JP2010027631A - Thermoelectric conversion element, thermoelectric conversion module, and method of manufacturing thermoelectric conversion element - Google Patents

Thermoelectric conversion element, thermoelectric conversion module, and method of manufacturing thermoelectric conversion element Download PDF

Info

Publication number
JP2010027631A
JP2010027631A JP2006264881A JP2006264881A JP2010027631A JP 2010027631 A JP2010027631 A JP 2010027631A JP 2006264881 A JP2006264881 A JP 2006264881A JP 2006264881 A JP2006264881 A JP 2006264881A JP 2010027631 A JP2010027631 A JP 2010027631A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
type thermoelectric
conversion material
composition formula
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006264881A
Other languages
Japanese (ja)
Inventor
Sachiko Fujii
幸子 藤井
Takanori Nakamura
孝則 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2006264881A priority Critical patent/JP2010027631A/en
Priority to PCT/JP2007/067728 priority patent/WO2008038519A1/en
Publication of JP2010027631A publication Critical patent/JP2010027631A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/006Compounds containing, besides copper, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • H10N10/817Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric conversion element capable of reducing contact resistance following junction between a p-type thermoelectric conversion material and an n-type thermoelectric conversion material, and to provide a thermoelectric conversion module and a method of manufacturing the thermoelectric conversion element. <P>SOLUTION: The thermoelectric conversion element 10 comprises a p-type thermoelectric conversion material 11 and an n-type thermoelectric conversion material 12. The p-type thermoelectric conversion material 11 has a layered perovskite structure represented by a compositional formula: A<SB>2</SB>BO<SB>4</SB>(wherein A and B represent one or more elements). The n-type thermoelectric conversion material 12 has a layered perovskite structure represented by a compositional formula: D<SB>2</SB>EO<SB>4</SB>(wherein D and E represent one or more elements). A part of the p-type thermoelectric conversion material 11 is bound to a part of the n-type thermoelectric conversion material 12 directly. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、熱電変換素子、熱電変換モジュール、および熱電変換素子の製造方法に関し、たとえば接触抵抗を減少できる熱電変換素子、熱電変換モジュール、および熱電変換素子の製造方法に関する。   The present invention relates to a thermoelectric conversion element, a thermoelectric conversion module, and a method for manufacturing a thermoelectric conversion element. For example, the present invention relates to a thermoelectric conversion element capable of reducing contact resistance, a thermoelectric conversion module, and a method for manufacturing a thermoelectric conversion element.

近年、二酸化炭素の削減をはじめとする環境問題が重要な課題となってきている。特に、熱を直接電気に変換できる熱電変換素子は、廃熱の有効利用の観点からその実用化が期待されている。   In recent years, environmental problems such as reduction of carbon dioxide have become important issues. In particular, thermoelectric conversion elements that can directly convert heat into electricity are expected to be put to practical use from the viewpoint of effective use of waste heat.

図9に示すように、従来の熱電変換素子100は、2種の熱電材料101,102と、低温側電極106と、高温側電極108とを備えている。2種の熱電材料101,102は、熱と電気とのエネルギー変換材料である。熱電材料101,102は、低温側の端面である低温側接合部103bにおいて低温側電極106とそれぞれ接続されている。また、熱電材料101,102は、高温側の端面である高温側接合部103aにおいて高温側電極108を介して接続されている。熱電変換素子100は、高温側接合部103aと低温側接合部103bとに温度差を与えられると、ゼーベック効果により起電力が生じ、電力を取り出すことができる。   As shown in FIG. 9, the conventional thermoelectric conversion element 100 includes two types of thermoelectric materials 101 and 102, a low temperature side electrode 106, and a high temperature side electrode 108. The two types of thermoelectric materials 101 and 102 are heat and electricity energy conversion materials. The thermoelectric materials 101 and 102 are respectively connected to the low temperature side electrode 106 at the low temperature side joint portion 103b which is the end surface on the low temperature side. Further, the thermoelectric materials 101 and 102 are connected via a high temperature side electrode 108 at a high temperature side joint portion 103a which is an end surface on the high temperature side. When the thermoelectric conversion element 100 is given a temperature difference between the high temperature side joint portion 103a and the low temperature side joint portion 103b, an electromotive force is generated due to the Seebeck effect, and electric power can be taken out.

また、上記熱電材料101,102として、たとえば特開2005−223307号公報(特許文献1)の酸化物系熱電変換膜が挙げられる。特許文献1に開示の酸化物系熱電変換膜は、基板上にRE2-xxCuO4-y(RE=La,Pr,Nd,Sm,EuおよびGdより選ばれる一種の希土類元素、M=Ce,Ba,SrおよびCaから選ばれる少なくとも一種の元素、0<X<2,0≦Y<4)なる組成を有することを特徴としている。 Moreover, as the said thermoelectric materials 101 and 102, the oxide type thermoelectric conversion film of Unexamined-Japanese-Patent No. 2005-223307 (patent document 1) is mentioned, for example. The oxide-based thermoelectric conversion film disclosed in Patent Document 1 has RE 2-x M x CuO 4-y (RE = La, Pr, Nd, Sm, Eu and a kind of rare earth element selected from Gd, M = At least one element selected from Ce, Ba, Sr and Ca, having a composition of 0 <X <2, 0 ≦ Y <4).

また、上記熱電材料101,102として、たとえば特開昭64−5911号公報(特許文献2)の熱電変換材料が挙げられる。特許文献2に開示の熱電変換材料は、ペロブスカイト構造の希土類元素・遷移元素酸化物からなることを特徴としている。   Examples of the thermoelectric materials 101 and 102 include a thermoelectric conversion material disclosed in Japanese Patent Application Laid-Open No. 64-5911 (Patent Document 2). The thermoelectric conversion material disclosed in Patent Document 2 is characterized by comprising a rare earth element / transition element oxide having a perovskite structure.

また、上記熱電変換素子100として、たとえば特開平8−306967号公報(特許文献3)の熱電発電素子が挙げられる。特許文献3に開示の熱電発電素子は、2種類の多孔質の熱電材料の一部を互いに接合面を介して直接接合してなることを特徴としている。2種類の多孔質材料は、たとえばそれぞれアルメルとクロメルとからなることが開示されている。このような材料は熱伝導率が高いので、故意に多孔として熱伝導率を低下させて、熱電変換素子に温度差をつける必要があった。
特開2005−223307号公報 特開昭64−5911号公報 特開平8−306967号公報
Moreover, as the said thermoelectric conversion element 100, the thermoelectric power generation element of Unexamined-Japanese-Patent No. 8-306967 (patent document 3) is mentioned, for example. The thermoelectric power generation element disclosed in Patent Document 3 is characterized in that a part of two kinds of porous thermoelectric materials are directly bonded to each other via a bonding surface. It is disclosed that the two types of porous materials are made of alumel and chromel, for example. Since such a material has high thermal conductivity, it has been necessary to intentionally reduce the thermal conductivity as a porous material and to give a temperature difference to the thermoelectric conversion element.
JP 2005-223307 A JP-A 64-59911 JP-A-8-306967

しかしながら、上記特許文献1および2に開示の熱電材料は半導体材料からなるので、材料の特性を有効に利用できるものの、これらの熱電材料を用いた図9に示す構造の熱電変換素子は、電極と熱電材料との接触抵抗が高いという問題がある。   However, since the thermoelectric materials disclosed in Patent Documents 1 and 2 are made of a semiconductor material, the characteristics of the materials can be used effectively. However, the thermoelectric conversion element having the structure shown in FIG. There is a problem that the contact resistance with the thermoelectric material is high.

また、上記特許文献3に開示の熱電発電素子では、2種の多孔質材料を熱電材料に用いている。そのため、2種の熱電材料の接合部分の接触抵抗がまだ高いという問題がある。   Further, in the thermoelectric power generation element disclosed in Patent Document 3, two kinds of porous materials are used for the thermoelectric material. Therefore, there exists a problem that the contact resistance of the junction part of two types of thermoelectric materials is still high.

それゆえ本発明の目的は、上記のような課題を解決するためになされたものであり、p型熱電変換材料とn型熱電変換材料との接合に伴う接触抵抗を低減できる熱電変換素子、熱電変換モジュール、および熱電変換素子の製造方法を提供することである。   Therefore, an object of the present invention is to solve the above-described problems, and a thermoelectric conversion element and a thermoelectric element that can reduce the contact resistance associated with the joining of the p-type thermoelectric conversion material and the n-type thermoelectric conversion material. It is providing the conversion module and the manufacturing method of a thermoelectric conversion element.

本発明の熱電変換素子は、組成式A2BO4(AおよびBは1個または複数個の元素)で示される層状ペロブスカイト構造を有するp型熱電変換材料と、組成式D2EO4(DおよびEは1個または複数個の元素)で示される層状ペロブスカイト構造を有するn型熱電変換材料とを備えている。p型熱電変換材料の一部と、n型熱電変換材料の一部とは直接接合されていることを特徴としている。 The thermoelectric conversion element of the present invention includes a p-type thermoelectric conversion material having a layered perovskite structure represented by a composition formula A 2 BO 4 (A and B are one or more elements), a composition formula D 2 EO 4 (D And E is one or a plurality of elements) and an n-type thermoelectric conversion material having a layered perovskite structure. A part of the p-type thermoelectric conversion material and a part of the n-type thermoelectric conversion material are directly bonded.

本発明の熱電変換素子によれば、同じ結晶構造の材料からなるp型熱電変換材料とn型熱電変換材料とが直接接合されているので、p型熱電変換材料とn型熱電変換材料との接触抵抗を低減できる。   According to the thermoelectric conversion element of the present invention, the p-type thermoelectric conversion material and the n-type thermoelectric conversion material made of the material having the same crystal structure are directly joined, so that the p-type thermoelectric conversion material and the n-type thermoelectric conversion material Contact resistance can be reduced.

上記熱電変換素子において好ましくは、組成式A2BO4におけるAおよび組成式D2EO4におけるDは、少なくとも1種の希土類元素を含み、組成式A2BO4におけるBおよび組成式D2EO4におけるEは、少なくとも1種の遷移金属を含んでいる。これにより、p型熱電変換材料とn型熱電変換材料との接触抵抗をより低減できる。 In the thermoelectric conversion element, preferably, A in the composition formula A 2 BO 4 and D in the composition formula D 2 EO 4 contain at least one rare earth element, and B in the composition formula A 2 BO 4 and the composition formula D 2 EO E in 4 contains at least one transition metal. Thereby, the contact resistance of the p-type thermoelectric conversion material and the n-type thermoelectric conversion material can be further reduced.

上記熱電変換素子において好ましくは、組成式A2BO4におけるAは、ランタンを含み、組成式D2EO4におけるDは、プラセオジム、ネオジム、サマリウム、およびガドリニウムからなる群より選ばれる少なくとも1種の元素を含み、組成式A2BO4におけるBおよび組成式D2EO4におけるEは、銅を含んでいる。これにより、p型熱電変換材料とn型熱電変換材料との接触抵抗をより一層低減できる。 In the thermoelectric conversion element, preferably, A in the composition formula A 2 BO 4 includes lanthanum, and D in the composition formula D 2 EO 4 is at least one selected from the group consisting of praseodymium, neodymium, samarium, and gadolinium. It contains an element, and B in the composition formula A 2 BO 4 and E in the composition formula D 2 EO 4 contain copper. Thereby, the contact resistance between the p-type thermoelectric conversion material and the n-type thermoelectric conversion material can be further reduced.

本発明の熱電変換モジュールは、上記熱電変換素子を複数備えている。p型熱電変換材料とn型熱電変換材料との接合に伴う接触抵抗を低減できる熱電変換素子を備えているので、熱電変換モジュールもp型熱電変換材料とn型熱電変換材料との接合に伴う接触抵抗を低減できる。   The thermoelectric conversion module of the present invention includes a plurality of the thermoelectric conversion elements. Since the thermoelectric conversion element that can reduce the contact resistance associated with the joining of the p-type thermoelectric conversion material and the n-type thermoelectric conversion material is provided, the thermoelectric conversion module also accompanies the joining of the p-type thermoelectric conversion material and the n-type thermoelectric conversion material. Contact resistance can be reduced.

本発明の熱電変換素子の一の局面における製造方法は、組成式A2BO4(AおよびBは1個または複数個の元素)で示される層状ペロブスカイト構造を有するp型熱電変換材料の原料を準備する工程と、組成式D2EO4(DおよびEは1個または複数個の元素)で示される層状ペロブスカイト構造を有するn型熱電変換材料の原料を準備する工程と、p型熱電変換材料の原料とn型熱電変換材料の原料とを共焼結して、p型熱電変換材料とn型熱電変換材料とを直接接合する工程とを備えている。 The manufacturing method in one aspect of the thermoelectric conversion element of the present invention is a method of using a raw material of a p-type thermoelectric conversion material having a layered perovskite structure represented by a composition formula A 2 BO 4 (A and B are one or more elements). A step of preparing, a step of preparing a raw material of an n-type thermoelectric conversion material having a layered perovskite structure represented by a composition formula D 2 EO 4 (D and E are one or more elements), and a p-type thermoelectric conversion material And a step of directly bonding the p-type thermoelectric conversion material and the n-type thermoelectric conversion material.

本発明の一の局面における熱電変換素子の製造方法によれば、同じ結晶構造の材料からなるp型熱電変換材料とn型熱電変換材料とを直接接合することができる。そのため、p型熱電変換材料とn型熱電変換材料との接触抵抗を低減できる熱電変換素子を製造できる。   According to the method for manufacturing a thermoelectric conversion element in one aspect of the present invention, a p-type thermoelectric conversion material and an n-type thermoelectric conversion material made of a material having the same crystal structure can be directly joined. Therefore, a thermoelectric conversion element that can reduce the contact resistance between the p-type thermoelectric conversion material and the n-type thermoelectric conversion material can be manufactured.

本発明の他の局面における熱電変換素子の製造方法は、組成式A2BO4(AおよびBは1個または複数個の元素)で示される層状ペロブスカイト構造を有するp型熱電変換材料の原料を準備し、シート状に成形する工程と、組成式D2EO4(DおよびEは1個または複数個の元素)で示される層状ペロブスカイト構造を有するn型熱電変換材料の原料を準備し、シート状に成形する工程と、p型熱電変換材料のシートとn型熱電変換材料のシートとを積層して積層体を得る工程と、積層体を共焼結して、接合部に切り込みを入れて、p型熱電変換材料とn型熱電変換材料とを直接接合する工程とを備えている。 According to another aspect of the present invention, there is provided a method for producing a thermoelectric conversion element comprising a raw material of a p-type thermoelectric conversion material having a layered perovskite structure represented by a composition formula A 2 BO 4 (where A and B are one or more elements). Preparing and forming a sheet, and preparing a raw material of an n-type thermoelectric conversion material having a layered perovskite structure represented by a composition formula D 2 EO 4 (where D and E are one or more elements), and a sheet Forming a laminate, obtaining a laminate by laminating a sheet of p-type thermoelectric conversion material and a sheet of n-type thermoelectric conversion material, co-sintering the laminate, and making cuts in the joints And a step of directly joining the p-type thermoelectric conversion material and the n-type thermoelectric conversion material.

本発明の他の局面における熱電変換素子の製造方法によれば、同じ結晶構造の材料からなるp型熱電変換材料とn型熱電変換材料とを直接接合することができる。そのため、p型熱電変換材料とn型熱電変換材料との接触抵抗を低減できる熱電変換素子を製造できる。また、p型熱電変換材料のシートおよびn型熱電変換材料のシートのうち、抵抗の高い材料のシートの厚みを大きくするなど、厚みの設計が容易になる。   According to the method for manufacturing a thermoelectric conversion element in another aspect of the present invention, a p-type thermoelectric conversion material and an n-type thermoelectric conversion material made of a material having the same crystal structure can be directly joined. Therefore, a thermoelectric conversion element that can reduce the contact resistance between the p-type thermoelectric conversion material and the n-type thermoelectric conversion material can be manufactured. Moreover, thickness design becomes easy, such as enlarging the thickness of the sheet | seat of material with high resistance among the sheet | seat of p-type thermoelectric conversion material, and the sheet | seat of n-type thermoelectric conversion material.

本発明の熱電変換素子、熱電変換モジュール、および熱電変換素子の製造方法によれば、同じ結晶構造の材料からなるp型熱電変換材料とn型熱電変換材料とが直接接合されているので、p型熱電変換材料とn型熱電変換材料との接合に伴う接触抵抗を低減できる。   According to the thermoelectric conversion element, the thermoelectric conversion module, and the thermoelectric conversion element manufacturing method of the present invention, the p-type thermoelectric conversion material and the n-type thermoelectric conversion material made of the same crystal structure material are directly bonded. The contact resistance accompanying the joining of the type thermoelectric conversion material and the n-type thermoelectric conversion material can be reduced.

以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には、同一の参照符号を付し、その説明は繰り返さない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.

(実施の形態1)
図1は、本発明の実施の形態1における熱電変換素子を示す概略断面図である。図1を参照して、本発明の実施の形態1における熱電変換素子を説明する。図1に示すように、実施の形態1における熱電変換素子10は、p型熱電変換材料11と、n型熱電変換材料12とを備えている。p型熱電変換材料11は、組成式A2BO4(AおよびBは1個または複数個の元素)で示される層状ペロブスカイト構造を有している。n型熱電変換材料12は、組成式D2EO4(DおよびEは1個または複数個の元素)で示される層状ペロブスカイト構造を有している。p型熱電変換材料11の一部と、n型熱電変換材料12の一部とは直接接合されている。なお、「直接接合」とは、p型熱電変換材料11とn型熱電変換材料12との間に電極を介しないように直接接合することを意味する。
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view showing a thermoelectric conversion element according to Embodiment 1 of the present invention. With reference to FIG. 1, the thermoelectric conversion element in Embodiment 1 of this invention is demonstrated. As shown in FIG. 1, the thermoelectric conversion element 10 in Embodiment 1 includes a p-type thermoelectric conversion material 11 and an n-type thermoelectric conversion material 12. The p-type thermoelectric conversion material 11 has a layered perovskite structure represented by a composition formula A 2 BO 4 (A and B are one or more elements). The n-type thermoelectric conversion material 12 has a layered perovskite structure represented by a composition formula D 2 EO 4 (D and E are one or more elements). A part of the p-type thermoelectric conversion material 11 and a part of the n-type thermoelectric conversion material 12 are directly joined. Note that “direct bonding” means that the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 are directly bonded so as not to have an electrode interposed therebetween.

具体的には、熱電変換素子10は、1のp型熱電変換材料11と、1のn型熱電変換材料12と、2つの電極16とを備えている。p型熱電変換材料11とn型熱電変換材料12とは、互いに高温側接合部13aで直接接合されている。なお、実施の形態1では、図1において高温側接合部13aを高温側とし、電極と接続されている接合部を低温側としている。   Specifically, the thermoelectric conversion element 10 includes one p-type thermoelectric conversion material 11, one n-type thermoelectric conversion material 12, and two electrodes 16. The p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 are directly bonded to each other at the high-temperature side bonding portion 13a. In the first embodiment, in FIG. 1, the high-temperature side joint 13a is the high temperature side, and the joint connected to the electrode is the low temperature side.

熱電変換素子10は、p型熱電変換材料11とn型熱電変換材料12とが接合されている部分以外の部分(実施の形態1では、高温側接合部13a以外の部分)において、互いに分離している分離部17を介して対向している。   The thermoelectric conversion elements 10 are separated from each other in a portion other than the portion where the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 are joined (in the first embodiment, a portion other than the high-temperature side joint portion 13a). It faces through the separation part 17 which is.

なお、分離部17には、補強や絶縁を確実にするために絶縁体のセラミックス薄板やガラス物質を挿入してもよい。   In addition, an insulating ceramic thin plate or a glass material may be inserted into the separating portion 17 in order to ensure reinforcement and insulation.

p型熱電変換材料11は、組成式A2BO4(AおよびBは1個または複数個の元素)で示される層状ペロブスカイト構造を有している。組成式A2BO4におけるAは、少なくとも1種の希土類元素を含んでいることが好ましく、ランタン(La)を含んでいることが特に好ましい。また、組成式A2BO4におけるBは、少なくとも1種の遷移金属を含んでいることが好ましい。また、1種の遷移金属として、銅を含んでいることが特に好ましい。 The p-type thermoelectric conversion material 11 has a layered perovskite structure represented by a composition formula A 2 BO 4 (A and B are one or more elements). A in the composition formula A 2 BO 4 preferably contains at least one rare earth element, and particularly preferably contains lanthanum (La). Further, B in the composition formula A 2 BO 4 preferably contains at least one transition metal. Moreover, it is especially preferable that copper is included as one kind of transition metal.

n型熱電変換材料12は、組成式D2EO4(DおよびEは1個または複数個の元素)で示される層状ペロブスカイト構造を有している。組成式D2EO4におけるDは、少なくとも1種の希土類元素を含んでいることが好ましく、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、およびガドリニウム(Gd)からなる群より選ばれる少なくとも1種の元素を含んでいることが特に好ましい。また、組成式D2EO4におけるEは、少なくとも1種の遷移金属を含んでいることが好ましい。また、1種の遷移金属として、銅を含んでいることが特に好ましい。 The n-type thermoelectric conversion material 12 has a layered perovskite structure represented by a composition formula D 2 EO 4 (D and E are one or more elements). D in the composition formula D 2 EO 4 preferably contains at least one rare earth element, and is selected from the group consisting of praseodymium (Pr), neodymium (Nd), samarium (Sm), and gadolinium (Gd). It is particularly preferred that it contains at least one element. Further, E in the composition formula D 2 EO 4 preferably contains at least one transition metal. Moreover, it is especially preferable that copper is included as one kind of transition metal.

なお、組成式A2BO4および組成式D2EO4において、A、B、DおよびEは、1個または複数個の元素で示され、複数個の元素からなる場合には、組成式A2BO4および組成式D2EO4におけるAおよびDの原子数比の合計が2であることを意味する。また、組成式A2BO4および組成式D2EO4におけるBおよびEの原子数比の合計が1であることを意味する。また、Oは酸素を意味する。 In the composition formula A 2 BO 4 and the composition formula D 2 EO 4 , A, B, D and E are represented by one or a plurality of elements, and when composed of a plurality of elements, the composition formula A 2 means that the sum of the atomic ratios of A and D in BO 4 and composition formula D 2 EO 4 is 2. Moreover, it means that the sum of the atomic ratios of B and E in composition formula A 2 BO 4 and composition formula D 2 EO 4 is 1. O means oxygen.

p型熱電変換材料11およびn型熱電変換材料12は、層状ペロブスカイト構造を有しており、結晶構造が同じである。   The p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 have a layered perovskite structure and have the same crystal structure.

電極16は、端子用の電極である。そのため、熱電変換素子10の端部に配置されるp型熱電変換材料11およびn型熱電変換材料12の低温側の端部に接続されている。なお、実施の形態1では、電極16は、低温側の端部に接続されているが、特にこれに限定されず、高温側に接続されていてもよいし、低温側および高温側に接続されていてもよい。   The electrode 16 is a terminal electrode. Therefore, the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 disposed at the end of the thermoelectric conversion element 10 are connected to the low-temperature end. In the first embodiment, the electrode 16 is connected to the end portion on the low temperature side, but is not particularly limited thereto, and may be connected to the high temperature side, or connected to the low temperature side and the high temperature side. It may be.

次に、実施の形態における熱電変換素子10の製造方法について説明する。まず、組成式A2BO4(AおよびBは1個または複数個の元素)で示される層状ペロブスカイト構造を有するp型熱電変換材料の原料、および組成式D2EO4(DおよびEは1個または複数個の元素)で示される層状ペロブスカイト構造を有するn型熱電変換材料の原料を準備する工程を実施する。準備する工程では、少なくとも1種の希土類元素、および、少なくとも1種の遷移金属を含んでいることが好ましく、La、Pr、Nd、Sm、Gd、およびCuからなる群より選ばれる少なくとも1種の元素を含んでいることがより好ましい。 Next, the manufacturing method of the thermoelectric conversion element 10 in embodiment is demonstrated. First, a raw material of a p-type thermoelectric conversion material having a layered perovskite structure represented by a composition formula A 2 BO 4 (A and B are one or more elements), and a composition formula D 2 EO 4 (D and E are 1). A step of preparing a raw material of an n-type thermoelectric conversion material having a layered perovskite structure represented by (single or plural elements) is performed. The preparing step preferably includes at least one rare earth element and at least one transition metal, and includes at least one selected from the group consisting of La, Pr, Nd, Sm, Gd, and Cu. More preferably, it contains an element.

具体的には、組成式A2BO4におけるAは少なくとも1種の希土類元素を含み、Bは少なくとも1種の遷移金属を含むp型熱電変換材料11および組成式D2EO4におけるDは少なくとも1種の希土類元素を含み、Eは少なくとも1種の遷移金属を含むn型熱電変換材料12を製造するため、出発原料を準備する。たとえば、La、Pr、Nd、Sm、およびGdなどの希土類元素と、Cuなどの遷移元素とを含む出発原料を準備する。なお、これらの出発原料のうち、Pr、Cu、NiおよびFeについては、たとえば酸化物が用いられ、Ca、Sr、BaおよびMnについては、たとえば炭酸塩が用いられることが好ましい。これらの出発原料は、熱電特性、発電特性、および共焼結などに必要な条件によって、適宜選択される。また、後述する共焼結のために、必要に応じて、他の元素を添加してもよい。 Specifically, A in the composition formula A 2 BO 4 contains at least one rare earth element, B contains the p-type thermoelectric conversion material 11 containing at least one transition metal, and D in the composition formula D 2 EO 4 is at least In order to produce the n-type thermoelectric conversion material 12 containing one kind of rare earth element and E containing at least one kind of transition metal, a starting material is prepared. For example, a starting material containing a rare earth element such as La, Pr, Nd, Sm, and Gd and a transition element such as Cu is prepared. Of these starting materials, for Pr, Cu, Ni and Fe, for example, oxides are used, and for Ca, Sr, Ba and Mn, for example, carbonates are preferably used. These starting materials are appropriately selected depending on conditions necessary for thermoelectric characteristics, power generation characteristics, and co-sintering. Moreover, you may add another element as needed for the co-sintering mentioned later.

なお、焼成によって金属酸化物を形成できれば特に限定されず、たとえば水酸化物などの他の無機化合物や、アルコキシドのような有機金属化合物が用いられてもよい。また、出発原料となる粉末は、粒径など特に限定されないが、均一に混合できる程度の粒径であることが好ましい。   In addition, it will not specifically limit if a metal oxide can be formed by baking, For example, other inorganic compounds, such as a hydroxide, and organometallic compounds, such as an alkoxide, may be used. Further, the powder used as a starting material is not particularly limited in particle size and the like, but preferably has a particle size that can be uniformly mixed.

そして、上述した出発原料は、所望の組成比を与え得るように秤量され、次いで粉砕混合処理される。この粉砕混合処理には、たとえば、分散媒を水とした湿式ボールミルが用いられる。なお、ボールミルを行なう時間は特に限定されず、均一に混合される時間とすることが好ましい。これにより、出発原料の混合粉末が得られる。水を分散媒とする場合には、次いで、水を蒸発させるための操作が実施される。   The above starting materials are weighed so as to give a desired composition ratio, and then pulverized and mixed. For this pulverization and mixing treatment, for example, a wet ball mill using a dispersion medium as water is used. In addition, the time which performs a ball mill is not specifically limited, It is preferable to set it as the time mixed uniformly. Thereby, the mixed powder of a starting material is obtained. When water is used as a dispersion medium, an operation for evaporating water is then performed.

そして、出発原料の混合粉末を、たとえば大気中にて仮焼する。仮焼する際に、800℃〜1100℃とすることが好ましい。この温度範囲とすることによって、反応が促進される。これにより、目的とするp型熱電変換材料粉末およびn型熱電変換材料粉末が得られる。なお、上述の仮焼を終えたとき、粉末中に未反応部分が残存していてもよい。   Then, the mixed powder of the starting material is calcined, for example, in the atmosphere. When calcination, the temperature is preferably set to 800 ° C to 1100 ° C. By setting this temperature range, the reaction is promoted. Thereby, the target p-type thermoelectric conversion material powder and n-type thermoelectric conversion material powder are obtained. In addition, when the above-mentioned calcination is finished, an unreacted part may remain in the powder.

そして、p型熱電変換材料粉末およびn型熱電変換材料粉末を、上述のようにボールミルなどにより粉砕して、純水およびバインダ等を添加してスラリーにする。得られたスラリーをたとえばドクターブレード法などによりシート状に成形する。これにより、シート状のp型熱電変換材料とn型熱電変換材料とが得られる。   Then, the p-type thermoelectric conversion material powder and the n-type thermoelectric conversion material powder are pulverized by a ball mill or the like as described above, and pure water and a binder are added to form a slurry. The obtained slurry is formed into a sheet by, for example, a doctor blade method. Thereby, a sheet-like p-type thermoelectric conversion material and n-type thermoelectric conversion material are obtained.

なお、仮焼後に粉砕する際に得られる粉末の粒径は特に限定されないが、熱伝導率を低下できる観点から粒径が小さい程好ましい。   In addition, the particle size of the powder obtained when pulverizing after calcination is not particularly limited, but the smaller the particle size is preferable from the viewpoint of reducing the thermal conductivity.

次に、p型熱電変換材料11の原料とn型熱電変換材料12の原料とを共焼結して、p型熱電変換材料11とn型熱電変換材料12とを直接接合する工程を実施する。これにより、図1に示す本発明の実施の形態1における熱電変換素子10を得られる。   Next, the raw material of the p-type thermoelectric conversion material 11 and the raw material of the n-type thermoelectric conversion material 12 are co-sintered, and the step of directly joining the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 is performed. . Thereby, the thermoelectric conversion element 10 in Embodiment 1 of this invention shown in FIG. 1 is obtained.

具体的には、得られたシート状のp型熱電変換材料11とn型熱電変換材料12とを所定の厚みになるように調整して、p型熱電変換材料11とn型熱電変換材料12とを積層して、積層体にする。   Specifically, the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 are adjusted so that the obtained sheet-like p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 have a predetermined thickness. Are laminated to form a laminate.

そして、得られた積層体をたとえば等方静水圧プレス法などにより圧着を行ない、成形体を製造する。得られた成形体をたとえば300℃〜600℃で脱脂を行ない、その後、たとえば大気中で焼成を行なう。この際、相対密度が90%以上となる温度範囲で焼成することが好ましい。この温度とすることによって、焼結が進行しやすくなる。なお、焼成する方法は特に限定されず、一般公知の方法により行なうことができる。これにより、p型熱電変換材料11とn型熱電変換材料12とを直接接合することができる。   And the obtained laminated body is crimped | bonded by the isotropic isostatic pressing method etc., for example, and a molded object is manufactured. The obtained molded body is degreased at, for example, 300 ° C. to 600 ° C., and then fired, for example, in the atmosphere. At this time, it is preferable to fire in a temperature range in which the relative density is 90% or more. By setting this temperature, the sintering easily proceeds. In addition, the method of baking is not specifically limited, It can carry out by a generally well-known method. Thereby, the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 can be directly joined.

そして、得られた素子について、高温側接合部13a以外の部分を切断して、分離部17を形成する。さらに必要に応じて、所定の形状に形成することにより、図1に示す熱電変換素子10を形成できる。   And about the obtained element, parts other than the high temperature side junction part 13a are cut | disconnected, and the isolation | separation part 17 is formed. Furthermore, if necessary, the thermoelectric conversion element 10 shown in FIG. 1 can be formed by forming it into a predetermined shape.

なお、上述したように、実施の形態1では積層体を共焼結した後に高温側接合部13a以外の部分に切り込みを入れているが、特にこれに限定されない。積層体に切り込みを入れた(分離部17を形成した)後、共焼結して、p型熱電変換材料11とn型熱電変換材料12とを直接接合してもよい。   Note that, as described above, in Embodiment 1, the laminated body is co-sintered, and then the portions other than the high-temperature side joint portion 13a are cut, but the present invention is not particularly limited thereto. After cutting the laminated body (forming the separation part 17), the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 may be directly joined by co-sintering.

このように製造された図1に示す熱電変換素子10は高温部と低温部との温度差を設けるための方法は特に限定されないが、廃熱を利用してもよいし、加熱部材(図示せず)または冷却部材(図示せず)を使用してもよい。   The method for providing the temperature difference between the high temperature portion and the low temperature portion of the thermoelectric conversion element 10 shown in FIG. 1 manufactured in this way is not particularly limited, but waste heat may be used or a heating member (not shown). Or a cooling member (not shown) may be used.

以上説明したように、本発明の実施の形態1における熱電変換素子10によれば、組成式A2BO4(AおよびBは1個または複数個の元素)で示される層状ペロブスカイト構造を有するp型熱電変換材料11と、組成式D2EO4(DおよびEは1個または複数個の元素)で示される層状ペロブスカイト構造を有するn型熱電変換材料12とを備え、p型熱電変換材料11の一部と、n型熱電変換材料12の一部とは直接接合されていることを特徴としている。図9に示す従来の熱電変換素子100について、以下の理由により接触抵抗が生じる。熱電材料101,102が半導体からなる場合、半導体のフェルミ準位と金属のフェルミ準位とは異なる(n型半導体のフェルミ準位>金属のフェルミ準位。p型半導体のフェルミ準位<金属のフェルミ準位)。金属と半導体とが接触すると、半導体の接合面付近に空乏層が発生して障壁ができるので、金属と半導体とのフェルミ準位は一致する(n型半導体の障壁の高さは、金属の仕事関数とn型半導体の電子親和力とに依存する。p型半導体の障壁の高さは、p型半導体の電子親和力と、p型半導体のエネルギーギャップと金属の仕事関数とに依存する。)金属と半導体とのフェルミ準位がほぼ一致している場合は障壁を作らないが、フェルミ準位の位置は半導体の極性によって異なる。n型半導体のフェルミ準位は伝導帯に近い位置であり、p型半導体のフェルミ準位は価電子帯に近い位置である。そのため、p型半導体に対して障壁を作らない金属は、n型半導体に対して障壁を作り、その逆の関係も成立する。熱電材料として半導体を用いる熱電変換素子は、必ずp型半導体とn型半導体との両極性を使用するため、いずれかの極性で電極と熱電材料間との接触抵抗が発生する。しかしながら、本発明の実施の形態1における熱電変換素子10は、同じ結晶構造の材料からなるp型熱電変換材料11とn型熱電変換材料12とが直接接合されているので、p型熱電変換材料11とn型熱電変換材料12との間に電極を備える必要がない。そのため、電極と、p型熱電変換材料およびn型熱電変換材料との接合部で発生する接触抵抗をなくすことができる。 As described above, according to the thermoelectric conversion element 10 in Embodiment 1 of the present invention, p having a layered perovskite structure represented by the composition formula A 2 BO 4 (A and B are one or a plurality of elements). P-type thermoelectric conversion material 11, and n-type thermoelectric conversion material 12 having a layered perovskite structure represented by a composition formula D 2 EO 4 (where D and E are one or more elements). And a part of the n-type thermoelectric conversion material 12 are directly bonded. In the conventional thermoelectric conversion element 100 shown in FIG. 9, contact resistance is generated for the following reason. When the thermoelectric materials 101 and 102 are made of a semiconductor, the Fermi level of the semiconductor and the Fermi level of the metal are different (the Fermi level of the n-type semiconductor> the Fermi level of the metal. The Fermi level of the p-type semiconductor <the metal's Fermi level. Fermi level). When a metal and a semiconductor come into contact, a depletion layer is generated near the semiconductor junction surface to form a barrier, so that the Fermi levels of the metal and the semiconductor match (the height of the barrier of the n-type semiconductor is the work of the metal). Depends on the function and the electron affinity of the n-type semiconductor, and the barrier height of the p-type semiconductor depends on the electron affinity of the p-type semiconductor, the energy gap of the p-type semiconductor, and the work function of the metal. When the Fermi level is almost the same as that of the semiconductor, no barrier is formed, but the position of the Fermi level differs depending on the polarity of the semiconductor. The Fermi level of the n-type semiconductor is a position close to the conduction band, and the Fermi level of the p-type semiconductor is a position close to the valence band. Therefore, a metal that does not form a barrier with respect to a p-type semiconductor forms a barrier with respect to an n-type semiconductor, and the reverse relationship also holds. A thermoelectric conversion element that uses a semiconductor as a thermoelectric material always uses a bipolar polarity of a p-type semiconductor and an n-type semiconductor, and therefore a contact resistance between the electrode and the thermoelectric material is generated with either polarity. However, in the thermoelectric conversion element 10 according to Embodiment 1 of the present invention, the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 made of the material having the same crystal structure are directly joined. It is not necessary to provide an electrode between 11 and the n-type thermoelectric conversion material 12. Therefore, it is possible to eliminate the contact resistance generated at the junction between the electrode and the p-type thermoelectric conversion material and the n-type thermoelectric conversion material.

また、p型熱電変換材料11とn型熱電変換材料12とは同じ結晶構造の材料からなるので、高温側接合部13aの接触抵抗をより減少できる。なお、異材料の場合、ホットプレス、高温等方圧プレス、または放電プラズマ焼結などの特殊な焼成でないと共焼結し難いので好ましくない。   Further, since the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 are made of the same crystal structure, the contact resistance of the high-temperature side joint portion 13a can be further reduced. In the case of dissimilar materials, co-sintering is difficult unless a special firing such as hot pressing, high temperature isostatic pressing, or discharge plasma sintering is used.

さらに、p型熱電変換材料11とn型熱電変換材料12との間に電極を備える必要がないので、高温側接合部13aで金属による酸化が発生して劣化することがない。そのため、熱電変換素子10の高温側をより高温にすることができる。さらに、p型熱電変換材料11とn型熱電変換材料12との間の隙間を狭くできるので、高密度化できる。さらには、小型化を図ることができる。   Furthermore, since it is not necessary to provide an electrode between the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12, oxidation due to metal occurs at the high-temperature side joining portion 13a and does not deteriorate. Therefore, the high temperature side of the thermoelectric conversion element 10 can be made higher. Furthermore, since the gap between the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 can be narrowed, the density can be increased. Furthermore, the size can be reduced.

上記熱電変換素子10において好ましくは、組成式A2BO4におけるAおよび組成式D2EO4におけるDは、少なくとも1種の希土類元素を含み、組成式A2BO4におけるBおよび組成式D2EO4におけるEは、少なくとも1種の遷移金属を含んでいる。これにより、p型熱電変換材料11とn型熱電変換材料12との接触抵抗をより低減できる。 In the thermoelectric conversion element 10, preferably, A in the composition formula A 2 BO 4 and D in the composition formula D 2 EO 4 include at least one rare earth element, and B and the composition formula D 2 in the composition formula A 2 BO 4 . E in EO 4 contains at least one transition metal. Thereby, the contact resistance of the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 can be further reduced.

上記熱電変換素子10において好ましくは、組成式A2BO4におけるAは、ランタンを含み、組成式D2EO4におけるDは、プラセオジム、ネオジム、サマリウム、およびガドリニウムからなる群より選ばれる少なくとも1種の元素を含み、組成式A2BO4におけるBおよび組成式D2EO4におけるEは、銅を含んでいる。これにより、p型熱電変換材料11とn型熱電変換材料12との接触抵抗をより一層低減できる。 Preferably, in the above thermoelectric conversion element 10, the A in the formula A 2 BO 4, wherein the lanthanum, D in formula D 2 EO 4 is praseodymium, neodymium, samarium, and at least one selected from the group consisting of gadolinium And B in the composition formula A 2 BO 4 and E in the composition formula D 2 EO 4 contain copper. Thereby, the contact resistance between the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 can be further reduced.

本発明の実施の形態1における熱電変換素子10の製造方法は、組成式A2BO4(AおよびBは1個または複数個の元素)で示される層状ペロブスカイト構造を有するp型熱電変換材料11の原料を準備する工程と、組成式D2EO4(DおよびEは1個または複数個の元素)で示される層状ペロブスカイト構造を有するn型熱電変換材料12の原料を準備する工程と、p型熱電変換材料11の原料とn型熱電変換材料12の原料とを共焼結して、p型熱電変換材料11とn型熱電変換材料12とを直接接合する工程とを備えている。本発明の熱電変換素子10の製造方法によれば、同じ結晶構造の材料からなるp型熱電変換材料11とn型熱電変換材料12とを直接接合することができる。そのため、p型熱電変換材料11とn型熱電変換材料12との接触抵抗を低減できる熱電変換素子10を製造できる。 Method for manufacturing a thermoelectric conversion element 10 in the first embodiment of the present invention, the composition formula A 2 BO 4 p-type thermoelectric conversion material 11 (A and B of one or more elements) having a layered perovskite structure represented by A step of preparing a raw material of n-type thermoelectric conversion material 12 having a layered perovskite structure represented by a composition formula D 2 EO 4 (where D and E are one or more elements), p A step of co-sintering a raw material of the n-type thermoelectric conversion material 11 and a raw material of the n-type thermoelectric conversion material 12 and directly bonding the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12. According to the manufacturing method of the thermoelectric conversion element 10 of the present invention, the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 made of the same crystal structure material can be directly joined. Therefore, the thermoelectric conversion element 10 that can reduce the contact resistance between the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 can be manufactured.

また、準備する工程で、p型熱電変換材料11およびn型熱電変換材料12を同じ結晶構造の材料を選択しているので、特別な焼成方法を用いずに共焼結できる。そのため、熱電変換素子10を容易に製造することができる。   Moreover, since the material of the same crystal structure is selected for the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 in the preparation step, they can be co-sintered without using a special firing method. Therefore, the thermoelectric conversion element 10 can be manufactured easily.

また、p型熱電変換材料11とn型熱電変換材料12との間に接合のための電極を形成する必要がないため、熱電変換素子10を製造する際に、電極を作製する工程が不要となる。また、p型熱電変換材料11の原料とn型熱電変換材料12の原料とを共焼結する際に接合しているので、p型熱電変換材料11とn型熱電変換材料12とを接合するためのみの工程が不要となる。そのため、熱電変換素子10を製造するための工程数を減少できるので、コストを低減できるとともに、製造を簡略化することができる。   In addition, since it is not necessary to form an electrode for bonding between the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12, a process for producing an electrode is not necessary when the thermoelectric conversion element 10 is manufactured. Become. Moreover, since it joins when co-sintering the raw material of the p-type thermoelectric conversion material 11 and the raw material of the n-type thermoelectric conversion material 12, the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 are joined. Therefore, only the process is not required. Therefore, since the number of steps for manufacturing the thermoelectric conversion element 10 can be reduced, the cost can be reduced and the manufacturing can be simplified.

さらに、p型熱電変換材料11とn型熱電変換材料12とがキャリア元素を備えている場合に、高温側接合部13aにおいて、電極を備えた熱電変換素子と比較して、キャリア元素は拡散しにくいので、キャリア元素のロスを減少できる。   Further, when the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 include a carrier element, the carrier element diffuses in the high-temperature side joint portion 13a as compared with the thermoelectric conversion element including an electrode. Since it is difficult, loss of carrier elements can be reduced.

本発明の実施の形態における熱電変換素子の製造方法は、組成式A2BO4(AおよびBは1個または複数個の元素)で示される層状ペロブスカイト構造を有するp型熱電変換材料11の原料を準備し、シート状に成形する工程と、組成式D2EO4(DおよびEは1個または複数個の元素)で示される層状ペロブスカイト構造を有するn型熱電変換材料12の原料を準備し、シート状に成形する工程と、p型熱電変換材料11のシートとn型熱電変換材料12のシートとを積層して積層体を得る工程と、積層体を共焼結して、接合部に切り込みを入れて(分離部17を形成して)、p型熱電変換材料11とn型熱電変換材料12とを直接接合する工程とを備えている。これにより、p型熱電変換材料11のシートおよびn型熱電変換材料12のシートのうち、抵抗の高い材料のシートの厚みを大きくするなど、厚みの設計が容易になる。そのため、熱電変換素子10をより容易に製造できる。 The manufacturing method of the thermoelectric conversion element in the embodiment of the present invention is the raw material of the p-type thermoelectric conversion material 11 having a layered perovskite structure represented by the composition formula A 2 BO 4 (A and B are one or a plurality of elements). And a raw material for the n-type thermoelectric conversion material 12 having a layered perovskite structure represented by a composition formula D 2 EO 4 (where D and E are one or more elements) A step of forming a sheet, a step of laminating a sheet of p-type thermoelectric conversion material 11 and a sheet of n-type thermoelectric conversion material 12 to obtain a laminate, and co-sintering the laminate, And a step of directly joining the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 by making a cut (forming the separation portion 17). Thereby, thickness design becomes easy, such as enlarging the thickness of the sheet | seat of a material with high resistance among the sheet | seat of the p-type thermoelectric conversion material 11, and the sheet | seat of the n-type thermoelectric conversion material 12. Therefore, the thermoelectric conversion element 10 can be manufactured more easily.

(実施の形態2)
図2は、本発明の実施の形態2における熱電変換モジュールを示す概略断面図である。図2を参照して、本発明の実施の形態2における熱電変換モジュールを説明する。実施の形態2における熱電変換モジュール30は、実施の形態1における熱電変換素子10を複数備えている。
(Embodiment 2)
FIG. 2 is a schematic cross-sectional view showing a thermoelectric conversion module according to Embodiment 2 of the present invention. With reference to FIG. 2, the thermoelectric conversion module in Embodiment 2 of this invention is demonstrated. The thermoelectric conversion module 30 in the second embodiment includes a plurality of thermoelectric conversion elements 10 in the first embodiment.

具体的には、熱電変換モジュール30は、1のp型熱電変換材料11と1のn型熱電変換材料12とを有する、2つの熱電変素子10と、2つの電極16とを備えている。熱電変換モジュール30を構成しているそれぞれの熱電変換素子10において、p型熱電変換材料11とn型熱電変換材料12とは、互いに高温側接合部13aで直接接合されている。そして、一方の熱電変換素子10のp型熱電変換材料11と、他方の熱電変換素子10のn型熱電変換材料12とは、互いに低温側接合部13bで直接接合されている。なお、実施の形態2では、図2において高温側接合部13aを高温側とし、低温側接合部13bを低温側としている。   Specifically, the thermoelectric conversion module 30 includes two thermoelectric conversion elements 10 each having one p-type thermoelectric conversion material 11 and one n-type thermoelectric conversion material 12 and two electrodes 16. In each thermoelectric conversion element 10 constituting the thermoelectric conversion module 30, the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 are directly bonded to each other at the high-temperature side bonding portion 13a. Then, the p-type thermoelectric conversion material 11 of one thermoelectric conversion element 10 and the n-type thermoelectric conversion material 12 of the other thermoelectric conversion element 10 are directly bonded to each other at a low-temperature side bonding portion 13b. In the second embodiment, in FIG. 2, the high-temperature side joint 13 a is the high temperature side, and the low-temperature side joint 13 b is the low temperature side.

また、熱電変換モジュール30を構成している熱電変換素子10は、p型熱電変換材料11とn型熱電変換材料12とが接合されている部分以外の部分(実施の形態2では、高温側接合部13aおよび低温側接合部13b以外の部分)において、互いに分離している分離部17を介して対向している。   Further, the thermoelectric conversion element 10 constituting the thermoelectric conversion module 30 is a portion other than the portion where the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 are bonded (in the second embodiment, the high-temperature side bonding). In the portion other than the portion 13a and the low-temperature side joint portion 13b), they face each other through the separation portion 17 that is separated from each other.

実施の形態2における熱電変換モジュール30の製造方法は、実施の形態1における熱電変換素子10を複数製造することにより製造する。具体的には、複数(実施の形態2では2つ)のp型熱電変換材料11とn型熱電変換材料12とを直接接合することにより、複数の素子を得ることができる。   The method for manufacturing the thermoelectric conversion module 30 in the second embodiment is manufactured by manufacturing a plurality of thermoelectric conversion elements 10 in the first embodiment. Specifically, a plurality of elements can be obtained by directly joining a plurality (two in the second embodiment) of the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12.

そして、得られた複数の素子について、高温側接合部13aおよび低温側接合部13b以外の部分を切断して、分離部17を形成する。さらに必要に応じて、所定の形状に形成することにより、図2に示す熱電変換モジュール30を形成できる。   And about the obtained some element, parts other than the high temperature side junction part 13a and the low temperature side junction part 13b are cut | disconnected, and the isolation | separation part 17 is formed. Furthermore, the thermoelectric conversion module 30 shown in FIG. 2 can be formed by forming in a predetermined shape as needed.

なお、実施の形態2における熱電変換モジュール30は、熱電変換素子10を2つ備えている構成としたが、熱電変換素子10を2つ以上備えていれば、特にこれに限定されない。   In addition, although the thermoelectric conversion module 30 in Embodiment 2 was set as the structure provided with the two thermoelectric conversion elements 10, if it is provided with the two or more thermoelectric conversion elements 10, it will not specifically limit to this.

以上説明したように、本発明の実施の形態2における熱電変換モジュール30によれば、実施の形態1における熱電変換素子10を複数備えている。これにより、熱電変換モジュール30は、p型熱電変換材料とn型熱電変換材料との接合に伴う接触抵抗を低減できる。また、熱電変換素子10を複数備えているので、変換効率を向上できる。さらに、p型熱電変換材料11とn型熱電変換材料12との間に電極を形成する必要がないので、その隙間を狭くできるため、小型化を図ることができる。   As described above, according to the thermoelectric conversion module 30 in the second embodiment of the present invention, a plurality of the thermoelectric conversion elements 10 in the first embodiment are provided. Thereby, the thermoelectric conversion module 30 can reduce the contact resistance accompanying joining of a p-type thermoelectric conversion material and an n-type thermoelectric conversion material. Moreover, since the thermoelectric conversion element 10 is provided with two or more, conversion efficiency can be improved. Furthermore, since it is not necessary to form an electrode between the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12, the gap can be narrowed, so that the size can be reduced.

[実施例]
以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
[Example]
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these.

(実施例1〜3)
実施例1〜3における熱電変換素子は、実施の形態1における熱電変換素子の製造方法にしたがって製造した。具体的には、まず、p型熱電変換材料の原料粉末として、La23、Sr2CO3およびCuOを準備した。また、n型熱電変換材料の原料粉末として、Pr611、CeO2およびCuOを準備した。これらの原料粉末を下記の表1に記載の組成となるように秤量した。
(Examples 1-3)
The thermoelectric conversion elements in Examples 1 to 3 were manufactured according to the method for manufacturing a thermoelectric conversion element in Embodiment 1. Specifically, first, La 2 O 3 , Sr 2 CO 3 and CuO were prepared as raw material powders for the p-type thermoelectric conversion material. Further, Pr 6 O 11 , CeO 2 and CuO were prepared as raw material powders for the n-type thermoelectric conversion material. These raw material powders were weighed so as to have the composition described in Table 1 below.

次に、秤量された原料粉末に、純水を溶媒として、ボールミルで16時間、粉砕混合を行なった。粉砕した原料粉末に純水およびバインダを添加して、混合し、得られたスラリーをドクターブレード法でシート状に成形を行なった。得られたシートを焼成して、厚みが1.5mmになるように調整して、p型シートおよびn型シートを準備した。そして、p型シートの上にn型シートを積層し、積層体を得た。   Next, the weighed raw material powder was pulverized and mixed in a ball mill for 16 hours using pure water as a solvent. Pure water and a binder were added to the pulverized raw material powder and mixed, and the resulting slurry was formed into a sheet by a doctor blade method. The obtained sheet was baked and adjusted to have a thickness of 1.5 mm to prepare a p-type sheet and an n-type sheet. And the n-type sheet | seat was laminated | stacked on the p-type sheet | seat, and the laminated body was obtained.

次に、積層体を等方静水圧プレス法にて200MPaで圧着を行ない、成形体を得た。得られた成形体を480℃で脱脂を行ない、その後、大気雰囲気中において1025℃で焼成を行なった。焼結により得られた試料をX線回折(XRD)により観察したところ、図3に示すように、層状ペロブスカイト構造を有するそれぞれの材料に特有のピークを有していることから、層状ペロブスカイト構造を有していたことが確認できた。なお、図3は、実施例におけるXRDチャートを示す図である。   Next, the laminate was pressure-bonded at 200 MPa by an isotropic isostatic pressing method to obtain a molded body. The obtained molded body was degreased at 480 ° C. and then fired at 1025 ° C. in an air atmosphere. When the sample obtained by sintering was observed by X-ray diffraction (XRD), as shown in FIG. 3, each layer having a layered perovskite structure had a peculiar peak. It was confirmed that it had. In addition, FIG. 3 is a figure which shows the XRD chart in an Example.

得られた試料を図4に示すように、3mm(D)(p型熱電変換材料11のD1が1.5mm、n型熱電変換材料12のD2が1.5mm)×4mm(L)×6mm(H1)に切断し、p型熱電変換材料11およびn型熱電変換材料12の接合部(高温側接合部13a)が1.5mm(H2)残るように0.2mm(K)幅の切り込みを入れた。これにより、図4に示す実施例1〜3における熱電変換素子を得た。なお、図4は、本発明の実施例1〜3の熱電変換素子を示す概略斜視図である。   As shown in FIG. 4, the obtained sample was 3 mm (D) (D1 of the p-type thermoelectric conversion material 11 was 1.5 mm, D2 of the n-type thermoelectric conversion material 12 was 1.5 mm) × 4 mm (L) × 6 mm Cut to (H1), and cut a 0.2 mm (K) width so that the junction (high temperature side junction 13a) of the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 remains 1.5mm (H2). I put it in. This obtained the thermoelectric conversion element in Examples 1-3 shown in FIG. FIG. 4 is a schematic perspective view showing thermoelectric conversion elements of Examples 1 to 3 of the present invention.

(比較例1〜8)
比較例1〜8の熱電変換素子は、基本的には実施例1〜3の熱電変換素子と同様に製造したが、p型熱電変換材料とn型熱電変換材料とを表2に示す電極で接合した点においてのみ実施例1〜3の熱電変換素子と異なる。
(Comparative Examples 1-8)
Although the thermoelectric conversion elements of Comparative Examples 1 to 8 were basically manufactured in the same manner as the thermoelectric conversion elements of Examples 1 to 3, the p-type thermoelectric conversion material and the n-type thermoelectric conversion material were the electrodes shown in Table 2. It differs from the thermoelectric conversion element of Examples 1-3 only in the joined point.

具体的には、実施例1〜3と同様の原料粉末を準備して、これらの原料粉末を下記の表1に記載の組成となるように、秤量した。次に、秤量された原料粉末に、純水を溶媒として、ボールミルで16時間、粉砕混合を行なった。得られたスラリーを乾燥させ、その後大気雰囲気中において900℃で仮焼を行なった。   Specifically, the same raw material powder as in Examples 1 to 3 was prepared, and these raw material powders were weighed so as to have the composition described in Table 1 below. Next, the weighed raw material powder was pulverized and mixed in a ball mill for 16 hours using pure water as a solvent. The obtained slurry was dried and then calcined at 900 ° C. in an air atmosphere.

次に、得られた混合粉末にバインダを添加して、純水を溶媒として、ボールミルで16時間、粉砕混合を行なった。そして、得られたスラリーを乾燥させ、その後、プレス機を用いて1000kg/cm2で成形を行なって、成形体を得た。そして、得られた成形体を400℃で脱脂を行ない、その後、それぞれ大気雰囲気中で1025℃で焼成を行なった。 Next, a binder was added to the obtained mixed powder, and pulverization and mixing were performed with a ball mill for 16 hours using pure water as a solvent. And the obtained slurry was dried, and it shape | molded by 1000 kg / cm < 2 > after that using the press, and the molded object was obtained. The obtained molded body was degreased at 400 ° C., and then fired at 1025 ° C. in an air atmosphere.

次に、得られた試料をそれぞれ1.5mm×4mm×5mmに切断して、p型熱電変換材料とn型熱電変換材料とを、比較例1〜4はCu電極で、比較例5〜8はAg電極でそれぞれ接合した。これにより、比較例1〜8における熱電変換素子を得た。   Next, each of the obtained samples was cut into 1.5 mm × 4 mm × 5 mm, and p-type thermoelectric conversion material and n-type thermoelectric conversion material were compared. Comparative Examples 1 to 4 were Cu electrodes, and Comparative Examples 5 to 8 were used. Were joined by Ag electrodes. Thereby, the thermoelectric conversion element in Comparative Examples 1-8 was obtained.

Figure 2010027631
Figure 2010027631

(評価方法)
図5に示すように、実施例1〜3における熱電変換素子においてp型熱電変換材料11とn型熱電変換材料12とを直接接合した接合部を高温側接合部13aとし、高温側接合部13aと反対の端面を低温側として、Agからなる端子用の電極16を接続した。比較例1〜8における熱電変換素子において、Cu電極またはAg電極で接合した接合部を高温側接合部とし、高温側接合部と反対の端面を低温側として、実施例1〜3と同じ端子用の電極16を接続した。なお、図5は、本発明の実施例1〜3における熱電変換素子を測定する方法を示す概略断面図である。
(Evaluation methods)
As shown in FIG. 5, in the thermoelectric conversion elements in Examples 1 to 3, a junction obtained by directly joining the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 is referred to as a high-temperature side junction 13a, and the high-temperature side junction 13a. The terminal electrode 16 made of Ag was connected with the end surface opposite to the low temperature side. In the thermoelectric conversion elements in Comparative Examples 1 to 8, the joint part joined with the Cu electrode or the Ag electrode is the high temperature side joint part, and the end surface opposite to the high temperature side joint part is the low temperature side, and for the same terminal as in Examples 1 to 3 The electrode 16 was connected. FIG. 5 is a schematic cross-sectional view showing a method for measuring thermoelectric conversion elements in Examples 1 to 3 of the present invention.

そして、加熱部材により高温側の接合部を加熱した。また、低温側の接合部を水冷板を使用して20℃に固定した。高温側の接合部が低温側の接合部よりも温度が高くなるように、加熱部材を50℃、100℃、150℃、200℃、250℃、300℃、350℃、および400℃に加熱した。加熱部材としては、抵抗加熱式カートリッジヒーターを使用した。そして、この際に、実施例1〜3および比較例1〜8における熱電変換素子に発生する起電力および電流を測定して、出力を算出した。その結果を図6〜図8に示す。ただし、図6〜図8に示すように、材料組成によって熱伝導率に差があるため、測定した熱電変換モジュールの温度は異なっている。なお、図6は、実施例1〜3における熱電変換素子の起電力と温度差との関係を示す図である。図7は、実施例1〜3における熱電変換素子の電流と温度差との関係を示す図である。図8は、実施例1〜3における熱電変換素子の出力と温度差との関係を示す図である。   And the junction part of the high temperature side was heated with the heating member. Moreover, the junction part of the low temperature side was fixed to 20 degreeC using the water cooling plate. The heating member was heated to 50 ° C., 100 ° C., 150 ° C., 200 ° C., 250 ° C., 300 ° C., 350 ° C., and 400 ° C. so that the temperature of the high-temperature side junction was higher than that of the low-temperature side junction. . A resistance heating type cartridge heater was used as the heating member. And the electromotive force and electric current which generate | occur | produce in the thermoelectric conversion element in Examples 1-3 and Comparative Examples 1-8 were measured in this case, and the output was computed. The results are shown in FIGS. However, as shown in FIGS. 6-8, since there is a difference in thermal conductivity depending on the material composition, the measured temperature of the thermoelectric conversion module is different. In addition, FIG. 6 is a figure which shows the relationship between the electromotive force and temperature difference of the thermoelectric conversion element in Examples 1-3. FIG. 7 is a diagram illustrating the relationship between the current of the thermoelectric conversion element and the temperature difference in Examples 1 to 3. FIG. 8 is a diagram illustrating the relationship between the output of the thermoelectric conversion element and the temperature difference in Examples 1 to 3.

また、実施例1〜3および比較例1〜8における熱電変換素子について、高温側接合部13a部分の素子抵抗R13a(Ω)を、以下のように測定した。以下、R16を電極16の抵抗、R11をp型熱電変換材料11の抵抗、R13aを高温側接合部13aの抵抗、R12をn型熱電変換材料12の抵抗とする。まず、R11およびR12は四端子法による測定を行ない、(R16+R11+R16)、および(R16+R12+R16)の試料を作製してこれらの抵抗を測定した。ここから、(R11+R16)および(R12+R16)の抵抗を求めた。そして、(R16+R11+R13a+R12+R16)を測定した。最後に、(R16+R11+R13a+R12+R16)−(R11+R16)−(R12+R16)を算出することにより、高温側接合部13a部分の素子抵抗R13aを求めた。その結果を表2に示す。   Moreover, about the thermoelectric conversion element in Examples 1-3 and Comparative Examples 1-8, element resistance R13a ((omega | ohm)) of the high temperature side junction part 13a part was measured as follows. Hereinafter, R16 is the resistance of the electrode 16, R11 is the resistance of the p-type thermoelectric conversion material 11, R13a is the resistance of the high-temperature side joint 13a, and R12 is the resistance of the n-type thermoelectric conversion material 12. First, R11 and R12 were measured by the four probe method, and samples (R16 + R11 + R16) and (R16 + R12 + R16) were prepared and their resistances were measured. From this, the resistances of (R11 + R16) and (R12 + R16) were determined. And (R16 + R11 + R13a + R12 + R16) was measured. Finally, by calculating (R16 + R11 + R13a + R12 + R16) − (R11 + R16) − (R12 + R16), the element resistance R13a of the high temperature side junction 13a portion was obtained. The results are shown in Table 2.

Figure 2010027631
Figure 2010027631

(測定結果)
表2に示すように、実施例1〜3の熱電変換素子は、比較例1〜8の熱電変換素子よりも素子抵抗を低減できることが確認できた。
(Measurement result)
As shown in Table 2, it was confirmed that the thermoelectric conversion elements of Examples 1 to 3 can reduce the element resistance as compared with the thermoelectric conversion elements of Comparative Examples 1 to 8.

また、図6〜図8に示すように、実施例1〜3の熱電素子は、温度差が高い程起電力、電流、および出力が高いことが確認できた。この結果から、実施例1〜3の熱電変換素子は電極を備えていないので、熱電変換素子の高温側を高温に加熱しても問題が生じないことが確認できた。また、接合部では、PrおよびLaのみ拡散しており、キャリア添加元素であるCeおよびSrは拡散せず、キャリアのロスが少ないことがわかった。   Moreover, as shown in FIGS. 6-8, it has confirmed that the thermoelectric element of Examples 1-3 was so high that an electromotive force, an electric current, and an output were so high that a temperature difference was high. From this result, since the thermoelectric conversion element of Examples 1-3 was not provided with the electrode, it has confirmed that even if the high temperature side of the thermoelectric conversion element was heated to high temperature, a problem did not arise. In addition, it was found that only Pr and La were diffused in the junction, and Ce and Sr, which are carrier addition elements, were not diffused, and the carrier loss was small.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is shown not by the above-described embodiment but by the scope of claims for patent, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims for patent.

本発明の実施の形態1における熱電変換素子を示す概略断面図である。It is a schematic sectional drawing which shows the thermoelectric conversion element in Embodiment 1 of this invention. 本発明の実施の形態2における熱電変換モジュールを示す概略断面図である。It is a schematic sectional drawing which shows the thermoelectric conversion module in Embodiment 2 of this invention. 実施例におけるXRDチャートを示す図である。It is a figure which shows the XRD chart in an Example. 本発明の実施例1〜3の熱電変換素子を示す概略斜視図である。It is a schematic perspective view which shows the thermoelectric conversion element of Examples 1-3 of this invention. 本発明の実施例1〜3における熱電変換素子を測定する方法を示す概略断面図である。It is a schematic sectional drawing which shows the method of measuring the thermoelectric conversion element in Examples 1-3 of this invention. 実施例1〜3における熱電変換素子の起電力と温度差との関係を示す図である。It is a figure which shows the relationship between the electromotive force of the thermoelectric conversion element in Examples 1-3, and a temperature difference. 実施例1〜3における熱電変換素子の電流と温度差との関係を示す図である。It is a figure which shows the relationship between the electric current of the thermoelectric conversion element in Examples 1-3, and a temperature difference. 実施例1〜3における熱電変換素子の出力と温度差との関係を示す図である。It is a figure which shows the relationship between the output of the thermoelectric conversion element in Examples 1-3, and a temperature difference. 従来の熱電変換素子を示す概略断面図である。It is a schematic sectional drawing which shows the conventional thermoelectric conversion element.

符号の説明Explanation of symbols

10,100 熱電変換素子、11 p型熱電変換材料、12 n型熱電変換材料、13a,103a 高温側接合部、13b,103b 低温側接合部、16 電極、17 分離部、30 熱電変換モジュール、31 加熱部材、101,102 熱電材料、106 低温側電極、108 高温側電極。   10, 100 thermoelectric conversion element, 11 p-type thermoelectric conversion material, 12 n-type thermoelectric conversion material, 13a, 103a high-temperature side junction, 13b, 103b low-temperature side junction, 16 electrodes, 17 separation unit, 30 thermoelectric conversion module, 31 Heating member, 101, 102 thermoelectric material, 106 low temperature side electrode, 108 high temperature side electrode.

Claims (6)

組成式A2BO4(AおよびBは1個または複数個の元素)で示される層状ペロブスカイト構造を有するp型熱電変換材料と、
組成式D2EO4(DおよびEは1個または複数個の元素)で示される層状ペロブスカイト構造を有するn型熱電変換材料とを備え、
前記p型熱電変換材料の一部と、前記n型熱電変換材料の一部とは直接接合されていることを特徴とする、熱電変換素子。
A p-type thermoelectric conversion material having a layered perovskite structure represented by a composition formula A 2 BO 4 (where A and B are one or more elements);
An n-type thermoelectric conversion material having a layered perovskite structure represented by a composition formula D 2 EO 4 (D and E are one or more elements),
A part of the p-type thermoelectric conversion material and a part of the n-type thermoelectric conversion material are directly joined to each other.
前記組成式A2BO4におけるAおよび前記組成式D2EO4におけるDは、少なくとも1種の希土類元素を含み、
前記組成式A2BO4におけるBおよび前記組成式D2EO4におけるEは、少なくとも1種の遷移金属を含む、請求項1に記載の熱電変換素子。
A in the composition formula A 2 BO 4 and D in the composition formula D 2 EO 4 contain at least one rare earth element,
2. The thermoelectric conversion element according to claim 1, wherein B in the composition formula A 2 BO 4 and E in the composition formula D 2 EO 4 include at least one transition metal.
前記組成式A2BO4におけるAは、ランタンを含み、
前記組成式D2EO4におけるDは、プラセオジム、ネオジム、サマリウム、およびガドリニウムからなる群より選ばれる少なくとも1種の元素を含み、
前記組成式A2BO4におけるBおよび前記組成式D2EO4におけるEは、銅を含む、請求項1または2に記載の熱電変換素子。
A in the composition formula A 2 BO 4 includes lanthanum,
D in the composition formula D 2 EO 4 includes at least one element selected from the group consisting of praseodymium, neodymium, samarium, and gadolinium;
The thermoelectric conversion element according to claim 1, wherein B in the composition formula A 2 BO 4 and E in the composition formula D 2 EO 4 include copper.
請求項1〜3のいずれか1項に記載の熱電変換素子を複数備える、熱電変換モジュール。   The thermoelectric conversion module provided with two or more thermoelectric conversion elements of any one of Claims 1-3. 組成式A2BO4(AおよびBは1個または複数個の元素)で示される層状ペロブスカイト構造を有するp型熱電変換材料の原料を準備する工程と、
組成式D2EO4(DおよびEは1個または複数個の元素)で示される層状ペロブスカイト構造を有するn型熱電変換材料の原料を準備する工程と、
前記p型熱電変換材料の原料と前記n型熱電変換材料の原料とを共焼結して、前記p型熱電変換材料と前記n型熱電変換材料とを直接接合する工程とを備える、熱電変換素子の製造方法。
Preparing a raw material of a p-type thermoelectric conversion material having a layered perovskite structure represented by a composition formula A 2 BO 4 (A and B are one or more elements);
Preparing a raw material of an n-type thermoelectric conversion material having a layered perovskite structure represented by a composition formula D 2 EO 4 (D and E are one or more elements);
Thermoelectric conversion comprising co-sintering the raw material of the p-type thermoelectric conversion material and the raw material of the n-type thermoelectric conversion material and directly joining the p-type thermoelectric conversion material and the n-type thermoelectric conversion material. Device manufacturing method.
組成式A2BO4(AおよびBは1個または複数個の元素)で示される層状ペロブスカイト構造を有するp型熱電変換材料の原料を準備し、シート状に成形する工程と、
組成式D2EO4(DおよびEは1個または複数個の元素)で示される層状ペロブスカイト構造を有するn型熱電変換材料の原料を準備し、シート状に成形する工程と、
前記p型熱電変換材料のシートと前記n型熱電変換材料のシートとを積層して積層体を得る工程と、
前記積層体を共焼結して、接合部に切り込みを入れて、前記p型熱電変換材料と前記n型熱電変換材料とを直接接合する工程とを備える、熱電変換素子の製造方法。
Preparing a raw material of a p-type thermoelectric conversion material having a layered perovskite structure represented by a composition formula A 2 BO 4 (where A and B are one or more elements), and forming the sheet into a sheet;
Preparing a raw material of an n-type thermoelectric conversion material having a layered perovskite structure represented by a composition formula D 2 EO 4 (where D and E are one or more elements), and molding the raw material into a sheet;
Laminating the sheet of the p-type thermoelectric conversion material and the sheet of the n-type thermoelectric conversion material to obtain a laminate;
A method for manufacturing a thermoelectric conversion element, comprising: co-sintering the laminate, cutting a joint, and directly joining the p-type thermoelectric conversion material and the n-type thermoelectric conversion material.
JP2006264881A 2006-09-28 2006-09-28 Thermoelectric conversion element, thermoelectric conversion module, and method of manufacturing thermoelectric conversion element Withdrawn JP2010027631A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006264881A JP2010027631A (en) 2006-09-28 2006-09-28 Thermoelectric conversion element, thermoelectric conversion module, and method of manufacturing thermoelectric conversion element
PCT/JP2007/067728 WO2008038519A1 (en) 2006-09-28 2007-09-12 Thermoelectric conversion element, thermoelectric conversion module, and method for production of thermoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006264881A JP2010027631A (en) 2006-09-28 2006-09-28 Thermoelectric conversion element, thermoelectric conversion module, and method of manufacturing thermoelectric conversion element

Publications (1)

Publication Number Publication Date
JP2010027631A true JP2010027631A (en) 2010-02-04

Family

ID=39229957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006264881A Withdrawn JP2010027631A (en) 2006-09-28 2006-09-28 Thermoelectric conversion element, thermoelectric conversion module, and method of manufacturing thermoelectric conversion element

Country Status (2)

Country Link
JP (1) JP2010027631A (en)
WO (1) WO2008038519A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018046090A (en) * 2016-09-13 2018-03-22 古河電気工業株式会社 Thermoelectric conversion element and thermoelectric conversion module
CN113812010A (en) * 2019-09-09 2021-12-17 松下知识产权经营株式会社 Thermoelectric conversion material, thermoelectric conversion element, method for obtaining electricity using thermoelectric conversion material, and method for transporting heat

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058464A1 (en) * 2008-11-20 2010-05-27 株式会社村田製作所 Thermoelectric conversion module

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617225B2 (en) * 1987-06-26 1994-03-09 シャープ株式会社 Thermoelectric conversion material
JPH08125240A (en) * 1994-10-27 1996-05-17 Mitsubishi Materials Corp Manufacture of thermoelectric element
JPH1154808A (en) * 1997-08-07 1999-02-26 Science & Tech Agency Laminatedly integrated molded thermoelectric element and its manufacture
JP2000012914A (en) * 1998-06-22 2000-01-14 Tokyo Gas Co Ltd Thermoelectric conversion material and thermoelectric conversion element
JP2005223307A (en) * 2004-01-08 2005-08-18 Univ Nagoya Oxide-based thermoelectric conversion film and method of forming oxide thermoelectric conversion film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018046090A (en) * 2016-09-13 2018-03-22 古河電気工業株式会社 Thermoelectric conversion element and thermoelectric conversion module
CN113812010A (en) * 2019-09-09 2021-12-17 松下知识产权经营株式会社 Thermoelectric conversion material, thermoelectric conversion element, method for obtaining electricity using thermoelectric conversion material, and method for transporting heat

Also Published As

Publication number Publication date
WO2008038519A1 (en) 2008-04-03

Similar Documents

Publication Publication Date Title
JP4983920B2 (en) Thermoelectric conversion element, thermoelectric conversion module, and method of manufacturing thermoelectric conversion element
WO2010058464A1 (en) Thermoelectric conversion module
JP5098589B2 (en) Thermoelectric conversion module
JP5464274B2 (en) Thermoelectric conversion element, manufacturing method thereof, and communication device
WO2005036661A1 (en) Conductive paste for connecting thermoelectric conversion material
JP4912576B2 (en) Fuel cell
JP2001332122A (en) Oxide ion conducting material, its manufacturing method, and fuel cell using it
JP4332639B2 (en) Fuel cell and method for producing the same
JP2010027631A (en) Thermoelectric conversion element, thermoelectric conversion module, and method of manufacturing thermoelectric conversion element
JP2012248819A (en) Thermoelectric conversion element and manufacturing method thereof
JP2003142742A (en) Manganese oxide thermoelectric converting material
JP4828104B2 (en) Fuel cell
WO2007108147A1 (en) Thermoelectric semiconductor, thermoelectric conversion element and thermoelectric conversion module
JP6050906B2 (en) Thermoelectric conversion material, thermoelectric conversion element, and thermoelectric conversion module
WO2017163507A1 (en) Multilayer thermoelectric conversion element
JP2003238154A (en) Complex oxide, oxide ion conductor, oxide ion conducting membrane and electrochemical cell
JP2010283112A (en) Thermoelectric transducing material
JP2003282966A (en) Electron type thermoelectric conversion material
WO2016148117A1 (en) Thermoelectric conversion material, thermoelectric conversion element and thermoelectric conversion module
EP2975659A1 (en) Ceramic material for a thermoelectric element, thermoelectric element comprising the ceramic material, thermoelectric generator comprising the thermoelectric element and method for producing the ceramic material
KR101874391B1 (en) CaMnO₃ BASED THERMOELECTRIC MATERIAL AND PRODUCING METHOD OF THE SAME
JP4338956B2 (en) Oxide sintered body, n-type thermoelectric conversion material, and thermoelectric conversion element using the same
JP4485273B2 (en) n-type thermoelectric conversion material
JP3950960B2 (en) Potassium-manganese-containing composite oxide
JP2004217499A (en) Complex oxide, n-type thermoelectric conversion material, and thermoelectric conversion element using it

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100202