JP2010027701A - 化学的機械的研磨方法、半導体ウェハの製造方法、半導体ウェハ及び半導体装置 - Google Patents

化学的機械的研磨方法、半導体ウェハの製造方法、半導体ウェハ及び半導体装置 Download PDF

Info

Publication number
JP2010027701A
JP2010027701A JP2008184443A JP2008184443A JP2010027701A JP 2010027701 A JP2010027701 A JP 2010027701A JP 2008184443 A JP2008184443 A JP 2008184443A JP 2008184443 A JP2008184443 A JP 2008184443A JP 2010027701 A JP2010027701 A JP 2010027701A
Authority
JP
Japan
Prior art keywords
polishing
chemical mechanical
data
polishing rate
mechanical polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008184443A
Other languages
English (en)
Inventor
Naoko Miyashita
直子 宮下
Kenji Tamaoki
研二 玉置
Hiroshi Tsuchiyama
洋史 土山
Norihiro Uchida
憲宏 内田
Nobuhiro Konishi
信博 小西
Shoichiro Fujiwara
正一郎 藤原
Katsunao Sakai
克尚 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2008184443A priority Critical patent/JP2010027701A/ja
Publication of JP2010027701A publication Critical patent/JP2010027701A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

【課題】着工ウェハの膜種の切換時にテスト研磨なしで次回に着工するウェハの研磨レートを精度良く予測できるようにする。
【解決手段】研磨パッドの目立てを行うドレッサのトルクと、ドレッサの温度と、ドレッサの圧力と、ドレッサを交換してからの累積使用時間とから構成される装置状態パラメータの全てあるいは一部のパラメータの測定値を、ウェハ研磨毎に連続サンプリング時系列データから全研磨区間もしくは所定の研磨区間だけを切り出す。切り出した連続サンプリング時系列データを用いてウェハ毎に研磨装置基準研磨レートを予測し、予測した研磨装置基準研磨レートと予め設定しておいたウェハ膜種毎の換算パラメータを用いて次回着工ウェハ研磨レート換算値である換算研磨レートを計算する。そして、前記換算研磨レートを用いることにより研磨量を最適にする研磨時間を計算して次回着工ウェハを研磨する。
【選択図】図5

Description

本発明は、化学的機械的研磨(CMP)における研磨制御において、特に異なる材料、凹凸パターンもしくは配線パターンを有する複数種類の半導体ウェハを混在した順番で連続着工する場合に適用する技術に関する。
化学的機械的研磨(CMP)とは、回転する研磨パッドと半導体ウェハの被研磨面との間に、砥粒と薬液からなるスラリー(懸濁流動体)を供給しながら行う研磨である。近年、半導体の微細化によって、トランジスタの集積度が上がり、素子間を結線して回路を構成する配線数の増加から配線層の数が増加している。このことからも、各層の平坦化を行う化学的機械的研磨の重要性はますます増加している。
例えば、半導体ウェハの化学的機械的研磨方法の適用例の1つとして、アルミニウム金属配線パターンを先に形成し、その上に絶縁膜を積層し、絶縁膜の凹凸を平坦にする製造段階がある。この例では1種類の材料の膜を研磨して、その膜が適切な膜厚になるようにする。また、別の適用例として、絶縁膜に配線の溝パターンを先に形成し、その溝にCu金属をメッキ等で埋め込み、溝の上部のCu金属を研磨して取り去り、溝にCu金属を埋め込む製造段階であるCuダマシン工程がある。Cuは絶縁膜に拡散する性質があるため、Cu膜と絶縁膜の間にはTa等のバリア膜を積層する。この例では、複数種類の材料の膜を連続して研磨し、最下層の絶縁膜の過研磨量が適切な量になるようにする。
化学的機械的研磨(CMP)において、研磨時間の設定精度に影響する研磨レート(単位時間当たりの加工量)の正確な把握は研磨の良否を左右するきわめて重要なファクターである。したがって、研磨レートは正確な値を予測する必要がある。
これらの用途に用いる化学的機械的研磨については以下のような技術が開示されている。
特開2004−47747号公報(特許文献1)においては、下地の配線パターンによって生じる上層の絶縁膜の凹凸の影響を半導体装置の品種毎にパラメータ化して研磨時間の計算式に組み込むことと、装置の研磨能力は事前に基準ウェハを用いたテスト研磨で調べることで、正確な研磨時間を計算可能にし、被研磨対象の半導体装置の品種によらず適切な膜厚になるように制御する方法が述べられている。
なお、半導体装置の品種毎に相違するウェハの表面に積層する膜の材料や凹凸パターン、配線パターン、ウェハの径を総称して以後「膜種」と記す。
特開2006−186131号公報(特許文献2)においては、複数種類の半導体ウェハの研磨レートを、ある一つの基準とするウェハの種類の研磨レートから換算して算出する技術が提案されている。すなわち、ウェハの表面に積層する膜の材料が異なると適切な研磨条件も異なるため、前回着工ウェハと次回着工ウェハの膜の材料が切換る際は、テスト研磨を行い、その際の膜厚測定データから次回着工ウェハの研磨条件を算出することが一般に行われている。しかし、特許文献2記載の技術を用いることで、着工ウェハの膜の材料の切換時のテスト研磨が不要となり、連続着工が可能となる。
特開2005−342841号公報(特許文献3)においては、温度やトルク等の研磨装置の装置状態パラメータの平均値から研磨レートを予測する方法が述べられている。常に収集可能な装置状態パラメータを用いて研磨レートを予測することで、ウェハを1枚研磨する毎に研磨装置の研磨レート変動を反映した正確な研磨時間を計算可能にし、研磨レート変動によらず適切な膜厚になるように制御する方法が述べられている。
特開2004−47747号公報 特開2006−186131号公報 特開2005−342841号公報
しかし、絶縁膜の凹凸の平坦化では、凹凸パターンが平坦化されるまでの区間では、凹凸パターンが異なると研磨レートも異なることが知られている。これは、凸部が多いほど所定の膜厚分の研磨に要する時間が短くなることが理由である。
また、Cuダマシン工程では、絶縁膜の材料や配線パターンが異なると研磨レートも異なることが知られている。これは、絶縁膜の材料およびCu配線間の間隔の広さによって削り易さが異なることが理由である。
特許文献1記載の方法では、前回の着工ウェハと次回の着工ウェハで膜種が切り替える際テスト研磨を行い、その際の実績研磨レートから次回着工ウェハの研磨レートを予測することが行われている。しかしテスト研磨の実施はウェハの破棄につながるため、好ましいものではない。また、作業工数の増加に直結するため、工数の面でも不利である。
特許文献2に記載の方法では、研磨レートの実績値を利用しているが、この実績値は計測装置によるウェハ膜厚の計測値から求める必要があるため、計測装置への搬送時間と計測時間だけデータ遅延が発生してしまう。さらに、基準とする研磨レートは特定の膜種の研磨レートであるため、研磨レートの正確さは基準とする膜種の選び方に大きく依存する。さらに、研磨対象ウェハの膜種によっては、その研磨レートが基準とする膜種の研磨レートと相関が悪い可能性がある。
特許文献3に記載の方法では、研磨レートの予測に研磨装置の装置状態パラメータ測定値の研磨時間全体にわたる平均値を用いている。しかし、Cuダマシン工程のように複数種類の材料の膜を連続して研磨する必要がある場合には、研磨装置の装置状態パラメータ測定値の研磨時間全体に渡る平均値を用いては、個々の材料の研磨レートを個別に予測できないという課題があった。最終的に精度を要求される重要な研磨は最下層の絶縁膜の研磨であるが、研磨装置の装置状態パラメータ測定値の研磨時間全体に渡る平均値を用いては、最下層の絶縁膜の研磨レートを精度良く予測できない。また、研磨レートの予測式は膜種毎に予め準備して膜種毎に切換を行う必要があり、多種膜を連続して研磨する際には直前の研磨装置の能力を次回の研磨に反映できないことがある。
研磨時間の設定精度も含めて、研磨レートは研磨の良否を左右するきわめて重要なファクターである。したがって、可能な限り、研磨レートは正確な値を予測する必要がある。
本発明は、上記の問題を解決して、着工ウェハの膜種の切換時にテスト研磨なしで次回に着工するウェハの研磨レートを精度良く予測できるようにすることを目的とする。
本発明の前記並びにその他の目的と新規な特徴は、本明細書の記述及び添付図面から明らかになるであろう。
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次の通りである。
本発明の代表的な実施の形態に関わる化学的機械的研磨方法は、製造実行モジュールと、研磨装置からの装置駆動状態に関する信号及び被研磨対象であるウェハの研磨状態に関する信号を受信し、量子化する測定信号サンプリングモジュールと、時系列データ切り出しモジュールと、切り出しデータ特徴量計算モジュールと、研磨装置基準研磨レート予測モジュールと、換算研磨レート計算モジュールと、研磨時間制御モジュールと、からなる化学的機械的研磨システムに関わるものであって、測定信号サンプリングモジュールが研磨装置から送られた装置駆動状態及び被研磨対象であるウェハの研磨状態に関する信号を時系列に並べた時系列データとして時系列データ切り出しモジュールに送信する時系列データ送信ステップと、時系列データを受信した時系列データ切り出しモジュールが、時系列データのウェハの研磨状態に関するデータの変化時によって特徴量を抽出する期間を限定し、限定後の切り出したデータを切り出しデータ特徴量計算モジュールに送信する時系列データ切り出しステップと、切り出したデータから、装置駆動状態の各データの特徴量を切り出しデータ特徴量計算モジュールが特徴量データとして導出し、研磨装置基準研磨レート予測モジュールへ送信する特徴量計算ステップと、研磨装置基準研磨レート予測モジュールが特徴量データに基づき研磨装置基準研磨レートを導出し、導出した研磨装置基準研磨レートを換算研磨レート計算モジュールに送出する基準研磨レート導出ステップと、送出された研磨装置基準研磨レートから、換算研磨レート計算モジュールが換算研磨レートを算出し研磨時間制御モジュールに送出する換算研磨レート導出ステップと、換算研磨レートに基づき研磨時間制御モジュールが研磨時間を導出し、研磨装置に設定する研磨時間設定ステップと、からなることを特徴とする。
この化学的機械的研磨システムにおける化学的機械的研磨方法において、装置駆動状態に関する信号はドレッサの温度、ドレッサの駆動トルク、ドレッサ圧力、ドレッサ累積使用時間、テーブルのトルク、研磨ヘッドのトルク、研磨ヘッドの圧力、研磨パッドの温度、研磨パッドの厚さ寸法、研磨パッドの累積使用時間のいずれかに関する情報を含むことを特徴としても良い。
この化学的機械的研磨システムにおける化学的機械的研磨方法において、ウェハの研磨状態に関する信号はウェハからの反射光、あるいはウェハの温度の両方あるいはいずれかに関する情報を含むことを特徴としても良い。
この化学的機械的研磨システムにおける化学的機械的研磨方法において、研磨装置基準研磨レートの予測に用いる予測式は、研磨前の膜厚及び研磨後の膜厚の測定値から計算される実績研磨レートを用いて更新されることを特徴としても良い。
この化学的機械的研磨システムにおける化学的機械的研磨方法において、換算研磨レート計算モジュールは装置間機差に関するパラメータ及びウェハの表面に積層する膜の材料もしくは凹凸パターンもしくは配線パターンが異なる複数の膜種ごとに予め設定しておいた膜種毎の換算パラメータを用いて次回着工膜種の研磨レート換算値である換算研磨レートを導出することを特徴としても良い。
この化学的機械的研磨システムにおける化学的機械的研磨方法において、装置間機差に関するパラメータ及び前記換算パラメータは研磨前の膜厚及び研磨後の膜厚の測定値および前記研磨時間から計算されるウェハ膜種毎の実績研磨レートを用いて設定されることを特徴としても良い。
この化学的機械的研磨システムにおける化学的機械的研磨方法において、装置間機差に関するパラメータ及び換算パラメータは研磨前の膜厚及び研磨後の膜厚の測定値および前記研磨時間から計算される膜種毎の実績研磨レートを用いて更新されることを特徴としても良い。
この化学的機械的研磨システムにおける化学的機械的研磨方法において、研磨装置基準研磨レート予測モジュールが前記化学的機械的研磨を行う製造段階である研磨工程よりも上流の製造段階である、研磨前工程の情報を用いて補正されることを特徴としても良い。
この化学的機械的研磨システムにおける化学的機械的研磨方法において、研磨装置の研磨ヘッド、研磨テーブル又は研磨ヘッドと研磨テーブルの組み合わせごとに前記換算パラメータが設定されることを特徴としても良い。
この化学的機械的研磨システムにおける化学的機械的研磨方法を利用することを特徴とする半導体ウェハの製造方法も本願発明の射程に入る。
本発明の代表的な実施の形態に関わる別の化学的機械的研磨方法は、製造実行モジュールと、研磨装置からの装置駆動状態に関する信号及び被研磨対象であるウェハの研磨状態に関する信号を受信し、量子化する測定信号サンプリングモジュールと、時系列データ切り出しモジュールと、切り出しデータ特徴量計算モジュールと、研磨装置基準研磨レート予測モジュールと、換算研磨レート計算モジュールと、研磨時間制御モジュールと、からなる化学的機械的研磨システムを複数有する化学的機械的研磨システム群におけるものであって、時系列データを受信した時系列データ切り出しモジュールが、時系列データの前記ウェハの研磨状態に関する信号の変化時によって特徴量を抽出する期間を限定し、限定後の切り出したデータを前記切り出しデータ特徴量計算モジュールに送信する時系列データ切り出しステップと、切り出したデータから、装置駆動状態の各データの特徴量を切り出しデータ特徴量計算モジュールが特徴量データとして導出し、研磨装置基準研磨レート予測モジュールへ送信する特徴量計算ステップと、研磨装置基準研磨レート予測モジュールが特徴量データに基づき研磨装置基準研磨レートを導出し、導出した研磨装置基準研磨レートを換算研磨レート計算モジュールに送出する基準研磨レート導出ステップと、送出された研磨装置基準研磨レート及び他の化学的機械的研磨システムにおける換算パラメータから、換算研磨レート計算モジュールが換算研磨レートを算出し前記研磨時間制御モジュールに送出する換算研磨レート導出ステップと、換算研磨レートに基づき研磨時間制御モジュールが研磨時間を導出し、研磨装置に設定する研磨時間設定ステップと、からなることを特徴とする。
この化学的機械的研磨システム群における化学的機械的研磨方法において、累積着工ウェハ数がデータ蓄積完了基準を超えた際には他の化学的機械的研磨システムにおける換算パラメータを参照せずに換算研磨レート計算モジュールが換算研磨レートを算出することを特徴としても良い。
この化学的機械的研磨システム群における化学的機械的研磨方法を利用する半導体ウェハの製造方法も本明細書の射程に入れる。また、この半導体ウェハの製造方法により製造されることを特徴とする半導体装置も射程に含まれる。
本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下の通りである。
本発明の代表的な実施の形態に関わる半導体ウェハの研磨方法では、着工するウェハの膜種の切換時にテスト研磨なしで連続着工できる。例えば、層間絶縁膜とSGI(Shallow Groove Isolation)工程のウェハをテスト研磨なしで連続着工可能である。他の例としては、多層配線の際、層毎に配線パターンや材料が異なる場合もウェハを連続着工可能である。
併せて、常時取得可能であり、かつ取得までの遅延がない装置状態パラメータを利用して研磨装置基準研磨レートを算出することで、ウェハ単位で高精度に研磨レートを予測できる。このとき、研磨精度の保証と生産性の確保を両立させることができる。
さらに、研磨装置の研磨装置基準研磨レートとして、ある特定の膜種を基準膜種とした場合の実績研磨レートを採用するのではなく、装置状態パラメータを用いて算出することで、基準膜種のばらつきの影響を受けずに研磨レートを予測できる。
以下、図を用いて本発明の実施の形態を説明する。
(第1の実施の形態)
(前提となる状況)
図1は、本発明適用の状況の一である、Cuダマシン工程における化学的機械的研磨における研磨対象ウェハの断面拡大図である。
この研磨対象ウェハは、下層メタル層313、下層絶縁膜301、中間層バリア膜302、上層金属膜303を積層したものである。下層メタル層313の上面から中間層バリア膜302を積層する前の上面までの高さ311は光学式の膜厚計測装置を用いて測定可能である。この高さ311を以後、Cuダマシン工程における「前膜厚値」と称する。
下層絶縁膜(層間絶縁膜)301は孔エッチング加工および溝エッチング加工が施されているシリコン基板などである。孔エッチング加工および溝エッチング加工により、下層絶縁膜301には配線部304及び孔部305が形成される。この配線部304及び孔部305を介して、図示しない配線層に接続される。下層絶縁膜301の素材としてはSiO(酸化シリコン)、SiOF(酸化シリコンにフッ素を添加したもの)やSiOC(酸化シリコンに炭素を添加したもの)などが用いられる。
中間層バリア膜302は、タンタル(Ta)などを用いて生成されるバリア金属膜である。上層金属膜303に用いられる銅の下層絶縁膜301への浸透防止、及び、下層絶縁膜301と上層金属膜303の密着性向上のための導電性膜である。
上層金属膜303は、中間層バリア膜302が形成された下層絶縁膜301に、メッキ法などで構成された金属膜である。
なお、下層絶縁膜301がSiOCなどの低誘電率膜の場合には、バリア膜と低誘電率膜の間に、強度を確保する等の理由でSiO酸化膜を配して中間層バリア膜302を2層構造にする場合がある。しかし、3層構造の説明で一般性を失うことはない。
Cuダマシン工程においては下層絶縁膜301にはSiOC、中間層バリア膜302にはTa、上層金属膜303にはCuなどが用いられる。
化学的機械的研磨では、まず上層金属膜303を研磨する。研磨が進行し、上層金属膜303と中間層バリア膜302の境界306まで到達すると、照射される反射光の色が変わる。これは被研磨材料が変化するためである。この反射光の変化を抽出することで、上層金属膜303の膜厚、あるいは、研磨レートの変動にかかわらず、上層金属膜303の終点を知ることができる。
この反射光の変化による層の終了の検知は中間バリア膜302と下層絶縁膜301との境界307でも発生する。したがってここでも境界306同様の検知が可能となる。
ここで反射光信号とは、研磨実行中、ウェハの研磨面に対して光を照射した際の反射光の特定の周波数の変化を示すデータのことを言う。この反射光信号は、研磨面が上層金属膜303から中間層バリア膜302に移行した際、及び中間層バリア膜302から下層絶縁膜301に移行した際に大きく変化する。実施時においては、実施者はこの変化を確認するのに必要な周波数帯域を測定できる測定器を選定すべきである。
同様に、被研磨材料が変化すると被研磨材料と研磨材料の間の摩擦係数が変化し、ウェハの温度も同時に変化する。そのため、ウェハの温度の変化を抽出することでも、前記境界306及び前記境界307を検知することができる。
なお、装置動作切替記録信号が、前記境界306もしくは前記境界307の両方もしくはいずれかと同期しているならば、前記装置動作切替記録信号の発信をトリガーとして、前記境界306もしくは前記境界307に到達したと判断しても良い。
ここで装置動作切替記録信号とは、研磨装置の研磨ヘッド駆動モータ、テーブル駆動モータ、ドレッサ駆動モータ、の全てあるいは一部で構成される装置駆動系の研磨開始からの一連の動作順序と、その動作の継続時間と、各動作における装置駆動系の状態と、を定義した動作内容を予め定めた装置レシピに従い、研磨開始から装置駆動系に対し動作の切替を指令する信号に時刻情報を付加して記録した時系列データのことを言う。
Cuダマシン工程では、配線層全体の研磨は、境界307では終わらない。ウェハ面内全域での研磨残りを防ぐため、下層絶縁膜301に一定量食い込んだ過研磨面308まで研磨する。このとき、研磨が想定した過研磨面308まで達していないと、ウェハ面内の一部で研磨残りが生じてウェハ面内に配置した配線間の絶縁性が劣化することがある。他方、研磨が想定した過研磨面308を越えてしまうと、配線高さ309が小さくなり、配線断面積縮小によって配線抵抗が増大し、半導体装置の演算スピードの低下、消費電力の増大を招く。
よって、Cuダマシン工程における配線層の研磨は中間層バリア膜302と下層絶縁膜301との境界307から過研磨面308までの研磨量を表す過研磨量310を所定の値に制御することが重要になる。ここで、下層メタル層313の上面314から過研磨後の上面までの高さ312は光学式の膜厚計測装置を用いて測定可能である。この高さ312のことをCuダマシン工程における「後膜厚値」と称す。
図2は、本発明適用の別の状況の作業段階である、平坦化工程における絶縁膜の拡大図である。
絶縁膜を形成する一様な材料331の研磨前の凹凸面の上端部332から研磨後の平面333までの総研磨量334を制御する場合に本発明が利用可能である。このとき、絶縁膜の平坦化工程の研磨量制御において、凹凸面の上端部332から研磨後の平面333までの区間334の高さを制御したい場合は区間334をデータの抽出期間とする。ここで、下層メタル層337の上面338から、凹凸面の上端部332までの高さ341は光学式の膜厚計測装置を用いて測定可能である。この区間334の高さを制御する場合の平坦化工程において、高さ341のことを「前膜厚値」と称する。
または、凹凸面の下端部335から研磨後の平面333までの区間336の高さを制御したい場合、区間336をデータの抽出期間とする。ここで、下層メタル層337の上面338から、凹凸面の下端部335までの高さ340は光学式の膜厚計測装置を用いて測定可能である。区間336の高さを制御する場合の平坦化工程において、この高さ340のことを、「前膜厚値」と称す。
また、区間334の高さ、もしくは区間334の高さのいずれを制御したい場合でも、下層メタル層337の上面338から、研磨後の上面333までの高さ339は光学式の膜厚計測装置を用いて測定可能である。この高さ339のことを以後平坦化工程における「前膜厚値」と称す。
(システム構成)
以下、実際の処理を行う研磨装置101及び研磨用システムの構成について説明する。
図3は、半導体ウェハの研磨装置101の外観構成図である。
この半導体ウェハ201を加工する半導体ウェハの研磨装置は、研磨ヘッド202、研磨ヘッド駆動モータ203、研磨パッド204、テーブル205、テーブル駆動モータ206、ドレッサ207、ドレッサ駆動モータ208、スラリー供給装置209より構成される。
研磨ヘッド202は半導体ウェハ201を研磨する際、半導体ウェハ201を固定するための部位である。
研磨ヘッド駆動モータ203は研磨ヘッド202を回転または揺動させるモータである。
研磨パッド204は実際に半導体ウェハ201を研磨する部位である。
テーブル205は研磨ヘッド202による半導体ウェハ201を押圧する力を受け止め、また、研磨パッド204を固定するためのテーブルである。
テーブル駆動モータ206はテーブル205を回転させるためのモータである。
ドレッサ207は研磨パッド204の研磨能力を回復させるための部位である。このドレッサ207はウェハ201との接触が無い。したがって、現在研磨の対象となっている半導体ウェハ201の膜種に対して、ドレッサ207の各パラメータは依存しない。したがって、ドレッサ207に関連する装置状態を利用して基準研磨レートを算出することが有効である。
ドレッサ駆動モータ208はドレッサ207を回転又は揺動させるモータである。
スラリー供給装置209は研磨パッド204上面にスラリーを供給する。
なお、実際にはこれら諸部位の駆動状態をセンサで測定しており、その測定値を研磨システムで取得して研磨装置の制御に利用可能である。研磨装置の各構成要素について得られるセンサによる測定値の項目を以下に具体的に述べる。
ドレッサ207及びドレッサ駆動モータ208に関するセンサ測定値としては、ドレッサ207の温度を測る放射温度計(図示せず)から取得したドレッサ温度、あるいはドレッサ駆動モータ208の電流を測る電流計(図示せず)から取得したドレッサ駆動トルク、あるいはドレッサ207を圧縮エアーによってパッドに押圧する圧力を測定する圧力計(図示せず)から取得したドレッサ圧力、あるいはドレッサ208を交換してからの累積使用時間を計るタイマー(図示せず)から取得したドレッサ累積使用時間のうち、一部あるいは全部が得られる。
研磨ヘッド202及び研磨ヘッド駆動モータ203に関するセンサによる測定値としては、研磨ヘッド駆動モータ203の電流を測る電流計(図示せず)から取得した研磨ヘッド駆動トルク、あるいは研磨ヘッド202の圧力を測る電流計(図示せず)から取得した研磨ヘッド駆動トルク、あるいは研磨ヘッド202の圧力を測る圧力計(図示せず)から取得した研磨ヘッド圧力のうち、一部あるいは全部が得られる。
研磨パッド204に関するセンサによる測定値としては、研磨パッド204の温度を測定する放射温度計(図示せず)から取得した研磨パッドの温度、あるいは研磨パッド204の高さ寸法を測るダイアルゲージ式測定器(図示せず)から取得した研磨パッドの高さ寸法、あるいは研磨パッド204を交換してからの累積使用時間を計るタイマー(図示せず)から取得した研磨パッド累積使用時間のうち、一部あるいは全部が得られる。
テーブル205及びテーブル駆動モータ206に関するセンサによる測定値としては、テーブル駆動モータ206の電流を測る電流計(図示せず)から取得したテーブル駆動トルクが得られる。
なお、以上のセンサによる測定値の項目を総称して以後「装置状態パラメータ」と記す。
次に、図4及び図5を用いて、システムの構成を説明する。
図4は研磨装置101を含む研磨用システムのハードウェア構成を表すブロック図である。また図5はこの研磨用システム上で動作するソフトウェア構成を表すブロック図である。
この研磨用システムのハードウェアは、研磨装置101、バス500、製造実行用計算機601、時系列データ記録計算機602、データ解析用計算機603、研磨装置基準研磨レート予測用計算機604、換算研磨レート計算用計算機605、制御用計算機606、膜厚計測装置607より構成される。
一方この研磨用システムのソフトウェアの構成は、測定信号サンプリング時系列データ記録モジュール102、時系列データ切り出しモジュール103、切り出しデータ特徴量計算モジュール104、研磨装置基準研磨レート予測モジュール105、換算研磨レート計算モジュール106、研磨時間制御モジュール107、製造実行モジュール108、実績研磨レート計算モジュール401、基準研磨レート予測パラメータ更新モジュール402より構成される。
上記各計算機は、一般のパーソナルコンピュータ(サーバ向けブレード型のものも含む)の使用を想定しているが、これに特化したハードウェアを用意しても良い。
バス500は、研磨装置101や上記各計算機間で情報のやり取りを行うための共用データ送受信経路である。ここでは、LAN(Local Area Network)などの使用を考慮している。
製造実行用計算機601は製造実行モジュール108を実行するためのコンピュータである。製造実行用計算機601の配下には製造実行情報データベース601dが存在する。
時系列データ記録計算機602は測定信号サンプリング時系列データ記録モジュール102を実行するためのコンピュータである。時系列データ記録計算機602の配下には時系列データベース602dが存在する。
データ解析用計算機603は時系列データ切り出しモジュール103及び切り出しデータ特徴量計算モジュール104を実行するためのコンピュータである。データ解析用計算機603の配下には切り出し信号特徴量データベース603dが存在する。
研磨装置基準研磨レート予測用計算機604は研磨装置基準研磨レート予測モジュール105を実行するためのコンピュータである。研磨装置基準研磨レート予測用計算機604の配下には、研磨装置基準研磨レートデータベース604d1及び予測式パラメータデータベース604d2が存在する。
換算研磨レート計算用計算機605は換算研磨レート計算モジュール106を実行するためのコンピュータである。換算研磨レート計算用計算機605の配下には、換算研磨レートデータベース605d1及び換算パラメータデータベース605d2が存在する。
制御用計算機606は研磨時間制御モジュール107を実行するためのコンピュータである。
膜厚計測装置607は前膜厚値および後膜厚値を実績研磨レート計算モジュール401に出力するための光学式の計測装置である。膜厚計測装置607は、これらの前膜厚値あるいは後膜厚値を一時的、あるいは恒久的に保持し、要求があれば送出する機能も有する。
測定信号サンプリング時系列データ記録モジュール102は研磨装置101のドレッサ207から測定信号群M−1を通して、測定信号に関する情報を受け、これらの情報をサンプリングし、記録するためのソフトウェアモジュールである。また、測定信号サンプリング時系列データ記録モジュール102に対しては製造実行モジュール108から製造実行情報118が送出される。
ここで測定信号群M−1は研磨装置101から送出されるドレッサ温度111、ドレッサ圧力112、ドレッサ回転トルク113、ドレッサ累積使用時間114、反射光信号115、ウェハ温度116、装置動作切替記録信号117の各種装置状態パラメータの全てもしくは一部のデータが送出される。図23(a)は、研磨装置101から送信される、この測定信号群M−1の構成を表す概念図である。
この製造実行情報118は、次回着工ウェハの膜種、次回着工ウェハの膜種ごとに予め設定された研磨量の狙い値、ウェハを一意に特定するためにウェハごとに予め設定されたウェハ番号などのデータを内包するものである。ウェハ番号からウェハの膜種を一意的に導出でき、定めることが可能なものとする。
この製造実行情報に基づき、測定信号サンプリング時系列データ記録モジュール102は、上記研磨装置101から送出されるドレッサ温度等の装置状態パラメータをサンプリングし記録する。
測定信号サンプリング時系列データ記録モジュール102を処理する時系列データ記録計算機602は研磨装置101から送出される各種装置状態パラメータのデータを時系列データベース602dに格納し、格納したデータを時系列データ切り出しモジュール103に送出する。
図6は、この測定信号サンプリング時系列データ記録モジュール102の処理の流れを表すフローチャートである。以下、図6を用いて測定信号サンプリング時系列データ記録モジュール102の動作を説明する。
半導体ウェハ201の研磨開始後に、製造実行モジュール108から製造実行情報を受け取ると(ステップS1001)、測定信号サンプリング時系列データ記録モジュール102は上記測定信号群M−1に含まれる各測定信号のサンプリングを実行する(ステップS1002)。所定の時間が経過するまでは(ステップS1003:No)このサンプリングが継続される。一方所定の時間が経過すると(ステップS1003:Yes)、これまでサンプリングしてきた情報に現在研磨対象の半導体ウェハ201に関するウェハ番号を付して、時系列データベース602dに時系列データとして記録する(ステップS1004)。
その後、測定信号サンプリング時系列データ記録モジュール102は時系列データベース602dに記録した当該時系列データを時系列データ切り出しモジュール103に送出する(ステップS1005)。
時系列データ切り出しモジュール103は、測定信号サンプリング時系列データ記録モジュール102から送信された時系列データから下層絶縁膜301の研磨に当たる区間だけを切り出すためのソフトウェアモジュールである。図7はこの時系列データ切り出しモジュール103の処理を表すフローチャートである。
時系列データ切り出しモジュール103にはバス500経由で測定信号サンプリング時系列データ記録モジュール102から時系列データが送信される。この送信された時系列データを時系列データ切り出しモジュール103は受信する(ステップS1101)。時系列データ切り出しモジュール103は送信された時系列データのうち、反射光信号115もしくはウェハ温度116もしくは装置動作切替記録信号117の、全てもしくはいずれかに関するデータに着目する。
図1でも説明したとおり、半導体ウェハ201(研磨対象ウェハ)は下層絶縁膜301、中間層バリア膜302、上層金属膜303から構成されている。研磨を進めていくと、下層絶縁膜301から中間層バリア膜302への研磨対象の移行、中間層バリア膜302から上層金属膜303への研磨対象の移行の際に、反射光信号115は変化する。これは材質の変化による光の反射、吸収に関する特性の変化による。
また、研磨対象が移行すると半導体ウェハ201と研磨パッド204の摩擦係数が変化し、半導体ウェハの温度も同時に変化する。そのため、装置に取り付けた放射温度計(図示せず)によって測定できる半導体ウェハの温度の変化を抽出することでも、研磨対象の以降を検知することができる。
なお、研磨ヘッド駆動モータ、テーブル駆動モータ、ドレッサ駆動モータの全てもしくは一部で構成される装置駆動系の一連の動作の順序と、各動作における装置駆動系の状態を定義した動作ステップを予め定めた装置レシピに従い、動作ステップの切り替えを指令する信号である装置動作切替記録信号117が、研磨対象の移行と同期しているならば、装置動作切替記録信号117の発信をトリガとして、研磨対象の移行の完了を判断しても良い。
この変化点のうち後者(中間層バリア膜302から上層金属膜303)を検出する(ステップS1102)。そして、時系列データ切り出しモジュール103は、この導出した変化点以前の各データから、この変化点以後の各データを切り出す(ステップS1103)。この切り出したデータは下層絶縁膜301の研磨に当たる区間の時系列データとなる。時系列データ切り出しモジュール103は、この切り出したデータを切り出しデータ特徴量計算モジュール104に対して、切り出しデータ特徴量計算モジュール104に送信し(ステップS1104)、時系列データ切り出しモジュール103の処理は終了する。
切り出しデータ特徴量計算モジュール104は切り出された下層絶縁膜301の研磨に当たる区間の時系列データから各データの特徴量を導出するモジュールである。図8はこの切り出しデータ特徴量計算モジュール104の処理を表すフローチャートである。ここで切り出しデータ特徴量計算モジュール104が導出する「特徴量」とは、ウェハ研磨の際に参照されるドレッサ温度111、ドレッサ圧力112、ドレッサ回転トルク113、ドレッサ累積使用時間114の変化量のことである。
以下図8を用いて切り出しデータ特徴量計算モジュール104の処理を説明する。
切り出しデータ特徴量計算モジュール104は、上述した時系列データ切り出しモジュール103が切り出したデータを受信する(ステップS1201)。この切り出したデータから、上述する4つのパラメータの変化量を計算する(ステップS1202)。全てのパラメータについて変化量を導出したら(ステップS1203:Yes)、ウェハ番号をつけて特徴量を特徴量データとして切り出し信号特徴量データベース603dに記録する(ステップS1204)。その後、研磨装置基準研磨レート予測モジュール105に対してこの特徴量データを送信して切り出しデータ特徴量計算モジュール104の処理は終了する(ステップS1205)。
研磨装置基準研磨レート予測モジュール105は、切り出しデータ特徴量計算モジュール104より与えられた特徴量データを利用して研磨装置基準研磨レートを予測するモジュールである。
以下、任意の研磨装置1台について計5ウェハ分のデータを、その他の研磨装置については計1ウェハ分のデータを取得する場合について説明する。
本モジュールでは、送信される特徴量データのうちドレッサ温度111に関するデータをA、ドレッサ駆動トルク113に関するデータをB、ドレッサ圧力112に関するデータをC、ドレッサ累積使用時間114に関するデータをDとした際に、以下の数式で研磨装置基準研磨レートを予測する。
研磨装置基準研磨レート=
(a×A+b×B+c×C+d×D+e)×f …(式1)
a:ドレッサ温度係数
b:ドレッサ駆動トルク係数
c:ドレッサ圧力係数
d:ドレッサ累積使用時間係数
e:バイアス係数
f:装置間機差係数
なお、温度係数a、ドレッサ駆動トルク係数b、ドレッサ圧力係数cは研磨装置基準研磨レートに対して正の相関を持ち、これらのパラメータ値が増大すると、研磨装置基準研磨レートも増加する。それに対してドレッサ累積使用時間係数dは研磨装置基準研磨レートに対して負の相関を持つ。負の相関を持つパラメータについては、パラメータ値が増大すると研磨装置基準研磨レートは減少する。
この(式1)を計算するのが、研磨装置基準研磨レート予測モジュール105の処理である。以下、図9を用いて、研磨装置基準研磨レート予測モジュール105の動作を説明する。
図9は、研磨装置基準研磨レート予測モジュール105の処理を表すフローチャートである。
研磨装置基準研磨レート予測モジュール105は切り出しデータ特徴量計算モジュール104からの特徴量データをまず受信する(ステップS1301)。この受信により、上述した(式1)のA、B、C、Dが取得できる。
その後、研磨装置基準研磨レート予測モジュール105は予測式パラメータデータベース604d2から上述したa、b、c、d、e、fの各係数を取得する(ステップS1302)。
このデータ及び係数の取得により、研磨装置基準研磨レート予測モジュール105は(式1)の計算が可能となる。したがって、研磨装置基準研磨レート予測モジュール105は研磨装置基準研磨レートを導出する(ステップS1303)。
その後、研磨装置基準研磨レート予測モジュール105は、導出した研磨装置基準研磨レートにウェハ番号を付加して、研磨装置基準研磨レートデータベース604d1に記録する(ステップS1304)。その後、研磨装置基準研磨レート予測モジュール105は、換算研磨レート計算モジュール106に対して、導出した研磨装置基準研磨レートを送信し、処理は終了する(ステップS1305)。
一方、実績研磨レート計算モジュール401は、膜厚計測装置607から送信される研磨前膜厚値および研磨後膜厚値、および、研磨装置101から送信される研磨時間(直前の研磨に要した時間)より、実績研磨レートを導出する。
図10はこの実績研磨レート計算モジュール401の処理を表すフローチャートである。以下、この図を用いて処理の内容を説明する。
まず、実績研磨レート計算モジュール401は、膜厚計測装置607より送信される前膜厚値および後膜厚値を受信する(ステップS2001)。また、研磨装置101より、送信されてくる研磨時間119を受信する(ステップS2002)。
その後受信したこれらのデータを利用して実績研磨レート計算モジュール401は前記(式2)を用いて実績研磨レートを計算する(ステップS2003)。この実績研磨レートの導出は以下の数式で行う。
実績研磨レート=
(前膜厚値 ― 後膜厚値)÷研磨時間T …(式2)
その後実績研磨レート計算モジュール401は導出した実績研磨レートを換算研磨レート計算モジュール106に対して送出し処理を終了する(ステップS2004)。
換算研磨レート計算モジュール106は、研磨装置基準研磨レート予測モジュール105から送出された研磨装置基準研磨レートから換算研磨レートを導出するソフトウェアモジュールである。以下本モジュールの役割について図11を使って説明する。
図11は複数膜種の研磨レートの挙動を表すグラフである。縦軸4009は研磨レートを、横軸4008はドレッサ温度111、ドレッサ圧力112、ドレッサ回転トルク113、ドレッサ累積使用時間114等のドレッサに関する装置状態パラメータの特徴量の一つを採ったものであり、異なる2種類の膜種である膜種Xと膜種Yについて、それぞれの着工データ4004、4005をプロットしたものを表す。このとき、着工データ4004と着工データ4005について、それぞれ最小自乗法などの手法で直線近似したものを、4002と4003に示す。更に、研磨装置基準研磨レートをプロットしたものを4001に示す。
この4001と4002、4003のグラフにおける傾きを見ても分かるように、膜種が違っていても、装置状態パラメータに対する研磨レートの変動率(傾き)は研磨装置基準研磨レートの傾きとほぼ同じである。したがって、4006と4007で図示したシフト量を4001の研磨装置基準研磨レートに加算(減算)することで、研磨装置基準研磨レートから膜種Xの研磨レート及び膜種Yの研磨レートを導出することが可能である。この処理をするのが換算研磨レート計算モジュール106である。
図12はこの換算研磨レート計算モジュール106の処理を表すフローチャートである。以下、図12を用いて、本発明の実施の形態を説明する。
まず換算研磨レート計算モジュール106は、研磨装置基準研磨レート予測モジュール105から送信された研磨装置基準研磨レートを受信する(ステップS1401)。
また、次回着工ウェハの膜種の情報を製造実行情報118から取得する(ステップS1402)。この情報を参照して、次回着工ウェハの表面に積層する膜の材料もしくは凹凸パターンもしくは配線パターンが異なる複数の膜種ごとに予め設定しておいた換算パラメータ(図1のシフト量)を換算パラメータデータベース605d2より取得する(ステップS1403)。
そして換算研磨レート計算モジュール106は、研磨装置基準研磨レート及び換算パラメータから換算研磨レートを計算する(ステップS1404)。この際用いる数式は以下の通りである。
換算研磨レート=g×研磨装置基準研磨レート+h …(式3)
g:装置間機差に関するパラメータ
h:次回着工ウェハの膜種に関する換算パラメータ
その後、換算研磨レート計算モジュール106はステップS1404にて導出された換算研磨レートに製造実行情報118に含まれるウェハ番号をつけ、換算研磨レートデータベース605d1に記録する(ステップS1405)。その後、ステップS1405で記録した換算研磨レートを研磨時間制御モジュール107に送信する(ステップS1406)。
研磨時間制御モジュール107は、換算研磨レート計算モジュール106から送信される換算研磨レートと過去の換算研磨レートから、実際の研磨装置101の研磨時間を導出するソフトウェアモジュールである。
図13は、この研磨時間制御モジュール107の処理を表すフローチャートである。この図を用いて研磨時間制御モジュール107の処理を説明する。
まず、研磨時間制御モジュール107は換算研磨レート計算モジュール106より送信される換算研磨レートを受信する(ステップS1501)。
次に、研磨時間制御モジュール107は次回着工ウェハの研磨量を取得する(ステップ1502)。研磨時間を導出する際に、目標とする研磨量が不可欠であるためである。この際、次回着工ウェハの種類により一意的に決定できるようにしても良く、また、別途入力できるようにしても良い。
換算研磨レート及び研磨量を取得すると、それらを用いて研磨時間制御モジュール107は研磨時間を計算し、導出する(ステップS1503)。この際、必要に応じて、換算研磨レートデータベース605d1に過去に実行された研磨の換算研磨レートを参照しても良い。
そして、研磨装置101に対して研磨時間を送信・設定することで(ステップS1504)、次回着工ウェハの研磨が可能となる。
(パラメータの設定)
図14は本実施の形態において、異なる膜種のウェハが研磨装置に順次投入される場合のパラメータ導出タイミングを説明する図である。この図では、たとえば「○」のウェハを研磨する前にテスト研磨として「●」(○と同じ膜種であるがテスト用として処理するもの)を連続して実行し、研磨装置に関わるパラメータa、b、c、d、e、fを導出する。また、生産対象である膜種の切り替え毎に最初の一枚目に膜種に依存するパラメータg、hを導出する。なお、研磨装置駆動直後の最初1つ目の膜種についてはテスト研磨の一番最後の回にg、hを導出するようにしても良い。図14ではそのような処理を想定している。
パラメータa、b、c、d、e、f、すなわち研磨装置基準研磨レート予測モジュール105で用いるパラメータ、は研磨システムの起動時に同一種類の膜種のウェハを5回検査することで求める。この初動のパラメータの導出については、回数に違いはあれども従前の技術においても行っていたものである。
一方、装置間機差に関するパラメータg及び次回着工ウェハの膜種に関する換算パラメータh、すなわち換算研磨レート計算モジュール106で用いるパラメータ、は膜種切替のタイミングで一枚だけテスト研磨することによって求められる。従来はこの際に、パラメータa、b、c、d、e、fを求めるのと同様に複数回テスト研磨を行っていたが、この回数が減る点が本実施の形態の効果である。
以下に、パラメータa、b、c、d、e、fの設定方法を説明する。
テスト用もしくは製品である、任意の膜種の1ウェハを、任意の研磨時間Tだけ研磨した際の、ドレッサ温度111、ドレッサ圧力112、ドレッサ駆動トルク113及びドレッサ累積使用時間114に関するデータであるデータA、B、C、Dを取得する。更にこのとき、前記研磨の前後において、光学式や渦電流式などの膜厚計測装置607を用いて前膜厚値と後膜厚値を計測し、その計測データを合わせて取得する。そして、前膜厚値と後膜厚値の計測データと研磨時間Tを用いて、研磨時の実績の研磨レートである実績研磨レートを(式2)から導出する。
以上のデータA、B、C、Dと実績研磨レートのデータ取得作業を、同一の膜種のウェハを用いて、本実施の形態を適用したい全ての研磨装置に対して行う。ただし、そのうち任意の1台の研磨装置に対しては、同一の膜種のウェハを用いて、計5ウェハについてデータを取得しておく。
次に、データを取得した研磨装置のうち、計5ウェハ分のデータを取得した1台について、パラメータfをf=1と設定し、次式を用いてパラメータa、b、c、d、eを導出する。
[a、b、c、d、e]=M1・(M2の逆行列)
ただし、
M1=[実績研磨レート、実績研磨レート、…、実績研磨レート]、
M2=[Data、Data、…、Data]、
ただし、
Data=[A、B、C、D] … (式4)
ここで、(式3)において、下付きの数字が同じ実績研磨レートとDataベクトルとデータA、B、C,Dは、同一のウェハについて得られた値である。また上付きの「」はベクトルの転置を表す。
以上より、データを取得した研磨装置のうち、計5ウェハ分のデータを取得した一台について、パラメータa、b、c、d、eを設定できる。その他の研磨装置に対してもパラメータ値を設定するが、パラメータa、b、c、d、eは全装置共通である。
その後、fを装置ごとに導出する。装置間機差係数fは、設定対象である装置毎に、その装置が取得したデータA、B、C、Dを用いて、以下の数式で導出する。
装置間機差係数f=(設定対象の装置について得られた実績研磨レート)
/(a×A+b×B+c×C+d×D+e) … (式5)
以上では、任意の研磨装置1台について計5ウェハ分のデータを、その他の研磨装置については計1ウェハ分のデータを取得する場合について説明した。しかし、それぞれの研磨装置において、前記よりも多い数の同一膜種のウェハ分のデータを取得できる場合、最小自乗法を用いて、同様の方法でパラメータa、b、c、d、e、fを設定することも可能である。複数のデータを用いる場合、ノイズを低減できるため、パラメータの精度の向上が期待できる。
また、(式1)はA、B、C、Dの4種類のデータが得られる場合についての予測式であるが、得られるデータが限られる場合など、4種類のうち一部のデータのみを用いる場合には、(式1)において用いるデータの項のみを残した予測式を用いればよい。
以下に、膜種毎に設定を行う、パラメータg、hの設定方法を説明する。
パラメータの設定対象の膜種の1ウェハを、任意の研磨時間Tだけ研磨した際の、ドレッサ温度111、ドレッサ圧力112、ドレッサ駆動トルク113及びドレッサ累積使用時間114に関するデータである、データA、B、C、Dを取得する。このとき、前記研磨の前後において、膜厚計測装置607を用いて前膜厚値と後膜厚値を計測しておき、その計測データを合わせて取得する。次に、データA、B、C、Dと、予め設定してあるパラメータa、b、c、d、e、fの値を用いて、数式(式1)によって研磨装置基準研磨レートを導出する。そして、前膜厚値と後膜厚値の計測データと研磨時間Tを用いて、研磨時の実績研磨レート研磨時の実績の研磨レートである実績研磨レートを(式2)から導出する。
以上の研磨装置基準研磨レートと実績研磨レートの導出作業を、同一の膜種のウェハを用いて、本実施の形態を適用する全ての研磨装置に対して行う。
次に、データを取得した研磨装置のうち、任意の一台について、装置間機差に関するパラメータgを1に設定して、(式6)を用いて、次回着工ウェハの膜種に関する換算パラメータhを導出する。
h=実績研磨レート ー (g×研磨装置基準研磨レート) … (式6)
ただし、g=1
その他の研磨装置に対してもパラメータ値を設定する。この際、次回着工ウェハの膜種に関する換算パラメータhは全装置で共通である。そのため、装置間機差係数である装置間機差に関するパラメータgのみを装置ごとに導出する。
装置間機差に関するパラメータgは、設定対象である装置ごとに、その装置ごとに導出した研磨装置基準研磨レートと実績研磨レートを用いて、(式7)により導出する。
g=(設定対象の装置の実績研磨レート − h)
÷(設定対象の装置の研磨装置基準研磨レート) … (式7)
以上では、各研磨装置について計1ウェハ分のデータを取得する場合について説明した。研磨装置において、複数のウェハ分のデータが取得できる場合、最小自乗法を用いて、同様の方法で装置間機差に関するパラメータg、次回着工ウェハの膜種に関する換算パラメータhを設定することも可能である。この際、全てのウェハは同一の膜種であることが必要となる。複数のデータを用いる場合、ノイズを低減できるため、パラメータの精度の向上が期待できる。
また、前記(式3)では、装置間機差に関するパラメータg及び次回着工ウェハの膜種に関する換算パラメータhを用いて換算研磨レートを算出した。しかし、機差を考慮する必要が無い場合など、2種類のうち片方のパラメータのみを用いて換算研磨レートを算出する場合には、(式3)において用いるパラメータのみを残した予測式を用いればよい。
(システム運用)
図15は本研磨用システムの運用手順を表すフローチャートである。
本研磨システムにおいては、研磨開始と同時に研磨装置101がステップS1504で設定された設定時間だけ研磨すると共に(ステップS1601)、研磨時の測定信号サンプリング時系列データを記録する(ステップS1602)。
研磨装置101による研磨が終了すると、研磨装置101はステップS1602で記録した測定信号サンプリング時系列データを、測定信号サンプリング時系列データ記録モジュール102に対して送信する。
以後の処理は「システム構成」で記載した処理がなされる。
このように、ウェハの研磨中に研磨装置101のドレッサ207に関する測定信号サンプリング時系列データを記録し、研磨システムに次回着工ウェハの研磨時間を設定させることで、Cuダマシン工程における下層絶縁膜の研磨量を適切にすることが可能となる。結果、研磨精度の保証と生産性の確保を両立させることが可能となる。
なお、近年研磨装置の研磨ヘッドの複数化、テーブル(含むテーブル上の研磨パッド)の複数化が進んでおり、装置毎の設定では、実態にそぐわない場合もある。この場合、装置毎の設定ではなく、研磨ヘッドごと、あるいは、研磨パッドごとに装置間機差係数f、装置間機差に関するパラメータgを用意し適宜切り替えて処理することも考慮する。
また、この実施の形態では、ウェハ研磨装置の装置状態パラメータに基づいて研磨装置基準研磨レートを予測する(式1)を計算する際に、収集したウェハのデータを選別せずに用いていた。しかし、研磨精度を管理する際に重要となるのは、データばらつきの分布の中央よりも、研磨不足あるいは研磨過多の場合を示す、データばらつきの分布の上端および下端近傍である。そのため、研磨レートの分布に基づき、分布の中央の研磨レートを示すウェハのデータを除外して、分布の上下端近傍のウェハのデータのみを用いて計算するようにすると、生産精度の管理において重要視される分布の上端および下端近傍の研磨レートを、より精度良く予測することができるようになる。
(第2の実施の形態)
次に、本発明の第2の実施の形態について説明する。
第1の実施の形態では、研磨装置101から測定信号サンプリング時系列データ記録モジュール102に送出される装置状態パラメータは、ドレッサ温度111、ドレッサ圧力112、ドレッサ回転トルク113、ドレッサ累積使用時間114、反射光信号115、ウェハ温度116、装置動作切替記録信号117の全てもしくは一部を含む測定信号群M−1で構成されていることを想定していた。
これに対し、本実施の形態では、測定信号群M−1に含まれるドレッサ温度111、ドレッサ圧力112、ドレッサ回転トルク113、ドレッサ累積使用時間114、反射光信号115、ウェハ温度116、装置動作切替記録信号117だけでなく、研磨ヘッド202、研磨ヘッド駆動モータ203、各種装置状態パラメータ、研磨パッド204、テーブル205、テーブル駆動モータ206に関するセンサによる装置状態パラメータ、の一部あるいは全てのパラメータが研磨装置101から測定信号サンプリング時系列データ記録モジュール102に送出されることを特徴とする。
これにより、研磨装置基準研磨レートの予測に利用できるデータが増えるため、研磨装置基準研磨レートの予測精度を向上させることができる。
具体的には、第1の実施の形態における、研磨装置基準研磨レートを予測する研磨装置基準研磨レート予測モジュール105で用いる研磨装置基準研磨レートの予測式(式1)を拡張すればよい。図23(b)は、本実施の形態において、研磨装置101から送信される、この測定信号群M−2の構成を表す概念図である。
本実施の形態の測定信号群M−2(第1の実施の形態の測定信号M−1の代わりとなるもの)では、第1の実施の形態の測定信号群M−1の構成に加え、研磨ヘッド駆動トルク120、研磨ヘッド圧力121、研磨パッド温度122、研磨パッド厚さ寸法123、研磨パッド累積使用時間124、テーブル駆動トルク125を含む。
送信される特徴量データのうち、研磨ヘッド駆動トルク120に関するデータをP1、研磨ヘッド圧力121に関するデータをP2、研磨パッド温度122に関するデータをP3、研磨パッド厚さ寸法123に関するデータをP4、研磨パッド累積使用時間124に関するデータをP5、テーブル駆動トルク125に関するデータをP6とした際に、以下の数式で研磨装置基準研磨レートを予測する。
研磨装置基準研磨レート =
(a×A+b×B+c×C+d×D
+p1×P1+p2×P2+p3×P3+p4×P4
+p5×P5+p6×P6+e)×f … (式1a)
p1:研磨ヘッド駆動トルク係数
p2:研磨ヘッド圧力係数
p3:研磨パッド温度係数
p4:研磨パッド厚さ寸法係数
p5:研磨パッド累積使用時間係数
p6:テーブル駆動トルク係数
なお、(式1)と同様、ドレッサ温度係数a、ドレッサ駆動トルク係数b、ドレッサ圧力係数cは研磨装置基準研磨レートに対して正の相関を持ち、これらのパラメータ値が増大すると、研磨装置基準研磨レートも増加する。それらに対し、ドレッサ累積使用時間係数dは研磨装置基準研磨レートに対して負の相関を持つ。負の相関を持つパラメータは、パラメータ値が増大すると研磨装置基準研磨レートは減少する。
さらに、研磨ヘッド駆動トルク係数p1、研磨ヘッド圧力係数p2、研磨パッド温度係数p3、研磨パッド厚さ寸法係数p4、テーブル駆動トルク係数p6は研磨装置基準研磨レートに対して正の相関を持ち、これらのパラメータ値が増大すると、研磨装置基準研磨レートも増加する。それに対して研磨パッド累積使用時間係数p5は研磨装置基準研磨レートに対して負の相関を持つ。負の相関を持つパラメータについては、パラメータ値が増大すると研磨装置基準研磨レートは減少する。
以下に、パラメータa、b、c、d、e、f及びp1、p2、p3、p4、p5、p6の設定方法を説明する。
テスト用もしくは製品である、任意の膜種の1ウェハを、任意の研磨時間Tだけ研磨した際の、データA、B、C、D及びデータP1、P2、P3、P4、P5、P6を取得する。更にこのとき、前記研磨の前後において、光学式の膜厚研磨装置を用いて前膜厚値と後膜厚値を計測しておき、その計測データを合わせて取得する。そして、前膜厚値と後膜厚値の計測データと研磨時間Tを用いて、研磨時の実績の研磨レートである実績研磨レートを(式2)で導出する。
以上のデータA、B、C、D、P1、P2、P3、P4、P5、P6と実績研磨レートのデータ取得作業を、同一の膜種のウェハを用いて、本実施の形態を適用したい全ての研磨装置に対して行う。ただし、そのうち、任意の1台の研磨装置に対しては、同一膜種のウェハを用いて、計11ウェハについてのデータを取得しておく。
次に、データを取得した研磨装置のうち、計11ウェハ分のデータを取得した一台について、パラメータfを1と設定し、(式4a)を用いて、パラメータa、b、c、d、e、p1、p2、p3、p4、p5、p6を導出する。
[a、b、c、d、e、p1、p2、p3、p4、p5、p6]
= M1・(M2の逆行列)
ただし、
M1=[実績研磨レート、実績研磨レート、…、実績研磨レート11]、
M2=[Data、Data、…、Data11]、
ただし、
Data=[A、B、C、D
p1、p2、p3、p4、p5、p6] … (式4a)
ここで、(式4a)において、下付きの数字が同じ実績研磨レートとDataベクトルとデータA、B、C、D、P1、P2、P3、P4、P5、P6は、同一のウェハについて得られた値とする。また上付きの「」はベクトルの転置を表す。
以上により、データを取得した研磨装置のうち、計11ウェハ分のデータを取得した1台について、パラメータa、b、c、d、e、p1、p2、p3、p4、p5、p6を設定できる。
次に、その他の研磨装置に対してもパラメータ値を設定するが、パラメータa、b、c、d、e、p1、p2、p3、p4、p5、p6は全装置で共通である。そのため、装置間機差係数であるfのみを装置ごとに導出する。
装置間機差係数f=(設定対象の装置について得られた実績研磨レート)
/(a×A+b×B+c×C+d×D
+p1×P1+p2×P2+p3×P3+p4×P4
+p5×P5+p6×P6+e) … (式5a)
以上では、任意の研磨装置1台について計11ウェハ分のデータを、その他の研磨装置について計1ウェハ分のデータを取得する場合について説明した。もし、それぞれの研磨装置において、前記よりも多い数のウェハ分のデータを取得できる場合、最小自乗法を用いて、同様の方法でパラメータa、b、c、d、e、f、p1、p2、p3、p4、p5、p6を設定することも可能である。複数のデータを用いる場合、ノイズを低減できるため、パラメータの精度の向上が期待できる。
また、前記(式1a)はA、B、C、D及びP1ないしP6までの10種類のデータが得られる場合についての予測式であるが、得られるデータが限られる場合など、10種類のうち一部のデータのみを用いる場合には、(式1a)において用いるデータの康のみを残した予測式を作ればよい。
(第3の実施の形態)
次に、本発明の第3の実施の形態について説明する。
第1の実施の形態および第2の実施の形態では、ステップS1302において研磨装置基準研磨レート予測モジュール105が予測式パラメータデータベース604d2から読み出す各係数は一定値であった。
これに対し、本実施の形態においては、研磨レートと各種装置状態パラメータの実績値を用いて上記各係数を更新する。これにより、研磨装置基準研磨レートの予測値を実績値に追従させることを可能にする。
図16は研磨装置121を含む本実施の形態にかかわる研磨用システムのソフトウェア構成を表すブロック図である。これらを用いて本実施の形態を説明する。
本実施の形態のハードウェア構成の特徴は、研磨装置101の代わりに研磨装置121を用いること、及び研磨装置基準研磨レート予測モジュール125を用いること、である。またソフトウェア上の特徴は、基準研磨レート予測パラメータ更新モジュール402が追加されている点にある。
第1および第2の実施の形態との相違点について詳述する。
本実施の形態における研磨装置121は、研磨装置101の測定項目に加え、研磨時間を保持すること、および実績研磨レート計算モジュール401に対して保持している研磨時間を求めに応じて送信可能となっている点で第1および第2の実施の形態と相違する。
なお、研磨対象の特定は、第1および第2の実施の形態で付加したウェハ番号(図8など参照)が考えられるが、別途ウェハの種別と研磨時間の対応が取れるようしても良い。
これらを測定することを考えると、膜厚計測装置607は研磨装置121に含まれることが好ましい。ただし、本明細書中では、研磨装置121と膜厚計測装置607は分けて説明する。
基準研磨レート予測パラメータ更新モジュール402は、送信される実績研磨レートからパラメータ更新値を導出するためのソフトウェアモジュールである。ここで更新の対象となるのはバイアス係数eである。
図17はこの基準研磨レート予測パラメータ更新モジュール402の処理を表すフローチャートである。以下、この図を用いて処理の内容を説明する。
基準研磨レート予測パラメータ更新モジュール402は、送信されてきた実績研磨レートを受信する(ステップS2101)。この受信をトリガーとして、基準研磨レート予測パラメータ更新モジュール402は研磨装置基準研磨レート予測用計算機604に対して、予測式パラメータデータベース604d2中に格納されたバイアス係数eを要求し、取得する(ステップS2102)。
この実績研磨レートおよび予測式パラメータを利用して、基準研磨レート予測パラメータ更新モジュール402は予測式パラメータの更新値(パラメータ更新値)を導出する(ステップS2103)。
ここで、パラメータ更新値とは、研磨装置基準研磨レート予測モジュール125に送信され、予測式パラメータデータベース604d2の予測式パラメータの更新に用いられる値である。
この際、予測式パラメータの導出に際し、まず復元研磨装置基準研磨レートを導出する。これは、この復元研磨装置基準研磨レートと研磨装置基準研磨レートの差分が減少するように研磨装置基準研磨レートを補正することで研磨装置基準研磨レートの実績に近づけるためである。
まず復元研磨装置基準研磨レートを以下の式で導出する。
復元研磨装置基準研磨レート=
(実績研磨レート ー h)÷g … (式8)
なお、係数g、hは(式5)で用いたものである。このあと、(式1)を変形した以下の(式9)に当てはめることで、パラメータ更新値e´を導出する。
パラメータ更新値e´ =
(復元研磨装置基準研磨レート÷f)―(a×A+b×B+c×C+d×D)
… (式9)
この際、EWMA(指数重みつき移動平均)平滑フィルタを上記式に適用して、パラメータ更新値e´の微細変動を除去しても良い。このEWMA(指数重みつき移動平均)平滑フィルタ後のパラメータ更新値e´´は以下の(式10)で求められる。
フィルタ後パラメータe´´ =
α×e´+(1−α)×e … (式10)
ただし 0<α<1
このようにしてパラメータ更新値を導出した後、パラメータ更新値(e´またはe´´)を基準研磨レート予測パラメータ更新モジュール402に対して研磨装置基準研磨レート予測モジュール125に対して送信する(ステップS2104)。
研磨装置基準研磨レート予測モジュール105に比して、研磨装置基準研磨レート予測モジュール125は、基準研磨レート予測パラメータ更新モジュール402からの入力信号が一本増加している。この基準研磨レート予測パラメータ更新モジュール402からの入力信号によって、予測式パラメータデータベース604d2に格納された各係数を更新する点が研磨装置基準研磨レート予測モジュール105と相違する。このとき、予測式パラメータデータベース604d2に格納された各係数は、基準研磨レート予測パラメータ更新モジュール402からの入力信号の受信をトリガーとして、更新される。
このように、バイアス係数eを更新することで、研磨精度を良好な状態に維持することが可能となる。
なお、本実施の形態では、バイアス係数eのみを更新する場合について説明を行ったが、最小二乗法などを用いれば、温度係数a、回転数係数b、圧力係数c、累積使用時間係数d、装置間機差係数fも同時に精度良く設定することが可能となる。
以上では研磨装置基準研磨レートの予測式として(式1)を用いる場合について説明した。(式1)の代わりに(式1a)、もしくは(式1)のうち不要なパラメータを含む項を省略した式、もしくは(式1a)のうち不要なパラメータを含む項を省略した式を研磨装置基準研磨レートの予測式として用いた場合にも、同様の方法でパラメータ更新値を導出することができる。
(第4の実施の形態)
次に第4の実施の形態について説明する。
第1の実施の形態ないし第3の実施の形態では、配線層毎の換算パラメータを手動で設定していた。これに対し、第4の実施の形態では、実績研磨レートから換算量を設定することで換算パラメータの最適化ならびに工数の削減を図ることを可能にする。
本実施の形態で対象となるのは換算パラメータhである。また研磨用システムのハードウェア構成及びソフトウェア構成は第2の実施の形態と同様であるので省略する。
本実施の形態において、基準研磨レート予測パラメータ更新モジュール402はパラメータ更新値だけでなく、換算パラメータhの設定も行う。
この換算パラメータhの導出に際しては、(式2)を変形させた以下の式を用いる。
設定換算パラメータh´=
実績研磨レートーg×研磨装置基準研磨レート … (式11)
この研磨装置基準研磨レートは研磨装置基準研磨レートデータベース604d1に記録されたものである。(式11)の計算に際しては、基準研磨レート予測パラメータ更新モジュール402は研磨装置基準研磨レートの値を研磨装置基準研磨レートデータベース604d1から読み出して設定換算パラメータh´を導出する。
この際、実績研磨レート及び研磨装置基準研磨レートの一対のデータが複数存在するなら、平均値を導出して、それを設定換算パラメータh´としても良い。平均値を用いることで設定換算パラメータのノイズ成分の除去が可能となる。
そして導出した設定換算パラメータを研磨装置基準研磨レート予測モジュール125に送出する。受信した、この設定換算パラメータを用いて研磨装置基準研磨レート予測モジュール125は換算パラメータhを更新する。
このようにすることで、初期値として設計データなどから求めた換算パラメータを用意しておき、実動作で換算パラメータを補正することで工数削減を図ることが可能となる。換算パラメータhは半導体ウェハの材料や凹凸パターン、配線パターンに依存するので設計データから精度の高いものを導出することが可能であるためである。
なお、最小二乗法などを用いれば、装置間機差に関するパラメータgも合わせて設定を行うことが可能となる。また、該当膜種に類似する膜種のパラメータ値を複写・転用してもかまわない。
(第5の実施の形態)
次に第5の実施の形態について説明する。
第1ないし第4の実施の形態では、配線層毎の装置間機差に関するパラメータg及び換算パラメータhを一定としていた。これらを研磨用システムが更新することで、各パラメータの初期設定値に誤差があっても学習することを可能にする。
図18は本実施の形態にかかわるソフトウェア構成を表すブロック図である。第2の実施の形態と対比すると、基準研磨レート予測パラメータ更新モジュール402の代わりに換算パラメータ更新モジュール502が、換算研磨レート計算モジュール106の代わりに換算研磨レート計算モジュール506が用意されている点、第1及び第2の実施の形態同様に研磨装置基準研磨レート予測モジュール105が用いられている点が相違する。換算パラメータ更新モジュール502に対して、実績研磨レート計算モジュール401が実績研磨レートを出力する点は第2の実施の形態と同様である。実績研磨レートを受信した後、換算パラメータ更新モジュール502は既定の装置間機差に関するパラメータg及び換算パラメータhを要求・取得し、それらを再度計算しなおす。その後、装置間機差に関するパラメータg及び換算パラメータhを換算研磨レート計算モジュール506に戻すことで、これらの更新を行う。
換算研磨レート計算モジュール506は、換算研磨レート計算モジュール106と同様に、換算研磨レートを計算するソフトウェアモジュールである。
ただし、換算研磨レート計算モジュール106と以下の点で相違する。すなわち、換算パラメータ更新モジュール502の求めに応じて、既定の装置間機差に関するパラメータg及び換算パラメータhを換算研磨レート計算モジュール506に対して出力する点である。また、換算研磨レート計算モジュール506は換算パラメータ更新モジュール502からの再計算された結果を用いて、装置間機差に関するパラメータg及び換算パラメータhを更新する点である。更に、更新されたパラメータを用いて換算研磨レート計算モジュール506は換算研磨レートの計算を行う点である。
図19はこれらの換算パラメータ更新モジュール502及び換算研磨レート計算モジュール506の間の処理を表すフローチャートである。以下、この図を用いてこの2つのモジュールの処理の流れを説明する。
実績研磨レート計算モジュール401から実績研磨レートが送信されると、換算パラメータ更新モジュール502は送信された実績研磨レートを受信する(ステップS3001)。この実績研磨レートの受信をトリガーとして、換算パラメータ更新モジュール502はパラメータデータベース605d2から、実績研磨レートを算出するのに用いたウェハの膜種に対応する換算パラメータを取得する(ステップS3002)。さらに、この換算パラメータの受信をトリガーとして、換算パラメータ更新モジュール502は、研磨装置基準研磨レート予測モジュール105から、研磨装置基準研磨レート予測モジュール105に格納されている、実績研磨レートを算出するのに用いたウェハの研磨時に導出された研磨装置基準研磨レートの値を取得する(ステップS3003)。
このステップS3001ないしステップS3003で取得した実績研磨レート及び換算パラメータから、換算パラメータの更新値を導出する(ステップS3004)。この際、以下の式を用いて計算する。
換算パラメータhの更新値
=実績研磨レート ー g×研磨装置基準研磨レート … (式12)
また第2の実施の形態同様にEWMA平滑フィルタを利用し以下の(式13)を用いても良い。
換算パラメータhのEWMAフィルタ補正後の更新値
=α×(実績研磨レート ー g×研磨装置基準研磨レート)
+(1−α)×更新前の換算パラメータh … (式13)
このように更新値を導出した後、その換算パラメータを求めた更新値で上書きする(ステップS3005)。
このようにすることで、装置間機差に関するパラメータg及び換算パラメータhを人手を介さず設定を変更することが可能となり、工数の削減に寄与することができる。
なお、最小二乗法などを用いれば、装置間機差に関するパラメータgも合わせて設定を行うことが可能となる。
(第6の実施の形態)
次に第6の実施の形態について説明する。
第5の実施の形態では常時換算パラメータ更新モジュール502及び換算研磨レート計算モジュール506を動作させていた。しかし、各パラメータが収束した等の際には更新を停止するほうが、計算機資源の有効活用に資する。
そこで、換算パラメータhの更新前の値と更新後の値を対比し一定の範囲に収まったところで収束したとみなす。そして、いったん収束したとみなした場合には、更新値の計算を行わないとすることで、以降の計算を終了させる。
これにより、計算機資源を有効に活用することが可能となる。
(第7の実施の形態)
第1の実施の形態ないし第6の実施の形態では、装置間機差に関するパラメータgは常に設定を行うことが前提であった。
しかし、装置間機差係数f及び装置間機差に関するパラメータgの設定及び更新に用いる実績研磨レート等のデータが少ない時期に、装置ごとに装置間機差係数f及び装置間機差に関するパラメータgの値を設定及び更新することは、データ数が少ないためにデータのノイズの除去が困難であり、かえって研磨量の誤差を拡大させる虞がある。その為、このような時期には、複数の研磨装置で統一して装置間機差係数f及び装置間機差に関するパラメータgの設定および更新を行うことで導出に用いるデータ数を多く確保し、実績研磨レートのデータ数が「一定量」を越えた時点以降は、装置間機差係数f及び装置間機差に関するパラメータgの値を装置ごとに設定及び更新すると良い。
本実施の形態は、この「一定量」に当たるデータ蓄積完了基準を設定する方法についてのものである。
図20は本実施の形態で想定する研磨量の誤差の経時変化を表すグラフである。
このグラフの縦軸は研磨量の誤差の絶対値を表し、横軸は累積着工ウェハ数を表す。
本グラフの条件としては装置間機差係数f及び装置間機差に関するパラメータgを全装置で統一したもの(状況1)、及び装置間機差係数f及び装置間機差に関するパラメータgを装置ごとに設定更新したもの(状況2)を想定する。
データが少ない時期は状況1の方が誤差は少ない。これに対し、データが増えるにつれて状況2の方が精度はよくなる。そのため、状況1と状況2の誤差が逆転する累積着工ウェハ数をデータ蓄積完了基準とすればよい。本実施の形態の適用時の研磨量の誤差は図上の点線のようになる。
状況1及び状況2の値は膜厚計測装置607が保持している前膜厚値から後膜厚値を減算することで得られる実績研磨量の狙い値からの誤差の値を着工ロット順にプロットすることで得られる。そのほか、シミュレーション機能を有する計算機(図示せず)を用いて、半導体ウェハの研磨のシミュレーションを行ってプロットすることでも得られる。
本実施の形態では、製造実行情報データベース601dは、ウェハの膜種毎に、装置間機差係数f及び装置間機差に関するパラメータgを設定する対象としている全ての研磨装置における累積着工ウェハ数を一時的、あるいは恒久的に保持し、要求があれば送出する機能を有する。よって、製造実行情報データベース601dから取得した累積着工ウェハ数とデータ蓄積完了基準とを比較することで、本実施の形態を実現することができる。
また、上記では、状況1と状況2の誤差が逆転する累積着工ウェハ数に達した時点で状況1から状況2に切り替えることを述べた。これに対し、全装置で統一して算出された換算パラメータ値と、装置ごとに算出した換算パラメータ値、及び(式14)を用いて、装置間機差に関するパラメータgの更新値を算出しても良い。
装置間機差に関するパラメータgの更新値
=γ×状況1の換算パラメータ+δ×状況2の換算パラメータ
+(1―(γ+δ))×更新前のパラメータ … (式14)
なお、(γ+δ)=1
以上のように、累積着工ウェハ数によって装置間機差を無視する場合と無視しない場合を設けることで、新製品投入時の研磨量の誤差の拡大を防ぐことが可能となる。
(第8の実施の形態)
次に第8の実施の形態について説明する。
第1の実施の形態ないし第6の実施の形態では、化学的機械的研磨工程における実績研磨レートもしくは装置状態パラメータの両方あるいはいずれかを用いて、研磨装置基準研磨レートの予測もしくは換算パラメータの計算を行っていた。しかし、実際の研磨においては、前記化学的機械的研磨を行う製造段階である研磨工程よりも上流の製造段階である研磨前工程の結果も、研磨量の精度に大きく影響することが分かっている。
研磨前工程であるエッチング工程の、例えばドライエッチ放電時間のウェハ間での違いや、着工に用いたドライエッチ処理室間の機差は、中間バリア膜302の膜厚の変動の要因である。すなわち、中間バリア膜302であるTaの側壁の膜厚が変動すると、図1に示す研磨(II)において、下層絶縁膜301と中間層バリア膜302と配線部304を同時に研磨する際の、ウェハ表面に占める中間層バリア膜302の面積が変動する。この変動で中間バリア膜302と下層絶縁膜301と配線部304の材料はそれぞれ削り易さが異なるため、研磨レートが変動してしまう。
具体的には、中間バリア膜302が下層絶縁膜301や配線部304より削り易いには中間バリア膜302の側壁が厚くなると研磨レートが落ち、中間バリア膜302の側壁の膜厚が薄くなると研磨レートがあがる。
このため、中間バリア膜302を形成する研磨工程の上流工程である、ウェハ表面に中間バリア膜であるTaをスパッタする工程であるTaスパッタ工程(たとえばドライエッチ放電時間のウェハ間での違いや、着工に用いたスパッタ処理室の機差)によって、中間バリア膜302の膜厚が変動すると、研磨工程における研磨レートが変動する要因となる。
このように、中間バリア膜302の膜厚の変動は、化学的機械的研磨に要する研磨時間を変動させる要因となる。そのため、研磨前工程のドライエッチ放電時間や、着工に用いたドライエッチ処理室の情報や、中間バリア膜302の膜厚の情報を用いて、化学的機械的研磨工程における研磨装置基準研磨レートの予測に用いる予測式もしくは換算パラメータもしくは次回着工ウェハの研磨時間を補正することは、研磨精度の向上につながる。
そこで本実施の形態では、研磨前工程としてエッチング工程を例として、研磨前工程の情報を用いて適宜に研磨装置基準研磨レートの予測に用いる予測式もしくは換算パラメータもしくは次回着工ウェハの研磨時間を補正する方法を説明する。
本実施の形態では、第1の実施の形態で用いた(式1)に、ドライエッチ処理室間機差に関するパラメータIを加える。具体的には、以下のように、研磨装置基準研磨レートに対して、研磨前工程であるTaスパッタ工程において着工に用いるスパッタ処理室ごとに設定するパラメータIを係数として乗算する。
研磨装置基準研磨レート=
((a×A+b×B+c×C+d×D
+p1×P1+p2×P2+p3×P3+p4×P4
+p5×P5+p6×P6+e)×f)×I … (式1b)
以上では、着工に用いたドライエッチ処理室を研磨前工程情報とし、研磨装置基準研磨レートの予測式を補正対象とした場合について説明した。状況に応じて研磨前工程情報及び補正対象の変更や追加をしたり、上記(式11)のパラメータの入る項を変更したりしてもかまわない。
以下に、スパッタ処理室毎に設定するパラメータIの設定方法を説明する。
パラメータIの設定対象となるスパッタ処理室を前工程において通過した、ウェハテスト用もしくは製品である任意の膜種の1ウェハを、任意の研磨時間Tだけ研磨した際のデータA、B、C、D、および、P1からP6のデータを取得する。設定対象となるスパッタ処理室毎に1ウェハずつ、このデータ取得作業を実施する。このとき、それぞれのデータ取得に用いるウェハは異なる膜種であったり、異なる研磨装置によって研磨されたものであったりしても構わない。
次に、得られたデータA、B、C、D、および、P1からP6のデータを用いて、通過したスパッタ処理室毎に、研磨装置基準研磨レートを(式1a)を用いて導出する。
次に、設定対象であるスパッタ処理室のうち、任意のスパッタ処理室Qについて、パラメータIをI=1と設定する。そして、その他のスパッタ処理室毎に、次式を用いてパラメータIを導出する。
I=(スパッタ処理室Qで処理したウェハについて(式1a)で求めた
研磨装置基準研磨レート)
÷(パラメータIの設定対象であるスパッタ処理室について
(式1a)で求めた研磨装置基準研磨レート) …(式15)
ただし、(式15)における「スパッタ処理室Qで処理したウェハについて(式1a)で求めた研磨装置基準研磨レート」を導出する際には、スパッタ処理室Qを通過したロットの膜種および研磨装置に対応するパラメータa、b、c、d、e、f、p1、p2、p3、p4、p5、p6を用い、「パラメータIの設定対象であるスパッタ処理室について(式1a)で求めた研磨装置基準研磨レート」を導出する際には、パラメータIの設定対象であるスパッタ処理室を通過したロットの膜種および研磨装置に対応するパラメータa、b、c、d、e、f、p1、p2、p3、p4、p5、p6を用いる必要がある。
以上では、それぞれのスパッタ処理室について計1ウェハ分のデータを取得する場合について説明した。もし、それぞれのスパッタ処理室において、複数のウェハ分のデータを取得できる場合、最小自乗法を用いて、同様の方法でパラメータIを設定することも可能である。複数のデータを用いる場合、ノイズを低減できるため、パラメータの精度の向上が期待できる。
また、上記(式15)はA、B、C、D、および、P1からP6までの計10種類のデータを用いる場合の研磨装置基準研磨レートの予測式であるが、得られるデータが限られる場合など、一部のデータのみを用いる場合には、用いるデータの項のみを残した予測式を用いればよい。
(第9の実施の形態)
第1ないし第8の実施の形態では、各パラメータは膜種ごとに設定するとしていた。しかし、多品種少量生産の進む今日では、膜種ごとに設定することは工数の増大につながる。そのため、各パラメータ値が類似する複数の膜種毎に膜種グループを設定し、膜種グループごとに換算パラメータ値を設定する。
本実施の形態では、膜種グループの決定方法について説明する。
膜種グループは、たとえば実績研磨レートを用いて決定することができる。
たとえば、第1の実施の形態では、(式5)における装置間機差に関するパラメータg及び換算パラメータhを膜種毎に算出し、その値が類似している膜種を同一グループとすればよい。
換算研磨レート計算モジュール106により、換算研磨レート計算モジュール106に格納されたパラメータを取得し、第1の膜種の装置間機差に関するパラメータgと第2の膜種の装置間機差に関するパラメータgの差分の絶対値が所定の値ε以下であり、かつ、第1の膜種の換算パラメータhと第2の膜種の換算パラメータhの差分の絶対値が所定の値ζ以下であれば類似していると判断する。
以上、実績研磨レートのデータが得られる場合のパラメータによる膜種グループの自動決定方法について説明した。しかし、実績研磨レートのデータを用いることが困難な場合、半導体ウェハの材料や凹凸パターンや配線パターンなどの設計データが類似する膜種毎に膜種グループを設定すればよい。
具体的には、ウェハの材料の類似性を判別するには、第1の膜種の誘電率kと第2の膜種の材料の誘電率kの差分の絶対値が所定の値ε1以下であれば類似していると判断する。凹凸パターンや配線パターンについても、それぞれ凸部の密度や配線密度等の定量的な値の差分の絶対値を利用することで類似しているか否かを判別できる。
(第10の実施の形態)
次に第10の実施の形態について説明する。
第1ないし第9の実施の形態の全部もしくは一部を用いた方法で半導体装置を製造することで、ウェハの生産ラインへの投入から出荷までの日数であるTAT(Turn Around Time)を伸ばすことなく精度良い半導体装置を製造することができる。その結果として不良となるウェハあるいは半導体装置の数が抑制されるため、コスト低減につながる。
図21に本実施の形態にかかわる製造工程を表すフローチャートである。図22に半導体装置の断面図を示す。これらの図面を用いて本実施の形態を説明する。
図21の製造フローにおける化学的機械的研磨工程の位置付けを説明する。
半導体装置は、電気的に分離可能な(この時点では分離されていない)構造を形成するアイソレーション構造形成工程S2801と、ゲート電極構造形成工程S2802と、配線構造形成工程S2803と必要な枚数分反復し(ステップS2804)、パーケージ化の工程(図示せず)を行うことで完成する。
まず、アイソレーション構造形成工程S2801では素子を分離するトレンチ2901を形成し、ゲート電極構造形成工程S2802ではゲート電極2902を形成する。また、配線構造形成工程S2803では、配線層毎に工程反復S2804を行うことで、一般に10層から20層で構成される多層配線2903(図22)を形成する。
まず、アイソレーション構造形成工程S2801で行われるSTI工程では、素子を分離するトレンチ2901を形成する。その際、余剰な絶縁膜の除去のため化学的機械的研磨が必須となっている。次に、ゲート電極構造形成工程S2802でも、ゲート電極2902と金属配線の間の絶縁膜の平坦化のため化学的機械的研磨が必須である。この際には図4のように同一の膜種に凹凸があるものを研磨することを想定し、反射光の設定等を行う。
さらに、その次の配線構造形成工程S2803では、一般に10層から20層で構成される多層配線2903を形成するが、その際に、例えば、配線層を形成する前記のCuダマシン工程において、化学的機械的研磨が必須である。
以上のように、化学的機械的研磨は半導体装置の製造における複数の工程において必須の技術のため、本発明の適用によるTATおよびコストの低減効果は大きい。特に、配線構造形成工程S2803では工程の反復が行われるが、数百の製品と10から20層の配線層の組合せである数千にもおよぶ膜種毎に研磨条件を適切に設定する必要がある。そのため従来は着工する膜種の切換毎にテスト研磨を行っていたが、本発明を適用すれば研磨条件をテスト研磨なしに設定できるため、多層配線工程にもたらす本発明の適用効果は大きい。
さらに、化学的機械的研磨による平坦化の精度は、その下流の工程のプロセス精度に影響するため重要である。例えば、下流のホトリソ工程における解像度を高めるためには、浅い焦点深度でも露光ができるよう、表面が高精度に平坦であることが必須である。本発明では特定の膜種に依存しない、装置状態パラメータから予測する基準研磨レートを用いて研磨条件を算出するため、今後の微細化においても必要な精度を確保することができる。
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更が可能であることは言うまでもない。
化学的機械的研磨における研磨方法に関し、特に、異なる材料あるいは異なる凹凸パターン、配線パターンを有する複数種類の半導体ウェハを混在した順番で連続着工する場合の適用が可能である。
本発明適用の状況の一つであるCuダマシン工程における化学的機械的研磨における研磨対象ウェハの断面拡大図である。 本発明適用の状況の一つである平坦化工程における絶縁膜の拡大図である。 本発明における半導体ウェハの研磨装置の外観構成図である。 本発明における研磨装置を含む研磨用システムのハードウェア構成を表すブロック図である。 本発明における研磨用システム上で動作するソフトウェア構成を表すブロック図である。 第1の実施の形態に関わる測定信号サンプリング時系列データ記録モジュールの処理の流れを表すフローチャートである。 第1の実施の形態に関わる時系列データ切り出しモジュールの処理を表すフローチャートである。 第1の実施の形態に関わる切り出しデータ特徴量計算モジュールの処理を表すフローチャートである。 第1の実施の形態に関わる研磨装置基準研磨レート予測モジュールの処理を表すフローチャートである。 第2の実施の形態に関わる実績研磨レート計算モジュールの処理を表すフローチャートである。 複数膜種の研磨レートの挙動を表すグラフである。 第1の実施の形態に関わる換算研磨レート計算モジュールの処理を表すフローチャートである。 第1の実施の形態に関わる研磨時間制御モジュールの処理を表すフローチャートである。 第1の実施の形態において、異なる膜種のウェハが研磨装置に順次投入される場合のパラメータ導出タイミングを説明する図である。 第1の実施の形態に関わる研磨用システムの運用手順を表すフローチャートである。 第3の実施の形態に関わる研磨用システム上で動作するソフトウェア構成を表すブロック図である。 第3の実施の形態に関わる基準研磨レート予測パラメータ更新モジュールの処理を表すフローチャートである。 第5の実施の形態にかかわるソフトウェア構成を表すブロック図である。 第5の実施の形態に関わる換算パラメータ更新モジュール及び換算研磨レート計算モジュールの間の処理を表すフローチャートである。 第7の実施の形態で想定する装置間機差に関するパラメータの経時変化を表すグラフである。 第10の実施の形態の半導体装置の製造工程を表すフローチャートである。 第10の実施の形態の半導体装置に関わる半導体装置の断面図を示す。 測定信号群Mの構成を表す概念図である。
符号の説明
101…研磨装置、102…測定信号サンプリング時系列データ記録モジュール、
103…時系列データ切り出しモジュール、
104…切り出しデータ特徴量計算モジュール、
105…研磨装置基準研磨レート予測モジュール、
106…換算研磨レート計算モジュール、107…研磨時間制御モジュール、
108…製造実行モジュール、
201…半導体ウェハ、202…研磨ヘッド、203…研磨ヘッド駆動モータ、
204…研磨パッド、205…テーブル、206…テーブル駆動モータ、
207…ドレッサ、208…ドレッサ駆動モータ、209…スラリー供給装置、
301…下層絶縁膜、302…中間層バリア膜、303…上層金属膜、
304…配線部、305…孔部、309…配線高さ、310…過研磨量、
311…前膜厚値、312…後膜厚値、313…下層のメタル層、
314…下層のメタル層の上面、
331…材料、332…上端部、333…研磨後の平面、334…総研磨量、
337…下層のメタル層、338…下層のメタル層の上面、
401…実績研磨レート計算モジュール、
402…基準研磨レート予測パラメータ更新モジュール、
500…バス、601…製造実行用計算機、602…時系列データ記録計算機、
603…データ解析用計算機、604…研磨装置基準研磨レート予測用計算機、
605…換算研磨レート計算用計算機、606…制御用計算機、
607…膜厚計測装置、
4001…研磨装置基準研磨レート、4006…膜種Xのシフト量、
4007…膜種Yのシフト量、4008…装置状態パラメータの特徴量、
4009…研磨レート。

Claims (15)

  1. 製造実行モジュールと、研磨装置からの装置駆動系の状態に関する信号及び被研磨対象の状態に関する信号を受信し量子化する測定信号サンプリングモジュールと、時系列データ切り出しモジュールと、切り出しデータ特徴量計算モジュールと、研磨装置基準研磨レート予測モジュールと、換算研磨レート計算モジュールと、研磨時間制御モジュールと、からなる化学的機械的研磨システムにおける化学的機械的研磨方法であって、
    前記測定信号サンプリングモジュールが、前記研磨装置から送られた駆動系の状態に関する信号を時系列に並べた時系列データとして前記時系列データ切り出しモジュールに送信する時系列データ送信ステップと、
    前記時系列データを受信した時系列データ切り出しモジュールが、前記時系列データの前記被研磨対象の状態に関するデータの変化時によって特徴量を抽出する期間を限定し、限定後の切り出したデータを前記切り出しデータ特徴量計算モジュールに送信する時系列データ切り出しステップと、
    前記切り出したデータから、前記研磨装置駆動系の各データの特徴量を前記切り出しデータ特徴量計算モジュールが特徴量データとして導出し、前記研磨装置基準研磨レート予測モジュールへ送信する特徴量計算ステップと、
    前記研磨装置基準研磨レート予測モジュールが前記特徴量データに基づき研磨装置基準研磨レートを導出し、導出した前記研磨装置基準研磨レートを前記換算研磨レート計算モジュールに送出する基準研磨レート導出ステップと、
    送出された前記研磨装置基準研磨レートから、前記換算研磨レート計算モジュールが換算研磨レートを算出し前記研磨時間制御モジュールに送出する換算研磨レート導出ステップと、
    前記換算研磨レートに基づき前記研磨時間制御モジュールが研磨時間を導出し、前記研磨装置に設定する研磨時間設定ステップと、からなることを特徴とする化学的機械的研磨システムにおける化学的機械的研磨方法。
  2. 製造実行モジュールと、研磨装置からの装置駆動系の状態に関する信号及び被研磨対象の状態に関する信号を受信し量子化する測定信号サンプリングモジュールと、時系列データ切り出しモジュールと、切り出しデータ特徴量計算モジュールと、研磨装置基準研磨レート予測モジュールと、換算研磨レート計算モジュールと、研磨時間制御モジュールと、からなる化学的機械的研磨システムを複数有する化学的機械的研磨システム群における化学的機械的研磨方法であって、
    前記時系列データを受信した時系列データ切り出しモジュールが、前記時系列データの被研磨対象の状態に関するデータの変化時によって特徴量を抽出する期間を限定し、限定後の切り出したデータを前記切り出しデータ特徴量計算モジュールに送信する時系列データ切り出しステップと、
    前記切り出したデータから、前記研磨装置駆動系の各データの特徴量を前記切り出しデータ特徴量計算モジュールが特徴量データとして導出し、前記研磨装置基準研磨レート予測モジュールへ送信する特徴量計算ステップと、
    前記研磨装置基準研磨レート予測モジュールが前記特徴量データに基づき研磨装置基準研磨レートを導出し、導出した前記研磨装置基準研磨レートを前記換算研磨レート計算モジュールに送出する基準研磨レート導出ステップと、
    送出された前記研磨装置基準研磨レートから、前記換算研磨レート計算モジュールが換算研磨レートを算出し前記研磨時間制御モジュールに送出する換算研磨レート導出ステップと、
    前記換算研磨レートに基づき前記研磨時間制御モジュールが研磨時間を導出し、前記研磨装置に設定する研磨時間設定ステップと、からなることを特徴とする化学的機械的研磨システムにおける化学的機械的研磨方法。
  3. 請求項1または2に記載の化学的機械的研磨システムにおける化学的機械的研磨方法において、前記装置駆動系はドレッサであり、前記装置駆動系の状態に関する信号は前記ドレッサの温度、あるいは前記ドレッサの駆動トルク、あるいは前記ドレッサ圧力、あるいは前記ドレッサを交換してからのドレッサ累積使用時間の全てあるいは一部に関する情報を含み、前記被研磨対象の状態に関する信号は前記被研磨対象に照射した光の反射光あるいは前記被研磨対象の温度、の全てあるいは一部に関する情報を含むことを特徴とする化学的機械的研磨システムにおける化学的機械的研磨方法。
  4. 請求項1または2に記載の化学的機械的研磨システムにおける化学的機械的研磨方法において、
    前記装置駆動系は研磨パッドを貼り付けたテーブルあるいは研磨ヘッドであり、前記装置駆動系の状態に関する信号は前記テーブルのトルク、あるいは前記研磨装置の構成要素である、前記被研磨対象を前記研磨パッドに押圧する前記研磨ヘッドのトルク、あるいは前記研磨ヘッドの圧力、あるいは前記研磨パッドの温度、あるいは前記研磨パッドの高さ寸法、あるいは前記研磨パッドを交換してからの研磨パッド累積使用時間の全てあるいは一部に関する情報を含み、前記被研磨対象の状態に関する信号は前記被研磨対象に照射した光の反射光、あるいは前記被研磨対象の温度、の全てあるいは一部に関する情報を含むことを特徴とする化学的機械的研磨システムにおける化学的機械的研磨方法。
  5. 請求項1ないし4のいずれか1項に記載の化学的機械的研磨システムにおける化学的機械的研磨方法において、前記研磨装置基準研磨レートの予測に用いる予測式は、研磨前の膜厚及び研磨後の膜圧の測定値から計算される実績研磨レートを用いて更新されることを特徴とする化学的機械的研磨システムにおける化学的機械的研磨方法。
  6. 請求項1ないし5のいずれか1項に記載の化学的機械的研磨システムにおける化学的機械的研磨方法において、前記換算研磨レート計算モジュールは、装置間機差に関するパラメータ、あるいは、前記被研磨対象の材料もしくは凹凸パターンもしくはその表面材料が複数材料で構成される場合における表面材料の分布パターンのいずれかあるいはその組み合わせで定義される膜種毎に予め設定しておいた換算パラメータ、を用いて前記換算研磨レートを導出することを特徴とする化学的機械的研磨システムにおける化学的機械的研磨方法。
  7. 請求項6に記載の化学的機械的研磨システムにおける化学的機械的研磨方法において、前記装置間機差に関するパラメータおよび前記換算パラメータは、前記被研磨対象の研磨前の膜厚及び研磨後の膜圧の測定値から計算される前記被研磨対象の前記膜種毎の実績研磨レートを用いて更新されることを特徴とする化学的機械的研磨システムにおける化学的機械的研磨方法。
  8. 請求項6または7に記載の化学的機械的研磨システムにおける化学的機械的研磨方法において、前記装置間機差に関するパラメータあるいは前記換算パラメータの一部もしくは全部は、研磨前の膜厚あるいは研磨後の膜厚の測定値から計算される膜種毎の実績研磨レートを用いて更新されることを特徴とする化学的機械的研磨システムにおける化学的機械的研磨方法。
  9. 請求項8に記載の化学的機械的研磨システムにおける化学的機械的研磨方法において、複数の研磨装置の中の1台を任意に選択して被研磨対象を研磨するシステム構成とし、
    換算パラメータ未設定の被研磨対象の新規投入時期において、研磨前の膜厚及び研磨後の膜圧の測定値から計算される実績研磨レートのデータ数が、予め定めたデータ蓄積完了基準より少ない期間は、前記換算パラメータを複数装置間で統一して計算、設定及び更新を行い、
    前記実績研磨レートのデータ数が、予め定めたデータ蓄積完了基準を超えた時点以降は、前記換算パラメータを装置毎に計算、設定及び更新を行うことを特徴とする化学的機械的研磨システムにおける化学的機械的研磨方法。
  10. 請求項9に記載の化学的機械的研磨システムにおける化学的機械的研磨方法において、前記データ蓄積完了基準は、前記換算パラメータを装置毎に計算、設定及び更新を行った場合の研磨量、及び、前記被研磨対象の膜種の換算パラメータを複数装置間で統一して計算、設定及び更新を行った際の研磨量を用いて導出され、前記研磨量の値は予測値もしくは実際に研磨を行ったときの実績値のいずれかの値とすることを特徴とする化学的機械的研磨システムにおける化学的機械的研磨方法。
  11. 請求項1ないし10のいずれか1項に記載の化学的機械的研磨システムにおける化学的機械的研磨方法において、前記研磨装置基準研磨レート予測モジュールが、前記化学的機械的研磨を行う製造段階である研磨工程よりも上流の製造段階である研磨前工程の情報を用いて補正されることを特徴とした化学的機械的研磨システムにおける化学的機械的研磨方法。
  12. 請求項1ないし11のいずれか1項に記載の化学的機械的研磨システムにおける化学的機械的研磨方法において、前記換算パラメータは、複数の膜種で構成される膜種グループ毎に値が設定され、
    前記膜種グループは、前記被研磨対象の材料もしくは凹凸パターンもしくはその表面材料が複数材料で構成される場合における表面材料の分布パターンの全てあるいは一部を用いて決定されることを特徴とする化学的機械的研磨システムにおける化学的機械的研磨方法。
  13. 請求項1ないし12のいずれか1項に記載の化学的機械的研磨システムにおける化学的機械的研磨方法において、前記研磨装置の研磨ヘッド、テーブルまたは前記研磨ヘッドと前記テーブルの組み合わせ毎に前記換算パラメータが設定されることを特徴とする化学的機械的研磨システムにおける化学的機械的研磨方法。
  14. 請求項1ないし13のいずれか1項に記載の化学的機械的研磨システムにおける化学的機械的研磨方法を利用することを特徴とする半導体ウェハの製造方法。
  15. 請求項14記載の半導体ウェハの製造方法により製造されることを特徴とする半導体ウェハ及び半導体装置。
JP2008184443A 2008-07-16 2008-07-16 化学的機械的研磨方法、半導体ウェハの製造方法、半導体ウェハ及び半導体装置 Pending JP2010027701A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008184443A JP2010027701A (ja) 2008-07-16 2008-07-16 化学的機械的研磨方法、半導体ウェハの製造方法、半導体ウェハ及び半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008184443A JP2010027701A (ja) 2008-07-16 2008-07-16 化学的機械的研磨方法、半導体ウェハの製造方法、半導体ウェハ及び半導体装置

Publications (1)

Publication Number Publication Date
JP2010027701A true JP2010027701A (ja) 2010-02-04

Family

ID=41733274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008184443A Pending JP2010027701A (ja) 2008-07-16 2008-07-16 化学的機械的研磨方法、半導体ウェハの製造方法、半導体ウェハ及び半導体装置

Country Status (1)

Country Link
JP (1) JP2010027701A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130139778A (ko) * 2012-06-13 2013-12-23 가부시키가이샤 에바라 세이사꾸쇼 연마 방법 및 연마 장치
TWI693123B (zh) * 2018-05-22 2020-05-11 日商Sumco股份有限公司 工件的兩面研磨裝置及兩面研磨方法
CN111571424A (zh) * 2019-02-19 2020-08-25 松下知识产权经营株式会社 研磨加工系统、学习装置、学习装置的学习方法
KR20210017431A (ko) * 2019-08-08 2021-02-17 연세대학교 산학협력단 공정 제어정보 생성 장치, 방법 및 이를 포함하는 공정 제어장치
JP2021030327A (ja) * 2019-08-20 2021-03-01 株式会社ディスコ 加工装置
WO2021054236A1 (ja) * 2019-09-18 2021-03-25 株式会社荏原製作所 機械学習装置、基板処理装置、学習済みモデル、機械学習方法、機械学習プログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000117615A (ja) * 1998-10-15 2000-04-25 Nec Corp 化学機械研磨装置
JP2004014874A (ja) * 2002-06-07 2004-01-15 Renesas Technology Corp 半導体装置の製造方法
JP2005252036A (ja) * 2004-03-04 2005-09-15 Renesas Technology Corp 化学的機械的研磨方法、化学的機械的研磨システム、及び半導体装置の製造方法
JP2005342841A (ja) * 2004-06-03 2005-12-15 Renesas Technology Corp 研磨装置
JP2009004442A (ja) * 2007-06-19 2009-01-08 Renesas Technology Corp 半導体ウェハの研磨方法
JP2009160691A (ja) * 2008-01-07 2009-07-23 Fujitsu Microelectronics Ltd 研磨制御システム、研磨制御プログラム及び半導体装置の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000117615A (ja) * 1998-10-15 2000-04-25 Nec Corp 化学機械研磨装置
JP2004014874A (ja) * 2002-06-07 2004-01-15 Renesas Technology Corp 半導体装置の製造方法
JP2005252036A (ja) * 2004-03-04 2005-09-15 Renesas Technology Corp 化学的機械的研磨方法、化学的機械的研磨システム、及び半導体装置の製造方法
JP2005342841A (ja) * 2004-06-03 2005-12-15 Renesas Technology Corp 研磨装置
JP2009004442A (ja) * 2007-06-19 2009-01-08 Renesas Technology Corp 半導体ウェハの研磨方法
JP2009160691A (ja) * 2008-01-07 2009-07-23 Fujitsu Microelectronics Ltd 研磨制御システム、研磨制御プログラム及び半導体装置の製造方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130139778A (ko) * 2012-06-13 2013-12-23 가부시키가이샤 에바라 세이사꾸쇼 연마 방법 및 연마 장치
JP2014014922A (ja) * 2012-06-13 2014-01-30 Ebara Corp 研磨方法及び研磨装置
US9676076B2 (en) 2012-06-13 2017-06-13 Ebara Corporation Polishing method and polishing apparatus
KR102094274B1 (ko) * 2012-06-13 2020-03-30 가부시키가이샤 에바라 세이사꾸쇼 연마 방법 및 연마 장치
TWI693123B (zh) * 2018-05-22 2020-05-11 日商Sumco股份有限公司 工件的兩面研磨裝置及兩面研磨方法
CN111571424A (zh) * 2019-02-19 2020-08-25 松下知识产权经营株式会社 研磨加工系统、学习装置、学习装置的学习方法
KR20210017431A (ko) * 2019-08-08 2021-02-17 연세대학교 산학협력단 공정 제어정보 생성 장치, 방법 및 이를 포함하는 공정 제어장치
KR102279045B1 (ko) * 2019-08-08 2021-07-16 연세대학교 산학협력단 공정 제어정보 생성 장치, 방법 및 이를 포함하는 공정 제어장치
JP2021030327A (ja) * 2019-08-20 2021-03-01 株式会社ディスコ 加工装置
JP7452960B2 (ja) 2019-08-20 2024-03-19 株式会社ディスコ 加工装置
WO2021054236A1 (ja) * 2019-09-18 2021-03-25 株式会社荏原製作所 機械学習装置、基板処理装置、学習済みモデル、機械学習方法、機械学習プログラム
JP2021048213A (ja) * 2019-09-18 2021-03-25 株式会社荏原製作所 機械学習装置、基板処理装置、学習済みモデル、機械学習方法、機械学習プログラム
JP7224265B2 (ja) 2019-09-18 2023-02-17 株式会社荏原製作所 機械学習装置、基板処理装置、学習済みモデル、機械学習方法、機械学習プログラム

Similar Documents

Publication Publication Date Title
JP2010027701A (ja) 化学的機械的研磨方法、半導体ウェハの製造方法、半導体ウェハ及び半導体装置
US10589397B2 (en) Endpoint control of multiple substrate zones of varying thickness in chemical mechanical polishing
TWI546524B (zh) 用於將光學模型擬合至測量光譜的方法及電腦程式產品
JP5542802B2 (ja) 複数のスペクトルを使用する化学機械研磨での終点検出
JP2001501545A (ja) 化学機械的研磨の厚さ除去を制御する方法およびシステム
JP2002141319A (ja) ウェーハの研磨時間制御方法及びこれを利用したウェーハの研磨方法
US8078306B2 (en) Polishing apparatus and polishing method
US9333619B2 (en) Adaptive endpoint method for pad life effect on chemical mechanical polishing
US20110301847A1 (en) Automatic Initiation Of Reference Spectra Library Generation For Optical Monitoring
CN109968186B (zh) 基于光谱的化学机械抛光在线终点检测方法
TWI382484B (zh) 決定光譜中銅濃度之方法
CN110071041B (zh) 浅沟槽隔离结构的制备方法、化学机械研磨方法及系统
CN111886686A (zh) 针对原位电磁感应监测的边缘重建中的基板掺杂的补偿
JP2009004442A (ja) 半導体ウェハの研磨方法
Boning et al. Pattern dependent modeling for CMP optimization and control
KR20220071915A (ko) 연마 방법, 워크피스의 연마 감시 방법 및 연마 감시 장치
WO2001060242A2 (en) Test structure for metal cmp process control
US7289872B1 (en) Method and apparatus for prediction of polishing condition, and computer product
Hocheng et al. A comprehensive review of endpoint detection in chemical mechanical planarisation for deep-submicron integrated circuits manufacturing
JP2010226007A (ja) 研磨工程制御方法および半導体ウエハ研磨システム
US20070082490A1 (en) Apparatus of chemical mechanical polishing and chemical mechanical polishing process
JP3790966B2 (ja) 半導体素子表面の検査方法および検査装置
CN100335234C (zh) 决定化学机械研磨的终点检测时间的方法
US6743075B2 (en) Method for determining chemical mechanical polishing time
US20080138988A1 (en) Detection of clearance of polysilicon residue

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100528

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130409