the other-side anode lead frame; The portion, the laminate, and the conductive shield member are sealed with an insulating sealing material.

また、前記シールド部材は、前記陰極体のうち、前記陰極リードフレームが接続された一側面および前記陽極部の突出面を除く側面のすべてを覆う、断面がコ字状のシールド板を有することを特徴とする積層型固体電解コンデンサである。   The shield member includes a shield plate having a U-shaped cross section that covers all of the side surface of the cathode body except the one side surface to which the cathode lead frame is connected and the protruding surface of the anode portion. This is a feature of a laminated solid electrolytic capacitor.

このように構成された発明では、積層型固体電解コンデンサは、複数個の陰極部からなる陰極体の一側面に電気的に接続された陰極リードフレームと、陰極体の一方側に突出した陽極部に電気的に接続され、陰極リードフレームと離間しながら同一平面に配置された一方側陽極リードフレームと、陰極体の他方側に突出した陽極部に電気的に接続され、陰極リードフレームと離間しながら同一平面に配置された他方側陽極リードフレームとを備える。そして、陰極リードフレームに電気的に接続された導電性のシールド部材により、陰極体の側面の少なくとも一部が覆われている。
このため、外部から陰極体に飛来する電磁波のみならず、陰極体から外部に向けて輻射される電磁波についても遮蔽することができ、これら電磁波による影響を低減することができる。
しかも、陰極リードフレーム、一方側陽極リードフレームおよび他方側陽極リードフレームの各々の少なくとも一部を露出させながら、各リードフレームの残余部分、積層体および導電性のシールド部材を絶縁性封止材で封止している。つまり、シールド部材は絶縁性封止材内に埋め込まれている。このため、絶縁性封止材の外側をシールド部材で覆う場合に比較してコンデンサ全体の体積を小さくしながら、電磁波による影響を低減することが可能となっている。
In the invention thus configured, the multilayer solid electrolytic capacitor includes a cathode lead frame electrically connected to one side surface of a cathode body composed of a plurality of cathode sections, and an anode section protruding to one side of the cathode body. Is electrically connected to the anode lead frame disposed on the same plane while being separated from the cathode lead frame, and the anode portion protruding to the other side of the cathode body, and is separated from the cathode lead frame. And the other-side anode lead frame arranged on the same plane. At least a part of the side surface of the cathode body is covered with a conductive shield member electrically connected to the cathode lead frame.
For this reason, not only the electromagnetic waves flying from the outside to the cathode body but also the electromagnetic waves radiated from the cathode body to the outside can be shielded, and the influence of these electromagnetic waves can be reduced.
In addition, while exposing at least a part of each of the cathode lead frame, the one-side anode lead frame, and the other-side anode lead frame, the remaining portion of each lead frame, the laminate, and the conductive shield member are covered with an insulating sealing material. It is sealed. That is, the shield member is embedded in the insulating sealing material. For this reason, it is possible to reduce the influence of electromagnetic waves while reducing the volume of the entire capacitor as compared with the case where the outside of the insulating sealing material is covered with a shield member.

ここで、陰極体のうち、陰極リードフレームが接続された一側面および陽極部の突出面を除く側面のすべてを覆う、断面がコ字状のシールド板を有するように構成すると、陰極体に向けて外部から飛来する電磁波および陰極体から外部に向けて輻射される電磁波を確実に遮蔽することができ、機器へのノイズの影響を効果的に抑制することができる。
さらに、断面がコ字状のシールド板で積層体(陰極体)を覆うことで、コンデンサ本体の機械的強度を高めることができる。
Here, when the cathode body is configured to have a U-shaped shield plate that covers all of the side face except the one side face to which the cathode lead frame is connected and the protruding face of the anode section, Therefore, it is possible to reliably shield the electromagnetic wave flying from the outside and the electromagnetic wave radiated from the cathode body to the outside, and the influence of noise on the device can be effectively suppressed.
Furthermore, the mechanical strength of the capacitor body can be increased by covering the laminate (cathode body) with a U-shaped shield plate.

さらに、コ字状のシールド板が、陽極部の少なくとも一部を覆う庇部を有するように構成すると、陰極体のみならず、陽極部に対して陽極リードフレームおよび他方側陽極リードフレームと反対側から外部に向けて輻射される電磁波および飛来する電磁波を庇部が遮蔽する。これにより、積層体に対する電磁波耐性を高め、積層体からの電磁波の放射を抑制することができる。   Further, when the U-shaped shield plate is configured to have a collar portion that covers at least a part of the anode portion, not only the cathode body but also the anode lead frame and the other side anode lead frame opposite to the anode portion. The buttocks shield electromagnetic waves radiated from the outside to the outside and incoming electromagnetic waves. Thereby, the electromagnetic wave tolerance with respect to a laminated body can be improved, and the radiation | emission of the electromagnetic wave from a laminated body can be suppressed.

また、コ字状のシールド板が、陽極部の突出方向と直交する方向において陽極部を挟むように陽極部を覆うように構成すると、積層体に対する電磁波耐性、積層体からの電磁波の放射抑制性能をさらに高めることができる。また、コンデンサ本体のさらなる機械的強度の向上を図ることができる。   Further, when the U-shaped shield plate is configured to cover the anode part so as to sandwich the anode part in the direction orthogonal to the protruding direction of the anode part, the electromagnetic wave resistance to the laminate and the radiation suppression performance of the electromagnetic wave from the laminate Can be further enhanced. Further, the mechanical strength of the capacitor body can be further improved.

なお、コ字状のシールド板は銅板であることが好ましい。これにより、上記した電磁波に対するシールド性、機械的強度を確保しながらも、積層体からの放熱効果を高めることができる。   The U-shaped shield plate is preferably a copper plate. Thereby, the heat dissipation effect from a laminated body can be heightened, ensuring the shielding property with respect to above-mentioned electromagnetic waves, and mechanical strength.

本発明によれば、積層型固体電解コンデンサにおいて、外部に向けて輻射される電磁波、および外部から飛来する電磁波による影響を低減することができる。しかも、コンデンサ全体の体積を小さくしながら、電磁波に対するシールド性を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, in a multilayer solid electrolytic capacitor, the influence by the electromagnetic waves radiated | emitted outside and the electromagnetic waves which fly from the outside can be reduced. In addition, the shielding property against electromagnetic waves can be improved while reducing the volume of the entire capacitor.

以下、本発明の好ましい実施例について図面を参照しながら説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の1実施例による積層型固体電解コンデンサを構成する1つのコンデンサ素子の構成を説明するための上面図であり、図2は、図1のA−A’線に沿った拡大断面図である。
図2を参照して、コンデンサ素子Cは、アルミニウム、タンタル等を粗面化した薄板からなる弁作用金属板1を備える。弁作用金属板1の全面に、誘電体となる酸化皮膜層2が形成される。弁作用金属板1の一方側は陽極部Pを構成し、弁作用金属板1の他方側には酸化皮膜層2上に固体電解質層3が、その上にカーボン層4が、さらにその上に銀層5が順次形成されて、陰極部Nを構成する。固体電解質層3は、例えば、ポリエチレンジオキシチオフェン(PEDT)などの導電性高分子を含む電解質を化学重合もしくは電解重合によって形成した層である。
FIG. 1 is a top view for explaining the configuration of one capacitor element constituting a multilayer solid electrolytic capacitor according to one embodiment of the present invention, and FIG. 2 is taken along the line AA ′ of FIG. It is an expanded sectional view.
Referring to FIG. 2, the capacitor element C includes a valve action metal plate 1 made of a thin plate roughened with aluminum, tantalum or the like. An oxide film layer 2 serving as a dielectric is formed on the entire surface of the valve action metal plate 1. One side of the valve metal plate 1 constitutes an anode part P, the other side of the valve metal plate 1 has a solid electrolyte layer 3 on the oxide film layer 2, a carbon layer 4 on it, and a carbon layer 4 thereon. The silver layer 5 is sequentially formed to constitute the cathode portion N. The solid electrolyte layer 3 is a layer in which an electrolyte containing a conductive polymer such as polyethylenedioxythiophene (PEDT) is formed by chemical polymerization or electrolytic polymerization.

この実施例では、機能的にみると、弁作用金属板1全体が陽極であるが、上記固体電解質層3、カーボン層4、銀層5からなる部分を総称して陰極部Nと称する一方、弁作用金属板1の陰極部Nが構成されていない部分、即ち、図2の左側に突出している部分(陽極露出部)を便宜上陽極部Pと称する。   In this embodiment, from a functional point of view, the entire valve action metal plate 1 is an anode, while the portion composed of the solid electrolyte layer 3, the carbon layer 4, and the silver layer 5 is collectively referred to as a cathode portion N, A portion where the cathode portion N of the valve metal plate 1 is not formed, that is, a portion protruding to the left in FIG. 2 (anode exposed portion) is referred to as an anode portion P for convenience.

弁作用金属板1における陽極部Pおよび陰極部Nの間の適切な位置には、弁作用金属板1の酸化皮膜層2の表面上に、絶縁性のマスキング部材6が設けられて、陽極部Pと陰極部Nとは完全に絶縁隔離される。   An insulating masking member 6 is provided on the surface of the oxide film layer 2 of the valve action metal plate 1 at an appropriate position between the anode part P and the cathode part N in the valve action metal plate 1. P and the cathode part N are completely insulated and isolated.

次に、コンデンサ素子の作製方法を、弁作用金属板として、アルミニウムを用いた場合の作製例について以下に説明する。
表面を電気化学的に粗面化した厚さ0.1mmの長尺のアルミニウム箔を、アジピン酸アンモニウム水溶液中において10Vの電圧を印加しながら、約60分間陽極酸化し、表面に誘電体となる酸化皮膜層を形成する。酸化皮膜層が形成されたアルミニウム箔を、図1に示すように、すなわち、アルミニウム箔を幅(w)10mm、長さ(l)15mmの平面サイズに裁断する。
次に、図2に示すように、適切な位置に絶縁性樹脂等のマスキング部材6を周方向に塗布することにより、左右の領域(陽極部Pと陰極部N)を区分する。
その後、前述の裁断によって露出した弁作用金属板1の側面部を、再度アジピン酸アンモニウム水溶液中において7Vの電圧を印加しながら、約30分間酸化処理し、裁断された側面部にも誘電体となる酸化皮膜層を形成する。その後、マスキング部材6より右側部分に、固体電解質層3、カーボン層4、銀層5を設けて陰極部Nを構成し、コンデンサ素子Cを作製する。
Next, a method for manufacturing a capacitor element will be described below with reference to a manufacturing example in which aluminum is used as a valve metal plate.
A long aluminum foil having a thickness of 0.1 mm whose surface has been electrochemically roughened is anodized for about 60 minutes while applying a voltage of 10 V in an aqueous solution of ammonium adipate to form a dielectric on the surface. An oxide film layer is formed. As shown in FIG. 1, the aluminum foil on which the oxide film layer is formed is cut into a plane size having a width (w) of 10 mm and a length (l) of 15 mm.
Next, as shown in FIG. 2, a masking member 6 such as an insulating resin is applied in an appropriate position in the circumferential direction, so that the left and right regions (anode portion P and cathode portion N) are separated.
Thereafter, the side portion of the valve metal plate 1 exposed by the above-described cutting is oxidized for about 30 minutes while applying a voltage of 7 V again in the aqueous solution of ammonium adipate. An oxide film layer is formed. Thereafter, the solid electrolyte layer 3, the carbon layer 4, and the silver layer 5 are provided on the right side of the masking member 6 to form the cathode portion N, and the capacitor element C is manufactured.

次に、この平板状のコンデンサ素子を積層した積層型固体電解コンデンサの作製方法を説明する。   Next, a method for producing a multilayer solid electrolytic capacitor in which the flat capacitor elements are laminated will be described.

図3および図4は、それぞれ、上述の方法で作製した4枚の平板状のコンデンサ素子C1、C2、C3、C4を積み重ねた積層体の上面図および側面図である。
図3および図4に示すように、陰極部N1、N2、N3、N4の位置が整合し、陽極部P1、P2、P3、P4の突出方向が、陰極部N1〜N4の積層体を中心に交互に反対となるように、コンデンサ素子C1〜C4を順次積み重ねる。さらに、陰極部N1〜N4を、導電性接着剤7を介して密に、電気的に接合する。なお、積み重ねた陰極部N1〜N4により形成された陰極部全体を陰極体と称する。
ここで、陰極部N1〜N4の内部構造(固体電解質層3、カーボン層4、銀層5)は、図2に示した構造と同一である。
3 and 4 are a top view and a side view, respectively, of a laminate in which four flat capacitor elements C1, C2, C3, and C4 manufactured by the above-described method are stacked.
As shown in FIGS. 3 and 4, the positions of the cathode portions N1, N2, N3, and N4 are aligned, and the protruding directions of the anode portions P1, P2, P3, and P4 are centered on the stacked body of the cathode portions N1 to N4. Capacitor elements C1 to C4 are sequentially stacked so as to be alternately reversed. Further, the cathode portions N1 to N4 are closely and electrically joined via the conductive adhesive 7. The entire cathode part formed by the stacked cathode parts N1 to N4 is referred to as a cathode body.
Here, the internal structures of the cathode portions N1 to N4 (solid electrolyte layer 3, carbon layer 4, and silver layer 5) are the same as those shown in FIG.

図5は、コンデンサ素子C1〜C4の積層体の陽極部P1〜P4および陰極部N1〜N4を、それぞれ、該積層体下側に配置された端子部材となる陽極リードフレーム8、8’および陰極リードフレーム9に接続した状態を示す側面図である。
図5に示すように、陰極体の一方側(左側)に突出した陽極部P1およびP3と、他方側(右側)に突出した陽極部P2およびP4とを、それぞれ、陰極リードフレーム9と離間しながら同一平面に配置された2つの陽極リードフレーム8、8’、つまり一方側陽極リードフレーム8と他方側陽極リードフレーム8’に電気的に接続する。より具体的には、これら陽極リードフレーム8および8’は陰極リードフレーム9の左右に設けられ、陽極部P1およびP3を一方側陽極リードフレーム8に、陽極部P2およびP4を他方側陽極リードフレーム8’に抵抗溶接等によって電気的に接続する。さらに、最も下部に位置する陰極部N1と、その下面に配置された陰極リードフレーム9とを、導電性接着剤7を介して、密に電気的に接続する。
そして、陽極リードフレーム8、8’および陰極リードフレーム9のそれぞれの少なくとも一部を露出させて、各リードフレーム8、8’、9の残余部分、積層体および後述する銅板12(導電性のシールド部材)を、絶縁性封止材(絶縁性樹脂)で封止(パッケージング)して、多端子構造の積層型固体電解コンデンサを作製する。なお、陽極リードフレーム8、8’および陰極リードフレーム9として、銅系合金を使用するのが好ましいが、金、銀、銅、ニオブ、タンタル、アルミニウムおよび導電性高分子のうちのいずれか、またはそれを複数組み合わせたものを使用してもよい。
FIG. 5 shows anode lead frames 8 and 8 ′ and cathodes serving as terminal members arranged on the lower side of the laminated body of anode parts P1 to P4 and cathode parts N1 to N4 of the laminated body of capacitor elements C1 to C4, respectively. FIG. 6 is a side view showing a state where the lead frame 9 is connected.
As shown in FIG. 5, anode parts P1 and P3 projecting to one side (left side) of the cathode body and anode parts P2 and P4 projecting to the other side (right side) are separated from the cathode lead frame 9, respectively. However, they are electrically connected to the two anode lead frames 8 and 8 ′ arranged on the same plane, that is, the one-side anode lead frame 8 and the other-side anode lead frame 8 ′. More specifically, these anode lead frames 8 and 8 'are provided on the left and right sides of the cathode lead frame 9, and anode portions P1 and P3 are provided on one side anode lead frame 8, and anode portions P2 and P4 are provided on the other side anode lead frame. It is electrically connected to 8 'by resistance welding or the like. Further, the cathode part N1 located at the lowermost part and the cathode lead frame 9 arranged on the lower surface thereof are closely electrically connected via the conductive adhesive 7.
Then, at least a part of each of the anode lead frames 8, 8 ′ and the cathode lead frame 9 is exposed, the remaining portions of the lead frames 8, 8 ′, 9, the laminate, and a copper plate 12 (conductive shield described later). The member is sealed (packaged) with an insulating sealing material (insulating resin) to produce a multi-terminal stacked solid electrolytic capacitor. In addition, it is preferable to use a copper-based alloy as the anode lead frames 8 and 8 'and the cathode lead frame 9, but any one of gold, silver, copper, niobium, tantalum, aluminum and a conductive polymer, or You may use what combined it.

図6、図7、図8、および図9は、陽極リードフレーム8および8’の間を、このリードフレームと同じ材質の橋渡し部材10で橋渡しして接続した一例で、積層した平板状のコンデンサ素子C1〜C4の左右両側の陽極部P1およびP3と、陽極部P2およびP4とを、それぞれ、陽極リードフレーム8および8’に抵抗溶接等により電気的に接続し、最も下部に位置する陰極部N1を、陰極リードフレーム9および9’に導電性接着剤7により電気的に接続し、コンデンサ素子C1〜C4の積層体をリードフレームにマウントした状態を示した図である(絶縁性封止材の図示は省略する)。   6, 7, 8, and 9 are examples in which the anode lead frames 8 and 8 ′ are bridged and connected by a bridging member 10 made of the same material as the lead frame, and are laminated flat plate capacitors. The anode parts P1 and P3 on both the left and right sides of the elements C1 to C4 and the anode parts P2 and P4 are electrically connected to the anode lead frames 8 and 8 'by resistance welding or the like, respectively, and the cathode part located at the bottom N1 is electrically connected to the cathode lead frames 9 and 9 ′ by the conductive adhesive 7, and is a view showing a state in which the laminated body of the capacitor elements C1 to C4 is mounted on the lead frame (insulating sealing material) Is omitted).

なお、陽極部P1〜P4同士を最短の距離で接続するために、図6に示すように、2分割した陰極リードフレーム9および9’の間の空隙部gに、橋渡し部材10を配置したH形リードフレームを使用した。
図8は、図7のB−B’線に沿った断面図である。図8に示すように、陽極リードフレーム8、8’の断面は両側付近が厚く、橋渡し部材10の部分が薄くなっている。
また、図9は図7のC−C’線に沿った断面図である。
なお、陽極リードフレームの橋渡し部材10がコンデンサ素子の陰極部N1の表面に接してショートしないように、予め絶縁性樹脂などのマスキング部材11を、陰極部N1の下面側に該橋渡し部材10の幅より広く塗布するか、橋渡し部材10に巻き付けるように塗布しておく。
In addition, in order to connect anode part P1-P4 with the shortest distance, as shown in FIG. 6, H which arrange | positioned the bridging member 10 in the space | gap part g between the cathode lead frames 9 and 9 'divided into two. A lead frame was used.
FIG. 8 is a cross-sectional view taken along the line BB ′ of FIG. As shown in FIG. 8, the cross sections of the anode lead frames 8 and 8 ′ are thick in the vicinity of both sides, and the bridging member 10 is thin.
FIG. 9 is a cross-sectional view taken along the line CC ′ of FIG.
In order to prevent the bridging member 10 of the anode lead frame from coming into contact with the surface of the cathode part N1 of the capacitor element, a masking member 11 such as an insulating resin is previously placed on the lower surface side of the cathode part N1 and the width of the bridging member 10 It is applied so that it is more widely applied or wound around the bridging member 10.

次に本発明の実施例について説明する。   Next, examples of the present invention will be described.

(実施例1)
図10は、陰極リードフレーム9、9’に導電性接着剤7を介して電気的に接続した厚さ0.3mmの断面がコ字状の銅板12(シールド部材)を、コンデンサ素子C1〜C4の積層体の陰極体の全体を覆うように形成した状態を示す断面図であり、図11は、図10のC−C’線に沿った断面図である。銅板12は、陰極体のうち、陰極リードフレーム9、9’が接続された一側面および陽極部P1〜P4の突出面を除く側面のすべてを覆うように形成されている。この積層型固体電解コンデンサの製品寸法は、16.7mm×12.1mm×2.5mmである。図10および図11に示すように、銅板12は、積層体の陰極体に接触しないように、積層体の陰極体から0.2mmだけ離して、陰極リードフレーム9、9’の端部に導電性接着剤7を介して接続される。
図12および13は、それぞれ、陽極リードフレーム8、8’および陰極リードフレーム9、9’のそれぞれの少なくとも一部を露出させながら、積層体、陽極リードフレーム8、8’の残余部分、陰極リードフレーム9、9’の残余部分、および銅板12を、絶縁性封止材13でパッケージングして作製した積層型固体電解コンデンサの断面図および斜視図である。
Example 1
FIG. 10 shows a copper plate 12 (shield member) having a U-shaped cross-section with a thickness of 0.3 mm, electrically connected to the cathode lead frames 9 and 9 ′ via the conductive adhesive 7, and capacitor elements C1 to C4. It is sectional drawing which shows the state formed so that the whole cathode body of the laminated body of this might be covered, and FIG. 11 is sectional drawing along CC 'line of FIG. The copper plate 12 is formed so as to cover all the side surfaces of the cathode body except for one side surface to which the cathode lead frames 9 and 9 ′ are connected and the protruding surfaces of the anode portions P1 to P4. The product size of this multilayer solid electrolytic capacitor is 16.7 mm × 12.1 mm × 2.5 mm. As shown in FIG. 10 and FIG. 11, the copper plate 12 is electrically conductive at the end portions of the cathode lead frames 9, 9 ′, separated from the cathode body of the laminate by 0.2 mm so as not to contact the cathode body of the laminate. Connected through the adhesive 7.
12 and 13 respectively show the laminate, the remaining portion of the anode lead frames 8, 8 ', the cathode lead, while exposing at least a part of each of the anode lead frames 8, 8' and the cathode lead frames 9, 9 '. FIG. 4 is a cross-sectional view and a perspective view of a multilayer solid electrolytic capacitor produced by packaging the remaining portions of the frames 9 and 9 ′ and the copper plate 12 with an insulating sealing material 13.

(実施例2)
図14は、陰極リードフレーム9、9’に導電性接着剤7を介して電気的に接続した厚さ0.3mmの断面がコ字状であり、かつ陽極部上方を覆う庇部を有する銅板14(シールド部材)を、コンデンサ素子C1〜C4の積層体の陰極体および陽極部P1〜P4の一部を覆うように形成した状態を示す断面図であり、図15は、図14の線C−C’線に沿った断面図である。銅板14に設けられた庇部は、一方側陽極リードフレーム8に対し、陽極部P1、P3を挟んで反対側に配置されるとともに、他方側陽極リードフレーム8’に対し、陽極部P2、P4を挟んで反対側に配置され、陽極部P1〜P4を上方から覆う。 この積層型固体電解コンデンサの製品寸法を、16.7mm×12.1mm×2.5mmとした。銅板14は、積層体の陰極部N1〜N4に接触しないように、積層体の陰極体から0.2mmだけ離して、陰極リードフレーム9、9’の端部に導電性接着剤7を介して接続される。
図16および17は、それぞれ、陽極リードフレーム8、8’および陰極リードフレーム9、9’のそれぞれの少なくとも一部を露出させて、積層体、陽極リードフレーム8、8’ の残余部分、陰極リードフレーム9、9の残余部分’、および銅板14を、絶縁性封止材13でパッケージングして作製した積層型固体電解コンデンサの断面図および斜視図である。
(Example 2)
FIG. 14 shows a copper plate having a U-shaped cross section having a U-shaped cross section with a thickness of 0.3 mm, electrically connected to the cathode lead frames 9 and 9 ′ via the conductive adhesive 7, and having a collar portion covering the upper portion of the anode portion. 14 (shield member) is a cross-sectional view showing a state in which the cathode body of the laminated body of capacitor elements C1 to C4 and a part of the anode portions P1 to P4 are formed, and FIG. It is sectional drawing along line -C '. The flange provided on the copper plate 14 is disposed on the opposite side of the anode lead P8 with respect to the one-side anode lead frame 8, and the anodes P2, P4 with respect to the other-side anode lead frame 8 ′. Is disposed on the opposite side, and the anode parts P1 to P4 are covered from above. The product dimensions of this multilayer solid electrolytic capacitor were 16.7 mm × 12.1 mm × 2.5 mm. The copper plate 14 is separated from the cathode body of the multilayer body by 0.2 mm so as not to contact the cathode portions N1 to N4 of the multilayer body, and the conductive adhesive 7 is interposed at the end portions of the cathode lead frames 9 and 9 ′. Connected.
FIGS. 16 and 17 respectively show the laminate, the remaining portion of the anode lead frames 8 and 8 ′, the cathode lead frame 8 and 8 ′, exposing at least a part of each of the anode lead frames 8 and 8 ′ and the cathode lead frames 9 and 9 ′. FIG. 6 is a cross-sectional view and a perspective view of a multilayer solid electrolytic capacitor produced by packaging the remaining portion ′ of the frames 9 and 9 and the copper plate 14 with an insulating sealing material 13.

(従来例)
陰極部N1〜N4、陽極部P1〜P4を銅板12、14で覆わないこと以外は、実施例1、2と同様の方法で、積層型固体電解コンデンサを作製した。製品寸法を、実施例1および実施例2と同じように、16.7mm×12.1mm×2.5mmとした。
(Conventional example)
A multilayer solid electrolytic capacitor was produced in the same manner as in Examples 1 and 2, except that the cathode portions N1 to N4 and the anode portions P1 to P4 were not covered with the copper plates 12 and 14, respectively. The product dimensions were set to 16.7 mm × 12.1 mm × 2.5 mm as in Example 1 and Example 2.

上記本発明の実施例1および実施例2の積層型固体電解コンデンサと、従来例の積層型固体電解コンデンサとの電磁波に対するシールド効果を比較した。表1には、それぞれの例について、100MHzの交流電流を、基板に実装した部品単体に流した時に発生する電磁波の透過ノイズレベルを比較した結果を示すものである。   The shielding effects against electromagnetic waves of the multilayer solid electrolytic capacitors of Example 1 and Example 2 of the present invention and the multilayer solid electrolytic capacitor of the conventional example were compared. Table 1 shows the results of comparison of transmission noise levels of electromagnetic waves generated when a 100 MHz alternating current is passed through a single component mounted on a substrate for each example.

Figure 2010027900
Figure 2010027900

表1から判るように、実施例1および実施例2の積層型固体電解コンデンサは、従来例に比べて、透過ノイズレベルが小さい(シールド効果が高い)。パッケージング内において、積層体の少なくとも一部を、陰極リードフレームに接続された導電性のシールド部材で覆うようにしたので、製品寸法を拡大する事なく、従来例より大きいシールド効果を有する積層型固体電解コンデンサを実現できた。
また、表1から判るように、この発明の効果は、シールド部材で覆う面積を広くするほど大きくなる。
As can be seen from Table 1, the multilayer solid electrolytic capacitors of Example 1 and Example 2 have a lower transmission noise level (higher shielding effect) than the conventional example. Since at least a part of the laminate is covered with a conductive shield member connected to the cathode lead frame in the packaging, the laminate type has a shielding effect larger than that of the conventional example without increasing the product size. A solid electrolytic capacitor was realized.
As can be seen from Table 1, the effect of the present invention increases as the area covered with the shield member increases.

このようにシールド効果が大きくなったのは、陰極体の周囲を覆う銅板により、積層型固体電解コンデンサ本体から発生する電磁ノイズが、吸収されて積層型固体電解コンデンサの陰極フレームから回路基板のグランドに逃がされるからである。
実施例1および実施例2では、積層体の陰極体を全て銅板で覆った場合を説明したが、覆う範囲を少なくしても、シールド効果は若干小さくなるが、従来例に比べて十分なシールド効果が得られる。
また、実施例1および実施例2では、銅板の厚さを0.3mmとしたが、製品寸法に入る範囲であれば、銅板を厚くしても薄くしても、従来例に比べて十分なシールド効果が得られる。
さらに、実施例1および実施例2では、銅板が積層体に接触しないように0.2mmの隙間を取ったが、製品寸法内で、銅板が積層体に接触しないように、その隙間を広く、もしくは狭くしても、従来例に比べて十分なシールド効果が得られる。
Thus, the shielding effect is increased because the electromagnetic noise generated from the multilayer solid electrolytic capacitor body is absorbed by the copper plate covering the periphery of the cathode body, and the ground of the circuit board from the cathode frame of the multilayer solid electrolytic capacitor. It is because it is escaped by.
In Example 1 and Example 2, the case where the cathode body of the laminated body was entirely covered with a copper plate was described. However, even if the covering range is reduced, the shielding effect is slightly reduced, but a sufficient shield compared to the conventional example. An effect is obtained.
Moreover, in Example 1 and Example 2, although the thickness of the copper plate was 0.3 mm, as long as it is within the product dimensions, the copper plate can be thicker or thinner than the conventional example. A shielding effect is obtained.
Furthermore, in Example 1 and Example 2, a clearance of 0.2 mm was taken so that the copper plate did not contact the laminate, but within the product dimensions, the gap was widened so that the copper plate did not contact the laminate, Or even if it is narrow, a sufficient shielding effect can be obtained as compared with the conventional example.

実施例2において、銅板(シールド部材)が陽極部上方を覆う庇部を有しているが、銅板(シールド部材)がさらに、陽極部の突出方向と直交する方向において陽極部を挟むように陽極部を覆う塀部を有するように構成してもよい。この場合、実施例2に比べてより高いシールド効果が得られる。   In Example 2, the copper plate (shield member) has a flange portion that covers the upper portion of the anode portion, but the copper plate (shield member) further has an anode so as to sandwich the anode portion in a direction orthogonal to the protruding direction of the anode portion. You may comprise so that it may have a collar part which covers a part. In this case, a higher shielding effect can be obtained as compared with the second embodiment.

また、本発明による積層型固体電解コンデンサは、陰極部の周囲を覆う銅板により、高い機械的強度を有し、また、十分な放熱効果を有している。   The multilayer solid electrolytic capacitor according to the present invention has a high mechanical strength and a sufficient heat dissipation effect due to the copper plate covering the periphery of the cathode portion.

なお、上述の実施例では、弁作用金属としてアルミニウムの場合について説明したが、タンタルやニオブ箔またその焼結体を用いても、同様の効果が得られる。   In the above-described embodiment, the case where aluminum is used as the valve metal has been described. However, the same effect can be obtained by using tantalum, niobium foil, or a sintered body thereof.

さらに、上述の実施例では、積層体を覆うシールド部材として銅を一例として説明したが、金、銀、ニオブ、タンタル、アルミニウム、導電性高分子等の導電性のある材料を用いても、同様の効果が得られる。   Furthermore, in the above-described embodiments, copper is described as an example of the shield member that covers the laminated body. However, even if a conductive material such as gold, silver, niobium, tantalum, aluminum, or a conductive polymer is used, the same applies. The effect is obtained.

そして、シールド部材の形状として板材を用いたが、パンチングメタルや網目状としても、同様の効果が得られる。   And although the board | plate material was used as a shape of a shield member, the same effect is acquired also as a punching metal or mesh shape.

またさらに、上述の実施例では、固体電解質として導電性高分子の場合について説明したが、二酸化マンガンでも同様の効果が得られる。   Furthermore, in the above-described embodiments, the case of the conductive polymer as the solid electrolyte has been described, but the same effect can be obtained with manganese dioxide.

最後に、実施例では、4枚積層としたが積層枚数を増加しても同様の効果が得られる。また、3端子としたが、端子数を増やしても同様の効果が得られる。   Finally, in the embodiment, four layers are stacked, but the same effect can be obtained even if the number of stacked layers is increased. Although the number of terminals is three, the same effect can be obtained by increasing the number of terminals.

1つのコンデンサ素子の構成を説明するための上面図である。It is a top view for demonstrating the structure of one capacitor | condenser element. 図1のA−A’線に沿った拡大断面図である。It is an expanded sectional view along the A-A 'line of FIG. 4枚のコンデンサ素子を積み重ねた積層体の上面図である。It is a top view of the laminated body which laminated | stacked four capacitor | condenser elements. 4枚のコンデンサ素子を積み重ねた積層体の側面図である。It is a side view of the laminated body which laminated | stacked four capacitor | condenser elements. 陽極部および陰極部を、リードフレームに接続した状態を示す側面図である。It is a side view which shows the state which connected the anode part and the cathode part to the lead frame. リードフレームの構成を示す上面図である。It is a top view which shows the structure of a lead frame. 陽極部および陰極部を、リードフレームに接続した状態を示す上面図である。It is a top view which shows the state which connected the anode part and the cathode part to the lead frame. 図7のB−B’線に沿った断面図である。FIG. 8 is a cross-sectional view taken along line B-B ′ of FIG. 7. 図7のC−C’線に沿った断面図である。FIG. 8 is a cross-sectional view taken along line C-C ′ of FIG. 7. 本発明の実施例1における銅板を示す断面図である。It is sectional drawing which shows the copper plate in Example 1 of this invention. 図10の線C−C’線に沿った断面図である。It is sectional drawing along line C-C 'of FIG. 本発明の実施例1の積層型固体電解コンデンサの断面図である。It is sectional drawing of the multilayer type solid electrolytic capacitor of Example 1 of this invention. 本発明の実施例1の積層型固体電解コンデンサの斜視図である。1 is a perspective view of a multilayer solid electrolytic capacitor according to Example 1 of the present invention. 本発明の実施例2における銅板を示す断面図である。It is sectional drawing which shows the copper plate in Example 2 of this invention. 図14のC−C’線に沿った断面図であるFIG. 15 is a cross-sectional view taken along line C-C ′ of FIG. 14. 本発明の実施例2の積層型固体電解コンデンサの断面図である。It is sectional drawing of the multilayer type solid electrolytic capacitor of Example 2 of this invention. 本発明の実施例2の積層型固体電解コンデンサの斜視図である。It is a perspective view of the multilayer solid electrolytic capacitor of Example 2 of the present invention.

符号の説明Explanation of symbols

1 弁作用金属板
2 酸化皮膜層
3 固体電解質層
4 カーボン層
5 銀層
6 マスキング部材
7 導電性接着剤
8、8’ 陽極リードフレーム
9、9’ 陰極リードフレーム
10 橋渡し部材
11 マスキング部材
12 銅板(シールド部材)
13 絶縁性封止材
14 銅板(シールド部材)
C コンデンサ素子
C1〜C4 コンデンサ素子
g 空隙部
N 陰極部
N1〜N4 陰極部
P 陽極部
P1〜P4 陽極部(陽極露出部)
DESCRIPTION OF SYMBOLS 1 Valve action metal plate 2 Oxide film layer 3 Solid electrolyte layer 4 Carbon layer 5 Silver layer 6 Masking member 7 Conductive adhesive 8, 8 'Anode lead frame 9, 9' Cathode lead frame 10 Bridging member 11 Masking member 12 Copper plate ( Shield member)
13 Insulating sealing material 14 Copper plate (shield member)
C Capacitor elements C1 to C4 Capacitor element g Gap part N Cathode part N1 to N4 Cathode part P Anode part P1 to P4 Anode part (anode exposed part)

Claims (5)

一方側に陽極部、他方側に陰極部を備えた平板状のコンデンサ素子を複数枚、前記陰極部の位置を整合させ、前記陽極部の突出方向が交互に反対になるように積み重ねた積層体と、
前記複数個の陰極部からなる陰極体の一側面に電気的に接続された陰極リードフレームと、
前記陰極体の一方側に突出した前記陽極部に電気的に接続され、前記陰極リードフレームと離間しながら同一平面に配置された一方側陽極リードフレームと、
前記陰極体の他方側に突出した前記陽極部に電気的に接続され、前記陰極リードフレームと離間しながら同一平面に配置された他方側陽極リードフレームと
を備えた積層型固体電解コンデンサにおいて、
前記陰極リードフレームに電気的に接続されるとともに、前記陰極体の側面の少なくとも一部を覆う導電性のシールド部材をさらに備え、
前記陰極リードフレーム、前記一方側陽極リードフレームおよび前記他方側陽極リードフレームの各々の少なくとも一部を露出させながら、各リードフレームの残余部分、前記積層体および前記導電性のシールド部材を絶縁性封止材で封止したことを特徴とする積層型固体電解コンデンサ。
A laminated body in which a plurality of plate-like capacitor elements each having an anode part on one side and a cathode part on the other side are stacked so that the positions of the cathode parts are aligned and the protruding directions of the anode parts are alternately reversed When,
A cathode lead frame electrically connected to one side surface of the cathode body composed of the plurality of cathode portions;
One side anode lead frame that is electrically connected to the anode part protruding to one side of the cathode body and is arranged in the same plane while being separated from the cathode lead frame;
In the multilayer solid electrolytic capacitor comprising the other-side anode lead frame electrically connected to the anode portion protruding to the other side of the cathode body and disposed on the same plane while being separated from the cathode lead frame,
A conductive shield member that is electrically connected to the cathode lead frame and covers at least a part of a side surface of the cathode body;
While exposing at least a part of each of the cathode lead frame, the one-side anode lead frame, and the other-side anode lead frame, the remaining portion of each lead frame, the laminate, and the conductive shield member are insulatively sealed. A multilayer solid electrolytic capacitor characterized by being sealed with a stopper.
前記シールド部材は、前記陰極体のうち、前記陰極リードフレームが接続された一側面および前記陽極部の突出面を除く側面のすべてを覆う、断面がコ字状のシールド板を有することを特徴とする請求項1記載の積層型固体電解コンデンサ。   The shield member includes a shield plate having a U-shaped cross section that covers all of one side surface of the cathode body except the one side surface to which the cathode lead frame is connected and the protruding surface of the anode portion. The multilayer solid electrolytic capacitor according to claim 1. 前記コ字状のシールド板は、前記一方側陽極リードフレームおよび前記他方側陽極リードフレームに対し、陽極部を挟んで反対側に配置され、前記陽極部の少なくとも一部を覆う庇部を有することを特徴とする請求項2記載の積層型固体電解コンデンサ。   The U-shaped shield plate is disposed on the opposite side of the anode portion with respect to the one-side anode lead frame and the other-side anode lead frame, and has a flange portion that covers at least a part of the anode portion. The multilayer solid electrolytic capacitor according to claim 2. 前記コ字状のシールド板は、前記陽極部の突出方向と直交する方向において前記陽極部を挟むように前記陽極部を覆うことを特徴とする請求項3記載の積層型固体電解コンデンサ。   The multilayer solid electrolytic capacitor according to claim 3, wherein the U-shaped shield plate covers the anode part so as to sandwich the anode part in a direction orthogonal to a protruding direction of the anode part. 前記コ字状のシールド板は、銅板からなることを特徴とする請求項2ないし4のいずれかに記載の積層型固体電解コンデンサ。   5. The multilayer solid electrolytic capacitor according to claim 2, wherein the U-shaped shield plate is made of a copper plate.
JP2008188401A 2008-07-22 2008-07-22 Stacked solid electrolytic capacitor Pending JP2010027900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008188401A JP2010027900A (en) 2008-07-22 2008-07-22 Stacked solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008188401A JP2010027900A (en) 2008-07-22 2008-07-22 Stacked solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2010027900A true JP2010027900A (en) 2010-02-04

Family

ID=41733434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008188401A Pending JP2010027900A (en) 2008-07-22 2008-07-22 Stacked solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2010027900A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011198833A (en) * 2010-03-17 2011-10-06 Tdk Corp Solid-state electrolytic capacitor and method of manufacturing the same
JP2012142553A (en) * 2010-12-28 2012-07-26 Ind Technol Res Inst Decoupling device
CN103107021A (en) * 2011-11-10 2013-05-15 财团法人工业技术研究院 Decoupling element and manufacturing method thereof
CN103377829A (en) * 2012-04-24 2013-10-30 Avx公司 Solid electrolytic capacitor containing multiple sinter bonded anode leadwires
US20140071591A1 (en) * 2012-09-13 2014-03-13 Industrial Technology Research Institute Decoupling device with three-dimensional lead frame and fabricating method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313676A (en) * 2001-04-09 2002-10-25 Nec Tokin Corp Surface mount capacitor
WO2005015588A1 (en) * 2003-08-12 2005-02-17 Rohm Co., Ltd. Solid electrolytic capacitor, electric circuit, and solid electrolytic capacitor mounting structure
JP2007180327A (en) * 2005-12-28 2007-07-12 Nichicon Corp Stacked solid electrolytic capacitor
JP2008153265A (en) * 2006-12-14 2008-07-03 Matsushita Electric Ind Co Ltd Chip-type solid electrolytic capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313676A (en) * 2001-04-09 2002-10-25 Nec Tokin Corp Surface mount capacitor
WO2005015588A1 (en) * 2003-08-12 2005-02-17 Rohm Co., Ltd. Solid electrolytic capacitor, electric circuit, and solid electrolytic capacitor mounting structure
JP2007180327A (en) * 2005-12-28 2007-07-12 Nichicon Corp Stacked solid electrolytic capacitor
JP2008153265A (en) * 2006-12-14 2008-07-03 Matsushita Electric Ind Co Ltd Chip-type solid electrolytic capacitor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011198833A (en) * 2010-03-17 2011-10-06 Tdk Corp Solid-state electrolytic capacitor and method of manufacturing the same
JP2012142553A (en) * 2010-12-28 2012-07-26 Ind Technol Res Inst Decoupling device
US8773844B2 (en) 2010-12-28 2014-07-08 Industrial Technology Research Institute Solid electrolytic capacitor
CN104103427A (en) * 2010-12-28 2014-10-15 财团法人工业技术研究院 Decoupling component
US9058933B2 (en) 2010-12-28 2015-06-16 Industrial Technology Research Institute Decoupling device including a plurality of capacitor unit arrayed in a same plane
CN104103427B (en) * 2010-12-28 2018-02-06 财团法人工业技术研究院 Decoupling component
CN103107021A (en) * 2011-11-10 2013-05-15 财团法人工业技术研究院 Decoupling element and manufacturing method thereof
JP2013106039A (en) * 2011-11-10 2013-05-30 Industrial Technology Research Institute Decoupling device and manufacturing method of the same
US8922976B2 (en) 2011-11-10 2014-12-30 Industrial Technology Research Institute Decoupling device and fabricating method thereof
CN103377829A (en) * 2012-04-24 2013-10-30 Avx公司 Solid electrolytic capacitor containing multiple sinter bonded anode leadwires
US20140071591A1 (en) * 2012-09-13 2014-03-13 Industrial Technology Research Institute Decoupling device with three-dimensional lead frame and fabricating method thereof
US9214284B2 (en) * 2012-09-13 2015-12-15 Industrial Technology Research Institute Decoupling device with three-dimensional lead frame and fabricating method thereof

Similar Documents

Publication Publication Date Title
JP5466722B2 (en) Solid electrolytic capacitor
JP4492265B2 (en) Chip type solid electrolytic capacitor
JP4688675B2 (en) Multilayer solid electrolytic capacitor
JP2007116064A (en) Laminated solid electrolytic capacitor
JP2009158692A (en) Multilayer solid electrolytic capacitor
JP2008235425A (en) Solid electrolytic capacitor element and solid electrolytic capacitor with the same
JP2010027900A (en) Stacked solid electrolytic capacitor
JP2008187091A (en) Solid-state electrolytic capacitor
JPWO2018142972A1 (en) Solid electrolytic capacitor
JPWO2012140836A1 (en) Electrolytic capacitor
JP2006190929A (en) Solid electrolytic capacitor and its manufacturing method
JP2006270014A (en) Solid electrolytic capacitor and its manufacturing method, and digital signal processing board using the same
JP2009021355A (en) Multilayer solid-state electrolytic capacitor
JP2007180328A (en) Stacked solid electrolytic capacitor and capacitor module
JP4671339B2 (en) Multilayer solid electrolytic capacitor
JP4613669B2 (en) Solid electrolytic capacitor
JP4671347B2 (en) Solid electrolytic capacitor
JP2008021774A (en) Chip-type solid electrolytic capacitor, and manufacturing method thereof
JP5051851B2 (en) Multilayer solid electrolytic capacitor
JP2007258456A (en) Laminated solid electrolytic capacitor
JP2008177199A (en) Solid electrolytic capacitor
JP4936458B2 (en) Multilayer solid electrolytic capacitor
JP2008177200A (en) Solid electrolytic capacitor
JP2008021772A (en) Chip-type solid electrolytic capacitor
JP5294311B2 (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130410